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Abstract. A linear complementarity formulation for dynamic multi-rigid-body con-
tact problems with Coulomb friction is presented. The formulation, based on explicit
Euler integration and polygonal approximation of the friction cone, is guaranteed
to have a solution for any number of contacts and contact configuration. A model
with the same property is formulated for impact problems with friction and nonzero
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sented and is proved to have uniformly bounded velocities as the stepsize tends to
zero for the Newton-Euler formulation in body coordinates.
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1. Introduction

Dynamic multi-rigid-body contact problems arise in several research
areas, especially robotics and virtual reality. They are concerned essen-
tially with modeling the dynamic behavior of several rigid bodies in
contact.

The usual approach in treating such problems has been to set up
at each discrete moment in time a Linear Complementarity Problem
(LCP), whose solution, if it exists, gives the accelerations and con-
tact forces at that moment. The accelerations are subsequently used
to advance in time via a numerical integration scheme. For frictionless
contact configurations, a solution to the corresponding LCP is known
to always exist [1]. However friction cannot be neglected in most appli-
cations of interest. Several friction models that determine accelerations
have been proposed [1, 2, 3], based either on Coulomb’s friction law or
on approximations of it. Unfortunately for all these models the exis-
tence of a solution of the corresponding LCP can be guaranteed only
for some special cases. Several examples are known for which there are
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2 M. ANITESCU and F.A.POTRA

no accelerations consistent with the contact constraints [3], even in the
case where just one contact is involved.

A new approach proposed in [11] is to combine the LCP defining
the accelerations with the integration step for the velocities in order
to obtain a discrete problem having velocities and contact impulses as
unknowns, rather than accelerations. The main advantage is that the
new problem has a solution for a much larger class of applications (it is
guaranteed to have a solution for one contact with friction, regardless
of the configuration).

In this paper, we will modify the model used in [11], such that the
new formulation, although identical in spirit with the previous one,
will be guaranteed to have a solution, regardless of the configuration
and number of contacts. To our knowledge this is the first consistent
discretization of the dynamic multi-body contact problem with friction
that is guaranteed to have a solution for the general case. Although
the solution is not be guaranteed to be unique, Lemke’s algorithm [8]
will always find a solution to our formulation. In addition to the con-
straints used in [11], our model also incorporates frictionless joint-type
constraints.

The discrete model in the Newton-Euler formulation in body coor-
dinates has several properties that are also found in real dynamics sys-
tems. This is likely to increase the believability of the simulations, an
important goal especially for virtual reality. We prove that the increase
in kinetic energy cannot exceed the one obtained in the same configu-
ration, with no contacts enforced. The increase in kinetic energy is at
most quadratic with respect to time if the external forces are uniformly
bounded and at most exponential if the external forces grow at most
linearly with respect to the position and velocity. We hope that these
properties will be very helpful in a future paper, where we intend to
analyze the behavior of our numerical solution as the stepsize goes to
Z€ro.

An important problem in simulating multi-rigid-body-contact with
friction is appropriate handling of impact. Several models exist for prob-
lems with totally plastic collisions (zero elasticity coefficient) [1, 11],
partial elastic or elastic collisions in the absence of friction [10] (restitu-
tion coefficient between 0 and 1) as well as for partial elastic or elastic
collision with Coulomb friction in two dimensions [6]. In the present
paper we develop solvable models in two or three dimensions that take
friction into account for collision situations with nonzero restitution
coefficient.

We will also show that, for our model, an important class of impacts
have a simpler resolution than the general case. For these cases we
prove that the kinetic energy after impact cannot exceed the kinetic
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SOLVABLE CONTACT PROBLEMS WITH FRICTION 3

energy before impact. In [6] the authors claim that the above property
is shared by all configurations of the respective two dimensional model.
Unfortunately their proof is based on an incorrect proposition, as we
will show at the end of Section 3.

The paper is organized as follows. In Section 2 we describe the con-
straints and the LCP model, and we prove its solvability. In Section 3
we present the model collision resolution and some of its alternatives.
In Section 4 we present an explicit Euler step integration algorithm.
In Section 5 we prove that the velocities computed by the algorithm
are uniformly bounded as the step-size tends to zero. In section 6 we
discuss the conclusions. The most technical proofs are deferred to the
Appendix.

