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ABSTRACT The Chemscore function was
implemented as a scoring function for the protein-
ligand docking program GOLD, and its performance
compared to the original Goldscore function and
two consensus docking protocols, “Goldscore-CS”
and “Chemscore-GS,” in terms of docking accuracy,
prediction of binding affinities, and speed. In the
“Goldscore-CS” protocol, dockings produced with
the Goldscore function are scored and ranked with
the Chemscore function; in the “Chemscore-GS”
protocol, dockings produced with the Chemscore
function are scored and ranked with the Goldscore
function. Comparisons were made for a “clean” set
of 224 protein-ligand complexes, and for two sub-
sets of this set, one for which the ligands are “drug-
like,” the other for which they are “fragment-like.”
For “drug-like” and “fragment-like” ligands, the
docking accuracies obtained with Chemscore and
Goldscore functions are similar. For larger ligands,
Goldscore gives superior results. Docking with the
Chemscore function is up to three times faster than
docking with the Goldscore function. Both com-
bined docking protocols give significant improve-
ments in docking accuracy over the use of the
Goldscore or Chemscore function alone. “Goldscore-
CS” gives success rates of up to 81% (top-ranked
GOLD solution within 2.0 A of the experimental
binding mode) for the “clean list,” but at the cost of
long search times. For most virtual screening appli-
cations, “Chemscore-GS” seems optimal; search set-
tings that give docking speeds of around 0.25-1.3
min/compound have success rates of about 78% for
“drug-like” compounds and 85% for “fragment-like”
compounds. In terms of producing binding energy
estimates, the Goldscore function appears to per-
form better than the Chemscore function and the
two consensus protocols, particularly for faster
search settings. Even at docking speeds of around
1-2 min/compound, the Goldscore function predicts
binding energies with a standard deviation of ~10.5
kd/mol. Proteins 2003;52:609-623.
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INTRODUCTION

Predicting the binding modes and affinities of com-
pounds when they interact with a protein-binding site lies
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at the heart of structure-based drug design. Consequently,
the number of algorithms available for protein-ligand
docking is large. DOCK,' FlexX,> PRO_LEADS,® and
GOLD*® are examples of docking programs, but many
more are reported in the literature (for an overview of
docking strategies see Taylor et al.®). Most approaches
consider the protein to be (mostly) rigid and allow the
ligand to be flexible.

The key characteristic of a good docking program is its
ability to reproduce the experimental binding modes of
ligands. To test this, a ligand is taken out of the X-ray
structure of its protein—ligand complex and docked back
into its binding site. The docked binding mode is then
compared with the experimental binding mode, and a
root-mean-square distance (RMSD) between the two is
calculated; a prediction of a binding mode is considered
successful if the RMSD is below a certain value (usually
2.0A). Recently, Nissink et al. pointed out that to establish
the success rate of a docking program, a large and carefully
constructed set of protein—ligand complexes is required.”
As far as we know, the only flexible docking programs that
were tested on large test sets are PRO_LEADS, FlexX, and
GOLD. PRO_LEADS was demonstrated to give success
rates of up to 84% on a test set of 70 complexes®; FlexX
gave a success rate of 47% on a test set of 200 complexes®;
and recently, GOLD was shown to give a 68% success rate
on the CCDC/Astex validation set of 305 complexes”’; all
complexes in all three test sets were taken from the
Protein Data Bank (PDB).'°

An important use of protein—ligand docking programs is
virtual screening, in which large libraries of compounds
are docked into a target binding site and scored. For this
purpose, the dockings need to be quick. Speeding up a
docking protocol is often done at the cost of sampling fewer
binding modes, and, as a result, reduces the success rates.
It is therefore important that search parameters are
chosen that give docking speeds useful for virtual screen-
ing applications (in our case, up to 2 min/compound on a
single processor), with an acceptable loss in docking accu-
racy.

Another characteristic of a good docking program is the
ability of its scoring function to score and rank ligands
according to their experimental binding affinities. To test

*Correspondence to: Marcel L. Verdonk, Astex Technology Ltd., 436
Cambridge Science Park, Milton Road, Cambridge CB4 OQA, UK.
E-mail: m.verdonk@astex-technology.com

Received 26 November 2002; Accepted 28 January 2003



610

this, the predicted binding affinities, or scores, are plotted
against the experimental binding affinities; the key indica-
tor for the quality of the predicted affinities is the standard
deviation s (or the cross-validated error, s,,,.,..). For calcula-
tions based on the experimental binding modes of the
ligands, good scoring functions, suitable for docking, give s
values of around 8 kJ/mol,**"*? which corresponds to about
1.5 orders of magnitude in the affinity. But, if the binding
modes are produced by a docking program, the agreement
between calculated and predicted binding affinities tends
to drop quickly, particularly for faster search protocols (see
Baxter et al.®). This is not necessarily disastrous for
virtual screening applications though, because there the
objective is to identify potential binders in a database of
mainly inactive compounds, rather than ranking a set of
known binders.

In this article, we describe the implementation of the
Chemscore function as a scoring function for GOLD and its
usefulness to improve docking accuracy and the prediction
of binding energy. Chemscore is the scoring function used
in PRO_LEADS, and, because higher success rates are
quoted for this program than for GOLD (see above), it
seemed an obvious improvement to make to GOLD. More-
over, the Chemscore function was parameterized against
the experimental binding affinities for a test set of 82
protein—ligand complexes. Notionally, therefore, the Chem-
score function should give a better correlation with affinity
than the GOLD scoring function (henceforth known as
“Goldscore function”), which was not parameterized against
binding affinity data.

We first describe the validation of our implementation of
the Chemscore function and its partial reoptimization for
better performance with “raw” PDB files. Then we analyze
the performance of the Chemscore function against the
original GOLD scoring function, in terms of docking accu-
racy, ability to predict binding affinities, and speed of the
dockings. In parallel, we investigate the performance of
two combined, or “consensus,” docking protocols that make
use of both the Goldscore and the Chemscore function; in
the first protocol, “Goldscore-CS,” the dockings produced
with the Goldscore function are rescored and reranked
with the optimized Chemscore function, and in the second
protocol, “Chemscore-GS,” the dockings produced with the
optimized Chemscore function are rescored and reranked
with the Goldscore function. All results are presented for a
“clean” subset of 224 complexes from the CCDC/Astex
validation set (see Materials and Methods section), and for
two subsets of this “clean list”: one in which the ligands in
the complexes are “drug-like,” and the other in which they
are “fragment-like” (see Materials and Methods section for
definitions). In analogy with Verkhivker et al.,'® we clas-
sify the complexes for which GOLD fails to predict the
experimental binding mode successfully, as “soft” or “hard”
failures (see Materials and Methods section). Docking
accuracy and quality of the predicted binding affinities are
analyzed for various search settings (i.e., varying docking
speeds), and recommendations are made.
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MATERIALS AND METHODS
The CCDC/Astex Validation Set

For all the studies presented here, we use the CCDC/
Astex validation set, published recently by Nissink et al.”
This set of 305 protein-ligand complexes from the PDB is
currently the largest test set for docking programs, and
great care was taken to ensure that the protonation states
and bond types of ligand and protein are correct. The
“clean list,” a subset of the validation set, consists of 224
complexes; these complexes do not exhibit protein-ligand
clashes, crystallographic contacts, or unlikely ligand geom-
etries; for closely related complexes, only one representa-
tive was kept, making the “clean list” also more diverse
than the overall validation set. In this study, we focus on
the “clean list.”

