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Abstract

This paper studies estimation and inference in a quantile regression dynamic panel
model with fixed effects. Panel data fixed effects estimators are typically biased in the
presence of lagged dependent variables as regressors. To reduce the dynamic bias in
the quantile regression fixed effects estimator we suggest the use of the instrumental
variables quantile regression method of Chernozhukov and Hansen (2006, 2008) along
with lagged regressors as instruments. We show that the instrumental variables es-
timator is consistent and asymptotically normal. We briefly describe how to employ
the estimated models for prediction. In addition, Wald and Kolmogorov-Smirnov type
tests for general linear restrictions are proposed. Monte Carlo studies are conducted
to evaluate the finite sample properties of the estimators and tests. The simulation re-
sults show that the instrumental variables approach sharply reduces the dynamic bias,
and turns out to be especially advantageous when innovations are non-Gaussian and
heavy-tailed. Finally, we illustrate the procedures by testing for the presence of time
non-separability in utility using household consumption panel data. The results show
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1 Introduction

Recently, there has been a growing literature on estimation and testing of dynamic panel

data models. Consistency of estimators in conventional dynamic panel data models depends

critically on the assumptions about the initial conditions of the dynamic process. Ander-

son and Hsiao (1981, 1982) and Arellano and Bond (1991) have shown that instrumental

variables methods are able to produce consistent estimators that are independent of the

initial conditions. This paper investigates estimation and inference in a quantile regression

formulation of the dynamic panel data model with individual specific intercepts. We find

that conventional fixed effects estimation of the quantile regression specification suffers from

similar bias problems to those of the least squares estimation. To reduce the dynamic bias

in the quantile regression fixed effects estimator, we suggest the use of the instrumental

variables quantile regression method of Chernozhukov and Hansen (2005, 2006, 2008) along

with lagged (or lagged differences of the) regressors as instruments. Thus, the estimator

combines the usual instrumental variables concept for dynamic panel data and the quantile

regression instrumental variables framework. We show that under some mild regularity con-

ditions, notably that with T →∞ as N →∞ and Na/T → 0, for some a > 0, the estimator

is consistent and asymptotically normal. In addition, we briefly describe how to employ

the estimated models for prediction. We also propose Wald and Kolmogorov-Smirnov tests

for general linear hypotheses, and derive the associated limiting distributions. Monte Carlo

experiments show that, even in short panels, the instrumental variables estimator can sub-

stantially reduce the dynamic bias. Finally, we illustrate the new approach by testing for the

presence of time non-separability in utility using household consumption panel data. The

results show evidence of asymmetric persistence in consumption dynamics.

Koenker (2004) introduced a general approach to estimation of quantile regression models

for longitudinal data. Individual specific (fixed) effects are treated as pure location shift

parameters common to all conditional quantiles and may be subject to shrinkage toward

a common value as in the Gaussian random effects paradigm. Controlling for individual

specific heterogeneity via fixed effects while exploring heterogeneous covariate effects within

the quantile regression framework offers a more flexible approach to the analysis of panel data

than that afforded by the classical Gaussian fixed and random effects estimators. Recent

work by Lamarche (2006, 2008) and Geraci and Bottai (2007) have elaborated on this form

of penalized quantile regression estimator. Abrevaya and Dahl (2008) have introduced an
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alternative approach to estimating quantile regression models for panel data employing the

“correlated random effects” model of Chamberlain (1982).

In econometric applications the modeling of dynamic relationships and the availability of

panel data often suggest dynamic model specifications involving lagged dependent variables.

It has been recognized at least since Nickell (1981) that classical least squares estimators in

dynamic panel models with fixed effects are seriously biased when the temporal dimension

of the panel is short. An extensive literature, initiated by Anderson and Hsiao (1981, 1982)

and Arellano and Bond (1991), has explored instrumental variables approaches to attenuate

the bias.1

Conventional quantile regression estimation of dynamic panel data models with fixed

effects suffers from similar bias effects to those seen in the least squares case when T is modest.

Reliance on the existing least squares strategies for bias reduction is unsatisfactory in the

quantile regression setting for at least two reasons. First, differencing is inappropriate, either

temporally, or via the usual deviation from individual means (within) transformation. Linear

transformations that are completely innocuous in the context of conditional mean models

are highly problematic in the conditional quantile models since they alter in a fundamental

way what is being estimated. Expectations enjoy the convenient property in that they

commute with linear transformations; quantiles do not.2 Secondly, the implementation of

the instrumental variables method needs to be rethought. Fortunately, neither problem is

insurmountable. There is no need to transform the quantile regression model to compute the

fixed effects estimator. This is a computable convenience in the least squares case, but even

when the number of fixed effects is large, interior point optimization methods using modern

sparse linear algebra make direct estimation of the quantile regression model quite efficient.

The instrumental variables estimator for quantile regression introduced by Chernozhukov

1Ahn and Schmidt (1995) study efficient estimation of models for dynamic panel data using GMM es-
timator. Blundell and Bond (1998) consider estimation of the dynamic error components model proposing
two alternative linear estimators that are designed to improve the properties of the standard first differenced
GMM estimator. Bun and Carree (2005) propose a bias corrected estimator for fixed effects dynamic panel
data. More recently, a number of additional approaches have been proposed to reduce the bias in dynamic
and nonlinear panels. These methods use asymptotic approximations derived as both the number of individ-
uals, N , and the number time series, T , go to infinity jointly; see, for example, Arellano and Hahn (2005) for
a survey, and Hahn and Kuersteiner (2002), Alvarez and Arellano (2003), Hahn and Newey (2004), Bester
and Hansen (2007), for specific approaches.

2This intrinsic difficulty has been recognized by Abrevaya and Dahl (2008), among others, and is clarified
by Koenker and Hallock (2000, p.19): “Quantiles of convolutions of random variables are rather intractable
objects, and preliminary differencing strategies familiar from Gaussian models have sometimes unanticipated
effects.”
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and Hansen (2006, 2008) will be adapted to the dynamic panel data setting and serves as

an effective bias reduction device.

Monte Carlo simulations show that the quantile regression fixed effects estimator is signif-

icantly biased in the presence of lagged dependent variables, while the instrumental variables

method sharply reduces the bias even in short panels. In addition, the Monte Carlo exper-

iments suggest that the quantile regression instrumental variables approach for dynamic

panel data performs better than ordinary least squares instrumental variables in terms of

bias and root mean squared error for non-Gaussian heavy-tailed distributions. Tests based

on the fixed effects quantile regression dynamic panel instrumental variables (PQRIV) turn

out to be especially advantageous when innovations are heavy-tailed.

There is an emerging literature on forecasting with panel data, see for instance Baltagi

(2008) for a survey. However, less emphasis has been devoted to forecasting with dynamic

panel data models. The model proposed in this paper is useful for prediction of conditional

quantile functions using dynamic panel data with fixed effects. The quantile regression model

has a significant advantage over models based on the conditional mean, since it will be less

sensitive to the tail behavior of the underlying random variables representing the forecasting

variable of interest, and consequently will be less sensitive to observed outliers. Moreover,

because of the heterogeneous nature of most of the variables of interest in economics, predic-

tion using quantile regression techniques is an important tool for applied work. The model

proposed in this paper can also be used to predict the conditional density function of the

variable of interest under very weak assumptions.

We illustrate the methods by testing for the presence of time-nonseparability in utility us-

ing household consumption data from the Panel Study on Income Dynamics (PSID) dataset.

A growing body of literature has emphasized the importance of allowing for habit formation

as a way of modeling time dependence in preferences in order to improve the predictions of

time-separable models. The notion of habit persistence has been also used to address other

important issues in macroeconomics and finance, such as: the equity premium puzzle; the

excess sensitivity of nondurable consumption; the hump-shaped response of consumption to

shocks; and the relationship between savings and growth. Previous research, such as Dy-

nan (2000), find no evidence of habit formation using the PSID dataset and ordinary least

squares for estimation at annual frequency. However, quantile regression methods reveal im-

portant heterogeneity associated with economic agents’ behavior in terms of their dynamic
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consumption growth, which is averaged out by least squares estimators. At the same time,

dynamic panel data quantile regression allows to control for individual specific effects in the

dynamic panel data context. Our results show evidence of asymmetric persistence in con-

sumption dynamics in the upper quantiles of the conditional distribution. In addition, it is

possible to reject the null hypothesis of no effect of past consumption growth on subsequent

consumption growth for these quantiles. Thus, for the upper conditional quantile functions

of consumption growth, the results suggest that an increase in current consumption growth

leads to increases in subsequent consumption growth, and for these corresponding quantiles

there is evidence of habit persistence. Moreover, the results show important evidence of het-

erogeneity in the determinants of consumption such as the number of adult male equivalents

in the household, age of the household head, and race.

The rest of the paper is organized as follows. Section 2 presents the quantile regression

dynamic panel data instrumental variables with fixed effects estimation and describes how

to employ the estimated models for prediction. Inference is described in Section 3. Section

4 describes the Monte Carlo experiment. In Section 5 we illustrate the new approach using

the PSID dataset. Finally, Section 6 concludes the paper.

2 The Model and Assumptions

2.1 Estimation

In this section we introduce estimation of the dynamic panel data quantile regression that

includes individual specific fixed effects, and study the asymptotic properties of the estimator.

Consider the classical dynamic model for panel data with individual fixed effects3

yit = ηi + αyit−1 + x′itβ + uit i = 1, ..., N ; t = 1, ..., T. (1)

where yit is the response variable, ηi denotes the individual fixed effects, yit−1 is the lag of the

response variable, xit is a p-vector of exogenous covariates, and uit is the innovation term.

It is possible to write model (1) in a more concise matrix form as,

y = Zη + αy−1 +Xβ + u, (2)

3To simplify the presentation we focus on the first-order autoregressive processes, since the main insights
generalize in a simple way to higher-order cases.
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so that Z = IN ⊗ ιT , and ιT is a T × 1 vector of ones. Note that Z represents an incidence

matrix that identifies the N distinct individuals in the sample.

The analogous version model to (1) for the τth conditional quantile function of the

response of the tth observation on the ith individual yit can be represented as

Qyit
(τ |zit, yit−1, xit) = zitη + α(τ)yit−1 + x′itβ(τ) (3)

where yit is the outcome of interest, yit−1 is the lag of the variable of interest, xit are ex-

ogenous variables, zit identifies the fixed effects, and η = (η1, ..., ηN)′ is the N × 1 vector

of individual specific effects or intercepts. In model (3) only the effects of the covariates

(yit−1, xit) are allowed to depend upon the quantile, τ , of interest. The η’s are intended to

capture some individual specific source of variability, or “unobserved heterogeneity,” that

was not adequately controlled for by other covariates. In most applications the time series

dimension T is relatively small compared to the number of individuals N . Therefore, it

might be difficult to estimate a τ -dependent distributional individual effect, and we restrict

the estimates of the individual specific effects to be independent of τ across the quantiles.

We restrict the individual effects, η, to be independent of the specific quantile, τ , by estimat-

ing the model for several quantiles simultaneously. Koenker (1984) considered an analogous

situation in which only the intercept parameter was permitted to depend upon τ and the

slope parameters associated with the included covariates were constrained to be identical for

several τ ’s. In this case the slope parameters were estimated as regression L-statistics. In

the present paper, as in Koenker (2004), it is the individual effects, η, that are estimated as

discretely weighted L-statistics.

Koenker (2004) introduced a general approach to estimation of quantile regression fixed

effects models for panel data. Applying this principle to equation (3), one would solve

(η̂, α̂, β̂) = min
η,α,β

K∑
k=1

N∑
i=1

T∑
t=1

υkρτ (yit − zitη − α(τk)yit−1 − x′itβ(τk))

where ρτ (u) := u(τ − I(u < 0)) as in Koenker and Bassett (1978), and υk are the weights

that control the relative influence of the K quantiles {τ1, ..., τK} on the estimation of the ηi

parameter.

However, we will see that the quantile regression fixed effects estimator, as in the ordinary

least squares case, is biased in the presence of lagged dependent variables as regressors. In

least squares estimation of dynamic panel models it is evident that the unobserved initial
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values of the dynamic process induce a bias.4 For long panels, the effect associated with

the initial conditions is seen to be O(T−1) and therefore negligible. Later we evaluate the

dynamic bias in the within-group and quantile regression fixed effects estimators by means of

Monte Carlo simulation.5 We find that the quantile regression fixed effects estimator suffers

from similar bias effects to those seen in the least squares case when T is moderate.

Anderson and Hsiao (1981, 1982) and Arellano and Bond (1991), in the linear regression

case, show that instrumental variables methods are able to produce consistent estimators for

dynamic panel data models that are independent of the initial conditions. These estimators

are based on the idea that lagged (or lagged differences of) the regressors are correlated with

the included regressor but are uncorrelated with the innovations. Thus, valid instruments,

wit, are available from inside the model and can be used to estimate the parameters of

interest by instrumental variables methods. In this paper we use an analogous rationality

for the construction of instruments.