2. The contact model
2.1. THE CONSTRAINTS AND THE COMPLEMENTARITY CONDITION

In our model, a contact constraint is expressed as ®(gq) > 0, where ®(q)
is a continuously differentiable function and ¢ is a vector parameterizing
the position (state) of the multi-body system. If the contact has been
established for a while, then %q)(q(t)) > 0. In case this quantity is
(strictly) is positive, we have take-off, or breaking of the contact. In
other words the contact becomes inactive. Assuming that the position
is a differentiable function, one gets ®,(¢(t))g > 0, or

Dy(q(t))o(t) 2 0 (2.1)

with a strict inequality meaning that the contact breaks.

Let us assume now that we perform a numerical simulation at dis-
crete moments in time and that ¢(,0() and k are the computed posi-
tions, velocities and external forces at time step [. Let h be the corre-
sponding integration step-length. Then an explicit Euler step defines
the computed positions at time step I+1 as ¢/t = ¢ 4 by Inequal-
ity (2.1) gives

(n(g"™))To+Y >0, (2.2)

where n = n(q) = ®,(q)T denotes the Jacobian of the constraint or the
contact normal. This definition of the contact normal can be extended
even for a reasonably small interpenetration [7]. We note that in [11]
inequality (2.2) is replaced by a similar inequality which involves only
position values

(n(g"™)Tq"* > ay, (2.3)
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4 M. ANITESCU and F.A.POTRA

where «q is chosen to make this inequality a good approximation of the
contact constraint. It turns out that the ability of working with (2.2)
rather than with (2.3) is going to be essential for the developments in
the present paper.

It can be easily seen that the left-hand side of (2.2) is the normal
velocity at the contact point. Let c,n be the normal force exercised
by the constraint. Since the contact can only assume compressive force
we have ¢, > 0. In case of take-off we have (n(g!*V))Tv(+1) > 0 and
there is no contact force (¢, = 0). This generates a complementarity
condition: both the normal force and the normal velocity are nonneg-
ative, and if one of them is positive then the other one must vanish. It
is convenient to denote this complementarity condition by writing

(n(g" Tl >0 compl. to cn > 0.

A multi-body dynamic system has also joint constraints, which are
determined by equality constraints of the type ©(q) = 0, where ©(q) is
a continuously differentiable function of ¢. The corresponding velocity
constraint becomes

(v(g" )T = o; (2.4)

where v = v(q) = ©,(g)” is the Jacobian of the constraint. The force
exercised by such a constraint is ¢,v, [5], where ¢, can be any real
number (positive or negative).

In considering friction we use the same approach as in [11]. Namely
we consider Coulomb friction and we assume that the contact force
has two components: a normal component ¢, and a tangential(friction)
component. The Coulomb friction law requires the contact force to lie
in a circular cone (or elliptic cone for anisotropic friction). This is a
difficult condition to deal with since it leads to a nonlinear complemen-
tarity problem which is much more difficult to analyze and/or to solve
numerically. Therefore the cone is approximated by a polygonal cone
11, 2]

FC(q) = {ean+ DBl ey 2 0.8 2 0," S < piew} (2.5

where e = [1,1, ..., 1]T €IR" and u is the number of edges of the polyg-
onal approximation and py is the friction coefficient. The u columns of
D represent vectors of the space tangent to the contact (in the two
dimensional simulations D has just two columns). Also it is assumed
that if a vector d is among the columns of D, so is —d. The new com-
plementarity conditions can be written as

Xe + DTv*) >0 compl. to B> 0 (2.6)
WUCpn — el'8>0 compl. to A>0 (2.7)
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SOLVABLE CONTACT PROBLEMS WITH FRICTION 5

The complementarity of the vectors of (2.6) is understood componen-
twise. If g, — e’ 8 > 0 then A = 0 and therefore D7 v(+1) > 0. But
if there is a column d of D such that dZv(*Y > 0, then for the col-
umn corresponding to —d we have —dv("t1) < 0 contradicting the non
negativity of DTv(t1), Therefore DTv(H1) = 0. Since the columns of
DT span the tangent plane at the contact, this means precisely that
the tangential velocity is zero. Therefore if the contact force is inside
the cone F'C(q) the bodies involved in contact do not exhibit relative
motion.

