
Quantification of Sequential Consistency in Actor-like Systems: An Exploratory Study
Yuheng Long Mehdi Bagherzadeh Eric Lin Ganesha Upadhyaya Hridesh Rajan

TR #14-03a
Initial Submission: March 31, 2014

Revised: April 25, 2014

Keywords: sequential consistency, actor-oriented programming

CR Categories:
D.1.3 [Concurrent Programming] Parallel programming
D.2.11 [Software Architectures] Languages, Patterns
D.3.3 [Programming Languages] Concurrent programming structures, Language Constructs and Features - Control structures

Copyright (c) 2014, Yuheng Long and Mehdi Bagherzadeh and Eric Lin and Ganesha Upadhyaya and Hridesh Rajan.

Department of Computer Science
226 Atanasoff Hall

Iowa State University
Ames, Iowa 50011-1041, USA



Quantification of Sequential Consistency in Actor-like
Systems: An Exploratory Study

Yuheng Long Mehdi Bagherzadeh Eric Lin Ganesha Upadhyaya Hridesh Rajan
Iowa State University, Ames, Iowa, USA

{csgzlong,mbagherz,eylin,ganeshau,hridesh}@iastate.edu

ABSTRACT
For sequentially-trained programmers, sequential consistency, i.e.
program operations run in the same order as they appear in code,
is the most intuitive consistency model to understand their pro-
grams. Recently variations of the actor model have been added to
programming languages and libraries as a concurrency mechanism.
Actor models, in general, do not guarantee sequential consistency.
A surprising observation, studied in detail here using a large (130
KLOC) set of benchmarks, is that: the variation of the actor model
supported by a language or library causes sequential inconsisten-
cies exhibited by programs to vary greatly. Knowing the impact of
these variations on sequential inconsistencies is important for fo-
cusing testing and verification efforts: for instance, if the variation
supports in-order messaging then programs have 53% less sequen-
tial inconsistencies; or support for data isolation allows triggering
of 75% of sequential inconsistencies by only controlling interleav-
ings of 2 actors and 2 messages.

1. INTRODUCTION
Sequential consistency The advent of multicore processors re-

quires sequentially-trained programmers to write concurrent pro-
grams [1]. For these programmers, sequential consistency is the
most intuitive consistency model of memory when understanding
their concurrent programs [2, 3]. A multiprocess program is se-
quentially consistent if its results could be produced on a single
processor with a total ordering among its operations such that:

(i) the order of operations in each process is preserved as dic-
tated by the program text; and

(ii) each read gets the last previously written value [3,4] accord-
ing to the total order.

Sequential consistency is concerned about (i) the order of opera-
tions and (ii) their conflicting memory effects. Two memory opera-
tions conflict if they both access the same memory location, one of
them is a write operation, and there is no order among them [5].

Since sequential consistency assumes that the operations of a
program and their memory effects happen in the same order as in

the program code, it helps decrease the conceptual gap between
the static structure and the dynamic structure of a program for
sequentially-trained programmers [6].

Actor-oriented programming The concurrency revolution has
renewed interest in actor-oriented programming [7, 8] mainly be-
cause actors offer a flexible and scalable concurrent programming
model. For example, SimpleDB for Amazon’s Web Services and
MochiWeb for Facebook’s chat servers are programmed in the ac-
tor language of Erlang [9,10]; or Guardian’s web site uses the actor
language and runtime of Akka [11,12]. An actor has its own thread
of control, manages its internal state and communicates with other
actors via messages.

Concurrent actor programs are more overwhelming and more
difficult to understand than sequential ones [1]. For these programs,
sequential consistency creates the illusion of a sequential execution
that sequentially-trained programmers are most familiar with and
makes their understanding easier. Sequential consistency, in gen-
eral, is not guaranteed by actors. Thus it is critical for sequentially-
trained programmers to understand sequential consistency in the
context of actors, if they choose actors for writing and testing of
their concurrent programs.

To understand sequential consistency of actors, the previous def-
inition of sequential consistency for multiprocess systems could be
reused by mapping actors to processes [13]. Similar to multipro-
cess programs, sequential consistency of actor programs is con-
cerned about the order of operations in actors as well as their con-
flicting memory effects.

The order of operations in an actor program is dependent on the
semantics of its underlying actor model and is determined by:

• Criterion (1): Message synchronization, as in asynchronous
and synchronous messaging [14]; and

• Criterion (2): Message delivery and processing semantics, as
in non-deterministic or in-order delivery and processing;

Similarly, conflicts of memory effects of actors are determined by:

• Criterion (3): Sharing semantics, as in data sharing or data
isolation of memory effects of actors.

Diverse actor semantics Recently variations of the actor pro-
gramming model [7, 8] have been added to programming lan-
guages and libraries as a concurrency mechanism. These varia-
tions have a diverse set of semantics for criteria (1)–(3) and conse-
quently affect sequential consistency of their actor programs dif-
ferently. For example for criterion (1), Scala Actors [15], Actor-
Foundry [16], JCoBox [17], Kilim [13] and Panini [18] support
both asynchronous and built-in synchronous request-reply messag-

1



ing whereas Erlang [9] and Standard actor model do not1. For
criterion (2), ActorFoundry messages are delivered and could be
processed non-deterministically whereas Akka [11], Panini and
JCoBox support in-order delivery and processing of messages. Fi-
nally, for criterion (3), Standard actor model supports data isolation
among actors whereas Scala Actors allow shared state among ac-
tors; ActorFoundry supports both.

PtolemyII [19], SALSA [20], Jetlang [21], JavAct [22], Ruby
Stage [23] and Python Parley [24] are other examples of actor lan-
guages and frameworks with various semantics for these criteria.

Sequential consistency and actor models On one hand, the con-
currency revolution requires sequentially-trained programmers to
write concurrent programs with a choice of using actors as a scal-
able and popular concurrent programming model. Understanding
concurrent programs is overwhelming for these programmers. On
the other hand, sequential consistency makes understanding of con-
current programs easier for these programmers but is not generally
supported by actors and their diverse set of semantics. This makes
it critical to study and understand the relation between the seman-
tics of an actor model and sequential consistency of its programs.

Testing Understanding such a relation can help focus testing and
verification efforts. For instance, for a Pipeline actor program in an
actor model with in-order messaging and synchronous messaging
both, a programmer can decide where to focus testing by answer-
ing questions like: between in-order and synchronous, which one
prevents more sequential inconsistencies? and to trigger inconsis-
tencies, interleavings of how many actor instances and messages
should be controlled by test cases?. Complexity of a test case is
exponential in number of actor instances [25] and messages [26].

1.1 Contributions
In this paper, we quantify the relation of semantics of actor mod-

els and sequential (in)consistency of their programs, for 5 individ-
ual actor models and their combinations in 2 semantic spectrums.
For each individual model, we study the minimum number of actor
instances, with controlled interleavings, and the number of mes-
sages among them needed to trigger sequential inconsistencies. Fi-
nally we quantify the overlapping of individual actor models in pre-
venting sequential inconsistencies.

Our benchmarks are adapted from benchmarks in previous work
on actors, e.g. Basset [27], Habanero [28], Jetlang [21], and
from well-known multi-threaded benchmarks, such as NAS Par-
allel Benchmarks [29] and parallel JavaGrande [30]. The are 34
benchmark applications with different sizes and various concurrent
programming patterns [31] including: Master Worker, Loop Paral-
lelism, Pipeline and Event Based Coordination.

Individual actor models We quantify the number of sequen-
tial inconsistencies for five individual actor models: base, +sync,
+inorder, +trans and +isol, each of which focus on an individual
criterion (1)–(3). base is a model with asynchronous but no built-in
synchronous messaging for criterion (1), non-deterministic deliv-
ery and processing of messages for criterion (2), and data sharing
among actors for criterion (3). +sync adds built-in synchronous
messaging to base; +inorder adds in-order delivery and processing
of messages to base; +trans adds transitive in-order delivery and
processing to base and finally +isol adds data isolation.

Semantic spectrums We quantify sequential inconsistency
for combinations of individual actor models using two seman-
tic spectrums. The semantic spectrum (base ; base+sync

1A synchronous message could manually be implemented using
asynchronous messages [14] however, it may not be easy to detect
statically. A built-in synchronous message is syntactically different
from an asynchronous message and easy to detect.

; base+sync+inorder ; base+sync+inorder+trans) combines
various models in each point on the spectrum. It starts with base,
adds synchronous messaging of +sync in the next point, in-order
delivery and processing of +inorder, and finally transitive in-order
delivery and processing of +trans. Two variations of this spectrum
alternate in their support for data isolation and data sharing.

Actor instances and messages For testing and verification of
actor programs, we need to know what conditions are needed to
reliably trigger a sequential inconsistency. One condition that pre-
vious work studies in the context of multi-threaded programs is
the number of threads [25]. For actor programs, these conditions
are: number of actor instances, with controlled interleavings, and
the number of messages these instances exchange. Controlling in-
terleavings of a limited number of actor instances of a program,
instead of all of its instances, can greatly reduce the testing com-
plexity [25]. We quantify the minimum number of actor instances
and messages needed to trigger sequential inconsistencies, for each
individual actor model and their combinations.

1.2 Observations
Our study suggests that: semantic variations of actor models

cause sequential inconsistencies of actor programs to vary signifi-
cantly, per concurrent pattern of programs. The minimum numbers
of actor instances and messages needed to trigger sequential incon-
sistencies also vary significantly per actor model.