The problem of bias for the dynamic panel quantile regression can be ameliorated through

the use of instrumental variables, w, that affect the determination of lagged y but are in-

dependent of innovations. Following Chernozhukov and Hansen (2006, 2008), and assuming

the availability of instrumental variables, wit, we consider estimators defined as

α̂ = min
α
‖γ̂(α)‖A,

where

(η̂(α), β̂(α), γ̂(α)) = min
η,β,γ

K∑
k=1

N∑
i=1

T∑
t=1

υkρτ (yit − zitη − α(τk)yit−1 − x′itβ(τk)− w′itγ(τk)),

with ‖x‖A =
√
x′Ax, and A is a positive definite matrix.6 Our final parameter estimates of

interest are thus

θ̂(τ) ≡ (α̂(τ), β̂(τ)) ≡ (α̂(τ), β̂(α̂(τ), τ)).

The intuition underlying the estimator is that, since w is a valid instrument, it is inde-

pendent of u and it should have a zero coefficient. Thus, for given α, the quantile regression

4See Hsiao (2003), Arellano (2003) and Heckman (1981) for more details.
5Nickell (1981) provides analytical calculations for bias in the within-group estimator in a linear dynamic

panel model.
6As discussed in Chernozhukov and Hansen (2006), the exact form of A is irrelevant when the model is

exactly identified, but it is desirable to set A equal to the asymptotic variance-covariance matrix of γ̂(α(τ), τ)
otherwise.
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of (yit−αyit−1) on the variables (zit, wit, xit) should generate coefficient zero for the variable

wit. Hence, by minimizing the coefficient of the variable wit one can recover the estimator

of α. Therefore, the bias generated by inclusion of yit−1 in equation (3) is reduced through

the presence of instrumental variables, wit, that affect the determination of yit but are in-

dependent of uit. Values of y lagged (or differences) two periods or more and/or lags of the

exogenous variable x affect the determination of lagged y but are independent of u, so they

can be used as instruments to estimate α and β by the quantile regression dynamic panel in-

strumental variables (PQRIV) method. As suggested by Chernozhukov and Hansen (2008),

in practice, a simple procedure is to let the instruments wit either be wit or the predicted

value from a least squares projection of lagged y on wit and xit.

The implementation of the quantile regression instrumental variables procedure is straight-

forward. Define the objective function

QNT (τ, ηi, α, β, γ) :=
K∑

k=1

N∑
i=1

T∑
t=1

υkρτ (yit − ηi − α(τk)yit−1 − x′itβ(τk)− w′itγ(τk)) (4)

where yit−1 is, in general, a dim(α)-vector of endogenous variables, ηi are the fixed effects, xit

is a dim(β)-vector of exogenous explanatory variables, wit is a dim(γ)-vector of instrumental

variables such that dim(γ) ≥ dim(α).

For the special case of K = 1, one can use a grid search. The quantile regression

instrumental variable estimator for dynamic panel can be implemented as follows:

1) For a given quantile of interest τ , define a grid of values {αj, j = 1, ..., J ; |α| < 1}, and

run the ordinary τ -quantile regression of (yit− yit−1αj) on (zit, wit, xit) to obtain coefficients

η̂(αj, τ), β̂(αj, τ) and γ̂(αj, τ); that is, for a given value of the autoregression structural

parameter, say α, one estimates the ordinary panel quantile regression to obtain

(η̂i(αj, τ), β̂(αj, τ), γ̂(αj, τ)) := min
ηi,β,γ

QNT (τ, ηi, α, β, γ). (5)

2) To find an estimate for α(τ), choose α̂(τ) as the value among {αj, j = 1, ..., J} that makes

‖γ̂(αj, τ)‖ closest to zero. Formally, let

α̂(τ) = min
α∈A

[γ̂(α, τ)′]Â(τ)[γ̂(α, τ)] (6)

where A is a positive definite matrix. The estimate β̂(τ) is then given by β̂(α̂(τ), τ), which

leads to the estimates

θ̂(τ) =
(
α̂(τ), β̂(τ)

)
=
(
α̂(τ), β̂(α̂(τ), τ)

)
. (7)
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The estimator finds parameter values for α and β through the inverse step (6) such that

the value of coefficient γ(α, τ) on w in the ordinary quantile regression step (5) is driven

as close to zero as possible. We show that this estimator is consistent and asymptotically

normal under some regularity conditions. In addition, for the particular case of K = 1, the

quantile regression instrumental variables estimator method may be viewed as an appropriate

quantile regression analog of the two stage least squares (TSLS). The TSLS estimates can

be obtained by using the same two-step procedure as described above for the PQRIV. In

Appendix 1 we show the details of the derivation.

For the important case of K > 1, where we restrict the η’s to be independent of τ ,

the optimization is very large depending on the number of estimated quantiles. Therefore,

instead of using a grid search we use a numerical optimization function in R. As starting

values, we use the parameter estimates from the quantile regression fixed effects model

without any instruments. The design matrix for the problem of estimating K > 1 is as

follows

[υ ⊗ (IN ⊗ ιT )
...Υ⊗ y−1

...Υ⊗X
...Υ⊗ w],

where IN is a N × N identity matrix, ιT is a T × 1 vector of ones, Υ is a K ×K diagonal

matrix with the weights υ on the diagonal. The corresponding response vector is ỹ = (υ⊗y).
As Koenker (2004) observes, in typical applications the design matrix of the full problem

is very sparse, i.e. has mostly zero elements. Standard sparse matrix storage schemes only

require space for the non-zero elements and their indexing locations, and this considerably

reduces the computational effort and memory requirements in large problems.

Now we discuss the asymptotic properties of the dynamic panel data quantile regression

instrumental variables estimator. The existence of the parameter ηi, whose dimension N

tends to infinity, raises some new issues for the asymptotic analysis of the proposed estimator.

As first noted by Neyman and Scott (1948), leaving the individual heterogeneity unrestricted

in a nonlinear or dynamic model generally results in inconsistent estimators of the common

parameters due to the incidental parameters problem; that is, noise in the estimation of the

fixed effects when the time dimension is short results in inconsistent estimates of the common

parameters due to the nonlinearity of the problem. In this respect, quantile regression panel

data suffers from this problem, and the presence of the fixed effects parameters, whose

dimension N is tending to infinity, raises some new issues for the asymptotic analysis of the

estimator. Koenker (2004) overcomes this problem by using a large N and T asymptotics
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with the restriction that Na/T → 0, for some a > 0. We derive consistency and asymptotic

normality of the estimators assuming that N → ∞ and T → ∞ with the restriction that

Na/T → 0, for some a > 0. We show that this is a sufficient condition for consistency and

asymptotic normality of the IV estimator. We impose the following regularity conditions:

A1. The yit are independent across individuals, covariance stationary, with condi-

tional distribution functions Fit, and differentiable conditional densities, 0 < fit < ∞, with

bounded derivatives f ′it for i = 1, ..., N and t = 1, ..., T ;

A2. Let Z = IN ⊗ ιT , and ιT a T -vector of ones, y−1 = (yit−1) be a NT ×dim(α) matrix,

X = (xit) be a NT × dim(β) matrix, and W = (wit) be a NT × dim(γ) matrix. For

Π(η, α, β, τ) := E[υ(τ − 1(Zη + y−1α+Xβ))X̌(τ)]

Π(η, α, β, γ, τ) := E[υ(τ − 1(Zη + y−1α+Xβ +Wγ))X̌(τ)]

X̌(τ) := [Z,W,X]′,

Jacobian matrices ∂
∂(η,α,β)

Π(η, α, β, τ) and ∂
∂(η,β,γ)

Π(η, α, β, γ, τ) are continuous and have full

rank uniformly over E ×A ×B×G ×T . The parameter space, E ×A ×B, is a connected

set. Moreover the image of E × A ×B under the map (η, α, β) → Π(η, α, β, τ) is simply

connected;

A3. Denote Φ(τk) = diag(fit(ξit(τk))), where ξit(τk) = ηi+α(τk)yit−1+x
′
itβ(τk)+w

′
itγ(τk),

MZk
= I − PZk

and PZk
= Z(Z ′Φ(τk)Z)−1Z ′Φ(τk). Let X̃ = [W ′, X ′]′. Then, the following

matrices are positive definite:

Jϑ = lim
N,T→∞

1

NT

υ1X̃
′M ′

Z1
Φ(τ1)MZ1X̃ · · · 0
...

. . .
...

0 · · · υkX̃
′M ′

Zk
Φ(τk)MZk

X̃



Jα = lim
N,T→∞

1

NT

υ1X̃
′M ′

Z1
Φ(τ1)MZ1y−1 · · · 0

...
. . .

...

0 · · · υkX̃
′M ′

Zk
Φ(τk)MZk

y−1

 ,

and

S = lim
N,T→∞

1

NT

Σ11X̃
′M ′

Z1
MZ1X̃ · · · Σ1kX̃

′M ′
Z1
MZk

X̃
...

. . .
...

Σk1X̃
′M ′

Zk
MZ1X̃ · · · ΣkkX̃

′M ′
Zk
MZk

X̃

 ,

where Σij = υi(τi ∧ τj − τiτj)υj. Now define [J̄ ′β, J̄
′
γ]
′ as a partition of J−1

ϑ , and H =

J̄ ′γA[α(τk)]J̄γ. Then, Jϑ is invertible, and J ′αHJα is also invertible;
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A4. For all τ ∈ T = [c, 1− c] with c ∈ (0, 1/2), (α(τ), β(τ)) ∈ int A ×B, and A ×B

is compact and convex;

A5. maxit ‖yit‖ = O(
√
NT ); maxit ‖xit‖ = O(

√
NT ); maxit ‖wit‖ = O(

√
NT );

A6. T →∞ as N →∞ and Na

T
→ 0 for some a > 0.

Condition A1 is a standard assumption in quantile regression literature and imposes a

restriction on the density function of yit. We assume covariance stationarity for simplicity.7

Condition A2 is important for identification of the parameters. The identification is shown

through the use of a version of Hadamard’s theorem, as discussed in Chernozhukov and

Hansen (2006). The continuity and full rank conditions require that the instrument W

impacts the conditional distribution of Y at many relevant points. In addition, the condition

that the image of the parameter space be simply connected requires that the image can be

continuously shrunk to a point. This condition can be interpreted as ruling out “holes”

in the image of the set.8 Assumption A3 states conditions for the matrices that guarantee

asymptotic normality. A4 imposes compactness on the parameter space of α(τ). Such an

assumption is needed since the objective function is not convex in α. Assumption A5 imposes

bounds on the variables. Finally, condition A6 is the same assumption as in Koenker (2004)

and allows T to grow very slowly relative to N . The recent literature analyzing bias in

dynamic panel data models develops asymptotic theory where N and T are large. In a

linear case, Alvarez and Arellano (2003) establish consistency of the within group estimator

(WG), the generalized method of moments (GMM), and the limited information maximum

likelihood estimators for a first order autoregressive model with individual effects when both

N and T tend to infinity and lim(N/T ) ≡ c < ∞. Hahn and Kuersteiner (2002) use the

same relative rate for N and T in dynamic linear and nonlinear panels, respectively.

To further comment on the nature of the correlation between Y−1 and W required by A2,

note that, for a given quantile τ , by A1 we have that

∂E[(τ − 1(Zη + y−1α+Xβ))X̌(τ)]/∂(η, α, β) = E[(Z ′,W ′, X ′)′Φ(Z ′, Y ′
−1, X

′)].

7Koenker and Xiao (2006) present a general discussion of quantile autoregression where, under some mild
conditions, the process yt is globally stationary but can still display local (and asymmetric) persistence in
the presence of certain types of shocks. Thus, even in the case where the autoregressive coefficient is greater
than unity over some range of quantiles, under some mild conditions, yt can still be covariance stationary in
the long run. Therefore, a quantile autoregressive process may allow for some (transient) forms of explosive
behavior while maintaining stationarity in the long run.

8We assume that the image of E ×A ×B under the map (η, α, β) → Π(η, α, β, τ) is connected for ease
of exposition. However, it is straightforward to show that the image of a connected set by an continuous
function is a connected set.
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Hence, the Jacobian in A2 takes a form of density-weighted covariance matrix for Z, Y−1 and

W variables, and A2 requires that this matrix has full rank. In addition, A2 imposes that

global identifiability must hold; hence, the impact of W should be rich enough to guarantee

that the equations are solved uniquely.

We can now establish consistency and asymptotic normality of the estimator. Proofs

appear in Appendix 1. The following theorem states identification and consistency of θ̂(τ).

Theorem 1. Given assumptions A1-A6, (η, α(τ), β(τ)) uniquely solves the equations

E[υψ(Y −Zη−y−1α−Xβ)X̌(τ)] = 0 over E ×A ×B, and θ(τ) = (α(τ), β(τ)) is consistently

estimable.

