
380 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 52, NO. 3, MARCH 2004

Transactions Papers

OFDM or Single-Carrier Block Transmissions?
Zhengdao Wang, Member, IEEE, Xiaoli Ma, Member, IEEE, and Georgios B. Giannakis, Fellow, IEEE

Abstract—We compare two block transmission systems over
frequency-selective fading channels: orthogonal frequency-divi-
sion multiplexing (OFDM) versus single-carrier modulated blocks
with zero padding (ZP). We first compare their peak-to-average
power ratio (PAR) and the corresponding power amplifier backoff
for phase-shift keying or quadrature amplitude modulation. Then,
we study the effects of carrier frequency offset on their perfor-
mance and throughput. We further compare the performance
and complexity of uncoded and coded transmissions over random
dispersive channels, including Rayleigh fading channels, as well
as practical HIPERLAN/2 indoor and outdoor channels. We
establish that unlike OFDM, uncoded block transmissions with
ZP enjoy maximum diversity and coding gains within the class
of linearly precoded block transmissions. Analysis and computer
simulations confirm the considerable edge of ZP-only in terms
of PAR, robustness to carrier frequency offset, and uncoded
performance, at the price of slightly increased complexity. In
the coded case, ZP is preferable when the code rate is high (e.g.,
3 4), while coded OFDM is to be preferred in terms of both
performance and complexity when the code rate is low (e.g., 1 2)
and the error-correcting capability is enhanced. As ZP block
transmissions can approximate serial single-carrier systems as
well, the scope of the present comparison is broader.

Index Terms—Capacity, coding, diversity, frequency-selective
fading, HIPERLAN, multicarrier, orthogonal frequency-division
multiplexing (OFDM), peak-to-average ratio (PAR), single carrier,
synchronization.

I. INTRODUCTION

ORTHOGONAL frequency-division multiplexing
(OFDM) has already been included in digital audio/video

broadcasting (DAB/DVB) standards in Europe, and has been
successfully applied to high-speed digital subscriber line
(DSL) modems in the United States. Recently, it has also
been proposed for digital cable television systems and local
area mobile wireless networks, such as those specified in
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the IEEE802.11a, and the HIPERLAN/2 standards [16]. By
implementing an inverse fast Fourier transform (IFFT) at the
transmitter and a fast Fourier transform (FFT) at the receiver,
OFDM converts an intersymbol interference (ISI) channel into
parallel ISI-free subchannels with gains equal to the channel’s
frequency response values on the FFT grid. To eliminate in-
terblock interference (IBI) between successive IFFT-processed
blocks, a cyclic prefix (CP) of length no less than the channel
order is inserted per transmitted block. Discarding the CP at the
receiver not only suppresses IBI, but also converts the linear
channel convolution into circular convolution, which facilitates
diagonalization of the associated channel matrix (see, e.g.,
[44]).

Although OFDM enables simple equalization, it introduces
the following three well-known problems.

1) The peak-to-average ratio (PAR) of the transmitted
signal power is large, necessitating power backoff, unless
PAR-reduction techniques are incorporated to control the
resulting nonlinear distortion at the power-amplification
stage.

2) Because information symbols are transmitted on subcar-
riers, OFDM is sensitive to transmit–receive oscillators’
mismatch and Doppler effects, both of which cause
(sub)carrier frequency offset (CFO).

3) Uncoded OFDM does not enable the available multipath
(or frequency) diversity. In fact, only diversity order one
is possible through multipath Rayleigh fading channels;
see, e.g., [5] and [45].

To alleviate problem 1), several PAR-reduction algorithms
have been devised [6], [27], [35], [43]. But the resulting PARs
are still at least a few decibels larger than those of serial
single-carrier transmissions. Therefore, time-domain amplitude
clipping is often performed to mitigate the PAR effects problem
[4], [6], [12], [13], [21], [26], [27], [33]–[35], [43], [51] . The
problem with 2), i.e., OFDM’s sensitivity to subcarrier offsets,
poses challenges in OFDM applications to time-varying sce-
narios, and requires tight carrier synchronization. To mitigate
the loss of diversity, the problem in 3), dependence among
symbols on different subcarriers, can be introduced either
through linear precoding over the complex field (as in, e.g.,
[45]), or more commonly, by invoking Galois field (block or
convolutional) channel coding, as in [17]. When Galois field
error-control codes are applied, existing soft-decision decoding
algorithms, such as the Viterbi algorithm (VA), are used for
decoding coded OFDM symbols with only minor modifications
in computing the VA metrics. However, relying on error-control
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Fig. 1. (a) OFDM transceiver. (b) Single-carrier block transceiver.

codes to pick up the performance loss in diversity curtails the
codes’ ability to cope with other impairments caused by, e.g.,
additive noise and nonlinear distortions. It has been shown
recently that carefully designed linear precoding is also effec-
tive in dealing with frequency selectivity [45]. An interesting
linear precoder actually annihilates the IFFT at the transmitter,
and lends itself to a single-carrier zero-padded (ZP) block
transmission system [40], [45]. This system will henceforth
be referred to as the ZP-only system, or ZP-only for brevity.
A ZP-only transmission is essentially a serial single-carrier
transmission, except that a number of zeros (guard symbols)
are inserted periodically in the symbol stream.

In this paper, we will place OFDM and ZP-only under a
common denominator, and compare them in various practical
and theoretical aspects, including 1)–3) above. There have
been works on comparing multicarrier with single-carrier
systems. In [8], [11], [48], and [53], performance of optimized
multicarrier transmissions with channel state information (CSI)
at the transmitter is studied and compared against single-carrier
transmissions with linear or decision-feedback equalization
(DFE) for fixed dispersive channels. With CSI available at the
transmitter, multicarrier alternatives outperform single-car-
rier transmissions, while having comparable, or even lower,
complexity. In [3], the cutoff rate is used to compare linearly
equalized single-carrier transmissions against coded OFDM
over random channels. Tradeoffs between performance and
complexity of trellis-coded multicarrier versus single-carrier
systems with minimum mean-squared error (MMSE) DFE are
studied thoroughly in [23], where it is shown that a single-car-
rier system is slightly favorable when the code rate is high,
while a multicarrier system is slightly favorable when the code
rate is low.

