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The propagation of light beams through astigmatic lens systems is accompanied by a transfer of orbital angular momentum. We 
develop a method to describe propagating light beams by operators of which the field is an eigenfunction. This method is applied 
to determine when an astigmatic lens system transforms gaussian beams into other gaussian beams and where in the system 
angular momentum is transferred. We show that the Gouy phase is equal to the dynamical phase of a quantummechanical har- 
monic oscillator with time-dependent energy. 

1. Introduction 

With the transverse intensity gradient of  a beam 
of  light corresponds a density o f  transverse momen-  
tum. This in turn may lead to a nonvanishing orbital 
angular momentum along the beam axis. Recently, 
it was demonstrated that astigmatic lens systems may 
change this angular momen tum [ 1 ]. Since lenses 
normally do not change the polarization of  the light, 
the spin is conserved. In an experiment [2] ,  Her- 
mite-gaussian beams which possess no orbital an- 
gular momentum were transformed into Laguerre-  
gaussian beams, which have a well-defined orbital 
angular momen tum per photon. Since the total an- 
gular momentum of  matter and light is conserved, 
this transformation is accompanied by a sm'all torque 
on the lens system. The transformation of  laser beams 
using astigmatic lenses has recently been investi- 
gated experimentally by T a m m  and Weiss [ 3 ]. 

In this paper we present a novel theoretical de- 
scription of  light beams, and we apply it to this type 
o f  experiments. The method exploits some well- 
known similarities between quantum mechanics and 
paraxial wave optics, and makes use o f  a state-vector 
representation developed by Stoler [4].  Instead o f  
giving analytical expressions for the electromagnetic 
field, we specify the field by (hermit ian)  operators 
o f  which the field is an eigenfunction, and by the cor- 

responding eigenvalues. Two operators suffice to de- 
termine the spatial dependence of  a monochromat ic  
beam and one operator determines its polarization. 
The propagation o f  laser light through optical sys- 
tems can then be described by the evolution of  the 
'eigenoperators '  of  the light field. In this way, we de- 
rive conditions under which gaussian beams are 
transformed into other gaussian beams. A case of  
special interest occurs when Hermite-gaussians are 
converted into Laguerre-gaussian modes. Analo- 
gously, the change of  angular momentum of  a field 
by lenses and lens systems is described by the evo- 
lution o f  the corresponding operator £z, in the same 
manner  as in the Heisenberg picture in quantum me- 
chanics. We also demonstrate that the Gouy phase is 
related to the dynamical phase of  a t ime-dependent 
harmonic oscillator. 

2. Linear and angular momentum of classical 
electromagnetic fields 

The local densities o f  linear momentum and an- 
gular momentum of  the source-free classical electro- 
magnetic (em)  field in vacuum are given by [5,6] 

p = ~ o E × B  , 

j = ~ o r X  ( E X B )  , (1) 
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in terms of the electric field E and the magnetic field 
B. These densities correspond to the Noether cur- 
rents associated with the invariance of the free Max- 
well equations under spatial translations and rota- 
tions, respectively [6,7]. The total linear and angular 
momentum of the em field, defined by 

P= f drp, J= ~ drj, (2) 

are therefore conserved quantities in vacuum. 
We now consider monochromatic fields with fre- 

quency o9, and we use the complex notation 

E= ( Ee-i°" + E* ei°'t) /2 , 

B =  (Be-i'°' + B*ei°J') /2 , (3) 

where the asterisk denotes complex conjugation. 
Then we can eliminate the magnetic field from eqs. 
(2) by using the Maxwell equation 

io)B=V×E.  (4) 

For fields that vanish sufficiently fast for Irl ~ ,  
partial integration in eqs. (2) leads to the following 
expression for the total linear momentum 

P = ~  d r  2 ETVEj, (5) 
j=x,l~,,7_ 

where we used that V.E= 0. The total momentum is 
manifestly independent of time. The expression (5) 
takes a form similar to the quantum-mechanical 
expression for the expectation value of the linear 
momentum of a particle. This has been noted before 
in a reciprocal (Fourier) representation [6-8 ]. In a 
similar way the total angular momentum can be 
written as 

, o f  dr 'o f j .... ,~ ~l~ d r f * x f  

=-L+S. (6) 

The interpretation of the first and second term on 
the right hand side of eq. (6) as orbital angular mo- 
mentum and spin is, although seemingly obvious, not 
without fundamental difficulties [ 6-8 ]. 

3. The paraxial approximation 

Paraxial wave optics [9-11 ] describes the prop- 
agation of light beams whose transverse dimensions 
are much smaller than the typical longitudinal dis- 
tance over which the field changes in magnitude. We 
start by recalling some results from ref. [9]. The 
transverse dimensions of the beam have the order of 
magnitude of the beam waist Wo, which is assumed 
to be much smaller than the diffraction length /= 
kwh, with k= co/c the wave number. One writes for 
the electric-field component of a beam propagating 
in the z direction 

E=eik--F. (7) 

The small parameter wo/l is used as an expansion 
parameter, which means that derivatives of F with 
respect to z can be neglected compared to the trans- 
verse derivatives. The field F satisfies to lowest order 
in wo/l the paraxial wave equation 

2 i k O F - - (  3 2 3 z  32) _ ~x~+b-~y~ r ,  (8) 

which determines the propagation of the field in the 
z direction for a given field distribution in a plane 
z=  Zo. Furthermore, the z component of F is smaller 
than the transverse components by a factor wo/l. 