Under conditions A1-A6 we show the asymptotic properties of the fixed effects PQRIV

as N grows at a controlled rate relative to T . Theorem 1 provides a lower bound for the

relative rate of growth of T which is sufficient for consistency. The intuition behind this

condition is that T must go to infinity fast enough to guarantee consistent estimates for

the fixed effects, and then for the other parameters. Under assumption A6 convergence

is fast enough to eliminate the inconsistency problem found for very small T and large N

asymptotic approximations.

It is important to notice that even though the dimension of the parameter space increases

with the number of cross-section, in order to achieve identification, we only need to impose

that parameter space, E × B × A , is connected rather than compact. Therefore, by A2

and applying a Hadamards global univalence theorem for general metric spaces it is pos-

sible to show that there is a one-to-one correspondence between the parameter space and

Π(E ,B,A , τ), the image of E ×B × A under Π(·, ·, ·, τ). Then the identification follows

from the global convexity of the quantile function and the instrumental variables exclusion

restriction.

The intuition behind the proof of consistency relies on the uniform convergence of the

objective function over the parameter space. The basic technique used to show uniform

convergence is similar to Wei and He (2006) where we divide the growing parameter space into

small cubes. The total number of cubes grows at a polynomial rate so that the exponential

bound obtained at each cube holds globally and the uniform convergence follows. Using this

technique we establish stochastic equicontinuity, and consistency follows from application of

an argmax theorem as in van der Vaart and Wellner (1996).9

9It is important to note that we can use this technique of proof since the parameter space is growing at a
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The limiting distribution of parameters of interest using the quantile regression instru-

mental variables estimator for the dynamic panel model with fixed effects is given by Theorem

2.

Theorem 2 (Asymptotic Normality). Under conditions A1-A6, for a given τ ∈ (0, 1), θ̂

converges to a Gaussian distribution:

√
NT (θ̂(τ)− θ(τ))

d→ N(0,Ω(τ)), Ω(τ) = (K ′, L′)′S(K ′, L′)

where S = (min(τ, τ ′) − ττ ′)E(V V ′), V = (υ1X̃
′M ′

Z1
, ..., υkX̃

′M ′
Zk

)′, K = (J ′αHJα)−1JαH,

H = J̄ ′γA[α(τ)]J̄γ, L = J̄βM ,M = I−JαK, [J̄β, J̄γ] is a partition of Jϑ, Φ = diag(fit(ξit(τk))),

X̃ = [W ′, X ′]′, and Jϑ and Jα are as defined in assumption A3.

The proof of asymptotic normality has some elements of the nonlinear panel data liter-

ature where we concentrate out the FE. Here we write a asymptotic representation for the

FE, then we plug them into the representation for all the coefficients. Therefore, there will

be a reminder term coming from this two step procedure. It happens that the large N and

T asymptotics with the restriction that Na/T → 0 is a sufficient condition to ensure that

the reminder term is negligible and the estimator is asymptotically normal centered at zero.

Remark 1. When dim(γ) = dim(α), the choice of A(α) does not affect the asymptotic

variance, and the joint asymptotic variance of α(τ) and β(τ) will generally have the simple

form Ω(τ) = (K ′, L′)′S(K ′, L′), for S,K and L as defined above. As in Chernozhukov and

Hansen (2008), when dim(γ) > dim(α), the choice of the weighting matrix A(α) generally

matters, and it is important for efficiency. A natural choice for A(α) is given by the inverse

of the covariance matrix of γ̂(α(τ), τ). Noticing that A(α) is equal to (J̄γSJ̄γ)
−1 at α(τ), it

follows that the asymptotic variance of
√
NT (α̂(τ)− α(τ)) is given by

Ωα = (J ′αJ̄
′
γ(J̄γSJ̄

′
γ)
−1J̄γ J̄α)−1.

The components of the asymptotic variance matrix that need to be estimated include

Jϑ, Jα and S. The matrix S can be estimated by its sample counterpart

Ŝ(τ, τ ′) = (min(τ, τ ′)− ττ ′)
1

NT

N∑
i=1

T∑
t=1

VitV
′
it. (8)

known rate, N . There is a large literature showing the asymptotic properties of quantile regression estimator
for infinite dimension parameter space when the rate of the parameter increasing is unknown, see e.g. He
and Shao (2000) and Portnoy (1985). However, it is possible to achieve a better rate of N relative to T in
the first case.
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Following Powell (1986), Jϑ and Jα can be estimated as stated in Theorem 2 above. The

typical element of Ĵϑ takes the following form

Ĵϑj
= υj

1

2NThn

N∑
i=1

T∑
t=1

I(|û(τj)| ≤ hn)X̃MZj
M ′

Zj
X̃ ′. (9)

where û(τj) ≡ Y − Zη̂ − α̂(τj)y−1 − Xβ̂(τj) and hn is an appropriately chosen bandwidth,

with hn → 0 and NTh2
n → ∞. The estimator of Ĵαj

is analogous to Ĵϑj
. Using the same

procedure we can estimate the element ZΦ̂(τj)Z in PZ . The consistency of these asymptotic

covariance matrix estimators is standard and will not be discussed further in this paper.

2.2 Prediction

Most econometric forecasting has focused on models for the conditional mean under Gaussian

conditions. The dynamic panel data quantile regression models described above offer an

opportunity to significantly expand the scope of forecasting applications. One-step ahead

forecasts of the quantile function of yit for an individual i are immediately available:

Q̂yiT+1
(τ |yiT , xiT+1) = η̂i + α̂(τ)yiT + x′iT+1β̂(τ). (10)

Another important application of PQRIV models is out-of-sample prediction. Quantile

regression offers a natural approach to the construction of prediction intervals as noted, for

example, by Koenker and Zhao (1996), and Zhou and Portnoy (1996). The methods proposed

by the later work suggest the construction of a 1−λ level interval for an s-step-ahead forecast

as

[QyiT+s
(λ/2− hn), QyiT+s

(1− λ/2 + hn)]

where hn → 0 to account for parameter uncertainty.10

An important practical aspect of the forecast interval problem involves computing Q̂yiT+s
(·).

This is straightforward in the one-step ahead case, as shown in equation (10), but more prob-

lematic for s > 1. Koenker and Zhao (1996) suggest a simply approach based on simulation

for implementing out-of-sample quantile regression prediction, and a similar approach seems

reasonable for the quantile regression dynamic panel data problem.

10Of course, if the parameters of the model were known exactly, the conditional quantile function itself
could be used. The interval

[QyiT+s
(λ/2), QyiT+s

(1− λ/2)]

would provide an exact 1− λ level interval for an s-step-ahead forecast.
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Let QyiT
(τ |yiT−1, xiT ) denote the conditional quantile function of yiT , for an individual i,

given the information up to time T−1. A draw from the one-step-ahead forecast distribution

is given by

ŷiT+1 = Q̂yiT+1
(U |yiT , xiT+1) = η̂i + α̂(U)yiT + x′iT+1β̂(U), (11)

where U is a uniformly distributed random variable on [0, 1] and xiT+1 is given. Applying (11)

recursively we can compute a sample path of forecasts (ŷiT+1, ŷiT+2, ..., ŷiT+s)
′. Repeatedly

applying this procedure, say R times, one can compute the λ/2−hn and 1−λ/2+hn, quantiles

of the empirical distribution of the forecasts and used them to construct the final prediction

intervals. It may appear that the use of (11) is computationally prohibitive because it

appears to require a quantile regression estimate for each possible realization of U ∈ (0, 1).

However, the entire function QyiT
(τ |yiT−1, xiT ) is easily computed by standard parametric

linear programming techniques, yielding a piecewise constant function on a known grid that

is then readily evaluated by the forecasting simulation.

Conditional density forecasts s-step-ahead, for the individual i, can be constructed based

on an ensemble of such forecast paths. The simulation method described previously produces

R prediction samples of conditional quantile function of interest for period T + s. Thus, one

can apply any typical nonparametric density estimator to predict the conditional density

function s-step-ahead.

3 Inference

In this section, we turn our attention to inference in the quantile regression dynamic panel

instrumental variable (PQRIV) model, and suggest a Wald type test for general linear hy-

potheses and a Kolmogorov-Smirnov test for linear hypotheses over a range of quantiles

τ ∈ T .

In the independent and identically distributed setting the conditional quantile functions

of the response variable, given the covariates, are all parallel, implying that covariate effects

shift the location of the response distribution but do not change the scale or shape. However,

slope estimates often vary across quantiles implying that it is important to test for equality

of slopes across quantiles. Wald tests designed for this purpose were suggested by Koenker

and Bassett (1982a), Koenker and Bassett (1982b), and Koenker and Machado (1999). It is

possible to formulate a wide variety of tests using variants of the proposed Wald test, from

14



simple tests on a single quantile regression coefficient to joint tests involving many covariates

and distinct quantiles at the same time.

General hypotheses on the vector θ(τ) can be accommodated by Wald-type tests. The

Wald process and associated limiting theory provide a natural foundation for the hypothesis

Rθ(τ) = r when r is known. We first consider a Wald type test where we test the coefficients

for selected quantiles of intest. Later we introduce a test for linear hypothesis over a range of

quantiles τ ∈ T , instead of focusing only on a selected quantile. The following are examples

of hypotheses that may be considered in the former framework. For simplicity of presentation

we use the model stated in equation (3) with a single variable in the xit matrix.

Example 1 (No dynamic effect). For a given τ , if there is no dynamic effect in the model,

then under H0 : α(τ) = 0. Thus, θ(τ) = (α(τ), β(τ))′, R = [1, 0] and r = 0.

Example 2 (Location shifts). The hypotheses of location shifts for α(τ) and β(τ) can

be accommodated in the model. For the first case, H0 : α(τ) = α, for |α| < 1, so θ(τ) =

(α(τ), β(τ))′, R = [1, 0] and r = α. For the latter case, H0 : β(τ) = β, so that R = [0, 1] and

r = β.

Portnoy (1984) and Gutenbrunner and Jureckova (1992) show that the quantile regression

process is tight and thus the limiting variate viewed as a function of τ is a Brownian Bridge

over τ ∈ T .11 Therefore, under the linear hypothesis H0 : Rθ(τ) = r, conditions A1-A6, and

letting Γ = (K ′, L′)′EV V ′(K ′, L′), we have

VNT =
√
NT [RΓ(τ)R′]−1/2(Rθ̂(τ)− r) ⇒ Bq(τ), (12)

where Bq(τ) represents a q-dimensional standard Brownian Bridge. For any fixed τ , Bq(τ)

is N(0, τ(1− τ)Iq). The normalized Euclidean norm of Bq(τ)

Qq(τ) = ‖Bq(τ)‖/
√
τ(1− τ)

is generally referred to as a Kiefer process of order q. Thus, for given τ , the regression Wald

process can be constructed as

WNT = NT (Rθ̂(τ)− r)′[RΩ̂(τ)R′]−1(Rθ̂(τ)− r), (13)

where Ω̂ is a consistent estimator of Ω, and Ω is given by

Ω(τ) = (K ′(τ), L′(τ))′S(τ, τ)(K ′(τ), L′(τ)).

11In a related result, Wei and He (2006) establish tightness of the quantile regression process in the
longitudinal data context with increasing parameter dimension, see for instance, Lemma 8.4.
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If we are interested in testing Rθ(τ) = r at a particular quantile τ = τ0, a Chi-square

test can be conducted based on the statistic WNT (τ0). Under H0, the statistic WNT is

asymptotically χ2
q with q-degrees of freedom, where q is the rank of the matrix R. The

limiting distribution of the test is summarized in the following theorem

Theorem 3 (Wald Test Inference). Under H0 : Rθ(τ) = r, and conditions A1-A6, for

fixed τ ,

WNT (τ)
a∼ χ2

q.

Proof. The proof of Theorem 3 is simple; it follows from observing that for any fixed τ , by

Theorem 2
√
NT (θ̂(τ)− θ(τ)) ⇒ N(0,Ω(τ))

and under the null hypothesis,

√
NT (Rθ̂(τ)− r) ⇒ N(0, RΩ(τ)R′)

since Ω̂(τ) is a consistent estimator of Ω(τ), by the Slutsky’s theorem,

WNT = NT (Rθ̂(τ)− r)′[RΩ̂(τ)R′]−1(Rθ̂(τ)− r)
a∼ χ2

q.

In order to implement the test it is necessary to estimate Ω(τ) consistently. It is possible

to obtain such an estimator as suggested in Theorem 2 in the previous section, and the main

components of Ω̂(τ) can be obtained as in equations (8) and (9).

More general hypotheses are also easily accommodated by the Wald approach. Let ζ =

(θ(τ1)
′, ..., θ(τm)′) and define the null hypothesis as H0 : Rν = r. The test statistic is the

same Wald test as equation (13). In this case Ω is the matrix with (k, l)th block

Ω(τk, τl) = (K ′(τk), L
′(τk))

′S(τk, τl)(K
′(τl), L

′(τl)),

where S(τk, τl) is as defined in Theorem 2, and the other variables are as defined above.