To illustrate, we list a few of our findings below. Section 4 dis-
cusses all of our findings and their implications in detail.
Individual actor models

1. In-order messaging of +inorder model prevents 53% more
sequential inconsistencies than a model without it.

2. Synchronous messaging of +sync prevents 89% of inconsis-
tencies of Loop Parallelism programs and none for Pipeline;

3. For Pipeline, in-order messaging of +inorder prevents 100%
of inconsistencies whereas synchronous messaging of +sync
prevents none.

Semantic spectrums
4. A semantic spectrum prevents more sequential inconsisten-

cies than any individual actor model and their combinations;

5. Data isolation prevents up to 15% more inconsistencies in
various points of spectrum.

Overlapping of actor models
6. Synchronous messaging of +sync prevents all the inconsis-

tencies that a combination of in-order messaging of +in-
order, transitivity of +trans and data isolation of +isol does.

Number of actor instances & messages
7. Controlling only 2 actor instances and 2 messages trigger

75% of sequential inconsistencies in +isol whereas they trig-
ger only 2% in +inorder;

8. Triggering 22% of inconsistencies in +sync require control-
ling more than 4 actor instances and 4 messages.

Implications Such observations are useful in focusing and reduc-
ing the complexity of testing and verification of actor programs.
For example, for a Pipeline actor program in an actor model with
support for in-order and synchronous messaging, based on obser-
vation (3), one would devise more test cases to exercise various
ordering of delivery and processing of messages and less for their
synchrony; and based on observation (7) most test cases for in-order
require controlling interleavings of more than 2 actors and 2 mes-
sages to trigger sequential inconsistencies.

2



1.3 Outline
Section 2 illustrates the relation of sequential (in)consistency and

various semantics of the underlying actor models. Section 3 defines
a happens-before [32] relation for our 5 actor models and unsafe
interleavings of actor operations leading to sequential inconsisten-
cies and discusses how sharing semantics causes different patterns
of sequential inconsistencies. Section 4 presents our study setup
and Section 5 discusses our observations and their implications in
detail. Section 6 discusses related work and Section 7 concludes.

2. PROBLEMS
This section illustrates sequential consistency and its relation to

the three criteria of message synchronization, message delivery and
processing, and sharing semantics of the underlying actor model.

1 class Server extends Actor{
2 int val = 0;
3 @message void set(int v){ val = v; }
4 @message int get(){ return val; }
5 }
6 class Client extends Actor{
7 ActorName server;
8 Client(ActorName s){ server = s; }
9 @message void start(){

10 call(server, "set", 1);
11 int v = call(server, "get");

12 assert(v == 1); // Φ
13 }
14 }

15 class Driver{
16 static void main(String[] args){
17 ActorName server, client;
18 server = createActor(Server.class);
19 client = createActor(Client.class, server);
20 call(client, "start");
21 }
22 }

Figure 1: The Client is sequentially consistent regarding the as-
sertion Φ, on line 12, if the call messages on lines 10 and 11 are
treated as synchronous messages; and is sequentially inconsistent
otherwise, when they are asynchronous. Also, it is sequentially
consistent with in-order delivery and processing of messages and
inconsistent with non-deterministic delivery and processing.

Figure 1 shows a simplified client-server example, adapted from
previous work [27] written in ActorFoundry [16], which is a JVM-
based framework for actor-oriented programming. For message
synchronization, i.e. criterion (1), ActorFoundry supports both
asynchronous send and built-in synchronous request-reply call
messaging, which is blocking; for message delivery and processing
semantics, i.e. criterion (2), it supports non-deterministic delivery
and processing as well as programmer-specified processing of the
messages [14]; and for sharing semantics, i.e. criterion (3), it guar-
antees data isolation among actors by its call-by-value messaging
or relies on the programmer when using call-by-reference.

In ActorFoundry, actors are declared by classes that extend the
Actor class, e.g. Client actor on lines 6–14, and are instanti-
ated using createActor, which returns actor instances of type
ActorName, e.g. actor instance client on line 19. Message
handlers are methods of actor classes marked with @message an-
notations, e.g. set on lines 3 is a message handler for set messages
sent to Server.

In the client-server example of Figure 1, the Server actor keeps
track of a variable val and provides access to it using two message
handlers set and get, which respectively set and return the value
of the variable. The Client actor, sets the value of val to 1
by sending the server a set message, on line 10, reads its value by
sending a get message, on line 11, and finally checks if val is
actually set to 1 using the assertion Φ, on line 12. The Driver,
the program’s entry point, creates client and server actor instances,
on lines 18–19, and initiates the execution of the client by sending
it a start message, on line 20. To send a message, using call

or send, the name of the receiving actor, message name and the
parameters for the message handler are necessary, e.g. on line 10,
server is the name of the receiving actor, "set" is the name of
the message and 1 is the parameter required by the handler of the
set message in the server actor.

Criterion (1): Message synchronization To illustrate the rela-
tion of sequential consistency and message synchronization, we as-
sume two alternative semantics for call: asynchronous and syn-
chronous messaging2. Unlike synchronous messages which are
blocking, asynchronous messages are non-blocking.

With synchronous blocking semantics for call messages, the ex-
ample of Figure 1 is sequentially consistent and the assertion Φ
holds. This is true because the blocking semantics of call messages
ensure that the set message, on line 10, is actually processed by the
server before the get message, on line 11, as suggested by the pro-
gram text. The set and get messages are both concerned about the
variable val in the server and their processing in the server could
cause sequential inconsistencies, if there is no order among them
or the order is not consistent with their appearance order in the pro-
gram text (see the definition of sequential consistency in Section 1).

However, the example of Figure 1 will not be sequentially con-
sistent if the call messages are not semantically synchronous. This
is because the set message, that appears before the get message
in the program text, may actually be processed by the server after
the get message, especially if the messages are processed in a non-
deterministic order. This in turn means that the value of the variable
v may not necessarily be equal to 1 and thus the assertion Φ could
be violated. The assertion Φ is a representative of sequential con-
sistency in Figure 1, i.e. it holds when the client server example of
Figure 1 is sequentially consistent and does not hold otherwise.

Criterion (2): Message delivery and processing semantics To il-
lustrate the relation of sequential consistency and message delivery
and processing semantics, we assume two alternative semantics for
message delivery and processing: non-deterministic and in-order.
In in-order delivery, two messages sent from one actor to another,
with no intermediate actor in the middle, are guaranteed to be deliv-
ered in the same order that they are sent; and in in-order processing,
the messages are processed in the same order they are delivered. In
non-deterministic, there is no guarantee on the delivery or process-
ing order of the messages.

With in-order delivery and processing of messages, the exam-
ple of Figure 1 is sequentially consistent, because the set and get
messages are delivered and processed in the same order they ap-
pear in the text, i.e. set before get. This is true even when call
messages are treated as asynchronous messages. However, with
non-deterministic delivery and processing and asynchronous call
messages, these two messages could be delivered to the server and
processed in any arbitrary order, including the order in which the
get message is processed before the set message. This in turn makes
the example sequentially inconsistent and violates Φ.

Criterion (3): Sharing semantics To illustrate the relation of
sequential consistency and sharing, we assume two alternative se-
mantics for sharing: data sharing among actors and data isolation.

In ActorFoundry, an actor cannot directly access the internal
state of another actor. This in turn means that data sharing among
actors can only happen through messaging [33]. Consequently,
call-by-value messaging guarantees data isolation whereas call-by-
reference messaging allows data sharing among actors. Figure 2
shows a modified version of the previous client server example in
which the server keeps track of an object val, on line 3, instead of

2This is for illustration purposes only, otherwise we treat call
messages as synchronous and send messages as asynchronous as
specified by the semantics of ActorFoundry.

3



its primitive counterpart in Figure 1. The omitted client and driver
code remains the same.

1 class Value{ int num; }
2 class Server extends Actor{
3 Value val;
4 @message void set(int v){ val.num = v; }
5 @message void init(Value v){ val = v; }
6 }
7 class Client extends Actor{
8 ActorName server;
9 Client(ActorName s){ server = s; }

10 @message void start(){
11 Value val = new Value();

12 call(server, "init", val);
13 call(server, "set", 1);
14 val.num = 2;

15 assert(val.num == 2); // Φ
16 }
17 }

Figure 2: The Client is sequentially consistent, regarding the
assertion Φ, on line 12, if the client and server actors are isolated
and is sequentially inconsistent otherwise, when they share data.

With data sharing among actors, the example of Figure 2
is sequentially inconsistent, especially if the call messages are
asynchronous and messages are delivered and processed non-
deterministically. This is because the call-by-reference semantics
of the initialization call, on line 12, allows the client object val to
be shared between the client and the server, and the asynchronous
semantics of call messages allows the assignment, on line 14, to run
before the processing of the set message on the server, on line 13.
This in turn could result in values, e.g. 1, for the variable val.num
and thus violate the assertion Φ, on line 15.

However, with data isolation among actors, the example of Fig-
ure 2 is sequentially consistent, with regard to the assertion Φ. This
is because the call-by-value semantics, especially for the initializa-
tion message, on line 12, avoids sharing of val between the client
and the server by sending a deep copy of val to the server.

Summary As illustrated, an actor program, such as the client-
server examples of Figure 1 and Figure 2, can be sequentially con-
sistent or inconsistent, or in more general terms have a varying
number of sequential inconsistencies depending on the semantics
of its underlying actor model, regarding criteria (1)–(3) of message
synchronization, message delivery and processing and sharing.