Our work in this paper can be viewed as building on the work
of [39], where the effects of nonlinear distortion, carrier-fre-
quency offset, and error-control coding on single- and multicar-
rier systems are also compared. Our comparison differs from the
previous studies in [23] and [39] in the following aspects:

a) while existing works focus on serial single-carrier trans-
missions, we focus on block zero-padded single-carrier
transmissions, and substantiate analytically their merits
with respect to maximum diversity and coding gains;

b) we conduct quantitative PAR comparisons for OFDM and
ZP-only for various constellations;

c) we quantify the effects of CFO on bit-error rate (BER)
performance and information throughput;

d) we rely on standard HIPERLAN/2 channel models for
simulation (unlike [39], which uses fixed channels).

We will use block MMSE-DFE and simple linear equaliza-
tion for our single-carrier ZP-only transmissions. Despite the
block nature of ZP-only, it can approximately represent serial
single-carrier (SSC) transmissions without ZP. Although the
latter does not guarantee existence of a linear zero-forcing
(ZF) equalizer, simulations reveal that its performance with a
serial MMSE-DFE equalizer is quite close to the block ZP-only
system with block MMSE-DFE, when ZP occupies only a
small fraction of the transmission block, and the feed-forward
filter for the serial MMSE-DFE is long enough. The PAR
and sensitivity to CFO for the SSC transmissions without ZP
are essentially the same as those of a block ZP-only system,
provided that the ZP guard is relatively small. These consider-
ations qualify ZP-only as a single-carrier benchmark system
for comparison with OFDM. The block nature of ZP-only,
however, does allow one to simplify and unify SSC and OFDM
system models, and derive corresponding equalizers and figures
of merit (BER and mutual information rate), in addition to
guaranteeing the existence of linear ZF equalization.

II. SYSTEM MODELING

Notation: Bold uppercase letters denote matrices and low-
ercase letters denote column vectors; , and
denote convolution, pseudoinverse, transpose, and Hermitian
transpose, respectively; denotes the th entry of a ma-
trix; denotes identity matrix of size ; is a diag-
onal matrix with on its diagonal; denotes expectation.
We always index matrix and vector entries starting from 0. For
a vector, denotes the Euclidean norm, and its infi-
nite norm (the maximum amplitude of its entries). For a set,
denotes its cardinality. The complex set is denoted as ; and
the real and imaginary parts are denoted as and , re-
spectively.

A. OFDM System Model

In OFDM transmissions [see Fig. 1(a)], a serial stream
of information symbols is first passed through an error-control
encoder, whose output is denoted1 as . In the uncoded case,

. The sequence is then grouped in blocks of

1For simplicity, we use index n for symbol streams of possibly different rates.
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size , to
which an IFFT is performed to obtain

(1)

where is the FFT matrix with
. A CP of length is then

inserted in to yield of length
, where describes the CP

insertion by concatenating the last rows of an
identity matrix (that we denote as ) with the identity
matrix itself; the power loss factor

(2)

is used to maintain the same power before and after CP insertion.
The block of length is serialized to yield , which
is pulse shaped, carrier modulated, power amplified, and trans-
mitted through the channel. Our baseband discrete-time-equiv-
alent model combines the effects of the spectral-shaping pulse,
the continuous-time channel, the receive-filter, and symbol-rate
sampling as a discrete-time causal finite-impulse response (FIR)
channel with impulse response , and order that is upper
bounded by (see, e.g., [37] for details). Perfect symbol and
block synchronization is assumed.

With a square-root Nyquist receive filter, the symbol rate
samples can be written as ,
where is additive white Gaussian noise (AWGN).
The samples are grouped into blocks of size as

.
The first entries of corresponding to the
CP are removed, leaving us with blocks

of length . We define to be an N N circulant ma-
trix with . The resulting block
input–output relationship is , where

is the AWGN block. Applying FFT to brings us to
[cf. (1)], or

(3)

where

and is the frequency response of the ISI channel;
i.e., . An equalizer fol-
lowed by a decoder will rely on to obtain estimates of the
information symbols that were encoded into .

In practical OFDM systems, not all subcarriers are used for
transmission of information symbols; that is, other than carrying
information symbols, some subcarriers can be used as a fre-
quency guard band [1], [16], pilot tones for channel estimation
[1], [16], and reserved tones for PAR reduction, e.g., [30].

B. ZP-Only System Model

Our ZP-only transmissions [see Fig. 1(b)] are different from
OFDM in two aspects: 1) IFFT is not used; and 2) the CP is
replaced by ZP. Specifically, to each encoded symbol block

, zero symbols are appended before transmission.
The system is called ZP-only because only ZP occurs at

the transmitter—no Fourier transform is involved. We set
so that the symbol rate of ZP-only and OFDM is

kept the same. The zeros serve to separate two successive
blocks so that no IBI emerges. Such ZP transmissions are the
digital counterparts of what are more commonly known as
transmissions with guard time (see, e.g., [37, p. 720]). The
benefit of ZP serial analog transmissions has been appreciated
for, e.g., suppressing adjacent channel interference; but it
was not until recently that the importance of ZP digital block
transmissions was revealed in [22], [40], [41], [44], and [45].

At the ZP-only receiver, we observe the entire linear convolu-
tion of length of each transmitted block with the
channel. Denoting the th observed block as , we can relate
it to via

(4)

where is now a Toeplitz convolution matrix with
, and

is the AWGN. Equalization and decoding are subse-
quently performed on .

C. Similarities and Differences

OFDM’s input–output relationship (3) and that of ZP-only
in (4) will be our basis for comparison. From a unifying
input–output perspective, both schemes can be viewed as
passing an encoded input symbol block through a mul-
tiple-input/multiple-output (MIMO) channel that is corrupted
by AWGN. The differences are as follows.

1) For OFDM, the output is of length , while for
ZP-only, has size . Correspondingly,
the AWGN blocks, and , have different lengths,
but their entries have the same variance , where

is the noise power spectrum density, because the
FFT is a norm-preserving linear transform.

2) The mixing channel matrices are different. OFDM has
a diagonal, possibly singular matrix as its MIMO
channel ( loses rank when there is a channel null on
one of the FFT frequencies), while ZP-only comes with a
Toeplitz matrix that has full rank (see, e.g., [40]) for all but
the trivial null channel with all-zero taps. This full-rank
property will give ZP-only an edge in performance rela-
tive to OFDM.