The statistic WNT is still asymptotically χ2
q under H0 where q is the rank of the matrix R.

This formulation accommodates a wide variety of testing situations, from a simple test on

single quantile regression coefficients to joint tests involving several covariates and distinct

quantiles. Thus, for instance, we might test for the equality of several slope coefficients

across several quantiles.
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Example 3 (Same dynamic effect for two distinct quantiles). If there are the same dynamic

effects for two given distinct quantiles in the model, then under H0 : α(τ1) = α(τ2). Thus,

ζ = (θ(τ1)
′, ..., θ(τm)′) = (α(τ1), β(τ1), α(τ2), β(τ2))

′, R = [1, 0,−1, 0] and r = 0.

Another important class of tests in the quantile regression literature involves the Kolmogorov-

Smirnov (KS) type tests, where the goal is to examine the property of the estimator over

a range of quantiles τ ∈ T , instead of focusing only on a selected quantile. Thus, if one

has interest in testing Rθ(τ) = r over τ ∈ T , one may consider the KS type sup-Wald test.

Following Koenker and Xiao (2006), we may construct a KS type test on the dynamic panel

data regression quantile process using

KSWNT = sup
τ∈T

WNT (τ). (14)

The next example shows a possible application of the KS test in dynamic panel quantile

regression.

Example 4 (Asymmetric dynamic effect). It is particularly interesting to analyze data

displaying asymmetric dynamics. Thus, one may consider testing the hypothesis that α(τ) =

α over τ , such that, H0 : α(τ) = α over τ ∈ T .

To perform such a test for α(τ) one can use the Kolmogorov-Smirnov test given in

(14). The test is implemented by computing the test statistic WNT (τ), given in (13), for

each τ ∈ T , and then calculating the maximum over τ . The limiting distribution of the

Kolmogorov-Smirnov test is given in the following theorem

Theorem 4 (Kolmogorov-Smirnov Test). Under H0 and conditions A1-A6,

KSWNT = sup
τ∈T

WNT (τ) ⇒ sup
τ∈T

Q2
q(τ).

The proof of Theorem 4 follows directly from the continuous mapping theorem and equation

(12). Critical values for supQ2
q(τ) have been tabled by DeLong (1981) and, more extensively,

by Andrews (1993) using simulation methods.

4 Monte Carlo Simulation

4.1 Monte Carlo Design

In this section, we describe the design of simulation experiments used to assess the finite

sample performance of the quantile regression estimator and inference procedures discussed

17



in the previous sections.12 Two simple versions of the basic model (1) are considered in the

simulation experiments. In the first, reported in Tables 1 and 2, the exogenous covariate, xit,

exerts a pure location shift effect. In the second, reported in Tables 3 and 4, xit exerts both

location and scale effects. In the former case the response yit is generated by the model,

yit = ηi + αyit−1 + βxit + uit

while in the latter case,

yit = ηi + αyit−1 + βxit + (γxit)uit.

We employ two different schemes to generate the disturbances uit. Under Scheme 1, we

generate uit as a N(0, σ2
u), and we also used a heavier tailed distribution scheme to generate

uit. Under Scheme 2 we generate uit as a t-distribution with 3 degrees of freedom.

The regressor xit is generated according to

xit = µi + ζit, (15)

where ζit follows an ARMA(1, 1) process,

(1− φL)ζit = εit + θεit−1, (16)

and εit follows the same distribution as uit, that is, normal distribution and t3 for Schemes

1 and 2, respectively. In all cases we set ζi,−50 = 0 and generate ζit for t = −49,−48, ..., T

according to

ζit = φζit−1 + εit + θεit−1. (17)

This ensures that the results are not unduly influenced by the initial values of the xit process.

In generating yit we also set yi,−50 = 0 and discard the first 50 observations, using the

observations t = 0 through T for estimation. The fixed effects, µi and αi, are generated as

µi = e1i + T−1

T∑
t=1

εit, e1i ∼ N(0, σ2
e1

),

ηi = e2i + T−1

T∑
t=1

xit, e2i ∼ N(0, σ2
e2

).

The above method of generating µi and αi ensures that the usual random effects estimators

are inconsistent because of the correlation that exists between the individual effects and the

error term or the explanatory variables.

12The experiment shown in this section builds on Hsiao, Pesaran, and Tahmiscioglu (2002).
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In the simulations, we consider T = 10, 20 and N = 50, 100. We set the number of

replications to 2000, and consider the following values for the remaining parameters:

(α, β) = (0.5, 0.7), (0.8, 0.7);

φ = 0.7, θ = 0.2, γ = 0.5, σ2
u = σ2

e1
= σ2

e2
= 1.

In the Monte Carlo study, we compare the coefficient estimates in terms of bias and root

mean squared error. We also investigate the small sample properties of the tests based on

different estimators, paying particular attention to the size and power of these tests.

4.2 Monte Carlo Results

We study four different estimators in the Monte Carlo experiment, the within group estimator

(WG), the OLS instrumental variables estimator (OLS-IV), the fixed effects panel quantile

regression estimator (PQR) proposed by Koenker (2004), and the quantile regression dy-

namic panel instrumental variables estimator (PQRIV) that we propose in this paper. The

quantile regression based estimators are analyzed for three quantiles (τ = (0.25, 0.5, 0.75)),

estimated simultaneously, with equal weight for each one. For the OLS-IV and PQRIV es-

timators we considered two different instruments, yit−2 and xit−1; the results are essentially

the same in both cases, and we simply present results for the xit−1 case. We also consider

different sample sizes in the experiments. However, due to space limitations we report results

for only T = 10 and N = 50. The results for the other sample size schemes are similar.

4.2.1 Bias and RMSE

We first study the bias and root mean squared error (RMSE) of the estimators. Tables

1 and 2 present bias and RMSE results for estimates of the autoregression coefficient, α,

and the exogenous variable coefficient, β, for the location-shift model and the Normal and

t3 distributions of the innovations, respectively. For both configurations of the parameters

(α, β) the biases of the estimates are roughly constant. Moreover, the coefficient estimate of

the exogenous variable is slightly biased in the WG and PQR cases.

Table 1 shows that when the disturbances are drawn from a Gaussian distribution, then

as expected, the autoregression coefficient is biased downward for the the WG case, but the

OLS-IV is approximately unbiased. In the same way, in the presence of lagged variables

the fixed effects quantile regression estimator proposed by Koenker (2004), PQR is biased
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WG OLS-IV PQR PQRIV
τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.25 τ = 0.5 τ = 0.75

α = 0.8 Bias −0.0908 0.0016 −0.0962 −0.0920 −0.0895 −0.0187 −0.0071 0.0003
RMSE 0.094 0.061 0.103 0.099 0.097 0.069 0.067 0.068

β = 0.7 Bias 0.0193 0.0026 −0.0089 0.0185 0.0473 −0.0111 0.0014 0.0139
RMSE 0.052 0.065 0.070 0.063 0.080 0.073 0.069 0.073

α = 0.5 Bias −0.0982 −0.0070 −0.1044 −0.0976 −0.0953 −0.0190 −0.0013 0.0097
RMSE 0.103 0.082 0.113 0.109 0.107 0.093 0.089 0.088

β = 0.7 Bias 0.0349 −0.0006 −0.0019 0.0325 0.0683 −0.0158 −0.0015 0.0178
RMSE 0.055 0.065 0.063 0.057 0.091 0.075 0.069 0.069

Table 1: Location-Shift Model: Bias and RMSE of Estimators for Normal Distribution
(T = 10 and N = 50)

downward. However, the instrumental variables estimator is able to largely eliminate the

bias. Table 1 reveals that the PQRIV estimator is approximately unbiased for both selections

of the parameters α and β. In summary, estimates are biased in both the WG and the

PQR cases, and the instrumental variables strategy is able to diminish the bias considerably

for both ordinary least squares and quantile regression cases. Regarding the RMSE in

the Gaussian case, the OLS-based estimators perform better than the respective quantile

regression estimators. Thus, in the Gaussian case, the PQRIV is capable of reducing the

bias but it has a larger RMSE when compared with the OLS-IV.

Table 2 presents the results for the t3-distribution case. The autoregressive estimates of

WG and PQR are biased downward, and the WG has a larger bias when compared with the

same estimator in the Gaussian case. The PQRIV and OLS-IV are approximately unbiased

estimators for both coefficients. In contrast to the case when innovations were Gaussian, with

a heavier-tailed distribution of innovations, the RMSE results from the quantile estimators

are smaller than their respective OLS based estimators.

Tables 3 and 4 present bias and RMSE results of the estimators for the location-scale-shift

model for the Normal and t3 distributions, respectively. As in the location-shift case, the

bias of the estimators are roughly constant for the two different configurations. Again, it is

possible to note that the quantile regression instrumental variables estimator presents a much

smaller bias when compared with PQR, and a much improved precision when compared with

OLS-IV, in the t3 case.

Table 3 shows that in the Gaussian case the WG and PQR estimators are biased down-

ward and the OLS-IV and PQRIV are approximately unbiased. As in the location-shift case,
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WG OLS-IV PQR PQRIV
τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.25 τ = 0.5 τ = 0.75

α = 0.8 Bias −0.1540 0.0017 −0.0983 −0.0947 −0.0910 −0.0197 −0.0037 −0.0088
RMSE 0.161 0.116 0.104 0.100 0.098 0.075 0.070 0.076

β = 0.7 Bias 0.0391 −0.0038 −0.0182 0.0225 0.0454 −0.0135 −0.0027 0.0090
RMSE 0.086 0.129 0.077 0.072 0.087 0.080 0.075 0.085

α = 0.5 Bias −0.1432 0.0107 −0.0969 −0.1018 −0.0923 −0.0155 −0.0055 0.0056
RMSE 0.153 0.151 0.109 0.114 0.106 0.098 0.095 0.094

β = 0.7 Bias 0.0635 0.0115 −0.0134 0.0364 0.0779 −0.0144 −0.0018 0.0166
RMSE 0.106 0.117 0.074 0.065 0.111 0.083 0.073 0.092

Table 2: Location-Shift Model: Bias and RMSE of Estimators for t3 Distribution (T = 10
and N = 50)

WG OLS-IV PQR PQRIV
τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.25 τ = 0.5 τ = 0.75

α = 0.8 Bias −0.0917 −0.0003 −0.0921 −0.0971 −0.1015 −0.0091 −0.0006 0.0047
RMSE 0.095 0.060 0.099 0.105 0.106 0.061 0.065 0.065

β = 0.7 Bias 0.0239 0.0085 −0.0465 0.0094 0.0662 −0.0108 0.0003 0.0138
RMSE 0.068 0.088 0.077 0.072 0.095 0.080 0.092 0.095

α = 0.5 Bias −0.0967 0.0019 −0.0939 −0.0959 −0.0987 −0.0073 −0.0003 0.0069
RMSE 0.099 0.078 0.104 0.106 0.109 0.083 0.083 0.086

β = 0.7 Bias 0.0454 0.0003 −0.0337 0.0180 0.0699 −0.0053 −0.0018 0.0172
RMSE 0.077 0.080 0.081 0.085 0.091 0.082 0.084 0.086

Table 3: Location-Scale Shift Model: Bias and RMSE of Estimators for Normal Distribution
(T = 10 and N = 50)

in the presence of dynamic variables, the fixed effects quantile regression estimator proposed

by Koenker (2004) is biased downward, and the instrumental variables proposed in this pa-

per dramatically reduces the bias. The RMSE’s present the same features as in the previous

location case. Table 4 presents the results for the t3-distribution case, and the results are

qualitatively similar to those in Table 2, where under non-Gaussian heavier-tailed conditions

the quantile regression estimators perform better than the least squares based estimators in

terms of RMSE.