3. SEQUENTIAL CONSISTENCY FOR AC-
TOR MODELS

This section discusses our static analysis of an actor program for
sequential inconsistencies. It defines a happens-before [32] relation
among actor operations for actor models base, +sync, +inorder,
+trans and +isol; It also defines unsafe interleavings of actor op-
erations that could lead to sequential inconsistencies. Finally this
section discusses how sharing semantics among actors could lead
to different patterns of sequential inconsistencies.

Our static analysis of an actor program for sequential inconsis-
tencies has two phases:

• construction of a system graph, that encodes message ex-
changes among actors, and a conservative approximation of
their read and write memory effects; and

• analyzing the system graph, for sequential inconsistencies,
for various options of criteria (1)–(3); their various combina-
tions and number of actors and messages involved.

The system graph for an actor program is simply an alternative
representation of the program that makes it easier to study its se-
quential consistency by encoding actor instances of the program,
their message exchanges, types of messages exchanged among ac-
tors, as in asynchronous or synchronous, and their memory effects.

After the construction of the system graph of a program, the anal-
ysis looks for unsafe interleaving of actor operations, which could
lead to sequential inconsistencies, for each individual actor model.

Although the conversion of an actor program to its correspond-
ing system graph is dependent on the syntax of its actor language,
the system graph does not encode the semantics of the underlying
actor model and thus is independent from the actor programming
language. In this section we focus on the analysis of the system
graph for sequential inconsistencies. Section 4 discusses conver-
sion of actor programs to their representative system graphs, for
the specific actor language of Panini [18].

3.1 Unsafe Interleavings
Definition 1 defines an unsafe interleaving of actor operations,

which in turn could lead to a sequential inconsistency.

DEFINITION 1. (Unsafe interleavings of actor operations)
Let op1 and op2 be operations in the program text of an actor in-
stance A such that op1 appears before op2 in the program text and
these operations send messages to other actors, directly or indi-
rectly, causing the execution of two other operations op′1 and op′2;
Then op1 and op2 compose an unsafe interleaving if:

• op′1 and op′2 are concurrent, i.e. there does not exist a
happens-before [32] ordering relation between them; and

• op′1 and op′2 have conflicting memory effects.

Two memory effects conflict if they both are concerned about the
same memory location and at least one of them is a write effect [5].

3.2 Happens-Before Relation
A happens-before relation defines an order among operations

of an actor program. Definition 2 defines the happens-before re-
lation for our 5 actor models, discussed in Section 1. In this
definition sending of a message, is broken into MsgSend and
MsgReturn operations and the processing of the message is bro-
ken into MsgStart and MsgEnd .

DEFINITION 2. (Happens-before relation ≺)
Let Op(o, i ,A) be the operation o at the position i in the pro-
gram text of an actor instance A. Let MsgSend(m,A,A′) be
sending of the message m from the actor instance A to A′,
MsgStart(m,A,A′) and MsgEnd(m,A,A′) be the start and
end of the processing of the message m in A′ sent from A, and
MsgReturn(m,A,A′) be the returning to A from the processing
of the message m in A′; and Handler(m,A′) be the handler of
message m sent to A′. Let ≺ denote the happens before relation.

Then in the base model:

1. if i < j, then Op(o, i ,A) ≺ Op(o′, j ,A)

2. MsgSend(m,A,A′) ≺MsgStart(m,A,A′)

3. MsgSend(m,A,A′) ≺MsgReturn(m,A,A′)

4. MsgStart(m,A,A′) ≺MsgEnd(m,A,A′)

5. if Op(o, i ,A′) ∈ Handler(m,A′)
then MsgStart(m,A,A′) ≺ Op(o, i ,A′) and Op(o, i ,A′)
≺MsgEnd(m,A,A′)

For synchronous messaging in +sync model:

6. MsgEnd(m,A,A′) ≺MsgReturn(m,A,A′)

For in-order delivery and processing of messages in +inorder
model:

4



7. if MsgSend(m,A,A′) ≺ MsgSend(m ′,A,A′) then
MsgEnd(m,A,A′) ≺MsgStart(m ′,A,A′)

And finally for transitive in-order delivery and processing in the
+trans model:

8. if MsgSend(m,A,A′) ≺ MsgSend(m1 ,A,B1 ) and
MsgSend(m1 ,A,B1 ) ≺ MsgSend(m2 ,B1 ,B2 ) ≺ . . .≺
MsgSend(mn ,Bn−1 ,Bn) ≺MsgSend(m ′,Bn ,A

′) then
MsgEnd(m,A,A′) ≺MsgStart(m ′,Bn ,A

′).

The happens-before relation ≺ is transitively closed [34].
Definition 2 says that in base model, (1) an operation happens-

before another operation if the former appears before the latter in
the program text of an actor; (2) sending of a message in the sender
actor happens-before the start of its processing in the receiver ac-
tor and (3) sending of the message happens-before its returning; (4)
start of the processing of a message also happens-before the end
of its processing, and (5) start of the processing of the message
happens-before any operation in the message handler of the mes-
sage. Figure 1 illustrates the message handler set in the server
actor, line 3, that handles set messages sent from the client actor.

The +sync model adds the synchronous messaging to base.
Breaking down the message into its sending and processing is es-
pecially useful to model happens-before relation of synchronous
messages. Definition 2 says that in +sync (6) for a synchronous
message, unlike asynchronous messages, the end of the processing
of a message happens-before the returning of the message. This
is not true for asynchronous messages where the message returns
right after it is sent, independent of the start and end of its process-
ing. It is worth to note that, the happens-before relations of base
are all included in the happens-before relations of +sync, as well as
other models, which are built on top of it.

The +inorder model adds in-order delivery and processing of the
messages to the base. Definition 2 says that in +inorder (7) for two
messages sent to another actor directly, with no other actor in the
middle, the first message is delivered first and processed first and
thus the end of its processing happens-before the start of the pro-
cessing of the second message. The +trans model adds transitivity
of the delivery to the +inorder. Definition 2 says that in +trans
for two messages sent to another actor in which the first message
is sent directly and the second message is sent indirectly through
one or more actors in the middle, the first message is delivered and
processed before the second message [35]. The indirect sending of
one of the messages is critical to transitivity of in-order. Figure 3
shows the happens-before relation for the client server example of
Figure 1, for two models base and +sync.

3.3 Analysis of Sequential Inconsistencies
Our analysis statically infers a happens-before relation among

actor operations, as defined in Definition 2, and finds unsafe in-
terleavings of actor operations based on their happens-before re-
lations. For each individual actor model, the analysis uses its
happens-before relations as defined in Definition 1. To decide if
memory effects of operations conflict, the analysis takes into ac-
count the sharing semantics of actors in the underlying actor model.

To illustrate the analysis, consider the client-server example of
Figure 1. Figure 3 shows the happens-before relation of this exam-
ple for two models base and +sync. In base, there is no happens-
before relation between the set and get server operations on val
and thus they are concurrent. Since these two operations write and
read the value of the same location val they are conflicting and
thus form an unsafe interleaving that leads to a sequential incon-
sistency. However, in +sync there is a happens-before relation be-
tween the set and get operations on val which in turn means there

MsgSend(set,client,server)
MsgStart(set,client,server)

MsgReturn(set,client,server)

val = v

MsgEnd(set,client,server)

MsgSend(get,client,server)
MsgStart(get,client,server)

MsgReturn(get,client,server)

return val

MsgEnd(get,client,server)

Figure 3: Happens-before relations ≺ for the example of Figure 1.
Solid arrows show the happens-before relation for base model.
Dashed arrows and solid arrows together show the happens-before
relation for +sync. In base, there is no happens-before relation be-
tween the read and write server’s operations on val, in grey boxes.

is no unsafe interleaving of set and get operations and consequently
no sequential inconsistencies.

3.4 Patterns of Sequential Inconsistencies &
Sharing Semantics

Sharing semantics of the underlying actor model causes different
patterns for unsafe interleaving of actor operations, namely: (i) pair
path pattern and (ii) diamond pattern. Our analysis looks for differ-
ent patterns of unsafe interleavings of actor operations, depending
on the sharing semantics of the underlying actor model. Figure 4
shows these patterns of unsafe interleavings.

A

B D

C E

opb

opc

opd

ope

op1

op2

(a) Data sharing & path pair pattern

A

B D

C E

op1

op2

opb

opc

opd

ope

F

opf1

opf1

(b) Data isolation & diamond pattern

Figure 4: Patterns of unsafe interleavings and sharing semantics.
Operations of shaded actors could cause sequential inconsistencies.

With data sharing among actors, the analysis looks for pair path
pattern. In this pattern, if two operations op1 and op2 in an ac-
tor instance A start two message exchange paths among other ac-
tor instances, then any pair of operations op′1 and op′2 on these
two paths, written as (op′1, op

′
2), could form an unsafe interleav-

ing, provided there is no happens-before relation between them
and their memory effects conflict. Figure 4(a) illustrates this sit-
uation in which op1 and op2 in the actor instance A send out mes-
sages to actor instances B and C, causing the operations opb and
opc to execute, which in turn send messages to D and E, caus-
ing operations opd and ope to execute. The operations op1 and
op2 start message exchange paths opb → obd and opc → obe.
With the underlying actor model support for data sharing among

5



actors, any pairs of operations on these two paths, i.e. any pairs
in the set {(opb, opc), (opb, ope),(opd, opc), (opd, ope)}, could
cause sequential inconsistencies if there is no happens-before re-
lation among them and their effects conflict.