By negating the above implication it follows that, if the bodies in
contact are in relative motion, then at least one of the elements of
DT+ g positive, forcing pe, — eLf = 0. Also, from the comple-
mentarity condition (2.6) we have ST DTv(+1) < 0, so that the friction
force exhibits negative work, as expected. It can be shown that as the
approximation to the Coulomb friction cone is more accurate (i.e., when
u — 00), the angle between the friction force and the relative velocity
tends to m, if the bodies in contact have nonzero tangential contact
velocity. Therefore in the limit, the above friction model behaves like
the Coulomb friction model.

2.2. THE NEWTON LAW AND THE LCP

We will assume that our multi-body system has p contacts and m joint
constraints. A superscript (j) will denote an object associated with the
contact (7). The superscript (1) on v and g denotes the velocities and
positions at time-step (/). The Newton Law for forces is

dv
ME =Fe+ Feyy
where F, is the force due to the constraints and F,,; represents Cori-
olis and external forces. M is the mass matrix. In an explicit Euler
integration setting, this becomes:

M(v(l+1) — v(l)) =hF,+ hFey

The constraint forces are composed of the forces presented in the pre-
vious subsection. Therefore adding the Newton Law to the comple-
mentarity conditions from the previous sections, we get the following
(generalized) LCP:

Mo+ — 0y = 3 NORON

i=1
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6 M. ANITESCU and F.A.POTRA

-y (e +DVBDY =k (2.8)
j=1
p(7 L = 0, i=1.m (2.9)
n@" Yt > 0, compltoc()>03—1p (2.10)
ADel) + pUTHHL > 0 compl. to BY) >0, j=1..p (2.11)
peld) — e 39 > 0, compl. to A >0, j=1.p (2.12)
Here k represents the external and Coriolis forces. Note that the vari-
ables ¢y, ¢y, 3 represent impulses rather than forces (they are forces

multiplicated by h, the step-length). The (generalized) LCP can be
written in the following matrix form:

M —v -—n —D 0 o+ 0
00 0 0| & 0
a” 0 0 0 0 o | +b=|P (2.13)
D" 0 0 0 E g q
0 0 i —ET 0 A ¢
~ T - . N
n p n p
g 7| =0, g | >0, 7120
A ¢ A ¢
Here 1/ = [1/ ey VP, EV [c,, ,...,c,(,p)]T, f = [nW,..,n0P)],
én = [cn . ] g = [pWY )T], D = [DW,.,DW], X\ =
[)\(1),...,)\(7’)] u dzag( (1), ,,u( )) and E = diag(e (1) ...,eP)) and
T
b= [—Mvm—hk,o,o,o,o] . (2.14)

To prove that such a problem has always a solution, we first prove
the following solvability theorem.

Theorem 2.1. Consider a (mixed) LCP of the form

0 M —-F —H T —k
(0): FT 0 o0 <y>+< 0) (2.15)
s HT 0 N A b

s>0; A>0; Ms=0, (2.16)

where M, N, F, H are given matrices and b, k are given vectors of the
appropriate dimension.

If M is a symmetric positive definite matrix, N a copositive matrix
[8, Def. 3.8.1] and b a nonnegative vector having only nonnegative ele-
ments (in particular all components of b can be 0), then the above
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SOLVABLE CONTACT PROBLEMS WITH FRICTION 7

LCP has a solution. Lemke’s algorithm, with precautions taken against
cycling, will always find a solution A of the LCP obtained by eliminat-
ing z and y, and then a solution (z,y,A) of the original LCP can be
recovered by solving for z and y in the first two rows of (2.15).

Proof See Appendix A.

Theorem 2.2. For any positive definite mass matrix M and nonneg-
ative friction coefficients, the LCP (2.13) has a solution which can be
computed by Lemke’s algorithm.