4.2.2 Size and Power

Now we turn our attention to the size and power of the asymptotic inference procedures

given in the previous section. First, we concentrate on tests for selected quantiles, then we

consider tests over a range of quantiles. For the former case, we use the same Monte Carlo
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WG OLS-IV PQR PQRIV
τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.25 τ = 0.5 τ = 0.75

α = 0.8 Bias −0.1710 0.0254 −0.0946 −0.0976 −0.0925 −0.0110 −0.0049 0.0026
RMSE 0.182 0.233 0.101 0.109 0.102 0.071 0.072 0.069

β = 0.7 Bias 0.0430 0.0105 −0.0531 0.0123 0.0779 −0.0168 −0.0007 0.0181
RMSE 0.115 0.159 0.087 0.069 0.109 0.086 0.089 0.097

α = 0.5 Bias −0.1244 0.0173 −0.0881 −0.0894 −0.0905 −0.0152 −0.0044 0.0042
RMSE 0.139 0.132 0.103 0.107 0.109 0.079 0.085 0.086

β = 0.7 Bias 0.0727 0.0104 −0.0415 0.0238 0.0905 −0.0186 0.0011 0.0125
RMSE 0.132 0.153 0.081 0.063 0.119 0.087 0.088 0.096

Table 4: Location-Scale Shift Model: Bias and RMSE of Estimators for t3 Distribution
(T = 10 and N = 50)

setup as in the calculations of bias and RMSE to calculate the power curves. We present the

results for PQRIV as well as for OLS-IV in order to compare the finite sample performance of

the estimators. Thus, we consider the PQRIV model in equation (1) and test the hypothesis

that α̂(τ) = α and also that β̂(τ) = β for a given τ . We present the results for α = 0.5

and β = 0.7.13 For models under the alternative, we consider linear deviations α + d/
√
NT

and β + d/
√
NT . The construction of the test uses an estimate of the density as given in

equation (9). The procedure proposed by Powell (1986) entails a choice of bandwidth. We

consider the default bandwidth suggested by Bofinger (1975)

hn = [Φ−1(τ + cn)− Φ−1(τ − cn)] min(σ̂1, σ̂2)

where cn = (NT )−1/5((4.5φ4(Φ−1(t)))/(2Φ−1(t)2+1)2)1/5, σ̂1 =
√
V ar(û), and σ̂2 = (Q̂(û, .75)−

Q̂(û, .25))/1.34. We also use a Gaussian bandwidth, but since the results are essentially the

same we only present results for the first choice of bandwidth. The results for T = 10 and

N = 50 are presented in Figures 1 and 2.

Figure 1 shows the finite sample size and power for the estimated α and β coefficients

considering Normal distributions and PQRIV and OLS-IV estimators. Part 1 of the figure

concerns α and Part 2 shows the results for β. Observe that the size is very close to the

established five percent for all estimators. When comparing PQRIV and OLS-IV estimators

with respect to the Normal distribution one can see that the OLS based estimators perform

better than the quantile regression estimator in terms of power.

[Figure 1 about here]

13The results for α = 0.8 and β = 0.7 are similar.
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Figure 2 presents the results for finite sample size and power for the estimated α and

β coefficients considering t3 distribution and PQRIV and OLS-IV estimators. As in the

previous case, the size is very close to the established five percent for all estimators. When

the noise in the model comes from a heavier-tailed distribution, t3, the PQRIV estimators

have a strongly superior performance vis-a-vis the OLS-IV estimators, showing that there are

large gains in power from using a robust estimator when innovations follow a non-Gaussian

heavy tailed distribution.

In summary, the results for the power curves show that the OLS-IV presents more power

than PQRIV in the Normal case, but in the t3 case the opposite occurs, as PQRIV estimators

have far more power than OLS-IV. The PQRIV presents higher power vis-a-vis the OLS-

IV estimator in the non-Gaussian case. In addition, as expected, comparison of the same

estimators using different distributions show that the quantile regression estimator performs

better in the t3 distribution case, and the OLS-IV estimator has more power in the Gaussian

setting. The results for the other sample cases are qualitatively similar to those of Figures

1 and 2, but also show that, as the sample sizes increase, the tests do have improved power

properties, corroborating the asymptotic theory.

[Figure 2 about here]

We also conduct a Monte Carlo experiment to examine the PQRIV-based inference pro-

cedures when we are particularly interested in models displaying asymmetric dynamics. Ac-

cordingly, we consider the PQRIV model to test the hypothesis that α(τ) = α for all τ .

The data in these experiments were generated from model (1) in the same manner as in

Section 4.1, where uit are i.i.d. random variables. We consider the Kolmogorov-Smirnov test

KSWNT given by (14) for different sample sizes and innovation distributions, and choose T
= [0.1, 0.9]. Both Normal innovations and student-t innovations (with 3 degrees of freedom)

are considered. The number of repetitions is 1000.

Representative results of the empirical size and power of the proposed tests are reported

in Table 5. We report results for two choices of α(τ): α = 0.25 and α = 0.35. We consider

the following model

yit = ηi + αyit−1 + βxit + (1 + γyit−1)uit,

with the other variables defined as in the previous section, using γ = 0.3 to compute power,

and γ = 0 the size.
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Model Normal t3
Size α = 0.25 0.05 0.06

α = 0.35 0.04 0.06
Power α = 0.25 0.88 0.94

α = 0.35 0.85 0.89

Table 5: Size and Power for Normal Distribution

Table 5 reports the empirical size and power for Gaussian innovations and the sample

size T = 10 and N = 50, as well as the results for the student-t innovations and same sample

size. Results in Table 5 show that the empirical size of the test is close to the established

nominal 5%, and also confirm that using the quantile regression based approach leads to

power gains in the presence of heavy-tailed disturbances. (Such gains obviously depend on

choosing quantiles at which there is sufficient conditional density.)

5 Application

In this section we illustrate the new approach proposed in this paper by applying the esti-

mator and test procedures to test for the presence of time non-separability in utility using

household consumption panel data. A simple model of habit formation implies a condition

relating the strength of habits to the evolution of consumption over time. We build on pre-

vious work by testing the time separability of preferences with household panel data using

the quantile regression dynamic panel instrumental variables (PQRIV) framework.

A growing body of literature has emphasized the importance of allowing for habit forma-

tion as a way of modeling time dependence in preferences in order to improve the predictions

of time-separable models. For instance, some authors have shown that habit persistence

may partially solve the equity premium puzzle, because it smooths consumption growth

over and above the smoothing implied by the life cycle-permanent income hypothesis with

time-separable preferences (Constantinides (1990)). In addition, if preferences exhibit habit

formation, consumption reacts slowly to permanent income shocks, and this can, in prin-

ciple, explain the excess sensitivity of nondurable consumption observed in the aggregate

data. The notion of habit persistence has also been used to address other important issues

in macroeconomics and finance, such as the hump-shaped response of consumption to mone-

tary and other shocks (Fuhrer (2000)), the relationship between savings and growth (Carroll,

Overland, and Weil (2000)), or the volatility puzzle (Campbell and Cochrane (1999)).
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Despite growing interest in the implications of preferences that are time-nonseparable,

most empirical papers have used aggregate consumption data to look for empirical evidence of

such preferences. Studies of time-nonseparable preferences based on aggregated consumption

data obtain mixed conclusions about the strength of habit formation. Dunn and Singleton

(1986) and Eichenbaum, Hansen, and Singleton (1988) find very weak evidence of habit

formation in US monthly aggregated data. Ferson and Constantinides (1991) find strong

evidence of habit formation in monthly, quarterly, and annual US consumption data.

There is a large literature using household panel data on consumption to examine be-

havior when preferences are assumed to be time-separable, for instance, Hall and Mishkin

(1982), Shapiro (1984), and Zeldes (1989). However, there is a lack of empirical microeco-

nomic evidence. In the recent literature the evidence of habit formation is mixed. While

Meghir and Weber (1996) and Dynan (2000) do not find evidence of habit formation in pref-

erences at the household level, Naik and Moore (1996) do find support of habit formation.

In the same way, Carrasco, Labeaga, and Lopez-Salido (2005), and Browning and Collado

(2007) have found mixed evidence of habit formation using Spanish panel data set.

With habit formation, current utility depends not only on current expenditures, but also

on a “habit stock” formed by lagged expenditures. For a given level of current expenditures,

a larger habit stock lowers utility. More formally, household i chooses current consumption

expenditures, cit, to maximize

E

[
T∑

s=0

βsu (c̃it+s;ψit+s)

]
,

where c̃it is consumption services in period t, β is a time discount factor, and ψi,t corresponds

to “taste-shifters” – variables that move marginal utility – at time t. Consumption services

in period t are positively related to current expenditures and negatively related to lagged

expenditures according to

c̃it = cit − αcit−1.

The parameter α measures the strength of habit formation; when α is larger, the consumer

receives less lifetime utility from a given amount of expenditure. From the first order condi-

tion, assuming that the utility function is of the following isoelastic form14

u(c̃it, ψit) = ψit
c̃1−ρ
it

1− ρ
,

14We provide the details of the derivation in Appendix 2.
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and interest rates are constant, and following Dynan (2000), approximating ∆ ln(cit−αcit−1)

with (∆ ln cit − α∆ ln cit−1), one can derive the following equation governing consumption

dynamics15

∆ ln(cit) = γ0 + α∆ ln(cit−1) + γ1∆ ln(ψit) + εit. (18)

Habit persistence enters the Euler equation through lagged consumption growth and habit

persistence coefficient α. The habit-formation model predicts α > 0, with its magnitude

reflecting the fraction of past expenditures that make up the habit stock and indicating the

importance of habit formation in behavior. In other words, the equation shows that habit

formation creates a positive link between current and lagged expenditure growth, which

stems from consumers’ gradual adjustment to permanent income shocks. In contrast to

traditional models in which consumption adjusts immediately to innovations to permanent

income, habits cause consumers to prefer a number of small consumption changes to one

large consumption change.

When studying persistent behavior we have to be careful to distinguish between the

different possible sources of persistence in behavior. Consider, for example, smoking. It

is clear that the probability of someone smoking in the current period is dependent on

smoking behavior in the past, but this could be because some people are ’smokers’ (individual

heterogeneity) or because something induced them to start at some point and then they

continue (state dependence). To have any chance of controlling for individual heterogeneity

and state dependence we need dynamic panel data with several periods of observation for each

household. In addition, in the study of persistence in behavior, it is extremely important

to study the conditional heterogeneity associated with the extension of the addiction for

different individuals; for example, it is important to differentiate between the extension of

the addiction for heavy and light smokers. Thus, quantile regression for dynamic panel data

is a suitable tool for analyzing persistent behavior since it allows to control for individual

specific intercepts in the dynamic panel data context, and most importantly, it allows one to

explore a range of conditional quantile functions exposing a variety of forms of conditional

heterogeneity.

We estimate a quantile regression model using data from the Panel Study on Income

Dynamics (PSID), which contains annual information about the income, food consumption,

15Although γ0 is a function of real interest rates, the time discount factor, and the forecast error variance
(see Dynan (2000) for details), most Euler equation analyses with household data have assumed these terms
constant across households and time periods.
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employment, and demographic characteristics of individual households. The PSID has lim-

ited consumption information, and we follow a substantial body of the literature in using

food expenditures to explore consumption behavior. The baseline sample contains 2132

households, each with 13 observations on food expenditure growth. Although the PSID be-

gan in 1968 and continues today, the sample uses spending data only from the period 1974

through 1987 because of interpretation problems in the early years and the suspension of

food questions in 1987.

To test the consumption habit formation hypothesis, estimation and testing are based

on the following equation

QCit
(τ |Fit−1) = ηi + α(τ)Cit−1 +Xitβ(τ), (19)

where Cit = ∆ ln cit, and Xit is a set of covariates. As covariates, following Dynan (2000),

we include the following taste shifters in the estimated equations: number of adult male

equivalents in the household, age of the head of the household, and age squared. All speci-

fications include time dummies to ensure that aggregate shocks do not lead to inconsistent

estimates. In a second round of estimation we also include race as a variable in the model.

The consumption variables are measured in logs. We also apply OLS based two stage least

squares (TSLS) estimation and testing for comparison. We use two different sets of instru-

ments, Cit−2 and Cit−3, in both PQRIV and TSLS estimation. The results are essentially

the same, so we report the estimations for the former instrument.16 In this model it is very

important to take into account time invariant unobserved heterogeneity across households

(fixed effects) as stressed by Carrasco, Labeaga, and Lopez-Salido (2005), and Browning and

Collado (2007). Individual effects allow us to investigate whether the relationship between

current and past consumption reflects habits or heterogeneity. Model (19) is very interesting

because it shows how the coefficient of interest, α(τ), varies along the quantiles, controlling

for the individual intercepts.

We are interested in testing H0 : α(τ) = 0, that is, there is no evidence of habit per-

sistence. Since equation (19) captures the dynamics of consumption, the estimation results

will not only serve as a test of this particular model, but will also provide evidence regarding

the general importance of habit formation and the determinants of growth in consumption,

as well as show evidence of asymmetric persistence in these variables. Point estimates and

16We also estimated the model using dummies for income growth as instruments, where income is measured
as real labor income of head and wife or real disposable income. The results remain the same if we use this
additional instrument.
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standard errors for PQRIV and TSLS are presented in Tables 6 and 7. The standard errors

appear inside parentheses. Table 6 presents the estimates for the autoregressive coefficient,

family size, age, and age squared. In Table 7 we also include race as an additional regressor.

Concerning the TSLS results in Table 6, the point estimate for the autoregressive coeffi-

cient is positive, initially indicating evidence of habit formation. However, the results show

that α̂ is not statistically different from zero even at the 10% level of significance. Thus,

based on ordinary least squares estimation there is no evidence of habit formation in con-

sumption; this result is in line with Dynan (2000). As expected, the coefficient of number

of adults is positive and statistically significant. In addition, the coefficients of age and age

squared are negative and positive, respectively, with the first not statistically different from

zero. In Table 7 we add race as an exogenous regressor, and the results are still the same

for these four coefficients. In addition, the race coefficient is not statistically different from

zero in the ordinary least squares estimation.