Unlike looking for path pair patterns in actor models with data
sharing among actors, for actor models with data isolation, the
analysis looks for diamond pattern. In this pattern, for two op-
erations op1 and op2 in an actor instance that start two mes-
sage exchange path, at most one pair of operations (op′1, op

′
2)

on these two path could form an unsafe interleaving, provided
that these two path lead to the same actor instance with oper-
ations op′1 and op′2 and there is no happens-before relation be-
tween these operations and their memory effects conflict. Fig-
ure 4 (b) illustrates this situation in which the data isolation se-
mantics guarantees that the effects of any pairs of operations
in {(opb, opc), (opb, ope),(opd, opc), (opd, ope)} are isolated and
thus do not cause any sequential inconsistency. The only pair of op-
erations that could cause a sequential inconsistency is (opf1, opf2)
which are in the same actor F . Interestingly, the path pair pattern
does not cause any sequential inconsistency if the underlying actor
model supports data isolation.

To check for sequential inconsistencies in Figure 4(a) with data
sharing, all the pairs of operations on the two message exchange
paths with no happens-before relation among their operations must
be computed and checked for conflicts. In contrast to check for se-
quential inconsistencies in Figure 4(b) only the effects of the pair
(opf1, opf2) should be computed if there is no happens-before re-
lation among them. With data isolation among actors, to check for
sequential inconsistencies in Figure 4(a) there is no computation
of happens-before relations and effects of operations for conflict
required, since it does not form a diamond.

4. EVALUATION
In this section, we quantify and study the relation of sequential

consistency and the semantics of the underlying actor model re-
garding individual and combined effects of criterion (1) message
synchronization, criterion (2) message delivery and processing se-
mantics and criterion (3) sharing semantics among actors. We also
quantify the minimum number of actor instances and messages that
their interleaving should be controlled to reliably trigger sequential
inconsistencies. Such quantifications can help in focusing testing
and verification efforts of actor programs.

4.1 Study Setup
To look at the relation of sequential (in)consistency and the num-

ber of actor instance and messages involved with criteria (1)–(3) in-
dividually, we consider the following 5 variations of actor models:

1. base: the model has asynchronous messaging, no built-in
synchronous messaging, non-deterministic delivery and pro-
cessing of messages and data sharing among actors;

2. +sync: adds built-in blocking synchronous messaging to
base, in addition to its asynchronous messaging;

3. +inorder: adds in-order delivery and processing of messages
to base;

4. +trans: adds transitive in-order delivery and in-order pro-
cessing of messages to base; and

5. +isol: adds data isolation among actors to the base model.

We also look at combinations of these models on various points
of semantic spectrums. A semantics spectrum starts by base, adds

synchronous messaging of +sync in the next point of the spectrum,
followed by the addition of in-order message delivery and process-
ing of +inorder, and finally adds up transitive in-order delivery of
+trans. A semantic spectrum adds up happens-before relations, as
defined in Definition 2, from one point to the next point in the spec-
trum. We consider two variations of such spectrum that alternate on
their sharing semantics among actors:

6. (base ; base+sync ; base+sync+inorder ;
base+sync+inorder+trans) with data sharing.

7. (base ; base+sync ; base+sync+inorder ;
base+sync+inorder+trans) with data isolation.

We refactor our benchmark applications to actor programs in the
actor language of Panini [18] and then convert these programs into
their corresponding system graphs. System graphs allow analysis
of these programs for sequential inconsistencies, using the analysis
discussed in Section 3, independent of their implementation lan-
guage of Panini. The initial set of sequential inconsistencies com-
puted using our analysis is manually verified and its false positives
are disposed of.

Panini actor language Panini proposes capsule-oriented pro-
gramming [18] in which capsules, similar to actors, have their own
thread of control, and communicate via asynchronous or built-in
synchronous messages. Capsule methods are similar to message
handlers in actors and sending of messages are modeled as invoca-
tions of capsule methods. A Panini program is a set of capsule dec-
larations and a system declaration that declares capsule instances,
and its execution starts with run methods of its capsule instances.

Figure 5 shows the client-server example of Figure 1 imple-
mented in Panini. The figure shows the declaration of capsules
Server, on lines 1–5, and Client, on lines 6–12. It also shows
the system declaration, on lines 14–18 with capsule instance decla-
rations for client, on line 16 and server, on line 15. Line 17
connects the client and servers instances.

System graph construction Conversion of a Panini program to
its corresponding system graph and especially computation of its
actor instances and their message exchanges, is rather straightfor-
ward. This is because in Panini, capsule instances are statically
specified in the system declaration and cannot be stored or passed
among capsules and there is no subtyping relation among capsule
types. To compute the memory effects of actors, we use a sound
alias analysis technique based on object graphs [36], in which two
object graphs alias each other, if there exist objects in the graphs
that alias each other.

1 capsule Server {
2 int val = 0;
3 void set(int v) { val = v; }
4 int get() { return val; }
5 }
6 capsule Client(Server server) {
7 void work() {
8 server.set(1);
9 int v = server.get();

10 assert(v == 1);

11 }
12 }

13 capsule Driver {
14 design {
15 Server server;
16 Client client;
17 client(server);
18 }
19 void run() {
20 client.work();
21 }
22 }

Figure 5: The client-server example of Figure 1 written in the actor
language of Panini [18].

Benchmarks Figure 6 shows the list of 34 small to large size
benchmarks application used in our study, that constitute more than
130,000 lines of code. The benchmark applications are adapted and
refactored to Panini [18] from: previous work, including Basset
[27], Habanero [28], Jetlang [21]; well-known benchmarks, includ-
ing NAS Parallel Benchmarks [29] and parallel JavaGrande [30];
and examples shipped with the Panini compiler [37]. The bench-
marks use a variety of parallel programming patterns [31] including

6



Master Worker (MW), Loop Parallelism (FL), Pipeline (PL) and
Event Based Coordination (EC).

Refactoring to Panini Refactoring of benchmarks to Panini pro-
grams follows a very strict set of non-intrusive, mostly syntax re-
lated, steps. For multi-threaded programs these steps are: (i) refac-
tor thread objects to capsule instances; (ii) refactor synchronized
methods and blocks to capsule methods; (iii) create capsule fields
for top-level class instances. For actor programs, not implemented
in Panini, these steps are: (i) refactor actors to capsules (ii) refac-
tor actor message handlers to capsule methods and message sends
to invocation of capsule methods; (iii) create actor instances of the
program in its system declaration.

5. OBSERVATIONS & IMPLICATIONS
In this section we discuss our observations for (i) the relation

of sequential (in)consistency and (ii) the number of actor instance
and messages involved with our 5 individual actor models and their
combinations into 2 spectrums. We also discuss how these obser-
vations could be used in focusing testing and verification efforts.

5.1 Individual Actor Models
Figure 6 and its bar chart representation in Figure 7 show the

number of sequential inconsistencies for 5 actor models of base,
+sync, +inorder, +trans and +isol for benchmark applications per
concurrent patterns. Figure 6 shows the following trends in actor
programs of various patterns.

5.1.1 Event Based Coordination
For applications of this pattern, +inorder model prevents the

most number of sequential inconsistencies (47%); and +isol (0%)
and +trans (3%) prevent the least.

• This implies that for testing of Event Based Coordination ac-
tor programs, one would need to put more focus on exercis-
ing various ordering of delivery and processing of messages
for in-order and less for data isolation, transitivity of mes-
sages and even their synchrony. Such testing efforts could be
proportionally budgeted based on percentage share of each
criteria in prevention of sequential inconsistencies, e.g. 47%
for in-order versus 3% of transitivity.

In-order messaging of +inorder prevents the most number of se-
quential inconsistencies, because Event Based Coordination [31]
applications, usually involve multiple iterations where in each it-
eration, the same set of messages is exchanged among the same
set of actor instances; and the processing of messages of one it-
eration should be ordered before the messages of its subsequent
iterations. In-order messaging guarantees such ordering for each
iteration. Synchronous messaging of +sync helps with sequen-
tial consistency of check-then-act idiom [38], in Barbershop and
Philosopher applications, where it ensures that a check message
blocks the execution of its act message until the check message is
processed and returns its result.

Data isolation of +isol prevents the least number of inconsis-
tencies, because programmers manually enforce data isolation or
messages exchanged among actors are composed of primitive val-
ues. Transitivity of +trans is not very important too, because sys-
tem graphs of these applications, except Barbershop, do not include
triangle patterns. In a triangle pattern, an actor instance A sends
a message to actor instance A′ directly and sends another message
to A′ indirectly through one or more intermediate actors. Triangle
patterns are beneficiaries of transitivity of message delivery [35].