In addition to ZP-only, other single-carrier systems that share
many of its properties (e.g., low PAR and insensitivity to CFO),
include the SSC transmissions without ZP, and SSC transmis-
sion with CP [9], [39], which also afford low-complexity fre-
quency-domain equalization. For simplicity and uniformity, we
will be focusing on ZP-only in the comparisons. But our conclu-
sions, except for those pertaining to diversity and coding gains
in Section V-B, also apply to these other single-carrier schemes.
We will verify the probability of error performance of various
single-carrier schemes with different equalizers in Section V-B.

Based on their system models, we will compare OFDM with
ZP-only in the following aspects: 1) PAR (Section III); 2) sensi-
tivity to CFO or Doppler (Section IV); 3) uncoded system per-
formance and complexity (Section V); and 4) coded system per-
formance and complexity (Section VI).
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III. PEAK-TO-AVERAGE POWER RATIO (PAR)

OFDM transmissions exhibit large amplitude variations,
which cause intercarrier modulation and out-of-band radiation.
To study these effects, we need to take into account the spectral
shaping pulse, and examine the continuous-time transmitted
signal. To facilitate our discrete-time analysis, we will first
consider a case where a Nyquist spectral shaping pulse is used,
and the continuous-time signal is sampled at symbol rate. The
effects of spectral shaping pulse and the continuous-time PAR
will be examined using simulations.

A. Nyquist Pulse and Symbol-Rate Sampling

To simplify the problem, in this section, consider a Nyquist
pulse and study the PAR for the symbol-rate sampled dis-
crete-time signal. As confirmed by simulations, the PAR
values derived here will be smaller than those of the actual
continuous-time waveform by 1–2 dB. We will present these
simulations in the next section.

We assume that the symbols in belong to a fi-
nite alphabet . Let us define the maximum amplitude

, and the average energy per symbol as
. The instantaneous PAR for the th

OFDM block, and the overall PAR (or simply PAR) are defined,
respectively, by

(5)

(6)

Notice that is a deterministic quantity, while
is a random variable depending on each specific

realization of the symbol block .
In accordance with (5), the corresponding PAR expressions

for the th transmitted ZP-only block are, respectively

and

(7)

In practice, the symbols in typically occur with the same
frequency in the coded symbol block . We assume this is
true to simplify our analysis. First, we compare with

. For OFDM,
,

where the maximum is achieved when
, and . Also,

. Thus, by definition, we find

(8)

While for ZP-only, we have

(9)

Comparing OFDM with ZP-only, it is easy to see that

It can be readily shown that:

TABLE I
PAR COMPARISON OF OFDM VERSUS

ZP-ONLY

1) for all phase-shift keying (PSK) constellations,
, and ;

2) for -ary quadrature amplitude modulation (QAM) with

We list in Table I the PAR values (in decibels) for
, and different constellations . Notice that even for binary

phase-shift keying (BPSK), the PAR can become as large as 18
dB for OFDM, while for ZP-only, it is only about 1 dB.

Although PAR is a meaningful parameter measuring the vari-
ation of the transmitted waveform in OFDM or ZP-only, it is
rather pessimistic for OFDM. Indeed, although the peak power
of a BPSK-modulated OFDM transmission increases linearly
with the block size , the probability that such a peak will occur
decreases exponentially with [32]. A more informative metric
is the distribution of the instantaneous PAR.

By resorting to the central limit theorem (see, e.g., [51]), the
components of can be shown (as ) to be i.i.d. com-
plex Gaussian with zero mean, and variance . The instanta-
neous PAR will then have a complementary probability distri-
bution function given by

(10)

For ZP-only, the distribution of depends on
the constellation . For PSK constellations,

, and therefore, . For
-QAM constellations and large , we can approximate

the discrete probability density function (pdf) of the encoded
symbol by a continuous density function given by

otherwise
(11)

With this approximation, it can be shown (see Appendix A)
that the follows the distribution shown in (12) at the
bottom of the next page. The distribution of is then given
by (see also Appendix A)

(13)

where is the average energy per symbol computed according
to the distribution in (11), and is found to be . It
is not difficult to see that the final distribution of in (13)
will not depend on , the actual size of the QAM constella-
tion, as long as the constellation size is large enough.

In Fig. 2, we plot of (10) and of (13) for
different constellations, together with numerical simulation re-
sults. The parameters are and . As we can see,
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Fig. 2. Instantaneous PAR of OFDM versus ZP-only: approximation and
simulation.

the approximation (13) of ZP-only’s instantaneous PAR for a
large-size QAM is pessimistic, while the Gaussian approxima-
tion (10) by the central limit theory for OFDM is very accu-
rate. If we fix the PAR outage probability,

, for both OFDM and ZP-only, the power amplifier for
OFDM will require a 5.3–9.5-dB backoff as compared with that
of ZP-only, depending on the constellation size. The effects of
nonlinear distortion, and different power amplifier backoffs on
the BER, have been studied, and also compared with single-car-
rier transmissions in [39]. Our analysis here quantifies analyti-
cally, and confirms the simulation-based observations of [39].

B. PAR of the Continuous-Time Signal With
Non-Nyquist Pulses

For both OFDM and single-carrier transmissions, the PAR
in the continuous waveform will depend on the spectral
shaping pulse. For single-carrier transmissions, non-Nyquist
spectral shaping pulses will increase the PAR of the transmitted
continuous-time waveform relative to the one derived in
Section III-A. We simulated the PAR of the continuous-time
signal for a single-carrier ZP-only system with square-root
raised-cosine spectral shaping pulse having rolloff factor 0.4.
The results are depicted in Fig. 3, together with the PAR results
for OFDM. We oversampled the continuous-time signal by a
factor 16 to ensure that PAR values are close to those of the
continuous-time signal. Symbol-rate sampled results are also
shown as dashed lines. We can see that the continuous-time
OFDM signal PAR is larger than the PAR of the symbol-rate
sampled sequence in (10), by less than 1 dB. For single-carrier
schemes, symbol-rate sampling and 16 times over sampling
results are different by less than 0.5 dB. However, due to

Fig. 3. Instantaneous PAR of continuous-time waveform: OFDM and ZP-only
with square-root Nyquist pulse of roll-off factor 0.4.

the fact that the spectral shaping pulse is not Nyquist (it is
square-root Nyquist), ISI emerges, and renders the symbol-rate
PAR larger than the Nyquist pulse case, by about 1–3 dB.