Regarding the quantile regression estimation, Table 6 shows that the autoregressive coef-

ficient has an asymmetric impact on consumption growth along the quantiles, ranging from

0.0155 to 0.0681. For the median, as in the least squares case, with coefficient 0.0333 and

standard error 0.0225, there is no evidence of habit formation. However, the estimated co-

efficient is positive and statistically significant for the last two deciles, with point estimates

of 0.0526 and 0.0681, and standard errors respectively 0.0236 and 0.0306. Thus, both co-

efficients are statistically significant at the 5% level of significance. In the high part of the

conditional quantile function of consumption growth, for given t, the lag of consumption

growth has a significant positive impact on subsequent consumption growth, indicating ev-

idence of habit persistence in this part of the conditional quantile function. In summary,

Table 6 shows that based on the estimates of the quantile regression instrumental variables

model there is evidence against the null of no effect of previous consumption growth in cur-

rent consumption growth, α(τ) = 0, for high quantiles, and the results also show a new

feature that the persistence of consumption has an asymmetric behavior.

Thus, rejecting the null hypothesis of no habit formation for high quantiles indicates that

for upper conditional quantile functions of consumption growth, where for given time period

t the percentage difference between current expenditure and lagged expenditure is large,

there is evidence of habit formation. Habit formation is then associated with large values

of consumption expenditure growth. In periods of high consumption growth agents might
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experience a permanent positive income shock or lack of a credit constraint, creating habit

persistence in preferences. However, for the middle and lower conditional quantile functions

of consumption growth, where the consumption growth is close to zero or negative, for a given

time period t, there is no evidence of habit formation. Therefore, when current consumption

expenditure is similar to the lagged expenditure, agents might be subject to a credit con-

straint (or face a permanent negative income shock) and adjust consumption immediately

from one period to another such that preferences do not exhibit habit persistence.

The other columns of Table 6 show the coefficients and standard errors for the number of

adult male equivalents, age of the head of the household, and age-squared. The coefficient on

adults is positive and highly significant, and it has a parabolic behavior along the quantiles.

For families in both low and high quantiles, an increase in the number of adult males impacts

the growth of consumption more than for families around the median.

According to the study of Carroll and Summers (1991) one would expect a negative

coefficient on age and a positive coefficient on age-squared. This phenomenon is known as

the “hump-shaped” age-consumption profile. The results presented in Table 6 show that the

coefficient on age is positive only for the first decile, and it is not statistically different from

zero. For the other deciles the coefficient on age is negative and different from zero. The

coefficient on age-squared is positive and increases along the quantiles. However, for the first

and second deciles it is not statistically significant. This asymmetric behavior indicates the

presence of very important heterogeneity features in the determinants of consumption. For

high quantiles of conditional consumption growth, the coefficients are consistent with the

usual “hump-shaped” age-consumption profile, where the increase in age induces an increase

in consumption and there is a valley in consumption growth. However, for very low quantiles

this behavior is absent.

In a second round of estimation, following the literature, we include race as an exogenous

regressor in the model. The results are presented in Table 7. The signs and significance of the

first four coefficients are still the same. An interesting result is that there is an asymmetric

dynamic in the race impact on consumption growth. The coefficient is negative for almost all

quantiles, turning positive only for high quantiles. Inclusion of this variable has no effect on

the findings regarding habit formation. In addition, for low quantiles the estimate is negative

and statistically different from zero indicating that in the low part of the conditional quantile

function nonwhite households exhibit significantly lower rates of consumption growth. The
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results for the other coefficients are similar to those in Table 6.

These results, together with the point estimates reported in Tables 6-7, indicate that there

is an asymmetric persistence in consumption growth dynamics and in its determinants, and

appropriate models are needed to incorporate such behavior.

6 Conclusion

This paper studies estimation and inference in a quantile regression dynamic panel model

with fixed effects. Quantile regression for dynamic panel data methods allow one to explore a

range of conditional quantiles, thereby exposing a variety of forms of conditional heterogene-

ity under less restrictive distributional assumptions, permit to control for individual specific

intercepts, and provide a framework for robust estimation and inference.

In econometrics, the modeling of dynamic relationships usually requires inclusion of

lagged dependent explanatory variables. The standard approaches to estimate dynamic

panel models with fixed effects are typically biased in the presence of lagged dependent

variables as regressors. To reduce the dynamic bias in the quantile regression fixed effects

estimator we suggest the use of the instrumental variables quantile regression method of

Chernozhukov and Hansen (2006, 2008) along with lagged regressors as instruments. The

instrumental variables strategy sharply reduces the bias in the resulting point estimates. We

show that under some mild regularity conditions, notably that with T → ∞ as N → ∞
and Na/T → 0, for some a > 0, the estimator is consistent and asymptotically normal.

In addition, we propose Wald and Kolmogorov-Smirnov (KS) type tests for general linear

hypotheses and derive their respective limiting distributions.

Monte Carlo studies are conducted to evaluate the finite sample properties of instrumental

variables estimator for several types of distributions. It is shown that the quantile regression

fixed effects estimator is severely biased in the presence of lagged dependent variables, while

the PQRIV essentially eliminates the bias even in short panels. In addition, the PQRIV

approach has a better performance vis-a-vis IV ordinary least squares-based approach in

terms of the bias and root mean square error of the estimators for non-Gaussian heavy-

tailed distributions. We also investigate the size and power of the test statistics comparing

PQRIV with OLS-IV. The results show that tests based on quantile regression result in large

power gains, especially when innovations are non-Gaussian heavy-tailed.
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We illustrate the methods by testing for the presence of time-nonseparability in utility us-

ing household consumption data from the Panel Study on Income Dynamics (PSID) dataset.

Previous work, such as Dynan (2000), find no evidence of habit formation using the PSID

dataset and ordinary least squares for estimation at annual frequency. However, quantile

regression methods reveal important heterogeneity associated with economic agents’ behav-

ior in terms of their dynamic consumption growth, which is averaged out by least squares

estimators. At the same time, dynamic panel data quantile regression allows to control for

individual specific effects in the dynamic panel data context. Our results show evidence of

asymmetric persistence in consumption dynamics in the upper quantiles of the conditional

distribution. In addition, it is possible to reject the null hypothesis of no effect of past

consumption growth on subsequent consumption growth for these quantiles. Thus, for the

upper conditional quantile functions of consumption growth, the results suggest that an in-

crease in current consumption growth leads to increases in subsequent consumption growth,

and for these corresponding quantiles there is evidence of habit persistence. Moreover, the

results show important evidence of heterogeneity in the determinants of consumption such

as the number of adult male equivalents in the household, age of the household head, and

race. If economic dynamic panel data displays asymmetric dynamics systematically, then

appropriate models are required to incorporate such behavior.
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A Appendix 1

A.1 Analogy between IV Quantile regression and TSLS

Regular OLS Case

Consider the model

y = Xβ + Zα+ u

where Z is an endogenous variable and X are exogenous covariates. Let W be a valid

instrument for Z. In the two stage least squares procedure

α̂ = (Z ′PMXWZ)−1Z ′PMXWy, (20)

where PMXW = MXW (W ′MXW )−1W ′MX . Note that if the number of columns in Z is the

same as in W , then W ′MXZ is an invertible matrix and we can simplify (20) to

α̂ = (W ′MXZ)−1W ′MXy. (21)

Grid Case

Now we consider the Grid case, in which one estimates the parameter of interest using a

grid search. The model is the same

y = Xβ + Zα+ u,

where Z is endogenous, and X are the exogenous covariates. Let Ŵ be an instrument for

Z, defined as the projection of Z on X and W ,

Ŵ := Ẑ = Xθ̂ +Wδ̂.

Define a grid for α, {αj, j = 1, ..., J ; |α| < 1}, and for given αj, consider the following

regression

y − Zαj = Xβ + Ŵγ + v.

The estimator γ̂(αj) is

γ̂(αj) = (Ŵ ′MXŴ )−1Ŵ ′MX(y − Zαj).

Now define the estimator of α as

α̂ = arg min
α
‖γ̂(α)‖A,
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where ‖γ̂(α)‖A = γ̂(α)′Aγ̂(α), γ̂(α) is the vector containing the estimates γ̂(αj), and A is

the identity matrix. Finally, noticing that MXŴ = MXW (W ′MXW )−1W ′MXZ, and from

the first order condition yields

α̂ = (Z ′MXW (W ′MXW )−1W ′MXZ)−1Z ′MXW (W ′MXW )−1W ′MXy.

Using the definition of PMXW we have

α̂ = (Z ′PMXWZ)−1Z ′PMXWy, (22)

which is the same estimator as in equation (20). When the model is exactly identified

α̂ = (W ′MXZ)−1W ′MXy, (23)

which is the same estimator as in equation (21).

A.2 Proof of the Theorems

The next three lemmas help in the derivation of the results. Lemma 1 shows the identification

of the parameters. Lemma 2 guarantees a law of large numbers. Finally, Lemma 3 states

an Argmax Process argument that is helpful in the derivation of consistency. Later we show

consistency of θ̂(τ).

Lemma 1. Given assumptions A1-A6, (η, β(τ), α(τ)) uniquely solves the equations

E[υψ(Y − Zη − Y−1α−Xβ)X̌(τ)] = 0 over E ×A ×B.

Proof. We want to show that (η, α(τ), β(τ)) uniquely solves the limit problem for each τ ,

that is, η(α∗(τ)) = η, α∗(τ) = α(τ), and β(α∗(τ), τ) = β(τ). Let ψ(u) := (τ − I(u < 0)).

Define:

Π(η, α, β, τ) := E[υψ(Y − Zη − Y−1α(τ)−Xβ(τ))X̌(τ)]

H(η, α, β, τ) :=
∂

∂(η, α, β)
E[υψ(Y − Zη − Y−1α(τ)−Xβ(τ))X̌(τ)]

By assumption A2, H(η, α, β, τ) is continuous in (η, α, β) and full rank, uniformly over

E ×A ×B. Moreover, by A2, the image of the set E ×A ×B under the mapping (η, α, β) →
Π(η, α, β, τ) is assumed to be simply connected. As in Chernozhukov and Hansen (2005), the

application of Hadamard’s global univalence theorem for general metric spaces, e.g., Theorem

1.8 in Ambrosetti and Prodi (1995), yields that the mapping Π(·, ·, ·, τ) is a homeomorphism
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(one-to-one) between (E × A × B) and Π(E ,A ,B, τ), the image of E × A × B under

Π(·, ·, ·, τ). Since (η, α, β) = (η, α(τ), β(τ)) solves the equation Π(η, α, β, τ) = 0; and thus it

is the only solution in (E × A ×B). This argument is valid for τ ∈ T . So, we have that

the true parameters (η, α, β) = (η, α(τ), β(τ)) uniquely solve the equation

E[υψ(Y − Zη − Y−1α−Xβ −W0)X̌(τ)] = 0. (24)

Define ϑ ≡ (η, β, γ). By assumption and in view of the global convexity of Q(α, ϑ, τ) in ϑ

for all τ and α, ϑ(α, τ) is defined by the subgradient condition

E[υψ(Y − Zη(α, τ)− Y−1α−Xβ(α, τ)−Wγ(α, τ))X̌(τ)]v ≥ 0 (25)

for all v : ϑ(α, τ) + v ∈ E ×B × G .

In fact, if ϑ(α, τ) is in the interior of E ×B × G , it uniquely solves the first order condition

version of (25)

E[υψ(Y − Zη(α, τ)− Y−1α−Xβ(α, τ)−Wγ(α, τ))X̌(τ)] = 0. (26)

We need to find α∗(τ) by minimizing ‖γ(α, τ)‖ over α subject to (25) holding. By (24)

α∗(τ) = α(τ) makes ‖γ(α∗, τ)‖ = 0 and satisfies (26) and hence (25) at the same time.

According to the preceding argument, it is the only such solution. Thus, also by (26)

(η(α∗(τ)) = η, β(α∗(τ), τ) = β(τ)).

Lemma 2. Let ξit(τk) = ηzit +α(τk)yit−1 +β(τk)xit +γ(τk)wit, and uit(τk) = yit− ξit(τk).
Let ϑ := (η, α, β, γ) be a parameter vector in V := E ×A ×B × G . Let

δ =


δη
δα
δβ
δγ

 =


√
T (η̂ − η)√

NT (α̂(τk)− α(τk))√
NT (β̂(τk)− β(τk))√
NT (γ̂(τk)− γ(τk)),

 .