Applications LOC base +sync +inorder +trans +isol

E
C

Bank 42 6 6 4 6 6
Barbershop 82 15 11 9 14 15

Factorial 28 0 0 0 0 0
Philosophers 60 8 5 3 8 8

Pi 47 0 0 0 0 0
SC 39 2 2 1 2 2

Signature 20 0 0 0 0 0
PingPong 46 0 0 0 0 0

ThreadRing 34 0 0 0 0 0
Server 39 1 1 0 1 1

Total 32 25 17 31 32
(↓22%) (↓47%) (↓3%) (↓0%)

Unresolved 16 (50%)

FL

BT 34,804 55 5 25 55 30
CG 3,434 4 0 2 4 2
FT 4,831 11 2 5 11 4
IS 913 4 0 2 4 2
LU 36,736 101 7 45 101 56
MG 7,818 22 0 18 22 4
SP 28,098 72 6 30 72 42

LUFact 1,737 4 1 2 4 2
MolDyn 2,417 21 5 3 21 18
Series 873 1 1 1 1 0
SOR 771 4 4 4 4 2

Matmult 818 1 1 1 1 0
Crypt 1,567 3 1 1 3 1

RayTracer 2,303 0 0 0 0 0
MonteCarlo 2,252 2 1 2 2 0

Pi 51 1 1 0 1 1

Total 306 35 141 306 164
(↓89%) (↓54%) (↓0%) (↓46%)

Unresolved 0 (0%)

PL

Histogram 44 3 3 0 3 3
Pipeline 70 5 5 0 5 5

Download 68 3 3 0 3 3
Pipesort 50 3 3 0 3 3
Prime 57 7 7 0 7 7

Total 21 21 0 21 21
(↓0%) (↓100%) (↓0%) (↓0%)

Unresolved 0 (0%)

M
W

Fibonacci 55 1 1 1 1 1
PiPrec 143 11 11 9 11 11
Sudoku 349 24 24 19 19 23

Total 36 36 29 31 35
(↓0%) (↓19%) (↓14%) (↓3%)

Unresolved 23 (64%)
Total 130,696 395 117 187 389 252

(↓70%) (↓53%) (↓2%) (↓36%)
Unresolved 39 (10%)

Figure 6: Quantification of sequential inconsistencies over individ-
ual actor models and their prevention of sequential inconsistencies
percentage-wise. Programs are of concurrent programming pat-
terns [31] of (MW): Master Worker, (PL): Pipeline, (FL): Loop
Parallelism and (EC): Event Based Coordination.

5.1.2 Loop Parallelism
For this pattern, +sync prevents the most number of sequen-

tial inconsistencies (89%) followed by +inorder (54%) and +isol
(46%) and +trans prevents none (0%).

• The implication here is that for Loop Parallelism actor pro-
grams less testing effort is required for transitivity; and
maybe twice the effort is needed for testing synchrony com-
pared to isolation because there are almost twice the number
of sequential inconsistencies causes by absence of the former
compared to the latter.

Loop Parallelism [31] applications usually involve an implicit
synchronization point (barrier synchronization [39]), that synchro-
nizes all iterations of a loop before proceeding. The synchronous

7



messaging of +sync enables easy enforcement of such synchroniza-
tion points. In-order messaging of +inorder helps with ordering
messages of different loops according to the order of appearance of
the loops in the program text. Extensive use of call-by-reference
messages, to avoid copying of data, in turn makes +isol important
in the prevention of sequential inconsistencies. System graphs for
these applications do not contain triangle patterns and thus +trans
is the least beneficial to these applications.

5.1.3 Pipeline
For this pattern, +inorder prevents all sequential inconsistencies

(100%) and +sync, +trans and +isol prevent none (0%) with the
implication being that the focus of testing should mostly be on in-
order delivery and processing of the messages.

In Pipeline [31] applications, each stage of the pipeline should
processes messages in the same order they are delivered which
in turn makes +inorder the most important for these applications.
The shared data between the pipeline stages is restricted to be
a sequence (stream) and stage actors do not reuse the data af-
ter they processes it. This in turn makes +isol less important for
pipeline applications which also corroborates findings of previous
work [39]. Since a stage actor does not synchronize with its sub-
sequent stage actors, then +sync is not very important too. Finally
the lack of triangle patterns in linear system graphs of these appli-
cations renders +trans less important.

5.1.4 Master Worker
For this pattern, +inorder prevents the most number of sequen-

tial inconsistencies (19%), followed by +trans (14%); and +sync
(0%) and +isol (3%) prevent the least. The implication being that
testing of in-order messaging and its transitivity may need the same
amount of effort.

In Master Worker [31] pattern, usually the master actor initializes
worker actors, assigns work to them and shuts them down using
different kinds of messages. These messages should be processed
by the workers in the same order they are sent which in turn makes
+inorder more important. Unlike other patterns, the system graphs
for these applications usually contain more triangle patterns which
in turn makes +trans important. +isol is less important because
master and worker actors do not share data with each other.

5.1.5 Unresolved sequential inconsistencies
Figure 6 shows that there are sequential inconsistencies that can-

not be prevented by any individual models base, +sync, +inorder,
+trans and +isol, i.e. they are unresolved. Interestingly, combina-
tion of these models into semantic spectrums, in Section 5.4, does
not prevent these inconsistencies either. Stronger guarantees such
as commutativity of operations can prevent some of these incon-
sistencies, e.g. in Master Worker applications, 78% of sequential
inconsistencies could be prevented by commutativity guarantees.
Two operations are commutative, if they can be executed in any
order without affecting the outcome of their execution [40].

5.1.6 Summary
+inorder prevents the most number of sequential inconsisten-

cies for Event Based Coordination, Pipeline and Master Worker ap-
plications whereas +sync prevents the most for Loop Parallelism.
+trans prevents no sequential inconsistencies in Loop Parallelism
and Pipeline and +isol prevents none in Event Based Coordination
and Pipeline. These observations can be used to appropriately bud-
get testing and verification efforts and resources and focus on one
criteria more than the other when testing for inconsistencies.

5.2 Number of Actor Instances and Messages

Figure 8 shows the minimum number of actor instances and their
messages, whose interleavings should be controlled to reliably trig-
ger sequential inconsistencies.

The implication is that, for testing, one would use these num-
bers to control only a limited number of actor instances and their
messages, instead of controlling all actor instance and messages in
an actor program, and thus reduce the complexity of testing. The
complexity of a test case is exponential in the number of actor in-
stances it should control their interleavings [25] and the number of
messages among them [26]. Figure 8 shows the number of actor
instances and messages for each individual model. Similar quan-
tifications for each individual model per concurrent programming
patterns, as well as for semantic spectrums are excluded for space
reasons and can be found in Section 8.

Figure 8 suggests following trends for individual actor models.

5.2.1 Number of Actor Instances
78% of sequential inconsistencies of actor programs in +isol can

be triggered by controlling the interleavings of only 2 actor in-
stances. More generally, controlling the interleavings of only 2
actor instances can trigger more than half of the inconsistencies in
+isol (78%), +trans (60%), base (59%) and +sync (52%).

• The implication is that test cases for actor programs of these
models can reliably trigger more than half of their sequential
inconsistencies with minimal complexity, i.e. controlling the
interleavings of only 2 actors.

5.2.2 Number of Messages
For the number of messages, test cases triggering sequential in-

consistencies need only 2 messages to reveal more than three quar-
ters of sequential inconsistencies in +trans (77%), base (76%) and
+isol (75%). In contrast, using only one message, triggers 17%
of inconsistencies in +inorder and only 8% in base, 3% in +sync
and none in +isol. Inconsistencies triggered using one message are
ones in which an actor A sends out a message and effects of pro-
cessing that message by other actors conflicts with the rest of A.

• The implication here is that, using only one message to have
minimal complexity, does not trigger the majority of sequen-
tial inconsistencies in any of the actor models.

5.2.3 Combined Actors and Messages
Using only 2 actor instances and 2 messages, 75% of sequential

inconsistencies in +isol and 49% in +trans and base, are triggered.
In contrast, such combination of actor instances and messages, only
triggers 2% of inconsistencies in +inorder. Triggering about half
of inconsistencies in +inorder requires up to 3 actor instances and 3
messages, the other half needs more actor instances and messages.

This implies that for the same amount of sequential inconsisten-
cies, test cases in +inorder are more complex than test cases for
+isol, +trans or base, mainly because they need more actor in-
stances and messages to trigger a sequential inconsistency.

5.3 Overlapping of Actor Models
Another observation is that there are sequential inconsistencies

that could be prevented using only one model, making the model
critical for their prevention, while there are others that could be
prevented in more than one model. A model is critical to an actor
program, if there are inconsistencies in the program that can only be
prevented using that model and not other models. Figure 6 contains
both kinds of these sequential inconsistencies.

Figure 9 illustrates overlapping of the individual actor models
in prevention of sequential inconsistencies quantified in Figure 6.

8



1

10

100
P
i

Si
gn
at
u
re

P
in
gP
o
n
g

Th
re
ad
R
in
g

Fa
ct
o
ri
al

Se
rv
e
r

SC

B
an
k

P
h
ilo
so
p
h
e
rs

B
ar
b
e
rs
h
o
p

R
ay
Tr
ac
er P
i

Se
ri
es

M
at
m
u
lt

M
o
n
te
C
ar
lo

C
ry
p
t

C
G IS

LU
Fa
ct

SO
R FT

M
o
lD
yn

M
G B
T SP LU

Fi
b
o
n
ac
ci

P
iP
re
c

Su
d
o
ku

H
is
to
gr
am

D
o
w
n
lo
ad

P
ip
es
o
rt

P
ip
el
in
e

P
ri
m
e

EC FL MW PL

base sync inorder trans isol

Figure 7: Sequential inconsistencies of actor programs of various actor models and concurrent patterns. Vertical axis uses logarithmic scale.

PPPPPPMessages
Actors base +sync +inorder +trans +isol

2 3 4+ Total 2 3 4+ Total 2 3 4+ Total 2 3 4+ Total 2 3 4+ Total
1 8% 0% 0% 8% 3% 0% 0% 3% 17% 0% 0% 17% 8% 0% 0% 8% 0% 0% 0% 0%
2 49% 27% 0% 76% 43% 2% 0% 44% 2% 19% 0% 20% 49% 28% 0% 77% 75% 0% 0% 75%
3 0% 1% 0% 1% 0% 2% 0% 2% 0% 11% 0% 11% 0% 0% 0% 0% 0% 1% 0% 1%

4+ 2% 6% 7% 15% 7% 21% 23% 51% 5% 37% 9% 51% 2% 6% 7% 15% 3% 10% 11% 24%
Total 59% 34% 7% 52% 25% 23% 24% 67% 9% 60% 33% 7% 78% 11% 11%

Figure 8: Quantification of minimum number of actor instances messages to reliably trigger sequential inconsistencies.