The CCDC/Astex validation set contains a wide range of
ligands, varying from very small to quite large peptidic
compounds. This is a good basis for the validation of a
docking program, but not all of these ligands are represen-
tative of structure-based drug design compounds. There-
fore, we also test the performance of GOLD on a subset of
139 complexes, for which the ligands are more “drug-like.”
Various measures of “drug-likeness” can be found in the
literature. Lipinski’s original analysis of orally adminis-
tered drugs and drug candidates led to the well-known
Rule of Five.'*% Here, we use the simpler rules to predict
bioavailability derived by Veber et al.'® Hence, in our
“drug-like list,” only complexes from the “clean list” were
included where the ligand has 10 or fewer rotatable bonds
and a polar surface area =140 A%. We would like to stress
that because we did not use any additional filters (e.g., to
remove complexes with toxic or reactive ligands), “drug-
likeness” is here limited to bioavailability. Recently, screen-
ing small, “fragment-like” compounds has become a popu-
lar strategy for hit-identification,'”~22 particularly because
smaller leads are generally easier to optimize. Hence, we
also list the performance of GOLD for a subset of 79
complexes for which the ligands are small and “fragment-
like.” In this “fragment list,” only complexes from the
“clean list” were included where the ligand is not co-
valently bound to the protein, has five or fewer rotatable
bonds, and between 7 and 20 nonhydrogen atoms.

GOLD

Most parts of the GOLD program have been described by
Jones et al.*® Like all other docking programs, GOLD
consists of three main parts:

1. A scoring function to rank different binding modes; the
Goldscore function is a molecular mechanics-like func-
tion with four terms:

GOLD FitneSS = Shb_ext + Svdw_exl + Shb_int + Svdw_int’ (1)

where S, ., is the protein-ligand hydrogen-bond score
and S, ;,, .. is the protein-ligand van der Waals score.
S}6_ine 18 the contribution to the Fitness due to intramo-
lecular hydrogen bonds in the ligand; this term is
switched off in all calculations presented in this work
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TABLE 1. GA Settings

GA setting Naockings Nops Early termination
Exhaustive 100 100,000 No

GOLD default 1* 20 100,000 Yes

GOLD default 2 10 50,000 Yes

GOLD default 3 10 30,000 Yes

GOLD default 4 10 10,000 Yes

GOLD library 10 1000 Yes

aThese settings were used by Nissink et al.”

(this is the GOLD default, and generally gives the best
results); S,4,, in¢ 18 the contribution due to intramolecu-
lar strain in the ligand.

2. A mechanism for placing the ligand in the binding site;
GOLD uses a unique method to do this, which is based
on fitting points; it adds fitting points to hydrogen-
bonding groups on protein and ligand, and maps accep-
tor points on the ligand on donor points in the protein
and vice versa. Additionally, GOLD generates hydropho-
bic fitting points in the protein cavity onto which ligand
CH groups are mapped.

3. A search algorithm to explore possible binding modes;
GOLD uses a genetic algorithm (GA) in which the
following parameters are modified/optimized: (a) dihe-
drals of ligand rotatable bonds; (b) ligand ring geom-
etries (by flipping ring corners); (¢) dihedrals of protein
OH groups and NH; groups; and (d) the mappings of
the fitting points (i.e., the position of the ligand in the
binding site). Of course, at the start of a docking run, all
these variables are randomized.

Genetic Algorithm Settings

The GA settings directly affect the timings of a docking
run and the likelihood of finding the global optimum. The
main parameters that affect timings and accuracy are the
number of dockings and the number of GA operations in
each docking. The values for these two parameters for the
different GA settings used in this work are listed in Table
I. Additional GA parameters are taken from the default
GOLD settings, and are available as supplementary mate-
rial.

A GOLD run can be terminated early if the top-ranked
binding mode is produced repeatedly. By default, if this
option is switched on, GOLD terminates when the top
three dockings are within 1.5 A of each other. The early
termination flags are listed in Table I for the various GA
settings used in this work.

Local Scoring

To calculate the scores of ligands bound to a target
binding site in the experimental binding mode (or any
other mode), two options were added to GOLD: (1) Stan-
dard scoring, which simply takes a binding mode (includ-
ing orientations of protein OH and NH; groups) and
scores it; and (2) local optimization, which performs a
normal GOLD (GA) run, but all atoms are kept fixed
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TABLE II. Chemscore Parameters Used in This Study,
Except Where Indicated Otherwise

AG, —5.480 (kJ/mol) 7, 2.60 (A)
AGrpong  —3.340 (kJ/moD) 1,5 3.00 (A)
AG,,ci —6.030 (kJ/mol)

- —0.117 (kJ/mol) 4.10(A)
AG,,, 2.560 (kJ/mol) 7, 7.10 (A)
Ceov 0.25 T .qsn (donor—acceptor)  1.60 (1:&)

. Teas, (metal-acceptor)  1.38(A)
r, 1.85(A) 71057, (SUlphur) 3.35(A)
Ary 0.25 (A) Totas (Other) 3.10 (A)
Ary 0.65 (A) i
Qg 180 (°) OfArps, Ary, Arg) 0.10 (A)
Aay 30(°) OfAaps, Ay Aay) 10 ()
Aay 80 (%) OB, ARy, ABY 109
Bo 180 (°) O firyia, P, 7im2) 0.10(4)
A, 70 () Oftryy, ryn, 1) 0.10 (‘I})
ABZ 80 (O) O, Telash) 0.10 (A)

except terminal protein and ligand OH and NH; groups.
These are allowed to spin around to optimize hydrogen
bonds. As for any GOLD run, both options can be followed
by a Simplex optimization in which all ligand (and protein
OH/ NH3) torsions and the position and orientation of the
ligand are refined to the nearest local optimum.

Switching Between Scoring Functions in GOLD

The GOLD code was restructured, and GOLD routines
specific to scoring a docking solution were separated out
into dynamically loaded libraries (dll). This allows straight-
forward implementation of other scoring schemes and
provides a mechanism for switching between them. The
Chemscore function (see below) was coded up as a scoring
function dll for GOLD. The Chemscore function is de-
scribed in detail by Eldridge et al.®>'%2 However, because we
have added terms to the original Chemscore function and
modified existing terms, we describe the functional form in
some detail. The parameters used are given in Table II.