Under conditions A1-A6,

sup
ϑ∈V

(NT )−1
∣∣∣∑

k

∑
i

∑
t

[
ρτ

(
uit(τk)−

zitδη√
T
− yit−1δα√

NT
− xitδβ√

NT
− witδγ√

NT

)
− ρτ

(
uit(τk)

)
(27)

−E[ρτ

(
uit(τk)−

zitδη√
T
− yit−1δα√

NT
− xitδβ√

NT
− witδγ√

NT

)
− ρτ

(
uit(τk)

)
]
]∣∣∣ = op(1).
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Proof. With some abuse of notation let x̃it = (yit−1, xit, wit), β̃ = (α, β, γ), and ϑ = (β̃, η).

Let ‖ · ‖ denote the Euclidean norm. It is sufficient to show that for any ε > 0

P
(
sup
ϑ∈V

(NT )−1
∣∣∣∑

k

∑
i

∑
t

[
ρ(uit − x̃it

δβ̃√
NT

− zit
δη√
T

)− ρ(uit)

−E[ρ(uit − x̃it

δβ̃√
NT

− zit
δη√
T

)− ρ(uit)]
]∣∣∣ > ε

)
→ 0.

(28)

For each k, consider a partition the parameter space Γ = V into KN disjoint parts

Γ1,Γ2, . . . ,ΓKN
, such that the diameter of each part is less than qNT = εNa

12KC1T
. Let pN

be the dimension of ϑ, pN = O(N), and then KN ≤ (2
√
pN/qNT + 1)pN (c.f. Wei and He

(2006)).

Let ζi ∈ Γi, i = 1, . . . , KN be fixed points. Then the left-hand side of (28) can be bounded

by P1 + P2, where

P1 = P
(

max
1≤q≤KN

sup
ϑ∈Γq

(NT )−1
∣∣∣∑

k

∑
i

∑
t

[
ρ(uit − x̃it

δβ̃√
NT

− zit
δη√
T

)− ρ(uit)

−ρ(uit − x̃it

ζqβ̃√
NT

− zit
ζqη√
T

) + ρ(uit)

−E[ρ(uit − x̃it

δβ̃√
NT

− zit
δη√
T

)− ρ(uit)]

+E[ρ(uit − x̃it

ζqβ̃√
NT

− zit
ζqη√
T

)− ρ(uit)]
]∣∣∣ > ε/2

)
and

P2 = P
(

max
1≤q≤KN

(NT )−1
∣∣∣∑

k

∑
i

∑
t

[
ρ(uit − x̃it

ζβ̃√
NT

− zit
ζη√
T

) + ρ(uit)

−E[ρ(uit − x̃it

ζqβ̃√
NT

− zit
ζqη√
T

)− ρ(uit)]
]∣∣∣ > ε/2

)
.

Therefore, it suffices to show that both P1 and P2 are op(1). Noting that |ρ(x+y)−ρ(x)| ≤
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2|y|, we have

max
1≤q≤KN

sup
ϑ∈Γq

(NT )−1
∣∣∣∑

k

∑
i

∑
t

[
ρ(uit − x̃it

δβ̃√
NT

− zit
δη√
T

)− ρ(uit)

−ρ(uit − x̃it

ζqβ̃√
NT

− zit
ζqη√
T

) + ρ(uit)

−E[ρ(uit − x̃it

δβ̃√
NT

− zit
δη√
T

)− ρ(uit)]

+E[ρ(uit − x̃it

ζqβ̃√
NT

− zit
ζqη√
T

)− ρ(uit)]
]∣∣∣

≤ max
1≤q≤KN

sup
ϑ∈Γq

(NT )−1
[
4
∣∣∣∑

k

∑
i

∑
t

[
x̃it√
NT

(δβ̃ − ζqβ̃)− zit√
T

(δη − ζqη)]
∣∣∣

+2
∣∣∣∑

k

∑
i

∑
t

E[
x̃it√
NT

(δβ̃ − ζqβ̃)− zit√
T

(δη − ζqη)]
∣∣∣]

≤ max
1≤q≤KN

sup
ϑ∈Γq

(NT )−1
[
4
∑

k

∑
i

∑
t

[
1√
NT

‖x̃it‖‖(δβ̃ − ζqβ̃)‖ − 1√
T
‖zit‖‖(δη − ζqη)‖]

+2
∑

k

∑
i

∑
t

E[
1√
NT

‖x̃it‖‖(δβ̃ − ζqβ̃)‖ − 1√
T
‖zit‖‖(δη − ζqη)‖]

≤
[
4qNT + 2E[qNT ]

]
≤ ε

2
,

where the last equality follows from assumptions A5-A6, and implies P1 = op(1). It remains

to show that P2 = op(1).

If we write mit =
∑

k[ρ(uit − x̃it
ζqβ̃√
NT

− zit
ζqη√

T
)− ρ(uit)] then

P2 = P
(

max
1≤q≤KN

(NT )−1
∣∣∣∑

i

∑
t

[mit − Emit]
∣∣∣ > ε/2

)
≤

KN∑
q=1

P
(
(NT )−1

∣∣∣∑
i

[∑
t

mit − E
∑

t

mit

]∣∣∣ > ε/2
)
.

For fixed i,

mit ≤ sup
ζ∈Γ

∣∣∣∑
k

[
ρ(uit − x̃it

ζqβ̃√
NT

− zit
ζqη√
T

)− ρ(uit)
]∣∣∣

≤ sup
ζ∈Γ

2
∣∣∣∑

k

[
x̃it

ζqβ̃√
NT

+ zit
ζqη√
T

]∣∣∣
≤ sup

ζ∈Γ
2
∑

k

[ 1√
NT

‖x̃it‖‖ζqβ̃‖+
1√
T
‖zit‖‖ζqη‖

]
≤ 2C2,
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and,

V ar(
T∑

t=1

mit) ≤
T∑

t=1

V ar(mit) + 2
∑
t1<t2

Cov(mit1 ,mit2)

≤
T∑

t=1

V ar(mit) + 2
∑
t1<t2

√
V ar(mit1)V ar(mit2)

≤
T∑

t=1

V ar(mit) +
∑
t1<t2

[V ar(mit1) + V ar(mit2)]

≤ T

T∑
t=1

V ar(mit).

Note that,

| x̃it√
NT

ζqβ̃ +
zit√
T
ζqη|2 ≤ C3‖ζqβ̃‖+ C4‖ζqη‖

Using the fact that ‖ζq‖ < C for any q, and the independence across individuals in A1, we

have

V ar
N∑

i=1

(
T∑

t=1

mit) ≤ T
N∑

i=1

T∑
t=1

Ey2
it ≤ NT 2C5 + o(1)

By the assumption of independence, we can bound P2 using Bernstein’s inequality:

P2 ≤ 2KNexp
(
−

(
εNT

2

)2

P
i V ar

P
t mit+

TC2
3

(
εNT

2

))

≤ 2(2
√
pN/qNT + 1)pN exp

(
−

(
εNT

2

)2

NT 2C5+o(1)+
TC2

3

(
εNT

2

))

= 2exp
(
pN ln(2

√
pN/qNT + 1)−

(
εNT

2

)2

NT 2C5+o(1)+
TC2

3

(
εNT

2

))

= 2exp
(
O(N) ln(24O(N1/2−aT )C1/ε+ 1)−

(
εNT

2

)2

NT 2C5+o(1)+
TC2

3

(
εNT

2

))
Hence, P2 → 0 as N, T →∞ and Na/T → 0 and the lemma follows.

Lemma 3 (Corollary 3.2.3 - van der Vaart and Wellner (1996)). Let Mn be stochastic

processes indexed by a metric space Θ, and let M : Θ → < be a deterministic function.

Suppose that ‖Mn −M‖Θ
p→ 0 and that there exists a point θ0 such that

M(θ0) > sup
θ/∈D

M(θ)
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for every open setD that contains θ0. Then any sequence θ̂n, such thatQn(θ̂n) > supθ Qn(θ)−
op(1), satisfies θ̂n

p→ θ0.

Let θ(τ) = (θ(τ1)
′, ..., θ(τK)′)′. Now we prove Theorem 1 (Identification and Consistency).

Proof. The first part of the theorem follows from Lemma 1. For the second part, we need

to show that under conditions A1-A6

θ̂(τ) = θ(τ) + op(1).

Define

P = (η, α, β, γ) → ρτ (Y − Zη − Y−1α−Xβ −Wγ)

and note that P is continuous. Therefore, uniform convergence is given by Lemma 2, such

that

sup
θ∈Θ

|Mn −M | = op(1)

where Mn ≡ 1
nT

∑K
k=1

∑n
i=1

∑T
t=1 ρ(uit − x̃it

δβ̃√
NT

− zit
δη√
T
)− ρ(uit), and M = EMn.

Therefore, denoting ϑ = (η, β, γ), by Lemma 3 we have that ‖ϑ̂(α, τ)− ϑ(α, τ)‖ p→ 0 (*)

which implies that ‖‖γ̂(α, τ)‖ − ‖γ(α, τ)‖‖ p→ 0, which by a simple Argmax process over

a compact set argument (assumption A4) implies that ‖α̂(τ) − α(τ)‖ p→ 0, which by (*)

implies that ‖β̂(τ) − β(τ)‖ p→ 0 and ‖γ̂(α̂, τ) − 0‖ p→ 0. Therefore, ‖θ̂(τ) − θ(τ)‖ p→ 0 and

the theorem follows.

Now we prove Theorem 2, i.e., under conditions A1-A6 the proposed estimator is asymp-

totically Normal.

Proof. Consider the following model

yit = ηi + αyit−1 + βxit + uit. (29)

The objective function is

min
ηi,α,β,γ

K∑
k=1

N∑
i=1

T∑
t=1

υkρτ (yit − ηi − α(τk)yit−1 − β(τk)xit − γ(τk)wit). (30)

Consider a collection of closed balls Bn(α(τk)), centered at α(τk), with radius πn, and

πn → 0 slowly enough. Note that, for any αn(τk)
p→ α(τk)(δα

p→ 0) we can write the objective

function as
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VNT (δ) =
K∑

k=1

N∑
i=1

T∑
t=1

υkρτ (yit − ξit(τk)− zitδη/
√
T − yit−1δα/

√
NT − xitδβ/

√
NT − witδγ/

√
NT )−

υkρτ (yit − ξit(τk))

(31)

where ξit(τk) = ηi + α(τk)yit−1 + β(τk)xit + γ(τk)wit, and

δ̂n =


δ̂η
δ̂α
δ̂β
δ̂γ

 =


√
T (η̂(αn)− η)√

NT (αn(τk)− α(τk))√
NT (β̂(αn, τk)− β(τk))√
NT (γ̂(αn, τk)− 0)

 .

Note that, for fixed (δα, δβ, δγ), we can consider the behavior of δη. Let ψ(u) ≡ (τ−I(u <
0)) and for each i

gi(δη, δα, δβ, δγ) = − 1√
T

K∑
k=1

T∑
t=1

υkψτ (yit − ξit −
δη√
T
− δα√

NT
yit−1 −

δβ√
NT

xit −
δγ√
NT

wit).

For, fixed δβ, δγ, supτ∈t ‖αn(τ)− α(τ)‖ p→ 0, and K > 0

sup
‖δ‖<K

‖gi(δηi
, δα, δβ, δγ)− gi(0, 0, 0, 0)− E[gi(δη, δα, δβ, δγ)− gi(0, 0, 0, 0)]‖ = op(1).

Expanding we have

E[gi(δη, δα, δβ, δγ)− gi(0, 0, 0, 0)]

= E
(
− 1√

T

K∑
k=1

T∑
t=1

υkψτ (yit − ξit −
δη√
T
− δα√

NT
yit−1 −

δβ√
NT

xit −
δγ√
NT

wit)

+
1√
T

K∑
k=1

T∑
t=1

υkψτ (yit − ξit)
)

= − 1√
T

K∑
k=1

T∑
t=1

υk

[
τk − F (ξit +

δη√
T

+
δα√
NT

yit−1 +
δβ√
NT

xit +
δγ√
NT

wit)

]

=
1√
T

K∑
k=1

T∑
t=1

υk

[
F (ξit +

δη√
T

+
δα√
NT

yit−1 +
δβ√
NT

xit +
δγ√
NT

wit)− τk

]

=
1√
T

K∑
k=1

T∑
t=1

υkfit(ξit(τk))

[
δη√
T

+
δα√
NT

yit−1 +
δβ√
NT

xit +
δγ√
NT

wit

]
+Rit.
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Optimality of δ̂ηi
implies that gi(δη, δα, δβ, δγ) = o(T−1), and thus

δ̂η = −f−1

i

[ 1√
T

K∑
k=1

T∑
t=1

υkfit(ξit(τk))

[
δα√
NT

yit−1 +
δβ√
NT

xit +
δγ√
NT

wit

]

− 1√
T

K∑
k=1

T∑
t=1

υkψτ (yit − ξit(τk))
]

+Rit

where f ik = T−1
∑

k

∑
t υkfit and Rit is the remainder term for each i.