The overlap area of two models shows the number of sequential
inconsistencies prevented by either model.

Figure 9 suggests the following trends.

5.3.1 Event Based Coordination
For this pattern, all inconsistencies prevented by +sync can also

be prevented using a combination of (+inorder and +trans). There
are also inconsistencies (57%), in Figure 9, that can only be pre-
vented using +inorder which makes it critical to this pattern.

• This implies that test cases can focus on the combination of
(+inorder and +trans) rather than +sync and still test for all
inconsistencies prevented by +sync.

5.3.2 Loop Parallelism
For this pattern, there is no overlapping and all inconsistencies

prevented by +sync can also be prevented by a combination of
(+inorder and +isol). There are inconsistencies that can only be
prevented using +inorder or +isol, making them critical. This im-
plies testing can focus on the combination (+inorder and +isol),
ignore +sync and +trans, and still test for all sequential inconsis-
tencies

5.3.3 Pipeline
For this pattern, all sequential inconsistencies are prevented us-

ing +inorder. The implication being that testing can focus only on
+inorder and ignore the other criteria.

5.3.4 Master Worker
For applications of this pattern, +inorder, +trans and +isol are

all critical, which in turn implies that testing should focus on the
combination of (+inorder and +trans and +isol) and ignore +sync.

• Another implication is that, when focusing test efforts, one
may want to consider not only the number of sequential in-
consistencies prevented by a model but also if it is a critical
model to a pattern. For instance, for Master Worker, +isol
prevents only 3% of sequential inconsistencies but there are
inconsistencies that only +isol can prevent and thus it makes
sense to test for isolation along with in-order and synchrony.

5.3.5 Summary
For Event Based Coordination and Loop Parallelism all sequen-

tial inconsistencies prevented by +sync are also prevented by com-
binations of other models and for Pipeline and Master Worker
+sync does not prevent any inconsistencies. This implies that
+sync does not need to be tested at all if other criteria are tested.
In-order messaging of +inorder is critical to all patterns and data
isolation of +isol is critical to Loop Parallelism and Master Worker.
Test efforts should not only consider the number of inconsistencies
prevented by a model, but also if the model is a critical one.

5.4 Semantic Spectrums of Actor Models
Figure 10 shows the number of sequential inconsisten-

cies for various combinations of individual actor model, re-
garding criteria (1)–(3), in two semantic spectrums of ac-
tor models: (base ;base+sync ;base+sync+inorder ;

base+sync+inorder+trans) with data sharing and data isolation.
Figure 10 suggests the following trends: (i) in all patterns of eval-

uation applications, the number of sequential inconsistencies drops
as the happens-before relations add up through the spectrum points.

9



6 

0 0 
0 

9 0 

0 

1 
0 

(a) EC

136 

0 134 
3 

28 0 

5 

0 
0 

(b) FL

0 

0 0 
0 

21 0 

0 

0 
0 

(c) PL

0 

0 0 
0 

7 0 

1 

0 
5 

(d) MW
sync inorder trans isol 

Figure 9: Overlapping of various actor models in preventing sequential inconsistencies (Note: circles not drawn to scale).

1

10

100

EC / EC(i) FL FL(i)PL / PL(i)MW MW(i)

32 

25 

16 16 
21 

21 
0 0 

306 

35 

1 1 

164 

30 

0 0 

36 36 
29 24 

35 35 
28 23 

0

50

100

150

200

250

300

350

base +sync +sync+inorder +sync+inorder+trans

EC / EC(i) PL / PL(i) FL FL(i) MW MW(i)

Figure 10: Relation of sequential inconsistency and semantics
spectrums. Each spectrum point shows two numbers per pattern,
one number with data sharing, and one with data isolation (i).

This is expected because addition of more happens-before relations
decreases the chances of two operations running in concurrent, i.e.
with no happens-before relation between them. This in turn de-
creases the chances of unsafe interleaving of operations leading to
sequential inconsistencies; (ii) another observation is that data iso-
lation prevents more sequential inconsistencies in Loop Parallelism
in base than other patterns and models. (iii) and addition of data iso-
lation to different points in a semantic spectrum prevents up to 15%
more sequential inconsistencies for the point [41].

5.5 Threats to Validity
The external validity of our study is limited by our choice of

actor programs. These actor programs are chosen from either pre-
vious work or well-known concurrent benchmarks, however, we
cannot claim that they form an exhaustive set of all typical actor
programs. Another threat to external validity is that the same ac-
tor program is not implemented in various concurrent patterns and
there is an uneven distribution of sequential inconsistencies among
actor programs of different patterns.

The internal validity of our study could be threatened by our
refactoring process to adapt actor programs of previous work and
multi-threaded benchmarks to Panini [18] though our well-defined
refactoring is designed to be mostly syntactic and as minimally in-
trusive as possible. Another threat to internal validity is that, our
analysis does not statically detect manual implementations of syn-
chronous messages using asynchrony [14], in-order delivery and
processing and transitive in-order delivery, by programmers.

6. RELATED WORK
Sequential consistency Grace [42] proposes a transactional

memory technique to manage multi-threaded programs and enforce
sequential semantics to avoid concurrency bugs such as race con-
ditions or atomicity violations. Safe Futures [43] provide a sem-

blance of sequential semantics for multi-threaded programs by us-
ing object versioning and task revocations. Lamport [44] proposes
requirements for shared memory multiprocess programs to guaran-
tee correctness regarding sequential consistency. Qadeer [45] and
Cain et al. [46] propose model checking techniques for sequential
consistency. However, these works are not focused on studying the
relation of sequential consistency and semantics of actor models.

Testing and model checking of actor programs Lauterburg et
al. [27] proposes Basset to explore possible interleaving of transi-
tions of actor programs. Sen and Agha [47] propose jCute to ex-
plore behaviors of actor programs using concolic execution for test
generation and deadlock detection. Fredlund and Svensson pro-
pose McErlang [48] to model check distributed and fault tolerant
Erlang programs for safety and liveness properties. Tasharofi et
al. [49] proposes Setac for testing Scala Actor programs using user
specified constraints on non-deterministic schedule of message ex-
changes; and proposes Bita [50] for testing actor programs using
higher coverage scheduling. Bordini et al. [51] propose a trans-
lation from the actor language AgentSpeak into Java to enable its
model checking by Java PathFinder (JPF). Other previous works
such as those of Artho and Garoche [52], Barlas and Bultan [53],
Stoller [54] and Hughes et al. [55] propose model checking tech-
nique for distributed and networked systems using existing model
checking tools such as JPF, etc. However, previous work is mostly
concerned about testing and model checking of actor or distributed
programs and is not focused on studying the relation of sequential
consistency and semantics of actor models.

7. CONCLUSION AND FUTURE WORK
In this work we quantifiably showed how sequential inconsisten-

cies of actor programs vary based on semantic variations of their
underlying actor models. Such quantification helps a programmer,
especially a sequentially-trained programmer writing concurrent
actor programs, to answers questions such as: where to focus test-
ing, between in-order messaging and synchronous messaging, in a
Pipeline actor programs in a model with support for both; and in-
terleavings of how many actor instances and their messages should
be controlled to reveal most of sequential inconsistencies with the
least complexity. One venue for future work is to study other prop-
erties of actor models in addition to sequential consistency.

8. ACKNOWLEDGEMENT
Authors were supported by NSF grants CCF-11-17937, CCF-10-

17334 and CCF-08-46059. We would like to thank Sean L. Mooney
and Bryan Shrader for their help with some refactoring.

10



9. REFERENCES
[1] Sutter, H., Larus, J.: Software and the concurrency

revolution. Queue’05 3(7)
[2] Adve, S.V., Gharachorloo, K.: Shared memory consistency

models: A tutorial. Computer’96 29(12)
[3] Raynal, M., Vidyasankar, K.: A distributed implementation

of sequential consistency with multi-object operations. In:
ICDCS’04

[4] Adve, S.V., Boehm, H.J.: Memory models: a case for
rethinking parallel languages and hardware. Commun.
ACM’10 53(8)

[5] Flanagan, C., Freund, S.N.: Fasttrack: Efficient and precise
dynamic race detection. In: PLDI’09

[6] Dijkstra, E.: Classics in software engineering’79
[7] Agha, G.: Actors: a model of concurrent computation in

distributed systems. MIT Press (1986)
[8] Hewitt, C., Bishop, P., Steiger, R.: A universal modular actor

formalism for artificial intelligence. In: IJCAI’73
[9] Erlang Programming Language. http://www.erlang.org/

[10] Armstrong, J.: Erlang. Commun. ACM’10 53(9)
[11] Akka. http://akka.io/
[12] Typesafe. http://www.typesafe.com/company/casestudies
[13] Srinivasan, S., Mycroft, A.: Kilim: Isolation-typed actors for

Java. In: ECOOP’08
[14] Karmani, R.K., Shali, A., Agha, G.: Actor frameworks for

the JVM platform: a comparative analysis. In: PPPJ’09
[15] Haller, P., Odersky, M.: Event-based programming without

inversion of control. In: JMLC’06
[16] ActorFoundry. http://osl.cs.uiuc.edu/af/
[17] Schäfer, J., Poetzsch-Heffter, A.: JCoBox: Generalizing

active objects to concurrent components. In: ECOOP’10
[18] Rajan, H., Kautz, S.M., Lin, E., Kabala, S., Upadhyaya, G.,

Long, Y., Fernando, R., Szakács, L.: Capsule-oriented
programming. Technical Report 13-01, Iowa State U.