The Original Chemscore Function

1.12

The Chemscore function described by Eldridge et a
estimates the free energy of binding of a ligand to a protein
as follows:

A(-7‘1'binding = AGO + A(;hbond‘ghbond + AC;metal‘smetal
+ AGlipo‘slipo + AGrotht (2)

where S;,;0,45 Seiar» @and Sy, are scores for hydrogen-
bonding, acceptor-metal, and lipophilic interactions, respec-
tively. H,,, is a score representing the loss of conforma-
tional entropy of the ligand upon binding to the protein;
the functional form of this term is given by Eldridge et al.2
The AG terms are coefficients derived from a multiple
linear regression analysis on a training set of 82 protein—
ligand complexes from the PDB (see Table II). The S;,;,,.45
S, potar» a0d Sy, terms all make use of a block function, f, of
the following shape:
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1 X =x
flx, x1, x5) =1 @ — )/ (22 —x1) %1 <x=x, (3)
0 X > X,

where x is a running variable, and x, and x, are constants
controlling the fall-off of f. The hydrogen-bond term is
calculated for each complementary combination of donor
(D) and acceptor (A) on ligand and protein. It consists of a
distance and an angle-dependent part:

Shbona = E f(Arpa, Ary, Arg)f(Aaps, Aas, Aay), (4)
DA
with Arp, = [rpa — 7| and Aoy, = a,|, where rp, is

the H A distance, and a;, the D-H A angle for a given
donor—acceptor pair. r, and «, are the ideal hydrogen-bond
distance and angle, respectively. Ar;, Ary, Aa; and Aoy, are
constants that control the deviation from the ideal hydro-
gen-bond distance and angle (see Table II).

The metal term is calculated for each combination of
metal (M) and acceptor (A) on ligand and protein. It only
has a distance dependency:

Ef(rMA7 m17 mZ); (5)

metal

where r,,, is the distance between a given metal-acceptor
pair. r,, ; and r,, , are constants controlling the range of
metal-acceptor interactions; in the original Chemscore
implementation Eldridge et al. used r,; = 2.2 A and
Ty = 2.6 A. Here we reoptimized these parameters (see
below) and used the values in Table II, except where stated
otherwise.

The lipophilic term has the same functional form as the
metal term, but is much longer range:

Stipo = E f(roe, ri1, Tu9). (6)

LL

The summation here is over all pairs of lipophilic atoms in
protein and ligand. r;; is the distance between protein and
ligand atom for a given pair of lipophilic atoms. r; ; and 7, ,
are constants controlling the range of lipophilic interac-
tions (see Table II).

The Chemscore Function Used for Docking

When the Chemscore function was adapted for docking
by Baxter et al.,> a protein-ligand clash—energy term,
E,. .. and a 11gand—1nternal—energy term, E,,,, were
added to the regression-based part. Baxter et al. also
added a term to penalize a docking solution moving outside
a user-defined box, but because the Goldscore function
does not contain such a term, we considered this unneces-
sary. Because GOLD has a mechanism for dealing with
covalently bound ligands, we extended the Chemscore
function to include a covalent energy term, E_ . As a
result, the form of the Chemscore function we use for
protein-ligand docking is as follows:

AG;}inding = A(;binding + Eclash + Eint + Ecov' (7)
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The clash term is summed over all non-hydrogen protein—
ligand atom pairs:

E Eclabh(r rclash) (8)

where r is the distance between a protein—ligand atom pair
and r ., is the clash distance for that pair (see Table II).
The clash energy for each atom pair depends on the nature

claqh

of the protein and ligand atom,; it is zero for r > r_,,, and
forr =ru.:
(20/AGhbond) : (rclash - r)/rclash
{donor—acceptor pairs} (9a)
( ) _ (ZO/AGmcml) * (rclash - r)/rclash
€etashT's Telash) = {metal-acceptor pairs} (9b)
1+4- (rclash - r)/rclash
{all other non-H pairs} (9¢)

The internal energy of the ligand is the sum of a torsional
term and a clash term. The latter is calculated analogously
to the protein—ligand clash energy, but only for ligand
atoms that are separated by at least four bonds. The
torsional term reported by Baxter et al. is a summation
over the ligand rotatable bonds (RB). Because GOLD also
flips ring corners, which affects ring torsion angles, our
implementation of the ligand torsional energy also in-
cludes a summation over free ring corners (RC), that is,

tors E E‘:tors(e}?B) + E Z 8tors(eRCB)

RC RCB

(10)

The second summation in the right-hand term is over the
ring bonds RCB affected by the ring flipping of ring corner
RC. The functional form of ¢,,,(0) is given by Baxter et al.®

The covalent energy term only applies to ligands bound
covalently to the protein. It consists of a torsional part and
a bond-angle part:

cov E Stors(eCB) + Ccou E kBA(‘PBA

CB BA

‘Po,BA)2~

1D

The first summation is over all torsion angles 6,5 involved
in the covalent linkage; the second summation is over the
covalent bond angles ¢z, around the covalent linkage. The
force constants kz, and the ideal bond angles ¢, z, are
taken from GOLD.® C__, is a constant used to balance the
covalent bond term against the rest of the Chemscore
function (see Table II). To prevent unlikely hydrogen-bond
geometries, Baxter et al. modified the hydrogen-bond term
to include a third term, depending on the R-A--"H(D) angle,
B (R being an atom attached to the acceptor, A), analogous
to the r and a-dependent terms, that is,

Shvona = E [f(Arpa, Arq, Ary)

DA

X f(Aapa, Aoy, Aay)f(ABpa, AB1, ABs)],

with ABpa = [Bpa — Bol-
In their paper, Baxter et al. state that they used B, =

140°, AB; = 30°, and AB, = 40°. This would mean that, for
B = 180° S,pona = 0. We believe that this is not the

(12)
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intention of the authors; therefore, here we use g, = 180°,
AB; = 70°, and AB, = 80° (see Table II).

It is unclear how Baxter et al. treat acceptors that have
more than one R group (e.g., OH acceptors or ring nitrogen
acceptors), and hence, have more than one B-value. Here,
we simply multiply the values of f for each R group.
Finally, to prevent unrealistic hydrogen-bond geometries,
each donor hydrogen can only form one hydrogen bond.?

Validation of Chemscore Implementation

The CCDC/Astex validation set contains 64 complexes
from the original Chemscore set. For these complexes, we
can compare our values for the different terms in the
Chemscore function with those obtained by Eldridge et
al.’2 When such a comparison is made, we need to bear in
mind that Eldridge et al. minimized ligand and protein
(under constraints) in the Discover force field, modifying
hydrogen-bond positions manually, if necessary. Also,
when the original Chemscore function was derived, the
water molecules were left in the binding sites; most water
molecules were left out of the complexes in our validation
set. This means that we will not be able to reproduce the
values reported by Eldridge et al. exactly, as was also
noted by Sandretto and colleagues (personal communica-
tion, August 2001). In an attempt to reproduce the values
reported by Eldridge et al. for the various Chemscore
terms, we used the following approach:

1. We ran GOLD in “local optimization” mode, starting
from the experimental binding mode, to optimize the
positions of the protein and ligand OH and NHj
hydrogen atoms; the docking version of the Chemscore
function [Eq. (7)] was used here to ensure realistic
hydrogen-bond geometries.

2. For the obtained binding mode, we calculated the terms
in the original Chemscore function [Eq. (2)] (using the
original parameters) and compared them with those
given by Eldridge et al.