For more detailed studies of the PAR distribution in OFDM
systems, the reader is referred to [14], [32], [52], and references
therein. Many PAR-reduction techniques have been proposed,
and their effects on the system capacity and performance have
been studied, either in the frequency domain [6], [27], [34], [35],
[43], or in the time domain (also known as clipping) [4], [12],
[13], [21], [26], [33], [51].

Having discussed the PAR problem, we will assume in the
sequel that the power amplifiers are linear and nonlinear distor-
tions are absent. Such an assumption is optimistic, but enables
us to simplify the analysis, and study other performance-deter-
mining factors separately.

IV. SENSITIVITY TO CFO

Thanks to the orthogonality of the FFT basis, which is
preserved when passing through frequency-selective channels,
OFDM converts a frequency-selective channel into a set
of flat-fading subchannels. However, the presence of CFO
destroys the orthogonality among subcarriers. The FFT output
at the receiver for each subcarrier will contain interfering terms
from other subcarriers, the so-called intercarrier interference
(ICI) effect. Another effect is the reduction of useful signal am-
plitude coming from power leakage to neighboring subcarriers.

For ZP-only, CFO acts like multiplicative noise that reduces
the useful signal amplitude but does not cause ISI. For this
reason, one would expect intuitively that ZP-only is more ro-
bust against CFO. In the following, we cite existing results on

otherwise

(12)
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the effect of signal-to-noise ratio (SNR), and analyze mutual in-
formation to benchmark the achievable transmission rate, when
CFO is not compensated.

A. Degradation in SNR

When the CFO is small relative to the subcarrier spacing,
the degradation for OFDM and single-carrier transmissions
(ZP-only in this case) can be approximated, respectively, as
[36]

dB (14)

dB (15)

where is the normalized CFO, , with de-
noting the symbol rate, and the CFO in Hertz. We deduce
from (14) and (15) that the degradation for both systems is pro-
portional to the square of the CFO. For OFDM, the degradation
is also proportional to the SNR, and the square of the number
of subcarriers; the degradation for OFDM is times
larger than that of ZP-only. The reason is that CFO introduces
both ICI as well as reduction of the useful signal amplitude in
OFDM, while ZP-only suffers only from the latter, which has a
smaller effect than the former.

B. Effects on Mutual Information

We consider the average mutual information per block for
random frequency-selective channels. Average mutual informa-
tion is a meaningful measure for the achievable reliable trans-
mission rate over ergodic channels, and has also been used in
space–time communications [19], [42]. For notational brevity,
we drop the block index in this section only. We assume that:
1) only at the beginning of each received block, phase synchro-
nization has been acquired; and 2) i.i.d. Gaussian symbols are
transmitted in .

With CFO present, we need to modify the OFDM model (3)
as follows (see [39] for details):

(16)

where is the phase shift of the st symbol
(the first noncyclic-prefixed symbol) caused by CFO, is de-
fined in (2), and . Sup-
pose that the channel matrix is known, while the CFO term

is unknown. Isolating the useful signal from interference and
noise, we can rewrite (16) as

(17)

where is Gaussian distributed (since and are independent
and Gaussian distributed), but statistically dependent on . The
dependence of on offers information about . With a fixed
auto-covariance matrix for in (17), the mutual information
between and would be smallest if the noise term and
the information symbols are independent. For small CFO, the
mutual information can then be well approximated and lower
bounded as (see, e.g., ([10, (10.137)])

(18)

Fig. 4. Mutual information in the presence of CFO.

where
, and the expec-

tation in (18) is with respect to the symbols and the noise, for a
given channel. The lower bound offers a close approximation,
especially for small CFO, where the statistical dependence be-
tween and is small.

For ZP-only, we have the following input–output relationship
when CFO is present:

(19)

where .
Define now , which is Gaussian, but

dependent on . Similar to OFDM, the mutual information for
ZP-only can be well approximated, and lower bounded by (see,
e.g., [10, (10.137)]):

(20)

where

Expressions in (18) and (20) are valid for a single fixed CFO.
If is random with pdf , then and
should be computed as the expectation of the expressions in (18)
and (20) with respect to .

To compare both systems in the presence of CFO, we de-
pict in Fig. 4 the mutual information as given by (18) and (20)
with . The channel consists of six
zero-mean complex Gaussian i.i.d. taps, each of variance .
The mutual information is not appreciably affected by the CFO.
When the offset is 20% of the carrier spacing, the capacity loss is
about 0.3 b/symbol at 20 dB for both OFDM and ZP-only. How-
ever, we notice that with or without CFO, the ZP-only achieves
higher mutual information than OFDM, which is partly due to
the power loss in OFDM by inserting CP.

When mobility induces Doppler spread, the channel is time
varying, and the analysis becomes more difficult. SNR degrada-
tion in the presence of Doppler is studied in [38], together with
the BER floor caused by ICI. Nevertheless, viewing Doppler ef-
fect as the superposition of multiple CFOs, we expect ZP-only
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to be more robust to Doppler effects than OFDM, based on our
comparison in the presence of a single CFO.

V. UNCODED SYSTEM PERFORMANCE AND COMPLEXITY

In this section, we will compare uncoded OFDM with un-
coded ZP-only. Since there is no encoding at the transmitter,
we have just for this section . That is, we assume
that the symbols in are i.i.d. with zero-mean and variance

. We will examine the performance of various block equal-
izers, including ZF linear equalizer (ZF-LE), MMSE-LE, as
well as nonlinear decision-feedback equalizers (MMSE-DFE),
and maximum-likelihood (ML) decoders. In all our simulations
in this and the next sections, we use BPSK constellations for
both OFDM (without any PAR compensation) and single-car-
rier schemes.

A. Uncoded OFDM

For the uncoded OFDM in (3), an matrix can
be used to describe a linear block equalizer that yields

. ZF and MMSE equalizers can be written, respectively,
as

(21)

(22)

For the MMSE equalizer, the autocorrelation matrix of the
estimation error, , can be found to be

.
Since is diagonal, both and are diagonal,

implying per-subcarrier equalization simplicity. Given the
channel, computations are needed to calculate these
equalizers in (21), and only computations are required
to detect symbol estimates using , possibly
followed by appropriate quantization (hard decision). If we
also count the computations needed for the FFT,
only computations are needed per symbol, which is
one of the major advantages of OFDM.