Substituting δ̂η’s, we denote

G(δα, δβ, δγ) = − 1√
NT

K∑
k

N∑
i=1

T∑
t=1

υkXitψτ (yit−ξit−
δ̂η√
T
− δα√

NT
yit−1−

δβ√
NT

xit−
δγ√
NT

wit)

where Xit = (x′it, w
′
it)
′, and δα(αn) =

√
NT (αn(τk)− α(τk)), δβ(αn) =

√
NT (β̂(αn, τk)− β),

and δγ(αn) =
√
NT (γ̂(αn, τk) − 0). According to Lemma B2 in Chernozhukov and Hansen

(2006)

sup
‖δ‖<K

‖gi(δα, δβ, δγ)− gi(0, 0, 0)− E[gi(δα, δβ, δγ)− gi(0, 0, 0)]‖ = op(1),

and at the minimizer, G(δ̂α, δ̂β, δ̂γ) = o((NT )−1). Expanding, as above,

E[G(δα, δβ, δγ)−G(0, 0, 0)]

=
1√
NT

∑
k

∑
i

∑
t

υkXitfit

(
δα√
NT

yit−1 +
δβ√
NT

xit +
δγ√
NT

wit +
δ̂η√
T

)
+ op(1)

=
1√
NT

∑
k

∑
i

∑
t

υkXitfit

[
δα√
NT

yit−1 +
δβ√
NT

xit +
δγ√
NT

wit −
1√
T
f
−1

i

[
T−1/2

∑
k

∑
t

υkfit(ξit(τk))[
δα√
NT

yit−1 +
δβ√
NT

xit +
δγ√
NT

wit

]
− T−1/2

∑
k

T∑
t=1

υkψτ (yit − ξit(τk))
]
+Rit

]
+ op(1)

=
1

NT

∑
k

∑
i

∑
t

υkXitfit

(
yit−1 − f

−1

i T−1
∑

k

∑
t

υkfityit−1

)
δα

+
1

NT

∑
k

∑
i

∑
t

υkXitfit

(
xit − f

−1

i T−1
∑

k

∑
t

υkfitxit

)
δβ

+
1

NT

∑
k

∑
i

∑
t

υkXitfit

(
wit − f

−1

i T−1
∑

k

∑
t

υkfitwit

)
δγ

− 1√
NT

∑
k

∑
i

∑
t

υkXitfitf
−1

i T−1/2
∑

k

∑
t

υkψ(yit − ξit)

− 1√
NT

∑
k

∑
i

∑
t

υkXitfitRit/
√
T + op(1),
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where the order of the final term is controlled by the bound on the derivative of the con-

ditional density. It is important to note that G(δ̂α, δ̂β, δ̂γ) = 0 and then E[G(δα, δβ, δγ) −
G(0, 0, 0)] = G(0, 0, 0), Φ = diag(fit(ξit(τk))), and let Ψτ be a NT -vector (ψτ (yit − ξit(τ))).

Define δϑ = (δβ, δγ), then omitting the subscript k we have

υ(X ′MZΦMZY−1/NT )δα + υ(X ′MZΦMZX/NT )δϑ − υX ′PZΨ/
√
NT = −υX ′Ψ/

√
NT +RnT

Jϑδϑ = [−(υX ′MZΨ/
√
NT −RnT )− Jαδα]

δ̂ϑ = J−1
ϑ [−(υX ′MZΨ/

√
NT −RnT )− Jαδα]

where

MZ = I − PZ

PZ = Z(Z ′ΦZ)−1Z ′Φ

Jϑ = lim
N,T→∞

1

NT

υ1X̃
′M ′

Z1
Φ(τ1)MZ1X̃ · · · 0
...

. . .
...

0 · · · υkX̃
′M ′

Zk
Φ(τk)MZk

X̃



Jα = lim
N,T→∞

1

NT

υ1X̃
′M ′

Z1
Φ(τ1)MZ1y−1 · · · 0

...
. . .

...

0 · · · υkX̃
′M ′

Zk
Φ(τk)MZk

y−1

 ,

and

RnT =
1√
NT

K∑
k=1

N∑
i=1

T∑
t=1

υkXitfitRit/
√
T + op(1).

Let [J̄ ′β, J̄
′
γ]
′ be the conformable partition of J−1

ϑ , then

δ̂γ = J̄γ[−(υX ′MZΨ/
√
NT −RnT )− Jαδα] (32)

δ̂β = J̄β[−(υX ′MZΨ/
√
NT −RnT )− Jαδα]. (33)

The remainder term RnT has a dominant component that comes from the Bahadur rep-

resentation of the η’s. By A1 and A5, we have for a generic constant C1

RnT = T−1/4C1K√
N

N∑
i=1

Ri0 + op(1).

The analysis of Knight (2001) shows that the summands converge in distribution, that is as

T →∞ the remainder term T 1/4Rit
d→ Ri0, where Ri0 are functionals of Brownian motions
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with finite second moment. Therefore, independence of yit, and condition A6 ensure that

the contribution of the remainder is negligible. Thus (32) and (34) simplify to

δ̂γ = J̄γ[−(υX ′MZΨ/
√
NT )− Jαδα]

δ̂β = J̄β[−(υX ′MZΨ/
√
NT )− Jαδα].

By consistency, wp→ 1

δ̂α = min
δα∈Bn(α(τ))

δ̂γ(δα)
′
Aδ̂γ(δα),

assuming that δ̂
′
γAδ̂γ is continuous in δα, and from the first order condition

δ̂α = −[J ′αJ̄γAJ̄γJα]−1[J ′αJ̄γAJ̄γ(υX
′MZΨ/

√
NT )].

Substituting δ̂α back in δβ we obtain

δ̂β = −J̄β[(X ′MZΨ/
√
NT )− Jα[J ′αJ̄γAJ̄γJα]−1J ′αJ̄γAJ̄γ(υX

′MZΨ/
√
NT )]

= −J̄β[(I − Jα[J ′αJ̄γAJ̄γJα]−1J ′αJ̄γAJ̄γ)(υX
′MZΨ/

√
NT )].

It is also important to analyze δ̂γ. Thus, replacing δ̂α in δγ

δ̂γ = −J̄γ[(X
′MZΨ/

√
NT )− Jα[J ′αJ̄γAJ̄γJα]−1J ′αJ̄γAJ̄γ(υX

′MZΨ/
√
NT )]

= −J̄γ[(I − Jα[J ′αJ̄γAJ̄γJα]−1J ′αJ̄γAJ̄γ)(υX
′MZΨ/

√
NT )].

By condition A3, using the fact that J̄γJα is invertible

δ̂γ = 0 +Op(1) + op(1).

Let Ψk = diag(ψτk
(yit − ξit(τk))). Notice that Ψk1NT 1′NT Ψl = (τk ∧ τl − τkτl)INT , and that

conditions A1-A6 imply a central limit theorem. Thus, neglecting the remainder term, and

using the definition of δα and δβ we have

√
NT (θ̂ − θ)

d→ N(0,Ω), Ω = (K ′, L′)′S(K ′, L′)

where S = (τ ∧ τ ′ − ττ ′)E(V V ′), V = X ′MZ , K = (J ′αHJα)−1JαH, H = J̄ ′γA[α(τ)]J̄γ,

L = J̄βM , M = I − JαK.
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B Appendix 2

Household i chooses current consumption expenditure, cit, to solve

max
{cit}∞t=0

E

[
∞∑

s=0

βsu (cit − αcit−1;ψit)

]

s.t =

{
ait+1 = rit+1(ait + yit − cit)

given ai0 ,

where ait, yit and cit are wealth, income, and consumption respectively. Since ψit is only

a “taste-shifter” we will omit it for simplification reasons. The Bellman equation can be

written as

V (ait, cit−1) = max
cit,ait+1

{u(cit − αcit−1) + βEt[V (ait+1, cit)]}.

From the first-order condition

u′(cit − αcit−1) + βEt[V2(ait+1, cit)] = βEt[V1(ait+1, cit)rit+1]. (34)

By the envelope theorem

V1(ait, cit−1)] = βEt[V1(ait+1, cit)rit+1] (35)

V2(ait, cit−1)] = u′(cit − αcit−1)(−α). (36)

Combining (34), (35), and (36)

u′(cit−αcit−1)−αβEt[u
′(cit+1−αcit)] = βEt[u

′(cit+1−αcit)rit+1]−αβ2Et[u
′(cit+2−αcit+1)rit+1].

Therefore

Et[MUit − αβMUit+1] = Et[rit+1βMUit+1 − rit+1αβ
2MUit+2], (37)

where MUit = u′(cit − αcit−1). Assuming that rit is constant and T is large, Dynan (2000)

shows that (37) simplifies to

Et

[
rβ
MUit+1

MUit

]
= 1.

Using the following utility function

u(cit − αcit−1) = ψit
(cit − αcit−1)

1−ρ

1− ρ
,

we have

rβ
ψit

ψit−1

( cit − αcit−1

cit−1 − αcit−2

)−ρ

= 1 + εit. (38)
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Taking natural logarithm of (38) and writing γ0 = 1
ρ
(ln(r) + ln(β))

∆ ln(cit − αcit−1) = γ0 + γ1∆ ln(ψit) + εit.

Finally, using the approximation ∆ ln(cit−αcit−1) ≈ (∆ ln cit−α∆ ln cit−1) we have equation

(18).
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Table 6: Results for PQRIV and TSLS

PQRIV
Quantiles Auto Adults Age Age2

0.1 0.0155 0.0443 0.0009 -0.0724
(0.031) (0.005) (0.003) (0.291)

0.2 0.0246 0.0316 -0.0013 0.0942
(0.026) (0.004) (0.002) (0.249)

0.3 0.0287 0.0231 -0.0042 0.3598
(0.027) (0.004) (0.002) (0.255)

0.4 0.0373 0.0144 -0.0059 0.5109
(0.027) (0.004) (0.002) (0.260)

0.5 0.0333 0.0073 -0.0088 0.7750
(0.023) (0.003) (0.002) (0.197)

0.6 0.0304 0.0049 -0.0101 0.8782
(0.023) (0.003) (0.002) (0.208)

0.7 0.0383 0.0074 -0.0116 1.0177
(0.025) (0.004) (0.002) (0.241)

0.8 0.0526 0.0152 -0.0158 1.3970
(0.024) (0.005) (0.003) (0.308)

0.9 0.0681 0.0196 -0.0228 2.0872
(0.031) (0.005) (0.003) (0.300)

TSLS
- 0.0286 0.0076 -0.0021 0.5013

(0.026) (0.003) (0.002) (0.217)

Notes: Standard errors in parenthesis. PQRIV: dynamic panel instrumental variables quantile regression

fixed effects; TSLS: fixed effects least squares. Auto: autoregression coefficient, α̂, associated with Cit−1;

Adults: number of adult male equivalents in the household; Age: age of the head of the household; Age2:

age squared of the head of the household.
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Table 7: Results for PQRIV and TSLS including race as a regressor

PQRIV
Quantiles Auto Adults Age Age2 Race

0.1 0.0103 0.0450 0.0009 -0.0630 -0.0384
(0.027) (0.004) (0.002) (0.256) (0.012)

0.2 0.0241 0.0330 -0.0013 0.0889 -0.0238
(0.024) (0.004) (0.002) (0.221) (0.008)

0.3 0.0318 0.0229 -0.0041 0.3451 -0.0168
(0.022) (0.004) (0.002) (0.201) (0.007)

0.4 0.0367 0.0144 -0.0059 0.5084 -0.0129
(0.022) (0.004) (0.002) (0.194) (0.007)

0.5 0.0332 0.0074 -0.0086 0.7615 -0.0090
(0.022) (0.003) (0.002) (0.199) (0.007)

0.6 0.0299 0.0008 -0.0102 0.8849 -0.0010
(0.023) (0.003) (0.002) (0.208) (0.006)

0.7 0.0379 0.0074 -0.0115 1.0110 0.0027
(0.024) (0.004) (0.002) (0.238) (0.007)

0.8 0.0520 0.0151 -0.0158 1.4039 0.0105
(0.024) (0.004) (0.003) (0.286) (0.009)

0.9 0.0697 0.0201 -0.0235 2.1599 0.0180
(0.030) (0.004) (0.003) (0.288) (0.010)

TSLS
- 0.0328 0.0076 -0.0024 0.5301 -0.0010

(0.025) (0.003) (0.002) (0.228) (0.007)

Notes: Standard errors in parenthesis. PQRIV: dynamic panel instrumental variables quantile regression

fixed effects; TSLS: fixed effects least squares. Auto: autoregression coefficient, α̂, associated with Cit−1;

Adults: number of adult male equivalents in the household; Age: age of the head of the household; Age2:

age squared of the head of the household.
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Figure 1: Asymptotic Power for Normal distribution
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Figure 2: Asymptotic Power for t3 distribution
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