In Figure 1, we plotted the values of AGy;,,4;,,, calcu-
lated using the approach above, against the AGy,, ;.
values given by Eldridge et al. (minus the contribution due
to interactions of water molecules). As expected, the
correlation is not perfect (R? = 0.84), but is quite good in
comparison with that reported by Sandretto et al. [they
reported B2 = 0.72 (personal communication, August
2001)], perhaps because we have optimized the positions of
the OH and NH; hydrogen atoms, and we have accounted
for the absence of water molecules in our test set.

If we compare the individual Chemscore terms we
calculated with those reported by Eldridge et al., the
hydrogen bonding and metal terms show the poorest
correlations (R? = 0.86 and R? = 0.80, respectively). The
metal term is very short-ranged and is sensitive to small
shifts in protein and ligand. The hydrogen-bond term is
also short-ranged and, additionally, directional; hence,
this term is also likely to be sensitive to small changes in
the positions of ligand and protein atoms, and on the
orientation of ligand and protein OH and NH; groups. The
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Fig. 1. Calculated AG,,,q,, Values for the Chemscore function as
implemented in this work [Eq. (2)] against the calculated AG,,,q,, Values

reported by Eldridge et al.'? corrected for the interactions with water
molecules.

lipophilic term is much longer range and not directional,
and, as a result, the correlation between our values and
those reported by Eldridge is high for this term (R? =
0.99); the small differences observed are probably due to
rounding errors, particularly because this term is calcu-
lated on a grid (see Baxter et al.?). The term to penalize the
freezing of ligand rotatable bonds (H,,,) is independent of
the positions of protein and ligand atoms and should, in
theory, be reproducible exactly. The correlation for this
term is good (R2 = 0.99). Breakdowns of the Chemscore
terms, together with the corresponding protein files (with
optimized OH and NHj groups), are available as supple-
mentary material for six complexes from the “clean list.”
Our implementation of the Chemscore function was also
tested on four of the structure files (PDB entries lebg, 1fig,
lhvr, and 2tmn) used to derive the original Chemscore
function by Eldridge et al. For these complexes, we ob-
served relatively large discrepancies between our values
and those reported by Eldridge et al., but when we used
the exact structure files they used in their analysis, our
Chemscore implementation reproduced the reported val-
ues almost exactly (for AGy,,4in. R” = 0.99). The reasons
we observed large discrepancies when we used the raw
PDB files vary. For 1ebg, for example, Eldridge et al. used
a different binding site for the ligand (interacting with a
different protein chain); in the 2tmn complex, the zinc ion
in the binding site had moved considerably during the
minimization process performed by Eldridge et al.

Optimizing the Chemscore Function

Based on the results presented above, we are confident
that our implementation of the Chemscore function is
correct. However, because Eldridge et al. performed an
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optimization of the complexes before deriving the Chem-
score function, the function may not be optimal for unopti-
mized protein structures taken directly from the PDB. We
found that GOLD’s ability to predict the binding mode is
particularly sensitive to the parameters in the metal term,
I'.1 and r,, 5. In the original Chemscore function, r,, ; =
2.2 A and T'mo = 2.6 A, which makes this term extremely
short range (this is probably a result of the poor descrip-
tion of interactions to metal ions in the force field used by
Eldridge et al. to optimize the complexes). As a result,
small errors in the positions of the atoms in the vicinity of
the protein metal atom could easily cause a key interaction
with the metal to be missed as a result of a high clash term.
Therefore, the metal term was optimized against the
“clean list” to r,,, ; = 2.6 A and Tpmo = 3.0 A. Varying the
parameters in the other terms of the Chemscore function
from those used by Baxter et al. had no significant effect on
performance; these parameters were therefore left un-
changed.

We also introduced smoothing functions to take into
account the experimental uncertainties in the protein
atom positions and to make the Chemscore hypersurface
less rugged. To do this, some of the terms in the Chemscore
function are convoluted with a Gaussian smearing func-
tion, such that

(13)

y'(x) = f yx —u)gu, o)du,

where g(x,0) is a normalized Gaussian smearing function
with a “standard deviation” o, y(x) is the original Chem-
score term, and y’(x) is the smoothed Chemscore term. All f
functions [see Eq. (3)] and the general clash term [Eq. (9¢)]
are smoothed in this way. After some optimization against
the “clean list,” o values of 0.1 A were used for all
distance-dependent terms and 10° for all angle-dependent
terms (see Table II).

Annealing the Chemscore Function

To promote diversity in the docking solutions, in analogy
with Baxter et al.,®> we used more relaxed hydrogen-bond
parameters (Ar, = 1.15 A and Aa, = 110°) at the start of a
docking run. After 75% of the GA run, the final, more
restrictive parameters (see Table II) are used to focus on
binding modes with good hydrogen bonds.

RESULTS AND DISCUSSION
Exhaustive Docking Runs

Figure 2 shows the cumulative percentage of complexes,
as a function of the RMSD of the GOLD solution nearest to
the experimental binding mode, for exhaustive docking
runs. It is clear that, for the “clean list,” the Goldscore
function is significantly better at producing dockings close
to the experimental binding mode (regardless of their
rank) than the Chemscore function. This difference is
absent in the “drug-like list” and the “fragment list,”
indicating that the search algorithm has a sampling
problem when the Chemscore function is used. We suspect
that, even after smoothing some of the terms, the Chem-
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score function is more “rugged” than the Goldscore func-
tion (see below). This sampling problem is reflected in the
success rates: Figure 3 shows the cumulative fraction of
complexes, as a function of the RMSD of the top-ranked
GOLD solution. Although the Goldscore and Chemscore
function perform similarly for the “drug-like list” and the
“fragment list,” Goldscore appears to perform better than
Chemscore for the “clean list” (which contains larger
ligands with more degrees of freedom).

Table III lists the success rates for exhaustive docking
runs (see Table I) with the Goldscore function, the litera-
ture version of the Chemscore function, and our optimized
version of the Chemscore function. The optimized version
of the Chemscore function performs significantly better
than the literature version but still gives significantly
worse results than those obtained by Baxter et al. For an
exhaustive search protocol, they report a success rate of
84% for a list of 70 complexes (for this subset, the success
rate of our Chemscore implementation is 72%).2 A number
of factors may have caused this difference in success rate:

1. Baxter et al. minimized the ligand and protein before
the dockings were carried out; even though this was
done under severe constraints, it will have made the
experimental binding mode more favorable, and, hence,
the docking easier.

2. For larger compounds, when using the Chemscore
function, the GOLD search algorithm does not always
find the global optimum (see Fig. 2 and below).

3. Baxter et al. added a term to the Chemscore function
that penalizes docking solutions for which the ligand
center is outside a user-defined box; this will have made
the search space smaller.

4. Here, we optimize protein OH and NHJ orientations
and ligand ring conformations during the docking;
Baxter et al. optimized OH and NH; groups before the
docking and used the ring conformations from the X-ray
structures.