But the disadvantage here is the loss of symbol detectability.
If the channel happens to have a null on (or close to) one of
the FFT subcarriers, , the matrix
will become singular (or ill conditioned), and the corresponding
symbol carried by that frequency will be impossible to detect
even if the noise is absent. In other words, there exist “bad”
channels that can render symbol detection impossible. Such a
lack of symbol detectability is closely related to the loss of di-
versity when the channel exhibits frequency-selective fading. In
fact, it can be shown that uncoded OFDM has diversity order of
only one, see, e.g., [5], [45], and [46]. The diversity order deter-
mines the slope of the probability of error versus SNR curve in
a log-log scale at high SNR.

Since is AWGN, and is diagonal, the ML detection
of each symbol in is independent of other symbols. In fact,
the ML estimator is just the ZF equalizer in (21), followed by
an appropriate minimum-distance quantizer that depends on the
constellation used. Thus, the ZF equalizer in OFDM in general
outperforms the MMSE equalizer in BER, although the latter
offers lower MSE. Because of the independent parallel channel

structure of OFDM, there is no need for a decision-aided de-
tector that passes past decisions across subcarriers.

When the symbols are BPSK, the BER with ML equalization
is computable in closed form as

(23)

where . When the
channel taps are complex Gaussian distributed, is
Rayleigh distributed for all . When averaged over channel
realizations, the channel-dependent performance (23) will give
diversity order one; see, e.g., [49].

B. Uncoded ZP-Only

For ZP-only, various equalizers are available. Based on the
model in (4), a fat matrix can be used as a linear
block equalizer to yield . Its ZF and MMSE
versions can be written, respectively, as

and

(24)

For the MMSE equalizer, the autocorrelation matrix of the esti-
mation error can be found to be

. Notice that because of the Toeplitz
convolution matrix , the ZF equalizer in (24) always ex-
ists, which implies that the transmitted uncoded symbols are al-
ways detectable when the noise is sufficiently small. This is to
be contrasted with uncoded OFDM, which does not guarantee
symbol detectability. Complexity-wise, the matrix inversions
in (24) can be performed with flops using Schur-type
methods [28], [29], thanks to the Toeplitz structure of the ma-
trix involved (it is easy to verify that both and are
Toeplitz). The subsequent matrix-vector product for obtaining

will take no more than flops per block. So, the com-
plexity per symbol of such linear block equalizers is .

If BPSK symbols are used, then the average BER and its limit
as are given by

(25)

where the limiting form can be obtained by noticing that as
becomes approximately circulant and thus diago-

nalizable by (I)FFT matrices. The term becomes
asymptotically identical for all ’s, which means that the sym-
bols will have equal probability of error as . This is not
the case with OFDM.

At high SNR, performance of MMSE approaches that of ZF
equalization. It is also possible to use block DFE for uncoded
ZP-only, which is free of IBI because of the ZP guard. As a re-
sult, the detection of different blocks can be separated without



WANG et al.: OFDM OR SINGLE-CARRIER BLOCK TRANSMISSIONS? 387

affecting performance. The DFE relies on the feed-for-
ward matrix and the matrix to pass past symbol
decisions within one block. Since a decision has to be made be-
fore it can be fed back, matrix is required to be lower or upper
triangular, depending on whether the first or the last symbol in
a block is decided first.

Matrices and can be designed so that the MSE between
the estimated block before the decision device is minimized.
When the last symbol in is decided first, is upper tri-
angular. The filtering matrices and can be found from the
following equations (see also [41]):

(26)

where is as in (24), and is an upper triangular
matrix with unit diagonal entries, obtained using Cholesky’s
decomposition [2], [8], [41]. Cholesky decomposition of the
Toeplitz matrix , requires flops
using Schur-type algorithms [28], [29]. With the filtering oper-
ations per block counted, the block MMSE-DFE has
a per-symbol complexity of order . Notice that although
the block MMSE-DFE is presented in matrix form, the symbol
decision feedback is conducted in a serial form, as indicated by
the triangular structure of .

It can be shown that if we ignore error propagation, then
the autocorrelation matrix of the error is

(e.g., [41]). Furthermore, it can be shown that
, for . Thus, if we do

not consider the effect of error propagation, block MMSE-DFE
will have smaller MSE than the linear MMSE equalizer in (24).

Compared with serial transmissions with DFE (e.g., [23]),
one major advantage of ZP block transmissions is that they
allow decisions to be made within a block, and hence, pre-
vent error propagation from block to block. Alternatively, we
can view the padded zeros as symbols that have been perfectly
decided, and thus contain no error; these symbols, in essence,
“reset” the DFE to a known all-zero state.

When the symbols in are complex with independent real
and imaginary parts, we could also apply a block MMSE-DFE
to detect and separately, based on

Such a model doubles the problem size as compared to the com-
plex signal model in (4), but it enables detection of the real and
imaginary parts separately. Hence, when, for instance, the real
part is detected first, the decision can be fed back to facilitate de-
tection of the imaginary part. Theoretically, such a model leads
to lower symbol-error estimates when the effect of decision er-
rors is neglected, and we will use it in our simulations.

For ZP-only, it is also possible to perform ML equalization.
Because of the banded structure of the convolution matrix [cf.
(4)], or the Markovian property of the channel input–output re-
lationship, we can apply the VA [18]. The complexity of ML de-
coding is per symbol, or per block, where

TABLE II
PER-SYMBOL COMPLEXITY OF VARIOUS EQUALIZERS

is the constellation size. The ML equalizer will thus be practical
only when and/or are relatively small. Other detections al-
gorithms that can be applied to ZP-only include the sphere-de-
coding algorithm and the BLAST nulling-canceling algorithm,
see, e.g., [24], [25], and [50].

Performance analysis of ZP-only block transmissions
with ML equalization is complicated. But the upper bounds
that have been derived for serial transmissions over ISI
channels are applicable here, too [18]. For a fixed channel,
the BER can be well approximated and upper bounded by

, where is a constant
depending on the constellation, and is the minimum
Euclidean distance between two possible received blocks, i.e.,

, . A flow-graph
method can be used to determine for a given channel (see,
e.g., [18]).