Within the paraxial approximation we find it con- 
venient to consider quantities of the em field that are 
defined as averages over planes with z=constant. 
Thus, the linear and angular momentum per unit of 
length in a plane Z=Zo are given by 

~(Zo)= f f dxdyp(x,y, zo) , 

J(Zo)= f f cLrdyj(x,y, zo) . (9) 

Since the integrations in these definitions do not ex- 
tend over all space, the steps leading to the appealing 
forms ( 5 ) and (6) are not necessarily valid here. For 
instance, the quantities (9) are not independent of 
time. Therefore, we will always average such quan- 
tities over a period 27t/o9. Then, in the paraxial ap- 
proximation the (time-averaged) transverse com- 
ponents of ~ ,  and the z component of J can be 
rewritten to lowest order in wo/l as 
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•F, 
0 

,ofl + ~ dxdy (F*Fv-F~,F~) 

=L#. + ~ .  (10) 

Here we explicitly neglected derivatives of F with re- 
spect to z compared with transverse derivatives, and 
used that the z component o f F  is small [9] .  The z 
component of  the linear momentum per unit length 
is to lowest order in Wo/! given by 

~ . _ = j = ~ y ~ f  dxdyF~kFj. ( l l )  

From the well-known expression for the local energy 
density of the em field [5,6], 

GO U =  -~- ( E 2 + c 2 B  2) , (12) 

we obtain the time-averaged field energy per unit of  
length g, 

#=Wha~=j=~y2 f f dxdyFTF j, (13, 

where W is the number of photons per unit of  length. 
Division of quantities like eqs. (10) and ( 11 ) by JV" 
yields the value of that quantity per photon. For in- 
stance, the momentum in the z direction is, ob- 
viously, equal to hk per photon. 

4. Operator formalism and notation 

4.1. Schrrdinger picture 

The propagation of light beams can also be de- 
scribed in an operator formalism which is very sim- 
ilar to the operator description of the hamiltonian 
evolution of quantum-mechanical states. We use here 
the formalism developed by Stoler [4]. Moreover, 
the analogy between the expressions ( 1 0 ) -  ( 1 3 ) for 

time-averaged quantities of the classical em field, and 
the quantum-mechanical expectation values of the 
same quantities for particles, allows us to extend that 
formalism (see also ref. [ 1 1 ] ). We use the following 
notations and conventions: 

• the field F(x, y, z) is represented by the ket vec- 
tor IF(z) ); 

• operators acting upon the field F are represented 
by corresponding operators, denoted by a caret, act- 
ing upon the ket IF);  

• the evolution of a field propagating from Z=Zo 
to z=  Zl through a given lossless optical system is de- 
termined by a unitary operator/~, according to 

IF(zi ) ) = hi F(zo) ); (14) 

the coordinate z plays the same role as time in or- 
dinary quantum mechanics; 

• the scalar product (F(z)IIG(z)) is defined as 

( F(z)llG(z) ) 

oo f - 2o) dxdyF*(x,y,z) .G(x,y,z)  

J'= ,y 

(15) 

to lowest order in wo/l. 
When Q is an hermitian operator, the quantity 

3 ( z )  defined by 

.~(z) = ( F(z) ]O_]F(z) ) (16) 

is real. For example, when we introduce the opera- 
tors for transverse momentum 

1 0 1 0  
Px = i 0x '  PY - i 0y '  (17) 

then it follows from eqs. ( l  0) that 

~x=(F[~x[F), ~ = (F]/~y ] F ) .  (18) 

The momentum operators obey the usual commu- 
tation relations with the position operators 2 and 33, 

[-f,/~x] = [33,/~y] = i .  (19) 

As another example, we introduce the operator £z 
for the z component of the orbital angular momen- 
tum acting upon the external degrees of  freedom of 
the field, by 

149 



VoLume 94, number 1,2,3 OPTICS COMMUNICATIONS 1 November 1992 

£:  =~f~,.- f'/~,. (20) 

The spin operator S- on the other hand acts upon the 
vectorial indices of the field, 

S : I & > - -  E iejk=lFa), (21) 
k =  v.l' 

with ej~ the completely anti-symmetrical Levi-Civ- 
ita tensor. A matrix representation of the spin op- 
erator is therefore 

, .= (0 .  - i  ;) '  (22, 

The eigenvalues of S: are, of course, equal to _+ 1. 
With these operators substituted for 0 we can write 
eqs. (10) for ~ and ~ in the form (16). 

The evolution of a light beam propagating in vac- 
uum is found from the formal solution of eq. (8) [ 4 ]. 
It can be written in the form (14), with /~ the free 
propagation operator describing evolution, 

l~=exp( i ( z ' - z ° )  ) 
2k /52 , (23) 

where we defined/~2 =/~2 +/5~. 