5. Baxter et al. used a Tabu search algorithm as opposed
to the GA used here.

Table IV separates the complexes in the validation set
into four categories: (1) complexes for which the binding
mode is predicted correctly by both the Goldscore and the
Chemscore function; (2) complexes that are predicted
correctly only by the Goldscore function; (3) complexes that
are predicted correctly only by the Chemscore function;
and (4) complexes that are not predicted correctly by either
scoring function. It is interesting to note that quite a large
fraction of complexes is predicted correctly by only one of
the two scoring functions. Although it is difficult to gener-
alize the reasons why the Goldscore function performs
better than the Chemscore function in certain cases, and
vice versa in other cases, it does appear to be target-
dependent. In a major study on neuraminidase, for ex-
ample, we showed that the Goldscore function signifi-
cantly outperforms the Chemscore function®®; for p38
MAP kinase, on the other hand, the Chemscore function
generally works better.
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Fig. 2. Cumulative percentage of complexes as a function of the
RMSD of the GOLD solution nearest to the experimental binding mode for
the Goldscore function (dark-red triangles for the “clean list,” red squares
for the “drug-like list,” and light-red diamonds for the “fragment-like list”),
and for the Chemscore function (dark-blue triangles for the “clean list,”
blue squares for the “drug-like list,” and light-blue diamonds for the
“fragment-like list”). All curves are averages over three exhaustive GOLD
runs.

Only 13% of the complexes in the “clean list” are not
predicted correctly by either of the scoring functions. This
indicates that there is scope for improvement if the two
scoring functions were to be used in some kind of consen-
sus manner.

Combined Docking Protocols

Table IIT also shows the success rates for two combined
docking protocols. In the first protocol, “Goldscore-CS,” the
dockings produced using the Goldscore function are res-
cored and reranked with the optimized Chemscore func-
tion; in the second protocol, “Chemscore-GS,” the dockings
produced with the optimized Chemscore function are
rescored and reranked with the Goldscore function; in both
protocols, the Simplex algorithm is used to relax each
docking in the alternative scoring function.

Interestingly, in all the cases presented in Table III, use
of a second scoring function to rescore and rerank dockings
gives significant improvements in success rates (3—8%),
compared to straightforward docking with the first scoring
function. This must be because the two combined docking
protocols represent a form of consensus docking. Top-
ranking but incorrect dockings produced with one scoring
function score poorly in the second, ranking scoring func-
tion, hence reducing the number of false positives or “hard
failures” (see below). This “consensus-docking effect” can
only work if the “docking function” produces good-quality
solutions for the “ranking function” to rank. The fact that
the search algorithm appears to give better sampling with
the Goldscore function compared to the Chemscore func-
tion (see above) probably explains why, for the “clean list”
(which contains larger ligands with more degrees of free-
dom), “Goldscore-CS” gives better results than “Chemscore-
GS.”
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Fig. 3. Cumulative percentage of complexes as a function of the RMSD
of the top-ranked GOLD solution (red for the Goldscore function, blue for the
Chemscore function, green for “Goldscore-CS,” and black for “Chemscore-
GS”) for (a) the “clean list,” (b) the “drug-like list,” and (c) the “fragment-like
list.” All curves are averages over three exhaustive GOLD runs.
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TABLE III. Success Rates® for Exhaustive Docking Runs with Goldscore and Chemscore (All Values are
Averages Over Three Runs)

N Goldscore Chemscore® Chemscore? Goldscore-CS Chemscore-GS
All entries 305 68.4 (1.2)° 63.9 (0.6) 67.2(0.9) 74.6 (14) 70.6 (1.0)
Clean list 224 73.5(1.0) 66.5 (1.2) 70.2 (1.0) 80.5(1.8) 74.6 (1.2)
Drug-like list 147 789(1.1) 75.3(2.3) 79.9(1.4) 84.4(1.5) 83.5(1.2)
Fragment list 79 78.5(0.0) 75.1(2.6) 81.0(0.0) 86.5(1.9) 86.5 (0.7)

aPercentage of complexes for which the top-ranked GOLD solution is within 2.0 A RMSD of the experimental binding mode.
PStandard deviations are given in parentheses. These standard deviations only take into account the nondeterministic
nature of the search algorithm; they do not include sampling errors, which are related to the size of the validation set (see
Nissink et al.”). Assuming an overall success rate of 68%, this error is 2.6%, 3.1%, and 5.8% for the overall set, the “clean list,”

and the “fragment list,” respectively.
Literature Chemscore function.?
d0ptimized Chemscore function (this work).

TABLE IV. Percentages of Complexes Predicted Correctly by Both the Goldscore and
the Chemscore Function, Only the Goldscore Function, Only the Chemscore
Function, or by Neither Scoring Function

N Both Goldscore only Chemscore only Neither
Clean list 224 56.9 (1.4) 16.6 (1.3) 13.3(1.3) 13.2(1.3)
Drug-like list 139 67.6(1.3) 11.3(14) 12.2(0.5) 8.9(0.7)
Fragment list 79 66.2 (0.6) 12.2(0.6) 14.8 (0.6) 6.8 (0.6)

All values are averages of the nine combinations of the three exhaustive Goldscore runs and the three
exhaustive Chemscore runs. Standard deviations are given in parenthesis.

The success rates obtained with the combined docking
protocols are significantly higher than those reported in
previous GOLD validations. “Goldscore-CS” gives a 75%
success rate on the complete validation set, an 81% success
rate for the “clean list,” and success rates of around 85% for
the “drug-like list” and “fragment list.” “Chemscore-GS”
gives similar success rates for the “drug-like list” and the
“fragment list,” but not for the “clean list” (and the overall
set); this is also clear from Figure 3.

Consensus scoring and consensus docking are not new
concepts to protein—ligand docking. Consensus scoring is
aimed at improving hit rates when libraries of compounds
are screened.?* Each compound in the library is docked
and then rescored with various scoring functions, and
consensus ranks are calculated. Consensus docking, the
focus of this article, is aimed at improving the docking
performance. Various approaches to consensus docking
have been reported in the literature. Paul and Rognan
clustered docking solutions from DOCK, FlexX, and GOLD
into “consensus pairs” and obtained improved docking
success rates.?® Clark et al. observed improved docking
performance when they rescored FlexX docking solutions
with various scoring functions and combined the scores
into a consensus score, CScore.?® Similar results were
obtained by Terp et al. when they reranked GOLD docking
solutions, using their consensus scoring function Multi-
Score.2” The examples of consensus scoring that are most
relevant to this work are articles by Hoffman et al.2® and
Gohlke et al.??; both represent examples of simple rescor-
ing and reranking of docking solutions with a second
scoring function. Hoffman et al. rescored FlexX docking
solutions using a classical force field and observed signifi-
cant improvements in the docking performance. Gohlke et

al. also observed significant improvement in docking per-
formance when FlexX and Dock docking solutions were
rescored with the DrugScore scoring function.