If the channel is time varying but remains approximately con-
stant over one block, we can model it as consisting of random
coefficients. Using the pairwise error probability (PEP) analysis
of [45], the average probability of error can be well approxi-
mated by

where is a constant determining the slope of the BER-SNR
curve, and is, therefore, called diversity order; while is an-
other constant determining the savings in SNR, as compared
with a curve, and is thus called coding gain. The
coding gain often measures performance of coded transmis-
sions, but is also appropriate here for describing uncoded system
performance. Uncoded ZP-only will turn out to enjoy great ad-
vantages in terms of diversity order and coding gain, as we will
show in the next subsection.

C. Complexity, Diversity, and Coding Gain Comparisons

To compare uncoded OFDM with ZP-only on the basis of
receiver complexity, we tabulate the approximate number of
flops needed for each of the various equalization alternatives
in Table II. ZP-only has higher complexity than OFDM, es-
pecially when ML detection is used. But at the price of com-
plexity, ZP-only, in general, offers considerably improved per-
formance with random channels, thanks to its enhanced diver-
sity and coding gains.

To establish the superiority of uncoded ZP-only performance
in terms of diversity order and coding gain, we consider a gen-
eral class of transmission schemes that we call linearly precoded
(LP) OFDM [45]. This class includes not only multicarrier, but
also single-carrier block transmissions. Specifically, instead of
encoding using Galois field coding, we linearly precode it
using the matrix to yield , which is then
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transmitted using OFDM. Replacing in (3) by , we
obtain the MIMO model

(27)

In general, we require to be square or tall , but
here the LP class will also include fat precoders .
We impose the constraint , so that LP does not
change the energy per symbol in . Both OFDM and ZP-only
belong to this class of LP block transmissions. Indeed, setting

and , we have the uncoded OFDM. Interest-
ingly, setting , and to be the first columns
of an FFT matrix, that is, ,
we obtain a ZP-only system. The reason is that at the OFDM
transmitter, the IFFT matrix and partly annihilate each
other, as , where is an all-zero
matrix. What does on is just padding it with

zeros. Cyclic-prefixing OFDM now becomes un-
necessary because it prepends each block with a repetition
of the padded zeros, and the result is that two successive
blocks are now separated by zeros, more than the neces-
sary upper bound on the channel order. Eliminating CP in
this case will give us an uncoded ZP-only system with its infor-
mation block size and ZP block size , which is different
from the uncoded ZP-only system in the previous parts of this
section with regards to the information block size. Notice also
that we no longer need the power loss factor , since a CP has
not been inserted.

We will see that all ZP transmissions have the same max-
imum diversity order and maximum coding gain among the
class of LP-OFDM, irrespective of their block size. Specifically,
we have the following result that we prove in Appendix B.

Theorem 1: Consider an LP-OFDM system as in (27), where
the entries of are drawn independently from a finite al-
phabet set , and let denote the autocorrelation matrix
of the Rayleigh channel . Then the max-
imum diversity order for an LP-OFDM system with is

, which is achieved by ZP-only transmis-
sions. If has full rank , then the maximum coding gain
of LP-OFDM is ,
where , and

is the average symbol energy in . The maximum coding
gain is achieved by ZP-only transmissions.

To show the difference in performance, we depict in Fig. 5
the BER/SNR curves of various equalizers with parameters

. The channel is of length ,
with i.i.d. taps of variance . BPSK constellation is used. CP
length , mimicking the setup in HIPERLAN/2. From
the slope of the ML curves, we deduce that uncoded OFDM
has only diversity 1, while ZP-only approximately has diversity
3. For ZP-only, the block MMSE-DFE performs only slightly
worse than the ML equalizer.

When the portion of ZP becomes small compared with the
block size, ZP-only behaves like an SSC transmission. To show
this, we compare the performance of ZP-only with SSC trans-
missions in Fig. 6, with parameters ,
over random Rayleigh fading channels. Block MMSE-DFE for
ZP-only and serial MMSE-DFE for SSC transmissions perform

Fig. 5. Performance of uncoded OFDM versus ZP-only.

Fig. 6. Performance of ZP-only, SSC transmissions, and CP-only.

almost identically. The block linear MMSE-DEF for ZP-only
performs slightly better than serial MMSE-DFE for SSC trans-
missions. These comparisons show that the error-rate perfor-
mance results for ZP-only can also be applied to SSC transmis-
sions, provided that ZP guard occupies a small portion of each
transmitted block. Also shown in Fig. 6 is the linear MMSE
performance of a CP extended single-carrier transmission (la-
beled CP-only) proposed for low-complexity frequency-domain
equalization in [9] and [39]. There is a performance loss of about
0.5 dB, as compared with SSC transmissions without CP or ZP,
due to the energy waste caused by the CP guard.

VI. CODED SYSTEM PERFORMANCE AND COMPLEXITY

We have seen that uncoded OFDM is inferior to uncoded
ZP-only system, although uncoded OFDM offers low equal-
ization complexity. In this section, we compare convolutionally
coded OFDM with a coded ZP-only system. Because accurate
analysis is difficult, the performance comparison will be con-
ducted mainly by simulation.
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A. Decoding Algorithm

For decoding coded OFDM transmissions, we adopt the VA
as described in, e.g., [18], [31], and [39]. Compared with de-
coding of serial coded transmissions over an AWGN channel,
we need to slightly modify the path metric computations.
Specifically, if we are to decode a total of transmitted blocks,
then we can write the path log-likelihood function based on the
parallel channel model of (3) as follows:

which differs from the AWGN case only in the scalars
.

For convolutionally coded ZP-only, ML detection of the
information symbols can be achieved by treating the convolu-
tional channel as a convolutional encoder, and thereby jointly
decoding the channel and the convolutional code using the
Viterbi decoder. The complexity, however, will be exponential
in the sum of the channel order and the convolutional code
memory, which can often be prohibitively large.

Suboptimal decoders split the detection process in two parts,
channel equalization followed by convolutional decoding. In the
equalization step, the coded symbols are treated as i.i.d., which
leads to the suboptimality. Any of the equalizers in Section V-B
can be used. But for lower complexity relative to the ML de-
coder, and better performance, compared with the linear equal-
izers, we advocate the usage of block MMSE-DFE.