4.2. Heisenberg picture 

When a field evolves according to eq. (14), the 
evolution of a quantity ~ (z ) ,  defined in eq. (16), is 
given by 

~A(Zl ) = ( F(zo) [h*QhlF(zo) ) , (24) 

with h* the Hermitian conjugate of h. As in the Hei- 
senberg picture in quantum mechanics we can in- 
terpret the operator htQh as giving the evolution of 
the quantity corresponding to the operator (~, where 
now the field is described by the state vector I F(zo) ) 
at a single value Zo of z. This picture is very useful 
when examining certain properties of physical quan- 
tities of the form (16) that are independent of the 
fields. For instance, if the operator (~ commutes with 
the operator/)2, it also commutes with the free prop- 
agation operator (23). This implies that 

h*O_f= Q_, (25) 

which in turn implies that the quantity 3 (z) is con- 
served under free propagation, i.e. 

d:2 - -0 .  (26) 
dz 

Thus the z components of both orbital angular mo- 
mentum and spin are conserved during free propa- 
gation, since the operators/£z and ~ both commute 
with ,62. This means that their value per unit length 
is uniform along z. Also the energy per unit length 
(13) is a conserved quantity, as it is represented by 
the identity operator. Note that 'conserved' here does 
not refer to conservation in time, but rather to con- 
servation with the position z. 

5. Ideal lenses 

A lens is called ideal when it is sufficiently thin, so 
that propagation within the lens is negligible. An ideal 
lens modifies an incoming field distribution F(x, y, 
z) by adding a local phase ~(x, y) to the field, where 

is a real function of (x, y) [ 12]. If  the lens has a 
constant refractive index n, the phase change ~, is due 
to the local change of the optical path, which is pro- 
portional to the local thickness b(x, y) of the lens, 

g/(x, y) =kb(x, y) ( n -  1 ) .  (27) 

In the operator formalism of the preceding section, 
the ideal lens is represented by the operator 

3v= exp [i{g(A, 3~) ] .  (28) 

In particular, a cylindrical lens with its axis oriented 
at an angle 7 with the positive x axis is described by 
the phase 

k 
qJ(x, y) = - ~f(x  cos 7+Y sin 7 )  2 , (29) 

w i th f t he  focal length of the lens along its axis. The 
focal length in the orthogonal direction is infinite. 
Within the Heisenberg picture it is easy to prove that 
the z component of  the spin, ~ ,  cannot be changed 
by a lens. Since the operator Sz does not act upon the 
coordinates of  the field, 

T*SzT=Sz,  (30) 

for arbitrary ]? defined in eq. (28). The orbital part 
of the angular momentum does change in general, 
since 

150 



Volume 94, n u m b e r  1,2,3 O P T I C S  C O M M U N I C A T I O N S  1 N o v e m b e r  1992 

Oq/ . O~ 
D£z~=£z+~T~ -y~  

- £ z +  8£z. (31) 

For a general field IF in ) incident on the lens, the dif- 
ference in the value of ~e~ in the output field and its 
value in the input field is 

8~,~z : ( F i n  18£z IFin ) • (32) 

Therefore the angular momentum absorbed by the 
lens per unit time is -: c65~z. This is the total torque 
on the lens. In terms of the output field IF out) the 
relation (32) becomes 

85¢z = - (Four 18£~ IFo~t ) ,  (33) 

which follows from the relation 

T £ ~ T + = £ ~ -  8£~. (34) 

For a spherical lens the operator 8£~ vanishes. Hence, 
such a lens can never absorb angular momentum in 
the z direction from an em field. For a cylindrical 
lens satisfying eq. (29) one finds 

~ f [22p  cos 2 7 -  ( 2 2 - p  2) sin 27] .  (35) 6£~(7) = 

From eq. (35) it follows that 

5£z(?_+ n /2)  = - 8£z(Y) • (36) 

Thus, when a cylindrical lens is rotated over n/2  
about the z axis, the amount of  orbital angular mo- 
mentum absorbed by the lens changes sign. This im- 
plies, that for any incoming field there is always an 
orientation 7o of the lens for which ~z of that field 
is not changed by the lens. Then it follows from eq. 
(35) again that the maximum change in the value of 
Lf~, 5L, em~x, is attained for an orientation angle 
7=?o_+n/4. In fact, the change in orbital angular 
momentum of an arbitrary field due to a cylindrical 
lens can always be written as 

6L~= + 85em,~ s in (27-27o) .  (37) 

6. Appl icat ions  

6.1. Circular fields 

As is well known, the operator £z takes the simple 
form 

£ ~ = - i  ~ (38) 00 
in cylindrical coordinates 

x=rcosq~; y = r s i n 0 ;  z = z .  (39) 

We define a circular field as an eigenfunction of £~. 
These fields have an azimuthal dependence given by 
exp (i/0). Since 0 is a periodic variable, l must be an 
integer. In a circular field with eigenvalue l the or- 
bital angular momentum per photon amounts to lit 
[ 1], and the intensity is independent of ~. More- 
over, since £~ commutes with the free propagation 
operator, circular fields remain circular during free 
propagation. We shall denote these fields by kets [l). 
Examples of circular fields are the Laguerre-gaus- 
sian modes [ 10 ]. 