Performance Versus Time

The results listed in Table III were obtained with use of
the exhaustive search protocol (see Table I). This was done
to minimize the effect of the search algorithm and to
compare the performance of the different scoring func-
tions, but the average CPU time per complex using these
GA settings is in the order of 2—4 h. This is not realistic for
virtual screening, in which, typically, many thousands of
compounds are docked against a target binding site. It is
therefore key to use search settings that are as fast as
possible, with a minimal loss of docking performance.
Table V lists the performance of GOLD for various GA
settings (see Table I), using the Goldscore and the Chem-
score function, and the two combined docking protocols.

First, it is clear that, particularly for complexes with
“drug-like” or “fragment-like” ligands, the Goldscore and
Chemscore function give similar results in terms of their
docking accuracy. Importantly, the Chemscore function is
considerably faster than the Goldscore function. For iden-
tical search settings and similar docking performance, the
Chemscore function provides an increase in speed of up to
three-fold compared to the Goldscore function. We believe
there are two main reasons why the evaluation of the
Chemscore function is faster than that of the Goldscore
function:

1. The lipophilic and clash terms in the Chemscore func-
tion do not take hydrogen atoms into account. As a
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TABLE V. Success Rates® and Average Docking TimesP for Different GA Settings

Clean list (224 complexes)

Goldscore Chemscore Goldscore-CS Chemscore-GS
GA setting Time Success Time Success Success Success
Exhaustive 248.9 73.5(1.0) 117.2 70.2 (1.0) 80.5(1.8) 74.6 (1.2)
GOLD default 1 24.7 729(14) 13.2 68.9 (1.7) 76.1(1.5) 69.8 (1.6)
GOLD default 2 9.2 70.2(1.6) 44 66.3 (1.5) 73.8(2.0) 67.5(1.8)
GOLD default 3 5.9 66.4 (1.6) 2.6 65.3(1.7) 69.8 (2.1) 65.9 (1.6)
GOLD default 4 2.1 63.0 (1.8) 0.74 60.9 (1.8) 65.6 (2.3) 62.0 (2.2)
GOLD library 0.43 56.0 (1.9) 0.12 52.5(1.9) 58.0 (2.1) 52.0(2.1)

Drug-like list (139 complexes)

Goldscore Chemscore Goldscore-CS Chemscore-GS
Time Success Time Success Success Success
Exhaustive 188.2 789(1.1) 86.6 79.9(14) 84.4(1.5) 83.5(1.2)
GOLD default 1 11.6 79.1(1.4) 5.7 78.8(1.6) 829(1.4) 79.9 (1.8)
GOLD default 2 4.9 79.5(1.3) 2.3 77.5(1.7) 829 (1.5) 79.0 (2.0)
GOLD default 3 3.2 75.3(1.9) 1.3 775(1.9) 78.1(1.8) 78.5(1.8)
GOLD default 4 11 73.4(2.1) 0.37 74.8(2.1) 76.1(2.2) 77.0(2.3)
GOLD library 0.25 71.3(2.2) 0.07 69.4 (2.4) 74.6 (2.2) 69.8 (2.5)

Fragment list (79 complexes)

Goldscore Chemscore Goldscore-CS Chemscore-GS
Time Success Time Success Success Success
Exhaustive 136.3 78.5(0.0) 67.6 81.0(0.0) 86.5(1.9) 86.5(0.7)
GOLD default 1 51 78.5(1.3) 33 82.8(2.1) 83.0(2.1) 85.1(1.7)
GOLD default 2 2.8 79.5(1.3) 1.5 83.1(2.0) 84.5(2.1) 84.7 (2.0)
GOLD default 3 1.8 78.0 (2.1) 0.87 82.9(2.3) 81.9(24) 84.7(1.8)
GOLD default 4 0.69 76.4(2.8) 0.25 81.1(2.5) 80.1(2.2) 84.4 (2.6)
GOLD library 0.15 78.6(3.9) 0.05 779 (2.9) 83.1(2.7) 80.1(2.9)

Note: All results are averages of 50 runs except those for the exhaustive settings, which are averages of three

runs.

2Percentage of complexes for which the top-ranked GOLD solution is within 2.0 A of the experimental binding

mode.

PSingle-processor CPU minutes for the complete docking of a ligand, excluding the protein initialization time
(which varies between 0.5 and 3.0 min). All calculations were done on an 84-processor Linux cluster of
1GHz/PentiumlIII PC’s. Times for “Goldscore-CS” are identical to those for the Goldscore function. Times for
“Chemscore-GS” are identical to those for the Chemscore function.

result, contrary to the Goldscore Sy, ., term, these
two terms can be precalculated on grids.

2. The functional form of the ligand intramolecular energy
of the Chemscore function is simpler than that of the
Goldscore function. We must stress, however, that,
although here we have made no attempt to do so here, it
may well be possible to speed up the Goldscore function

considerably.

As we observed for the exhaustive search settings, in
nearly all cases presented in Table V, using a second
scoring function to rescore and rerank dockings gives
significant improvements in success rates compared to
straightforward docking using the first scoring function. It
is interesting to note that these improvements in success
rates drop with faster search settings, because the consen-
sus docking approaches rely on adequate sampling of the
possible binding modes.

As expected, the performance of each scoring function
drops with shorter search times; however, much faster
search settings can be used without a dramatic loss of

performance, particularly for drug-like and fragment-like
ligands. For fragment-like compounds, “Chemscore-GS,”
combined with the GOLD default 4 settings provides the
best balance between performance and speed (84% success
at 0.25 min/complex). It may appear from Table V that the
GOLD library settings also provide reasonable success
rates for fragment-type ligands. The problem is that for
fragment-type compounds, an RMSD threshold of 2.0 A to
define success is not very appropriate; for small ligands,
we need to more critically assess whether the binding
mode is predicted correctly, and, although at 2.0 ARMSD,
the performance of the GOLD library settings and the
GOLD default 4 settings is similar, at lower RMSD
thresholds the latter settings give superior results.

For drug-like compounds, “Chemscore-GS” combined
with the GOLD default 3 or even the GOLD default 4
settings, seems to be optimal (~78% success at 0.37-1.3
min/complex). For larger compounds in the “clean list,”
“Goldscore-CS” in combination with the GOLD default 2
settings appears the most appropriate choice (74% success
at 9.2 min/complex).
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The results in Table V indicate that, in terms of speed
and docking accuracy, GOLD is an excellent tool for
docking and virtual screening. Drug-like compounds can
routinely be docked in 0.5-1.0 min/compound (i.e., ~2000
compounds/day on a single processor), and the docking
accuracy is good (~78% at 2.0 A RMSD, ~68% at 1.5 A
RMSD, ~55% at 1.0 A RMSD).

GOLD is often perceived to be too slow for large-scale
virtual screening. Recently, Lyne related the suitability of
a docking program for large-scale virtual screening to its
ability to screen 100,000 compounds on eight processors in
a few days.?° On this basis, Lyne considered GOLD’s
suitability for large-scale virtual screening to be “low.”
Screening 100,000 compounds on eight of the processors
we used in this work would take approximately 6 days. But
computing power is becoming very cheap, and large-scale
virtual screening is typically done on Linux clusters that
consist of more than eight processors. On the 84-processor
cluster used in this work, we can screen approximately 1.2
million compounds/week using GOLD. Also, processors
have increasingly become faster. For example, 2.4 GHz
Xeon processors are 2.5 times faster for GOLD applica-
tions than the processors we used here.