[19] Eker, J., Janneck, J.W., Lee, E.A., Liu, J., Liu, X., Ludvig, J.,
Sachs, S., Xiong, Y., Neuendorffer, S.: Taming heterogeneity
- the Ptolemy approach. IEEE’03 91(1)

[20] Varela, C., Agha, G.: Programming dynamically
reconfigurable open systems with SALSA. SIGPLAN Not.
36(12) (2001) 20–34

[21] Jetlang. code.google.com/p/jetlang/
[22] JavAct. http://www.javact.org/JavAct.html
[23] Sillito, J.: Stage: Exploring Erlang style concurrency in

Ruby. In: IWMSE’08
[24] Parley. http://osl.cs.uiuc.edu/parley/
[25] Lu, S., Park, S., Seo, E., Zhou, Y.: Learning from mistakes:

A comprehensive study on real world concurrency bug
characteristics. In: ASPLOS’08

[26] Lauterburg, S., Karmani, R.K., Marinov, D., Agha, G.:
Evaluating ordering heuristics for dynamic partial-order
reduction techniques. In: FASE’10

[27] Lauterburg, S., Dotta, M., Marinov, D., Agha, G.: A
framework for state-space exploration of Java-based actor
programs. In: ASE’09

[28] Imam, S.M., Sarkar, V.: Integrating task parallelism with
actors. In: OOPSLA’12

[29] Frumkin, M., Schultz, M., Jin, H., Yan, J.: Implementation of
the NAS Parallel Benchmarks in Java. (2002)

[30] Smith, L., Bull, J., Obdrizalek, J.: A parallel Java Grande
benchmark suite. In: SC’01

[31] Mattson, T., Sanders, B., Berna, M.: Patterns for Parallelel
Programming. Addison-Wesley Professional (2004)

[32] Lamport, L.: Time, clocks, and the ordering of events in a
distributed system. Commun. ACM’78 21(7)

[33] Negara, S., Karmani, R.K., Agha, G.: Inferring ownership
transfer for efficient message passing. In: PPoPP’11

[34] Flanagan, C., Godefroid, P.: Dynamic partial-order reduction
for model checking software. In: POPL’05

[35] Akka Documentation.
http://doc.akka.io/docs/akka/snapshot/general

[36] Best, M.J., Mottishaw, S., Mustard, C., Roth, M., Fedorova,
A., Brownsword, A.: Synchronization via scheduling:
techniques for efficiently managing shared state. In: PLDI’11

[37] Panini Web Site. http://www.paninij.org/
[38] Lin, Y., Dig, D.: CHECK-THEN-ACT misuse of Java

concurrent collections. In: ICST’13
[39] Pingali, K., Nguyen, D., Kulkarni, M., Burtscher, M.,

Hassaan, M.A., Kaleem, R., Lee, T.H., Lenharth, A.,
Manevich, R., Méndez-Lojo, M., Prountzos, D., Sui, X.: The
tao of parallelism in algorithms. In: PLDI’11

[40] Rinard, M.C., Diniz, P.C.: Commutativity analysis: A new
analysis framework for parallelizing compilers. In: PLDI’96

[41] Long, Y., Bagherzadeh, M., Lin, E., Mooney, S.L.,
Upadhyaya, G., Rajan, H.: Quantification of sequential
consistency in actor-like systems: An exploratory study.
Technical Report 14-03, Iowa State U.

[42] Berger, E.D., Yang, T., Liu, T., Novark, G.: Grace: safe
multithreaded programming for C/C++. In: OOPSLA’09

[43] Welc, A., Jagannathan, S., Hosking, A.: Safe futures for
Java. In: OOPSLA’05

[44] Lamport, L.: How to make a multiprocessor computer that
correctly executes multiprocess programs. TC’79 28(9)

[45] Qadeer, S.: Verifying sequential consistency on
shared-memory multiprocessors by model checking. IEEE
Trans. Parallel Distrib. Syst.’03 14(8)

[46] Cain, H.W., Lipasti, M.H.: Verifying sequential consistency
using vector clocks. In: SPAA’02

[47] Sen, K., Agha, G.: Automated systematic testing of open
distributed programs. In: FASE’06

[48] Fredlund, L.A., Svensson, H.: McErlang: a model checker
for a distributed functional programming language. In:
ICFP’07

[49] Tasharofi, S., Gligoric, M., Marinov, D., Ralph, J.: Setac: A
framework for phased deterministic testing of Scala actor
programs. In: The Scale Workshop’11

[50] Tasharofi, S., Pradel, M., Lin, Y., Johnson, R.E.: Bita:
Coverage-guided, automatic testing of actor programs. In:
ASE’13

[51] Bordini, R.H., Fisher, M., Visser, W., Wooldridge, M.:
Verifying multi-agent programs by model checking.
AAMAS’06 12(2)

[52] Artho, C., Garoche, P.L.: Accurate centralization for
applying model checking on networked applications. In:
ASE’06

[53] Barlas, E., Bultan, T.: Netstub: a framework for verification
of distributed Java applications. In: ASE’07

[54] Stoller, S.: Model-checking multi-threaded distributed Java
programs. In: SPIN Model Checking and Software
Verification’00

[55] Hughes, D., Greenwood, P., Coulson, G.: A framework for
testing distributed systems. In: Peer-to-Peer Computing’04

11

http://www.erlang.org/
http://akka.io/
http://www.typesafe.com/company/casestudies
http://osl.cs.uiuc.edu/af/
code.google.com/p/jetlang/
http://www.javact.org/JavAct.html
http://osl.cs.uiuc.edu/parley/
http://doc.akka.io/docs/akka/snapshot/general
http://www.paninij.org/


APPENDIX

Applications

base
base +sync

base +sync +inorder
base +sync +inorder +trans

E
C

Bank 6 / 6 6 / 6 4 / 4 4 / 4
Barbershop 15 / 15 11 / 11 8 / 8 8 / 8

Factorial 0 / 0 0 / 0 0 / 0 0 / 0
Philosophers 8 / 8 5 / 5 3 / 3 3 / 3

Pi 0 / 0 0 / 0 0 / 0 0 / 0
SC 2 / 2 2 / 2 1 / 1 1 / 1

Signature 0 / 0 0 / 0 0 / 0 0 / 0
PingPong 0 / 0 0 / 0 0 / 0 0 / 0

ThreadRing 0 / 0 0 / 0 0 / 0 0 / 0
Server 1 / 1 1 / 1 0 / 0 0 / 0
Total 32 / 32 25 / 25 16 / 16 16 / 16

(↓22 / 22%) (↓50 / 50%) (↓50 / 50%)
Unresolved 16 / 16 (50 / 50%)

FL

BT 55 / 30 5 / 5 0 / 0 0 / 0
CG 4 / 2 0 / 0 0 / 0 0 / 0
FT 11 / 4 2 / 2 0 / 0 0 / 0
IS 4 / 2 0 / 0 0 / 0 0 / 0
LU 101 / 56 7 / 7 0 / 0 0 / 0
MG 22 / 4 0 / 0 0 / 0 0 / 0
SP 72 / 42 6 / 6 0 / 0 0 / 0

LUFact 4 / 2 1 / 1 0 / 0 0 / 0
MolDyn 21 / 18 5 / 5 0 / 0 0 / 0
Series 1 / 0 1 / 0 0 / 0 0 / 0
SOR 4 / 2 4 / 2 0 / 0 0 / 0

Matmult 1 / 0 1 / 0 0 / 0 0 / 0
Crypt 3 / 1 1 / 1 0 / 0 0 / 0

RayTracer 0 / 0 0 / 0 0 / 0 0 / 0
MonteCarlo 2 / 0 1 / 0 1 / 0 1 / 0

Pi 1 / 1 1 / 1 0 / 0 0 / 0
Total 306 / 164 35 / 30 1 / 0 1 / 0

(↓89 / 82%) (↓99.7 / 100%) (↓99.7 / 100%)
Unresolved 1 / 0 (0.3 / 0%)

PL

Histogram 3 / 3 3 / 3 0 / 0 0 / 0
Pipeline 5 / 5 5 / 5 0 / 0 0 / 0

Download 3 / 3 3 / 3 0 / 0 0 / 0
Pipesort 3 / 3 3 / 3 0 / 0 0 / 0
Prime 7 / 7 7 / 7 0 / 0 0 / 0
Total 21 / 21 21 / 21 0 / 0 0 / 0

(↓0 / 0%) (↓100 / 100%) (↓100 / 100%)
Unresolved 0 / 0 (0 / 0%)

M
W

Fibonacci 1 / 1 1 / 1 1 / 1 1 / 1
PiPrec 11 / 11 11 / 11 9 / 9 9 / 9
Sudoku 24 / 23 24 / 23 19 / 18 14 / 13
Total 36 / 35 36 / 35 29 / 28 24 / 23

(↓0 / 0%) (↓19 / 20%) (↓33 / 34%)
Unresolved 24 / 23 (67 / 66%)

Total 395 / 252 117 / 111 46 / 44 41 / 39
(↓70 / 56%) (↓88 / 83%) (↓90 / 85%)

Unresolved 41 / 39 (10 / 15%)

Figure 11: Quantification of sequential inconsistencies over two
semantics spectrums of actor models. Numbers before the slash
show sequential inconsistencies for the spectrum with data sharing
among actors, whereas numbers after the slash show inconsisten-
cies for spectrum with data isolation.