We can now calculate the effect of an arbitrary ideal 
lens on the orbital angular momentum of a circular 
field. The change 8 ~  in orbital angular momentum 
of an arbitrary input field IF) ,  eq. (32), can be re- 
written in cylindrical coordinates: 

8 ~  = (FI Ùu//OOIF) 

- % dr rdq~F* .F  
20) 

0 0 
oo 2~z 

- -  20) dr rdq~gt~  ( F * . F ) ,  ( 4 0 )  
0 0 

where we used partial integration to obtain the last 
equality. From this equality it is clear that no ideal 
lens can change the orbital angular momentum of a 
circular field. Hence 

6 ~  = (ll  6£~ II) = 0 .  (41) 

With eq. (33), this also shows that the lens cannot 
have changed the orbital angular momentum of a 
field when the outcoming beam is circular. 
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6.2..4 cylindrical lens system 

In this subsection we consider a particular optical 
system, which has been used in the experiments 
mentioned in the Introduction [ 2 ]. The system con- 
sists of two identical cylindrical lenses, oriented along 
the x axis, with focal length f and separated from 
each other by a distance 2d (fig. 1). In ref. [3] a 
slightly different configuration was used, in that the 
two lenses had different focal lengths. Our results can 
easily be generalized to include this case. However, 
an arbitrary conversion of a gaussian beam can al- 
ready be realized with lenses with equal focal lengths 
(see sect. 7). The propagation operator /~ for this 
system is 

B {_ik22, ~ ( - i k 2  z) 
= e x p ~ , - - - ~ ] e x p ( ~ ) e x p \  2f J" 

(42) 

The action of the system can be specified by giving 
the evolution of the coordinate operators 2 and )3, 
and of the momentum operators Px and/~y in the 
Heisenberg picture, 

~px, 

ht#~=#+ ~ # v ,  

h * b ~ h = # x ( 1 - f ) - 2 k ( 1  f ) 2  
" 7 - ' 

t f 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  i ............................ 

J ml 

d d 
Fig. 1. Configuration of two parallel cylindrical lenses with focal 
length fat mutual distance 2d. 

~t#y/i=/~,, (43) 

obtained by means of the Baker-Campbell-Haus- 
dorff formula [ 13 ] 

exp(B) A e x p ( - B )  

1 
= A +  [B, A I +  ~ [B, [B, Al l  +-. . .  (44) 

From eqs. (43) one finds that the orbital angular 
momentum changes according to 

J ~ * £ , ~ = £ _ ( l - ~ 2 2 ) + f ( 1 - f ) 2 3 5 +  4d2~ ~ _ . ~ f  PxPv 

( f  2d2"] (45) 
+(@~+2#,) - .f2j. 

In particular, for incoming circular fields l l} only 
the first term on the right hand side ofeq. (45) con- 
tributes, and one finds for the change in £P_ 

2d z 
6 ~ -  f z  (l[£zll}, (46) 

so that the lens system absorbs an amount 2lhd2/f 2 
of angular momentum per photon. However, the 
output field cannot be circular. In fact, when both in- 
and outcoming fields would be circular, then neither 
of the two lenses could have changed 2#~, as shown 
in section 6.1; furthermore, during the free propa- 
gation between the lenses £f~ is conserved (section 
4.2), so that the orbital angular momentum of in- 
and outcoming fields would have to be the same. This 
is in contradiction with eq. (46), since the multi- 
plication factor is always negative. 

From similar arguments is clear that the change in 
angular momentum of an incoming circular field 
takes place exclusively at the second lens. 

Moreover, eq. (46) shows that we must have 
d=f/x~ in order that the lens system changes a cir- 
cular field [ l)  with l¢  0 into a field with zero angular 
momentum. Conversely, the same condition is re- 
quired to produce a circular field I l )  with l¢  0 from 
an input field that carries no angular momentum (cf. 
ref. [2] ). 

6.3. A paradox 

Geometrical optics suggests a simple way to con- 
vert a circular field l l )  into the opposite state [ - l ) .  
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This is achieved when the system inverts the x di- 
rection, without changing the y direction. For a well- 
collimated beam this simple reflection is produced 
by the configuration of fig. 2, with d = f  This con- 
figuration has been termed a ~ convertor [2 ]. The 
picture ofx  inversion is confirmed by eqs. (43), pro- 
vided that the last terms of the first two equations 
are negligible. This requires that 

~=d/kw 2 << 1 , (47) 

where w is the transverse dimension of the incoming 
beam. Then the lens system transforms a field IF) 
according to 

F(x,  y) -+F( - x ,  y ) ,  (48) 

apart from a phase factor, and a small (9(~) correc- 
tion. When applied to a circular field I/), this trans- 
formation (48) yields another circular field I - l ) .  
This simple geometrical picture is confirmed by eq. 
(46), which shows that for d = f  the momentum 
transfer is exactly - 2 h l  per photon. However, this 
transformation is in contradiction with the conclu- 
sion of section 6.2, namely that for a circular input 
field the output field cannot be circular. In fact, the 
conversion is only exact in the geometrical optics 
limit k~oo (so that ~--+0). Hence, when the input 
field is exactly the circular state I/), then the output 
field must be written as I - / ) + ~ l s ) ,  where Is) 
stands for some superposition of circular fields. Then 
the input field has an angular momentum per pho- 
ton equal to lh, and for the output field this value is 
exactly - l h  (when d = f ) .  Furthermore, the transfer 

f f 

d=f d=f 
Fig. 2. In the geometrical optics limit the lens system of fig. 1. 
inverts the image in one direction when d=f 

of angular momentum must occur at the second lens, 
as we showed in section 6.2. 