It is interesting to note that even with the GOLD library
settings, which represent a trivial amount of searching
(see Table I), 52-58% (depending on the scoring protocol)
of the “clean list” can be predicted within 2.0 A of the
experimental binding mode. We already mentioned that,
for smaller ligands, the 2.0 A cutoff is not very useful, but
even at a 1.0 A cutoff, 30-37% of the complexes in the
“clean list” can be predicted successfully with the GOLD
library settings. We believe this is not just the case for our
validation set, but that it is quite typical for validation sets
used for testing docking programs. Hence, we feel that the
challenge for workers developing docking programs or
scoring functions is to push success rates beyond the
50—60% mark (at a 2.0A cutoff), and aim to predict more of
the remaining, more difficult complexes correctly.

Soft Versus Hard Failures

Verkhivker and colleagues'® introduced the terminology
“soft failures” and “hard failures” to categorize reasons
why a docking program is unable to predict the binding
mode of a ligand successfully. Soft failures arise when the
search algorithm has not found the global optimum,
whereas hard failures arise when the global optimum does
not correspond to a binding mode close to the experimental
binding mode. Because it is difficult to prove whether the
algorithm has found the global optimum, our definitions of
soft and hard failures are as follows: A soft failure occurs
when the top-ranked GOLD solution is not within the
chosen RMSD cutoff (usually 2.0 A), and the score of the
experimental binding mode (after local optimization) is
better than that of the top-ranked GOLD solution; a hard
failure occurs when the top-ranked GOLD solution is not
within the RMSD cutoff, and the score of the experimental
binding mode is worse than that of the top-ranked GOLD
solution.

M.L. VERDONK ET AL.

Figure 4 shows the occurrence of hard and soft failures
for the four scoring protocols we describe here, and for the
different GA settings. First, as expected, with faster
search settings, the fraction of soft failures goes up. The
fraction of hard failures stays more or less constant for
different GA settings, except for the GOLD library set-
tings, in which many of the soft failures are actually hard
failures in the original definitions used by Verkhivker et
al. Again, it is clear that, even for the exhaustive settings,
the search algorithm does not always find the global
optimum when the Chemscore function is used. Whereas
docking with the Goldscore function only produces 1% soft
failures for the “clean list,” docking with the Chemscore
function produces 6% soft failures; for the “drug-like list”
and the “fragment list,” this difference is much smaller.
This indicates that, in principle, the Chemscore function is
at least as good a scoring function as the Goldscore
function, but that the search algorithm finds it more
difficult to find the global optimum.

In all cases presented in Figure 4, except for the GOLD
library settings (see above), the use of a second scoring
function to rescore and rerank dockings significantly re-
duces the fraction of hard failures compared to straightfor-
ward docking using the first scoring function. As we
discussed, reducing hard failures, or false positives, is the
mechanism by which the combined docking protocols
work. The number of soft failures, however, rises when the
combined docking protocols are used. This is to be ex-
pected, because the “docking function” is not aimed at
finding the optima of the “ranking function.”

Estimation of Binding Affinities

Figure 5(a) shows a plot of the Chemscore AG,,,, ;... for the
experimental binding modes, against the experimental bind-
ing energies, for the 60 complexes in the Chemscore set for
which reliable binding data are available. Interestingly, the
Goldscore function [Fig. 5(b)] gives an equally good correla-
tion with affinity as the Chemscore AG,;,,4;,,,- This is surpris-
ing, because, unlike the Chemscore function, the Goldscore
function was never parameterized against binding affinities.
It is important, however, to subtract the intramolecular
terms from the GOLD Fitness [see Eq. (1)]; as far as we know,
this has never been reported before in the literature (from
here on, we refer to the GOLD Fitness, minus the intramolecu-
lar terms, as the Goldscore, not to be confused with the
GOLD Fitness or the Goldscore function). The intramolecular
terms have an arbitrary reference point and, although essen-
tial for successful docking, are meaningless when different
compounds are compared. Figure 5(c) shows the dramatic
loss of correlation with affinity when the intramolecular
terms are not subtracted.

Figure 6 shows GOLD’s ability to predict the binding
energy for the various search settings, and for the different
scoring protocols (Goldscore, Chemscore, “Goldscore-CS,”
and “Chemscore-GS”). For all scoring protocols, the corre-
lation of the scores with experimental binding energies
deteriorates with faster search settings; this highlights
the importance of correctly predicting the binding modes
to obtain reasonable estimates of the binding energy. What



IMPROVED PROTEIN-LIGAND DOCKING WITH GOLD

% failures

%, failures

619

(b)

% failures

Fig. 4. Percentage soft failures (darker colors) and hard failures (lighter colors) for (a) the “clean list,” (b) the “drug-like list,” and (c) the “fragment-like
list” (red for the Goldscore function, blue for the Chemscore function, green for “Goldscore-CS,” and black for “Chemscore-GS”). All values are averages
of 50 GOLD runs, except those for the exhaustive settings, which are averages of three runs.

is immediately clear from Figure 6 is that scores produced
with the GOLD library settings show no correlation with
the experimental binding affinity (for any of the docking
protocols).

Although the Chemscore function (blue columns) per-
forms as well as the Goldscore function for the X-ray
binding modes and the exhaustive search settings, its
performance drops rapidly for faster search settings. A
similar, rapid drop in performance for faster search proto-
cols was observed by Baxter et al.® For faster search
settings, the Goldscore function (red columns) performs
much better than the Chemscore function; the perfor-
mance for the GOLD default 3 settings is nearly as good as
that for the exhaustive settings, and the performance of the
GOLD default 4 settings is only slightly worse. Although

the combined docking protocols produce more accurate
dockings (see above), the final scores obtained with these
protocols do not correlate better with the experimental
binding affinities. In fact, typically, the performance of the
“Goldscore-CS” (green columns) and the “Chemscore-GS”
(black columns) protocols is similar to that of the Chem-
score function. It has to be pointed out that the s values we
obtained here correspond to an error of nearly two orders
of magnitude in affinity. Although this is state of the art
for fast-scoring functions, it is clearly not ideal, particu-
larly for the lead-optimization stages of a drug discovery
project, which stresses the ongoing need to improve the
current scoring functions.