Using MMSE-DFE, we first obtain estimates of
blocks of coded symbols. These estimates are then passed

on to a Viterbi processor to decode . The estimates
are fed to the Viterbi decoder in soft form, that is,

before they are quantized by the decision device (hard deci-
sions are still made for the feedback loop in the DFE). As we
mentioned in Section V-B, the symbol-error autocorrelation ma-
trix in MMSE-DFE is given by , implying that
symbol-error estimates are uncorrelated if we neglect the effects
of error propagation. If we further approximate the symbol-error
estimates, which consist of noise and residual ISI, as Gaussian
distributed, then they become independent. Let us define

, and rewrite it as

(28)

where is AWGN having i.i.d. entries with variance .
Comparing (28) with (3), we notice that under the assumptions
that we have made (i.e., no error propagation and Gaussian er-
rors) MMSE-DFE also converts the ISI channel into parallel in-
dependent subchannels with additive noise of variance . The
parallel channel is in OFDM, and in ZP-only
with block MMSE-DFE. Obviously, the distribution of the diag-
onal entries in and will affect differently the per-
formance of the two systems in both coded and uncoded cases.

With MMSE-DFE and the model in (28), the same VA
used in coded OFDM can be applied to coded ZP-only. As

TABLE III
CHANNEL MODELS FOR HIPERLAN/2 CODED SYSTEMS

far as complexity is concerned, the ZP-only has to implement
an extra MMSE-DFE, which incurs complexity per
symbol. When is comparable to the number of states in the
convolutional code trellis, as in the HIPERLAN/2 setup, the
extra complexity of ZP-only will be of the same order as in
the VA, which will make the coded ZP-only have comparable
complexity with coded OFDM. We also remark that as with se-
rial MMSE-DFE [7], the soft output of the block MMSE-DFE
is biased. This motivates usage of an unbiased MMSE-DFE
that properly scales the equalizer output to achieve a lower
probability of error.

B. Simulation Results

We use simulation to compare the performance of both
systems with coding. We will use the convolutional code
specified in the HIPERLAN/2 standard [16]. The mother code
has constraint length of seven and rate . The trellis for this
code has states, which happens to be the same as the
total number of subcarriers. There are 16 subcarriers in the
HIPERLAN/2 standard that are null, or serve as pilot tones.
So, the number of information-bearing symbols per block is

. After encoding, the coded symbols are grouped,
interleaved, and mapped to a given constellation, as detailed in
[16]. We only consider quaternary phase-shift keying (QPSK)
here. After the constellation symbol blocks are formed, they are
transmitted either using an OFDM or a ZP-only system. The
symbols corresponding to null subcarriers in OFDM are set to
zero in ZP-only to maintain the same rate for both systems.
The rate- code with QPSK provides a nominal bit rate of
12 Mb/s in the HIPERLAN/2 setup. A bit rate of 18 Mb/s is
achieved by puncturing the coded symbols before interleaving,
using the puncturing pattern (1, 1, 1, 0, 0, 1) to a code rate of

, as specified in the standard.
The channel models we consider here are slightly modified

versions of those specified in [15]. We use Model A and Model
B in the simulations, where Model A corresponds to a typical
office environment, and Model B corresponds to a typical large
open space environment with nonline-of-sight conditions, or an
office environment with large delay spread. The modification
we made was to round each tap, as given in the standard, to the
nearest symbol-rate sampled discrete-time equivalent channel
tap. The resulting models will still be called A and B for conve-
nience. Their taps are independent complex Gaussian random
variables with variances given in Table III. The variances are
normalized such that the total variance is one.

We depict the simulation results in Fig. 7 for rate , and in
Fig. 8 for rate . The BER performance is averaged over 200
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Fig. 7. Performance of coded OFDM versus ZP-only: rate 1=2.

Fig. 8. Performance of coded OFDM and ZP-only: rate 3=4.

randomly generated channels. We can see that in the rate-
case, OFDM outperforms ZP-only at high SNR (8 dB for
channel B and 12 dB for channel A). For channel B, OFDM
has an advantage of about 2 dB in SNR over ZP-only. The
main reason behind ZP-only’s inferiority is due to its subopti-
mality in decoding caused by three effects: error propagation,
non-Gaussianity of the error, and non-ML decisions in the DFE.
These effects could be overcome if we use a turbo-like iteration
and combined equalization with decoding. Preliminary results
on these iterative equalization/decoding alternatives can be
found in [47].

The situation changes with rate case. For both channel
A and channel B, coded ZP-only exhibits at least a 2-dB advan-
tage in SNR. The reason is that uncoded ZP-only already enjoys
full diversity and coding gains, while the rate- error-control
code is mainly used to cope with residual ISI and additive noise.
In contrast, the uncoded OFDM system has diversity order of
one, and the relatively “weak” error-control code undertakes the
task of not only improving over OFDM’s poor diversity, but also

Fig. 9. PDF of the parallel channels’ SNR.

coping with the additive noise. To further illuminate this point,
we depict in Fig. 9 the pdf of the SNR at the parallel OFDM sub-
channels [cf. (3)], and the block MMSE-DFE output of ZP-only
[cf. (28)] for 1000 randomly generated Model A channels at a
fixed dB. We also depict in the same figure the
empirical SNR obtained by actually measuring the SNR at the
subchannels of the block MMSE-DFE2 .

We can see that in ZP-only, the SNR is more concentrated
around its mean value, while in OFDM, it has both large den-
sity around zero as well as a heavy tail. In other words, the sub-
channels in ZP-only with block MMSE-DFE behave more like
AWGN channels when compared with the OFDM ones. Both
systems have an average subchannel SNR of slightly less than

dB for code rate . The loss in
SNR is due to the channel dispersion and the suboptimality of
MMSE-DFE (as compared with ML) for ZP-only, and due to
the CP insertion in OFDM. Also, the theoretical variance of
MMSE-DFE error estimates given by is slightly
(about 0.5 dB) optimistic, because our theoretical analysis ig-
nored the error propagation.

The difference in the concentration of the SNR distributions
reveals also the difference in diversity of the uncoded systems.
For the rate- coded system, which behaves more like an
uncoded system than a rate- coded system, the superiority
of ZP-only over OFDM in performance is still quite large. For
the rate- system, OFDM with error-control coding can pick
up the loss incurred by uncoded OFDM, and outperforms the
suboptimally decoded ZP-only. But from the distribution of the
subchannels’ SNR, we will expect ZP-only to approach or sur-
pass OFDM in performance, using nearly optimum iterative and
joint equalization/decoding, even when the code rate is low. Fu-
ture work will include comparing a turbo-coded ZP-only system
with the turbo-coded OFDM of [17].