This raises another problem: on the one hand the 
second lens transfers 2lh per photon when ~ is small 
but finite, while on the other hand there can be no 
transfer when the output field is circular (i.e. for 
t~= 0). This discontinuity can be explained from eq. 
(29). The phase that the lens adds to the field is of 
the order of 1/~. Therefore the effect of the second 
lens on the orbital angular momentum can be arbi- 
trarily large for ~--,0. Thus, for an exact circular out- 
put field there is no transfer of £P~, but small C(~) 
corrections to a pure circular field give in general rise 
to a finite transfer of ~w of order unity in units of h 
per photon. More precisely, since the output field is 
given by I - l )  +~ l s ) ,  one finds from eqs. (33) and 
(35) the finite change in LP~ by the second cylindrical 
lens in the limit ~->0, 

8~- = - 2  Re(  slYcf:/w21 - l )  . (49) 

A similar argument is valid when the input field is 
not exactly circular. 

We conclude that the total transfer of angular mo- 
mentum is close to - 2hl per photon when the input 
field is nearly circular, and when d is close t o f  How- 
ever, the location where the angular momentum is 
transferred is very sensitive to the input state: a small 
admixture of other states can give a drastic variation 
in the distribution of the transfer over the two lenses. 

For noncircular input states, eq. (45) shows that 
the total amount of angular momentum transfer de- 
pends in a very sensitive way on d (or f).  This is due 
to the second term in eq. (45), which is proportional 
to 1/~. When the average ofxy  vanishes, which is the 
case for circular fields, this term does not contribute, 
and the sensitivity disappears. 

7. Eigenoperators of fields 

We earlier defined circular fields by requiring them 
to be eigenfunctions of the operator £z. In a similar 
way we can specify a field IF(z) 7, for given wave 
number k, by giving three commuting hermitian op- 
erators of which the field is an eigenmode, and the 
corresponding eigenvalues. One of the operators, 
S(z),  refers to the vector character (polarization or 
spin ) of the field. The other two operators/£i (z), for 
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i= 1,2, act upon the translational degrees of freedom 
of the field, and determine its (x,y) dependence. 
Thus, the field IF(z) > is uniquely determined, up to 
a normalization factor and an arbitrary phase, by 

&z) IF(z) > =slF(z) >, 

RAn IF(z) > : ~ ,  IF(z) >. (50) 

The operators S and/(~ may be called eigenoperators 
of the field. The eigenvalue of the polarization op- 
erator ~ equals s = ± 1, and the eigenvalues/tj are real, 
and independent of z (see below). When a field 
propagates through a given optical system, it evolves 
according to eq. (14), and it will in general no longer 
satisfy eqs. (50). Instead, the field ~]g> is an ei- 
genfunction of the operators 

~ ' : ~ P ,  

/£; =/~Rfl~*, (51) 

with the same eigenvalues as in eqs. (50). The evo- 
lution of an em field is thus also described (up to a 
phase factor) by the evolution (eq. (51))  of its ei- 
genoperators. This description is sometimes more 
convenient than dealing with the explicit spatial de- 
pendence of the fields. Notice that the operators 
R,(z) as a function of z do not obey the Heisenberg 
equation, but rather the Liouville-Von Neumann 
equation. 

Since the optical systems we consider in this paper 
do not contain polarization-changing elements, po- 
larization is conserved, and will henceforth be left 
out of consideration. From now on we only discuss 
scalar fields. 

7.1. Hermite- and Laguerre-gaussian modes 

We apply the eigenoperator description to Her- 
mite-gaussian (HG)  and Laguerre-gaussian (LG) 
modes, which are commonly used in laser physics 
[ 10 ]. We first give the eigenoperators of these fields 
in their focal plane, which is the plane where the 
transverse dimension of the beam has a minimum. 
The focal plane is chosen to be the plane z=0 .  In an 
arbitrary plane Z=Zo the fields can then be con- 
structed formally by letting the fields propagate freely 
from z = 0  to Z=Zo. In the next section we will show 
that the modes defined in this way are indeed the 
HG and LG modes. 