Many of the compounds in the Chemscore test set used
in the above analysis are large and un-drug-like, making
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Fig. 6. (a) Correlation coefficients A% and (b) standard deviations s of
predicted binding affinities for the X-ray binding mode and dockings with
the various search settings (red for the Goldscore function, blue for the
Chemscore function, green for “Goldscore-CS,” and black for “Chemscore-
GS”). All values are averages of 50 GOLD runs, except those for the
exhaustive settings, which are averages of three runs; for the Chemscore
and “Goldscore-CS” dockings, the predicted binding affinity was calcu-
lated as AGp,nging = 0.9111 + AGy;,4ing (Chemscore) — 8.1901 [see Fig.
5(a)]. For the Goldscore and “Chemscore-GS” dockings, the predicted
binding affinity was calculated as AG,, 4,y = — 0.4502 - Goldscore —
9.4891 [see Fig. 5(b)].

the search problem more difficult than it would be in a
typical drug discovery project. Hence, we ran the same
analysis on the complexes in the Chemscore set for which

Fig. 5. Experimental binding energy against (a) the Chemscore
AGynging @ implemented in GOLD, (b) the Goldscore (i.e., the GOLD
Fitness, minus intramolecular terms), and (c) the GOLD Fitness. Chem-
score AGy,qgng Goldscore, and GOLD Fitness are all calculated by
running GOLD in local optimization mode (without Simplex).
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the ligands are drug-like. Unfortunately, the Chemscore
set only contains 36 complexes that fall into this category,
so the results are not as statistically significant as those
presented in Figure 6. But the results do indicate that, for
drug-like compounds, the errors in the predicted binding
energies are smaller for faster search settings than those
for the complete Chemscore set. In fact, for the GOLD
default 4 settings, s ~ 9-10 kd/mol for all four scoring
protocols. These results indicate that the performance of
the four docking protocols, as presented in Figure 6, is not
necessarily representative for their performance in virtual
screening applications, because the compounds screened
typically are relatively small and drug-like. Additionally,
in virtual screening, the objective is to identify potential
binders in a database of mainly inactive compounds,
rather than to accurately predict the relative binding
affinities of a set of known binders. We will address the
performance of the four docking protocols in virtual screen-
ing applications in a separate study.

CONCLUSIONS

In this article, we have described the implementation of
the Chemscore function as a scoring function for GOLD.
The performance of the Chemscore function, in terms of
docking accuracy, its ability to predict binding affinities,
and its speed, were compared to the original Goldscore
function. The Chemscore function gives equally good dock-
ing results as the Goldscore function for “drug-like” and
“fragment-like” ligands, but for larger ligands, Goldscore
gives superior results. This, together with several other
observations, indicates that the search algorithm has a
sampling problem when the Chemscore function is used
for docking larger compounds, probably because its “en-
ergy landscape” is more “frustrated” than that of the
Goldscore function. A major advantage of using the Chem-
score function is that the dockings are up to three times
faster when compared with the Goldscore function.

The performance of two combined, or consensus, docking
protocols that use both the Goldscore and the Chemscore
function was also analyzed. In the first protocol, “Goldscore-
CS,” dockings produced with the Goldscore function are
scored and ranked with the Chemscore function; in the
second protocol, “Chemscore-GS,” dockings produced with
the Chemscore function are scored and ranked with the
Goldscore function. Both protocols give significant improve-
ments in docking accuracy over the use of the Goldscore or
Chemscore function alone, by reducing the number of
“hard docking failures.”

The performance of all four docking protocols was tested
as a function of the search settings (i.e., the speed of the
dockings). For most virtual screening applications, “Chem-
score-GS” combined with the GOLD default 3 or even the
GOLD default 4 search settings seems optimal. This gives
docking accuracies of around 78% (top-ranked GOLD
solution is within 2.0 A of the experimental binding mode)
for “drug-like” compounds and 85% for “fragment-like”
compounds; docking speeds are in the order of 0.25-1.3
min/compound on a single CPU. For larger ligands, when
the main objective is to predict the binding mode, “Gold-
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score-CS” is most appropriate; if the exhaustive search
settings are used, success rates as high as 81% can be
obtained for the “clean list,” but at the cost of very long
search times. The GOLD default 1 (76% at 24 min/
compound) or GOLD default 2 (74% at 9 min/compound)
search settings may be more practical in this case.

In terms of the ability to predict accurate binding
affinities, surprisingly, in our test set, the Goldscore
function outperforms the Chemscore function, particularly
for faster search settings. Even at docking speeds of
around 1-2 min/compound, the Goldscore function pre-
dicts binding energies with a standard deviation of ~10.5
kd/mol. It is key, however, when the Goldscore function is
used to predict binding energies, that the ligand intramo-
lecular terms are subtracted from the GOLD Fitness. The
two combined docking protocols perform similarly to the
Chemscore function in terms of the accuracy of the pre-
dicted binding energies.

The above recommendations are based on the perfor-
mance of GOLD, averaged over a large number of com-
plexes. It was observed, however, that the performance of
the various docking protocols is target dependent. There-
fore, when using GOLD in a structure-based project, our
advice is to test various scoring and searching protocols,
and to select those that give optimal performance.
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IMPROVED PROTEIN-LIGAND DOCKING WITH GOLD

SUPPLEMENTARY MATERIAL
TABLE SI. Breakdown of the GOLD Fitness for a Selection of Complexes in the “Clean list”

PDB entry GOLD Fitness Goldscore Shb_ext Sy ext S do_int Seov

labe 50.36 58.50 26.42 32.09 -8.14 0.00
laec 39.68 66.38 9.10 57.28 —18.74 —-17.95
1c83 29.85 72.61 25.74 46.87 —42.76 0.00
1hiv 97.711 120.29 11.93 108.36 —22.58 0.00
2tmn 50.11 63.34 27.57 35.77 -13.23 0.00
4dfr 63.71 102.60 40.29 62.31 —38.89 0.00

TABLE SII. Breakdown of the Chemscore Terms for a Selection of Complexes in the “Clean List,” Using the
Original Chemscore Parameters in Baxter et al.?

PDB entry AGI;indirLg A(;binding S hbond Smetal S, lipo E clash E int H, rot E cov
labe —23.68 —23.88 5.87 0.00 60.83 0.00 0.21 3.25 0.00
laec —15.86 —21.20 5.86 0.00 116.73 2.35 1.08 6.83 1.90
1c83 —35.54 —40.36 6.35 0.00 116.85 1.02 3.81 0.00 0.00
lhiv —43.15 —49.29 6.81 0.00 315.34 0.00 6.14 6.18 0.00
2tmn —22.68 —24.25 4.17 0.78 56.58 0.00 1.58 2.53 0.00
4dfr —33.77 —36.23 7.50 0.00 142.29 0.00 247 4.27 0.00

TABLE SIII. Breakdown of the Chemscore Terms for a Selection of Complexes in the “Clean List,” Using the
Chemscore Parameters in this Work (see Table II)

PDB entry AGII)inding AC;birbding S hbond S metal Slipo E clash E int H, rot E cov
labe —21.87 —22.28 5.39 0.00 60.93 0.21 0.21 3.25 0.00
laec —15.12 —20.29 5.58 0.00 116.86 2.19 1.08 6.83 1.90
1c83 —32.87 —38.09 5.67 0.00 116.87 143 3.79 0.00 0.00
lhiv —43.83 —49.69 6.92 0.00 315.54 0.18 6.11 6.18 0.00
2tmn —27.21 —29.45 4.07 1.70 56.57 0.67 1.58 2.53 0.00
4dfr —32.61 —34.66 7.02 0.00 142.35 0.00 2.04 4.27 0.00
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