Notice also that the results here are obtained with a wire-
less scenario in mind, where CSI is usually not available at the
transmitter, and hence, the transmitter is not optimized for each
channel realization. When CSI is available at the transmitter

2Actually, in the ZP-only case, the MMSE-DFE output still has some residual
ISI, but we will treat it as additive noise here.
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(e.g., in applications involving wired transmissions), multicar-
rier systems have been shown to outperform their single-carrier
counterparts with linear or decision-feedback equalization [48],
although the difference disappears as the SNR increases [53].

In practice, the wireless channel may be varying with time,
which calls for adaptive channel equalization and decoding.
Although OFDM is sensitive to CFO and time-varying effects,
if the channel is varying slowly enough so that it can be
tracked, while Doppler effects are negligible, then OFDM
can enjoy advantages in adaptive equalization with its parallel
subchannel structure, in addition to low-complexity decoding.
In fact, even for single-carrier systems, CP extension, as in
the CP-only system, has been proposed for low-complexity
frequency-domain adaptive equalization [9].

VII. CONCLUSION

We have compared OFDM with single-carrier ZP block trans-
missions (that we called ZP-only) in terms of: 1) PAR; 2) sensi-
tivity of BER performance and system throughput to frequency
offsets; 3) uncoded system performance and complexity; and
4) coded system performance and complexity. The channel we
considered was frequency selective and random, which is useful
in predicting system performance when the fading propagation
environment is slowly time varying. We focused on the case
where the transmitter has no CSI, while the receiver has per-
fect channel information.

ZP-only has lower PAR, and its SNR degradation due to car-
rier frequency offsets is much less severe than that of OFDM.
The throughput for both ZP-only and OFDM is not affected
too much by small carrier-frequency offsets. The uncoded
ZP-only enjoys a clear advantage over uncoded OFDM when
the channel is random frequency selective, although the latter
can afford lower receiver complexity. When error-control
coding is accounted for in typical HIPERLAN/2 scenarios,
coded ZP-only outperforms coded OFDM when the code rate
is high, e.g., , with a slightly higher complexity paid for
block MMSE-DFE equalization. When the code rate is low and
the code becomes stronger (i.e., with larger free distance), the
non-ML decoding of coded ZP-only renders it inferior to an
ML-decoded OFDM system which also has lower decoding
complexity. From the distribution of the block MMSE-DFE
output SNR, we expect ZP-only to become comparable to
OFDM with near-optimum/iterative decoding, even when the
code rate is low or the code is strong. Future interesting direc-
tions include comparison of single-carrier (ZP-only, CP-only,
or serial) and multicarrier OFDM when multiple transmit
and/or receive antennas are present.

APPENDIX

A. Proof of (12) and (13)

Let us define the sets
, and .

Considering with the distribution in
(11), we have

Evaluating this integral in the three cases ,
, and , we will obtain the result in

(12). From the definition in (7), we have

where

B. Proof of Theorem 1

We suppose ML detection with perfect CSI at the receiver
and consider the PEP , that a vector
is transmitted but is erroneously decoded as . We define
the set of all possible error vectors

. The PEP can be approximated using the Chernoff
bound as

(29)

where , and .
Let , and the eigenvalue decomposition of

be

where is is , is
full-rank diagonal, and is an

all-zero matrix. Define , whose Gaussian
entries are i.i.d. because

. It can be readily checked that, almost surely,
.

Define now the matrix with
, and use it to perform the -point Fourier

transform of . Note that . Using the
definitions , , and ,
we can write .
Furthermore, we can express the Euclidean distance

as3

. Defining
and , we have

.

3For convenience, we will assume � = 1. But keep in mind that, in general,
there is a power-loss factor�, except when the resulting LP-OFDM system turns
out to be a ZP transmission, such as ZP-only.
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Following the derivation in, e.g., [45], we can find the fol-
lowing upper bound on the average PEP:

(30)

where the averaging is taken over the complex Gaussian channel
vector , is the rank of , and ’s are the nonzero eigen-
values of . It can be seen from (30) that for the symbol-error
vector is the slope of the average PEP, which we denote
as , and gives the coding ad-
vantage, which we denote as . Since both and

depend on the choice of , we define the diversity and
coding gains for LP block transmission systems with , respec-
tively, as

(31)

(32)

Since is , its rank is, at most, . It follows that the
maximum diversity order is , the rank of . Now we show
that ZP-only can achieve the maximum diversity.

For ZP-only, is formed by the first columns of an
FFT matrix ; hence, is the -point FFT of . Using

the convolution property of Fourier transforms in matrix form,
we can write as , where is a Toeplitz convolution
matrix with first column and first row ,
which implements the linear convolution of a length-
vector with ; thus, . Since all
of , and have full column rank, it can be seen
that for a length- vector implies
that ; that is, has full column rank .
The Gram matrix of , therefore also has rank

, which implies that ZP-only can achieve maximum diversity
order.

Now, we continue to establish the claim on ZP-only’s max-
imum coding gain. When the maximum diversity order is
achieved, the coding gain becomes

(33)

To maximize the coding gain, we should maximize
. This is, in general, difficult when is

not square, that is, when is rank deficient. However, when
has full rank, i.e., is a unitary matrix,

, and .
By the definition of , it can be verified that it is a

Toeplitz matrix whose diagonal entries are all equal to
. Using the Hadamard inequality, we

obtain that . Letting denote the th
column of , we have , for some ,
since . Now consider the single-error events

, each of which
has only one nonzero element at the th position, which is

. We have

. Therefore, the coding gain
is upper bounded by [cf. (33)]

To show that ZP-only achieves this upper bound of the coding
gain, we need for any error
event . We decompose as , where has a few
leading zero rows followed by an lower tri-
angular matrix whose diagonal entries are all equal to the first
nonzero symbol, say , in the error event . Then
becomes . Matrix is nonsingular be-
cause all its diagonal entries are nonzero. Hence, is pos-
itive definite, while is, in general, positive semidefinite.
Therefore, and can be simultaneously diagonal-
ized by a matrix as (see, e.g., [20])

where ’s are the nonnegative generalized eigenvalues
satisfying . Thus,

. Factoring the and
out, we obtain the desired result

Our proof is irrespective of and , as long as (other-
wise, will lose rank). In other words, the maximum diversity
order and coding gain are both achieved by ZP-only transmis-
sions of any block size.
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