We define a HG field in its focal plane by the ei- 
genvalue equations 

l (~.fc2+ fl p2) 'H~m(O) )=(n+½)lH',.(O) ) 
2 

1 k ~  2 

k , 

(52) 

Thus a HG field I H~m (0) > is an eigenfunction of a 
'Hamiltonian'  of two identical harmonic oscillators 
in the x and y direction, with 'energy' n + ½ and m + ½, 
respectively. The parameter fl can be identified with 
the Rayleigh range or half the confocal parameter of 
the beam [ 10 ]. Analogously, LG fields with the same 
Rayleigh range fl can be defined by 

£:  I Lfx(0) > = llLg,,(0) >,  

I (flf2+ fl ~2) IL~N(O)>=(N+I)IL~(O)) 2 
(53) 

where ~2=~2+))2. Thus a LG field ILfx(0)> is an 
eigenfunction of £z, with eigenvalue l, and of a 2-D 
degenerate harmonic oscillator, with 'energy' N +  1. 
The latter operator is just the sum of the two har- 
monic oscillators in eqs. (52). From quantum me- 
chanics it is known that one obtains solutions only 
for Ill <N. The two eigenvalue equations (53) de- 
termine the ~ and r dependence of LG fields. By ap- 
plying the free propagation operator (23) to the fields 
at z = 0  we obtain the HG and LG modes for arbi- 
trary z, 

- - i z  ~2 ,H~,r,(z) ) =exp(~-p  ) lH~m(O) ) , 

[ - iz  - 2"~ [Lfu(Z) ) = e x p ~ -  p )ILfx(0)) . (54) 

For z ¢  0 these fields are no longer eigenfunctions of 
the same, or of any other, harmonic oscillator. 
Namely, we find that the eigenoperators of the HG 
mode evolve during free propagation as 

R,(z)= * + + b~- ~t~ , 

l i f t . 2  (fl  Z___fl) P Z ' ]  &(z)  = y + + ~ -  -~t.~ , (55) 
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and the eigenvalues remain n + ½ and m + ½. Relation 
(55) follows from eqs. (51) with eq. (23) substi- 
tuted for/~ while using the BCH formula (44). We 
defined here the operators /'x and [v and their sum 
i 'by 

[= /̀ ~ + /̀ y . (56) 

The LG mode I L ~ ( z )  ) is an eigenmode Of£z with 
eigenvalue l for all z, since £ .  commutes with ,62. Its 
second eigenoperator is given by /£ (z )=  
R~(z) +/£2(z), and the eigenvalue remains N +  1. 

7.2. Gaussian modes 

We have shown that HG and LG modes have one 
eigenoperator in common, of  the general form 

/£(a) = a j  ~2 + a2`62 + a3/` , (57) 

which is invariant under rotations about the z axis. 
In their focal plane both fields are eigenfunctions of 
a 2D degenerate harmonic oscillator (DHO) ,  since 
there a3 vanishes. Fields with an eigenoperator of the 
form (57) with arbitrary values a~, a2 and a 3 will be 
called gaussian fields. This is in accordance with 
textbook nomenclature [10], where gaussian fields 
are written as an eigenfunction of a DHO multiplied 
by a position-dependent phase factor (see next sec- 
tion). Such fields remain gaussian during their free 
propagation. Furthermore, it is easily proved that any 
gaussian field can be written as a linear superposi- 
tion of r iG modes IH,~m(Z) ) with n + m = c o n s t a n t ,  
and with a properly selected value of fl and of the 
position of the focal plane. The converse statement 
is obviously also true. Thus, any H G  mode 
IH~m(Z)) that is rotated about the z axis can be 
written as such a superposition. The same is true for 
the LG mode rL~N(Z)), where n + m  must equal N. 

7.3. Mode convertors 

The eigenoperator (57) of  a gaussian field will be 
transformed by a cylindrical lens into an operator 
that is no longer invariant under rotations about the 
z axis. Then the output field is not gaussian. How- 
ever, in special cases, a lens system may convert a 

gaussian field into another gaussian field. Then we 
call the lens system a mode convertor [1,2]. The 
condition for a mode convertor is, that the operator 

/£' =/~/£(a)/~ t (58) 

be of the form (57) again. We substitute for h the 
evolution operator (42) of  the lens system from sec- 
tion 6.2. For a given incoming field, this yields the 
conditions under which the lens system is a mode 
convertor for this field. We obtain 

d = k  a3 , 
al 

f = k  a3a2 
a2al -2a32 ' (59) 

in terms of the coefficients a, of the eigenoperator 
(57) of the incoming field. For incoming HG modes 
with eigenoperators (55) we can substitute a~ =k/f l  
and a3=- -z / f l  in the conditions (59), which then 
become 

z =  - d  , 

f12 -}- d 2 

f = d  f l2_d 2 . (60) 

The first condition means that for a mode convertor 
the focal plane of the incoming H G  mode must be 
halfway between the two lenses [2 ]. 

7.4. Production of  circular fields 

We now wish to investigate when it is possible to 
convert a HG mode IH~m(Z)) into a field that has 
the orbital angular momentum operator £~ as an ei- 
genoperator, that is, into a circular field. 