12



PPPPPPMessages
Actors base +sync +inorder +trans +isol

2 3 4+ Total 2 3 4+ Total 2 3 4+ Total 2 3 4+ Total 2 3 4+ Total

E
C

1 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
2 38% 0% 0% 38% 28% 0% 0% 28% 0% 0% 0% 0% 39% 0% 0% 39% 38% 0% 0% 38%
3 0% 6% 0% 6% 0% 4% 0% 4% 0% 12% 0% 12% 0% 3% 0% 3% 0% 6% 0% 6%

4+ 0% 6% 50% 56% 0% 8% 60% 68% 0% 0% 88% 88% 0% 6% 52% 58% 0% 6% 50% 56%
Total 38% 13% 50% 28% 12% 60% 0% 12% 88% 39% 10% 52% 38% 13% 50%

FL

1 10% 0% 0% 10% 9% 0% 0% 9% 23% 0% 0% 23% 10% 0% 0% 10% 0% 0% 0% 0%
2 55% 35% 0% 90% 86% 6% 0% 91% 1% 25% 0% 26% 55% 35% 0% 90% 100% 0% 0% 100%
3 0% 0% 0% 0% 0% 0% 0% 0% 0% 13% 0% 13% 0% 0% 0% 0% 0% 0% 0% 0%

4+ 0% 0% 0% 0% 0% 0% 0% 0% 0% 38% 0% 38% 0% 0% 0% 0% 0% 0% 0% 0%
Total 65% 35% 0% 94% 6% 0% 24% 76% 0% 65% 35% 0% 100% 0% 0%

PL

1 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
2 33% 0% 0% 33% 33% 0% 0% 33% 0% 0% 0% 0% 33% 0% 0% 33% 33% 0% 0% 33%
3 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

4+ 0% 19% 48% 67% 0% 19% 48% 67% 0% 0% 0% 0% 0% 19% 48% 67% 0% 19% 48% 67%
Total 33% 19% 48% 33% 19% 48% 0% 0% 0% 33% 19% 48% 33% 19% 48%

M
W

1 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
2 17% 0% 0% 17% 17% 0% 0% 17% 3% 0% 0% 3% 19% 0% 0% 19% 17% 0% 0% 17%
3 0% 3% 3% 6% 0% 3% 3% 6% 0% 3% 0% 3% 0% 0% 3% 3% 0% 3% 0% 3%

4+ 22% 53% 3% 78% 22% 53% 3% 78% 34% 52% 7% 93% 26% 52% 0% 77% 23% 54% 3% 80%
Total 39% 56% 6% 39% 56% 6% 38% 55% 7% 45% 52% 3% 40% 57% 3%

Figure 12: Quantification of minimum number of actor instances and messages to reliably trigger sequential inconsistencies for each concur-
rent pattern [31].

13



base
base

+sync
base

+sync
+inorder

base
+sync

+inorder
+trans

2
3

4+
Total

2
3

4+
Total

2
3

4+
Total

2
3

4+
Total

EC

1
0%

/0%
0%

/0%
0%

/0%
0%

/0%
0%

/0%
0%

/0%
0%

/0%
0%

/0%
0%

/0%
0%

/0%
0%

/0%
0%

/0%
0%

/0%
0%

/0%
0%

/0%
0%

/0%
2

38%
/38%

0%
/0%

0%
/0%

38%
/38%

28%
/28%

0%
/0%

0%
/0%

28%
/28%

0%
/0%

0%
/0%

0%
/0%

0%
/0%

0%
/0%

0%
/0%

0%
/0%

0%
/0%

3
0%

/0%
6%

/6%
0%

/0%
6%

/6%
0%

/0%
4%

/4%
0%

/0%
4%

/4%
0%

/0%
6%

/6%
0%

/0%
6%

/6%
0%

/0%
6%

/6%
0%

/0%
6%

/6%
4+

0%
/0%

6%
/6%

50%
/50%

56%
/56%

0%
/0%

8%
/8%

60%
/60%

68%
/68%

0%
/0%

0%
/0%

94%
/94%

94%
/94%

0%
/0%

0%
/0%

94%
/94%

94%
/94%

Total
38%

/38%
13%

/13%
50%

/50%
28%

/28%
12%

/12%
60%

/60%
0%

/0%
6%

/6%
94%

/94%
0%

/0%
6%

/6%
94%

/94%

FL

1
10%

/0%
0%

/0%
0%

/0%
10%

/0%
9%

/0%
0%

/0%
0%

/0%
9%

/0%
0%

/0%
0%

/0%
0%

/0%
0%

/0%
0%

/0%
0%

/0%
0%

/0%
0%

/0%
2

55%
/100%

35%
/0%

0%
/0%

90%
/100%

86%
/100%

6%
/0%

0%
/0%

91%
/100%

0%
/0%

100%
/0%

0%
/0%

100%
/0%

0%
/0%

100%
/0%

0%
/0%

100%
/0%

3
0%

/0%
0%

/0%
0%

/0%
0%

/0%
0%

/0%
0%

/0%
0%

/0%
0%

/0%
0%

/0%
0%

/0%
0%

/0%
0%

/0%
0%

/0%
0%

/0%
0%

/0%
0%

/0%
4+

0%
/0%

0%
/0%

0%
/0%

0%
/0%

0%
/0%

0%
/0%

0%
/0%

0%
/0%

0%
/0%

0%
/0%

0%
/0%

0%
/0%

0%
/0%

0%
/0%

0%
/0%

0%
/0%

Total65%
/100%

35%
/0%

0%
/0%

94%
/100%

6%
/0%

0%
/0%

0%
/0%

100%
/0%

0%
/0%

0%
/0%

100%
/0%

0%
/0%

PL

1
0%

/0%
0%

/0%
0%

/0%
0%

/0%
0%

/0%
0%

/0%
0%

/0%
0%

/0%
0%

/0%
0%

/0%
0%

/0%
0%

/0%
0%

/0%
0%

/0%
0%

/0%
0%

/0%
2

33%
/33%

0%
/0%

0%
/0%

33%
/33%

28%
/28%

0%
/0%

0%
/0%

28%
/28%

0%
/0%

0%
/0%

0%
/0%

0%
/0%

0%
/0%

0%
/0%

0%
/0%

0%
/0%

3
0%

/0%
0%

/0%
0%

/0%
0%

/0%
0%

/0%
0%

/0%
0%

/0%
0%

/0%
0%

/0%
0%

/0%
0%

/0%
0%

/0%
0%

/0%
0%

/0%
0%

/0%
0%

/0%
4+

0%
/0%

19%
/19%

48%
/48%

67%
/67%

0%
/0%

16%
/16%

40%
/40%

56%
/56%

0%
/0%

0%
/0%

0%
/0%

0%
/0%

0%
/0%

0%
/0%

0%
/0%

0%
/0%

Total
33%

/33%
19%

/19%
48%

/48%
28%

/28%
16%

/16%
40%

/40%
0%

/0%
0%

/0%
0%

/0%
0%

/0%
0%

/0%
0%

/0%

MW

1
0%

/0%
0%

/0%
0%

/0%
0%

/0%
0%

/0%
0%

/0%
0%

/0%
0%

/0%
0%

/0%
0%

/0%
0%

/0%
0%

/0%
0%

/0%
0%

/0%
0%

/0%
0%

/0%
2

17%
/17%

0%
/0%

0%
/0%

17%
/17%

17%
/17%

0%
/0%

0%
/0%

17%
/17%

3%
/4%

0%
/0%

0%
/0%

3%
/4%

4%
/4%

0%
/0%

0%
/0%

4%
/4%

3
0%

/0%
3%

/3%
0%

/0%
3%

/3%
0%

/0%
3%

/3%
0%

/0%
3%

/3%
0%

/0%
3%

/4%
0%

/0%
3%

/4%
0%

/0%
0%

/0%
0%

/0%
0%

/0%
4+

22%
/23%

53%
/54%

6%
/3%

81%
/80%

22%
/23%

53%
/54%

6%
/3%

81%
/80%

34%
/36%

52%
/54%

7%
/4%

93%
/93%

42%
/43%

50%
/52%

4%
/0%

96%
/96%

Total
39%

/40%
56%

/57%
6%

/3%
39%

/40%
56%

/57%
6%

/3%
38%

/39%
55%

/57%
7%

/4%
46%

/48%
50%

/52%
4%

/0%

Figure
13:

Q
uantification

of
m

inim
um

num
bers

of
actors

instances
and

m
essages

to
reliably

trigger
sequentialinconsistencies

over
tw

o
sem

antics
spectrum

s
of

actor
m

odels.
N

um
bers

before
the

slash
show

the
percentage

of
sequentialinconsistencies

for
the

spectrum
w

ith
data

sharing
am

ong
actors,w

hereas
num

bers
after

the
slash

show
inconsistencies

for
spectrum

w
ith

data
isolation.

14


	Introduction
	Contributions
	Observations
	Outline

	Problems
	Sequential Consistency for Actor Models
	Unsafe Interleavings
	Happens-Before Relation
	Analysis of Sequential Inconsistencies
	Patterns of Sequential Inconsistencies & Sharing Semantics

	Evaluation
	Study Setup

	Observations & Implications
	Individual Actor Models
	Event Based Coordination
	Loop Parallelism
	Pipeline
	Master Worker
	Unresolved sequential inconsistencies
	Summary

	Number of Actor Instances and Messages
	Number of Actor Instances
	Number of Messages
	Combined Actors and Messages

	Overlapping of Actor Models
	Event Based Coordination
	Loop Parallelism
	Pipeline
	Master Worker
	Summary

	Semantic Spectrums of Actor Models
	Threats to Validity

	Related Work
	Conclusion and Future Work
	Acknowledgement
	References