The two eigenoperators of the HG mode were given 
in eqs. (55). Eigenoperators of this form will keep 
the same form during their propagation through the 
cylindrical lens system of section 6.2. The reason is 
(i) that the evolution operator (42) of  the lens sys- 
tem consists of exponentials of the operators occur- 
ring in (55) and (ii) that these operators form a 
closed (Lie) algebra. In fact, they generate the direct 
product SU ( 1,1 ) × SU ( 1,1 ) [ 13 ]. The operators 
(55) will therefore evolve, according to eqs. (51 ), 
within that algebra during the entire propagation. 
This algebra does not contain £z. Therefore, the lens 
system satisfying eq. (42) alone is not sufficient to 
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produce an eigenfunction of £z from a HG mode 
[ H,,,, (~) ). Both eigenoperators of this field are and 
remain of the form (55). 

However, application of a rotation about the z axis 
to a HG mode before it enters the lens system will 
transform eigenoperators in such a way that they will 
belong to a larger algebra which does contain £z. The 
reason is, that rotations around the z axis are gen- 
erated by /2:: the rotation operator/~), describing a 
rotation around the z axis over an angle 7 is given by 

/~. =exp(iT£z) . (61) 

If  the HG mode [ H ~ ( z ) ) ,  rotated over an angle 7 
and having passed the lens system, is to be an ei- 
genfunction of £-, we must require £~ to be a linear 
combination of the two eigenoperators of the output 
field 

/~7 = ~/~y/~i /~  1 ]~t ,  (62) 

for i = 1, 2, with/(~ and/(2 the eigenoperators of the 
incoming field, defined in eqs. ( 55 ). Conversely, the 
operator 

£'_ =/~7 ~/~*£~/~/~ (63) 

must be a linear combination of the operators/£~ and 
/£2. Using eq. (45) one finds 

+ - f 2 ]  [()?L.+)~.o,.)cos27 

+ sin 270),0~. - 2/5x) ] 

4d 2 
+ ~ -  [/~,,/~. cos 27+ ½ sin 27(p 2 _/~2) ] 

+ - 7  1 -  [2~ cos 27+ ½ sin 27032-22) ] • 

(64) 

Inspection of eq. (64) shows that this expression is 
indeed a linear combination of/£~ and/(2: 

/~-'/~*£fl~-R7 = +- (K2 - R ,  ) ,  (65) 

if and only if 

7 = + n / 4 ,  f = d x / 2 ,  

z = - d ,  /~=d(l  + , , f 2 ) .  (66) 

These restrictions are the same as those given for the 
'n/2 convertor' [2]. Here we have proved that the 
rotation angle 7 must equal +n/4, and that the focal 
plane of the HG mode must be halfway between the 
two lenses. For the eigenvalue l o f£z  one finds, from 
eq. (65), 

l= +_ ( m - n )  , (67) 

because the eigenvalues corresponding to/£2 a n d / ~  
are m +  ½ and n + ½, respectively. Since the relations 
(66) are consistent with eqs. (60), the lens system 
acts in this case also as a mode convertor. That is, 
the outcoming mode is not just an eigenfunction of 
£~, it is in fact the LG field IL(.n+m(d)). 

8. Properties of gaussian modes 

We show here that the eigenoperators provide a 
simple way to explain that a freely propagating field, 
which is an eigenfunction of a 2D degenerate har- 
monic oscillator (DHO)  in one plane, can be writ- 
ten as the product of a local phase factor and an ei- 
genfunction of another DHO, in any other plane 
z=  constant. Subsequently, we show that the Gouy 
phase of gaussian beams [ 10 ] can be identified with 
the dynamical phase of a quantum-mechanical DHO 
with time-dependent energy. 

We consider a field IFN(0))  that is an eigenfunc- 
tion of the DHO 

/ £ ( 0 ) = 2 [ a o  +a°/sa ' (68) 

with eigenvalue N +  1. When the field propagates 
through the vacuum, it becomes an eigenfunction of 
the operator 

--i,z~2 1 f2 ao /~2]exp/ iZ  ^2~ 

(69) 

at position z. We now search for parameters R and 
a such that this eigenoperator/£(z) is again a DHO 
up to a position-dependent phase factor. More pre- 
cisely, we require 

/~(z)=exp(~kRf2)_ l~  '2 -2 -] f - i k .  2, 
2L a + a p  J e x p ~ - r  ) .  

(70) 
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This relation implies that the field IF(z)) at posi- 
tion z is the product of  the phase factor exp(ik~2/ 
2R) and an eigenfunction o fa  DHO of the form (68) 
with ao replaced by a(z). Its eigenvalue is N +  1. Us- 
ing the BCH formula (44) we find the unique so- 
lution of eq. (70) to be 

z 2 + a o 2 k  2 
R(z) = 

Z 

z Z + o t 2 k  2 
a ( z ) =  kZao (71) 

For HO and LO modes we may substitute the value 
ao=fl/k, according to eqs. (52) and (53). Then we 
find 

Z2 --[- fl 2 
R ( z )  = - - ,  

Z 

zZ + fl 2 
a(z) = - -  (72) 

kfl 

These parameters are, indeed, equal to the local ra- 
dius of  curvature of these modes, and to the square 
of the local beam radius, respectively [ 10]. 

8.1. Gouy phase 

As just shown we can rewrite the field I Fx(z) ) as 

{ ike 2 
IFN(Z))=exp~-(-Z~J[HN(a,Z) ) , (73) 

where [HN (a, Z) ) is an eigenfunction of a DHO with 
eigenvalue N +  1. Using the fact that [FN(Z)) sat- 
isfies the paraxial wave equation, we find, after sub- 
stituting eq. (73), 

1 OR~2 2ik d lHN(a,z) )= [k2-~5~z 

+ik 
+exp(~Rkp2) /~2  exp k. 2R ~2)] ,HN(a,z)) 

= ~ + p ~ + ~ t  IH~(a,z)) 

[ p2 k Oa [] 
= ~ + P 2 + ~ a ~ z  [HN(a,z)) ,  (74) 

with [defined in eq. (56). The field distribution cor- 
responding to ]HN(a, z ) )  can be written as a real 

function o f x  and y, represented by the ket I GN(a) ),  
multiplied by an overall z-dependent phase factor, 

[HN(a,z))=exp(--iCN(Z))lGx(a)) . (75) 

The last term on the right hand side ofeq. (74) being 
proportional to da/dz results from the z dependence 
of the real part I GN(a)) in eq. (75) through a(z). 
Indeed one can show that 

{I a N ( a )  ) =4ia ~ J a N ( a )  ) . (76) 

The remaining two terms on the right hand side of 
eq. (74) therefore determine the explicit z depen- 
dence of [HN(a, z ) ) ,  and hence the phase CN(z). 
This remaining part has the form of a Hamiltonian 
for an harmonic oscillator with constant mass and 
position-dependent frequency. The ket I HN(a, Z)) 
is an eigenfunction of this Hamiltonian with posi- 
tion-dependent eigenvalue ( 'energy') 2 ( N +  1)/  
a(z). Therefore, the phase CN(Z) is given by 

i 2 ( N + l )  (77) 
ON(Z)= ds 2ka(s-------)" 

0 

For HG and LG modes the substitution of a o =  
fl/k leads to the well-known expression for the Gouy 
phase [ 10 ]: 

~(z) =tan-' (z/fl) , (78) 

and ~N = (N+  1 )~. Thus HG and LG modes evolve, 
apart form the phase factor in eq. (73) in the same 
way as the state of a quantum-mechanical harmonic 
oscillator with time-dependent energy in the adi- 
abatic regime, when it starts in an eigenstate. Namely, 
in the adiabatic approximation one neglects the time 
derivative of  the hamiltonian. Here, on the other 
hand, the presence of the third term in eq. (74) pro- 
portional to the derivative of a (z) ensures that the 
ket I H x ( a ,  z ) )  remains an exact eigenfunction of 
the Hamiltonian. 

9. Conclusions 

We discussed the change in orbital angular mo- 
mentum of light beams during their passage through 
systems of cylindrical lenses. We presented a for- 
malism which makes use of some formal analogies 
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between quan tum mechanics and paraxial  wave op- 
tics. For  instance, a light field can be represented by 
a state vector, with the coordina te  z as a propagat ion  
variable,  which plays the same role as t ime in quan- 
tum mechanics [4] .  We showed that  physical  quan- 
tit ies such as the l inear  and angular  m o m e n t u m  per  
unit beam length can be given in the form of  expec- 
tat ion values of  corresponding operators  in the state 
associated with the field. 

In the 'Schr6dinger  picture ' ,  the propagat ion  of  
fields along the z axis is descr ibed by a uni tary  op- 
erator.  In the 'Heisenberg pic ture '  the evolut ion o f  
physical  quanti t ies  rather  than of  the fields is given. 
By using the Heisenberg picture, we proved that, e.g., 
the z component  of  orbi tal  angular  m o m e n t u m  is 
uniform along z for arbi t rary  freely propagat ing light 
beams. Fur thermore ,  we calculated the amount  o f  
angular  m o m e n t u m  absorbed by ideal lenses, and  
descr ibed effects of  cylindrical  lenses for arbi t rary  
incident  fields. 

We then discussed the act ion of  cylindrical  lens 
systems on the l inear and orbital  angular  m o m e n t u m  
of  light beams,  and de te rmined  exactly where and 
how much angular momen tum is transferred. We also 
found a pecul iar  paradox  for a par t icular  lens system 
in the geometrical  optics l imit .  It turns out that  this 
l imit  displays a singulari ty for lens systems. 

We argued that  a light field is de te rmined  at each 
posi t ion z by three eigenoperators  which have the 
field as an eigenfunction,  and by its eigenvalues. 
Propagat ion of  a field can al ternat ively be descr ibed 
by giving the evolut ion of  its eigenoperators .  In par- 
ticular,  we appl ied  this formal ism to define Her- 
mi te -gauss ian  ( H G )  and Laguerre-gauss ian  ( L G )  
modes  [10] ,  and the def ini t ion for more general 
gaussian modes  arises naturally. Using this formal- 
ism we were able to f ind in a s t ra ightforward way 
when an ast igmatic  lens system converts  one gaus- 

sain mode into another.  We also der ived the neces- 
sary and sufficient condi t ions  under  which H G  
modes  can be conver ted into LG modes  and con- 
versely. This possibi l i ty  was der ived in a completely 
different  way in ref. [2].  
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