Proof Let N be the matrix made of the last three sets of rows and
columns of the matrix form 2.13. Since the matrix is the sum between
a positive semidefinite matrix (having £ and —ET as its blocks) and a
matrix with nonnegative coefficients (/1) it follows that it is copositive.
By defining H = [n D 0], the conclusion follows after using Theorem
2.1. O

We denote the solution set of LCP (2.13) by £(v\"), hk), so that we
can write (2.13) as

(v &y, én,8,0) € LY, hk) (2.17)

The solution set of the LCP (2.13) also depends on ¢(!) and h since
D,7, M, D are evaluated at ¢('t1) = ¢ + ho( but we will focus on
the dependency of (2.13) on the free term (2.8). The previous theorem
proves precisely that the set E(v(l), hk) is nonempty and that a point
in it can be found by Lemke’s algorithm.

2.3. ENERGY PROPERTIES OF THE FORMULATION

In this subsection, we assume that the mass matrix is constant during
the simulation. This happens with the Newton-Euler formulation in
body coordinates [9]. This assumption allows us to prove a property
of the formulation that reproduces a similar property in real dynamics
systems.

Theorem 2.3. The kinetic energy at the new step, %U(H'l)TMv(l"'l),
cannot exceed the kinetic energy %(v(l) + MY MW + hM k)
of the system in the same configuration, with no constraints enforced.

Proof From (2.8) we have, after multiplying with pHDT
v(z+1)TM(v(z+1) _ v(z)) =y, ,U(l+1)TV(i)Cl(j)+

+5° D TR 4 oD DU RUYY 4 hp+)T . (2.18)

p
7=

1
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8 M. ANITESCU and F.A.POTRA

Using (2.9), (2.10) and (2.13) we get

p
oD M (D oDy = 3" (DT DWW a1 (2.19)
j=1

From (2.11), (2.12) and (2.13) it follows that v(:*1)" DU) g4)
= —\DeTBU) = —u(j))\(j)c,(lj). Therefore

o M (0D — ) = = 5P (uDAD )
+hoHDT e < ppHDT g (2.20)

Let o = M2 ) = M'/29() y = M~'/?k. Then (2.20) can be
written as

v (y2 =) < hys X (2.21)

or v v2 < A (y1 + hx) < ||2llllvs + hxl|, the last inequality resulting
from the Cauchy inequality. Therefore |y2|| < ||y1 + hx||. Taking the
squares, dividing by 2 and replacing with the original variables yields

1

DT A+ <
5? =

(W + hM ) TM WY + hM k) (2.22)

N | —

which proves the claim. O

3. The collision model

Most existing models for instantaneous inelastic collision can be seen
as particular cases of contact dynamics problems, for h = 0, cf. [1, 11].
In this section, we will present a simple partially elastic collision model
with friction based on the approach used for frictionless collision in
[10]. For two dimensions the approach is similar with the one in [6]
but, in addition, a solution to the model is guaranteed to be found. We
will not consider cases for which portions of the tangential impulse is
reversible (like in the highly elastic materials used in making superballs
[6]) although our model can be easily modified to include some form of
tangential impulse restitution.

The collision is assumed to have two phases: compression and decom-
pression. The collision will generate a new contact (between the bod-
ies that collide) , which, in the compression phase, is added to those
already existent on the contact list. Each contact is characterized by
an elasticity coefficient, e;, j = 1..p.
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SOLVABLE CONTACT PROBLEMS WITH FRICTION 9

3.1. THE COMPRESSION PHASE

Suppose that the collision is a proper collision, in the sense that it has
a nonzero normal velocity. In other words, there is at least a contact,
say defined by index j = 1, such that n y= < 0, where v~ denotes
the pre-collision velocities.

In the compression phase, the dynamic system will respond with con-
straint impulses (generated by joints, contacts, or friction). We denote
the impulses by the same symbols as in (2.13) but with superscript
c. Let v¢ be the velocity at the end of the compression phase. At the
end of compression, each contact from the list is either maintained
¢ > 0,nTv¢ = 0, or is breaking, ¢¢ = 0,n"v® > 0. Therefore we recov-
er the same complementarity conditions as in (2.10). Conservation of
impulse requires

m p
M@ —v7) — Z el — Z(n(j)cz(j) + DUy =g (3.1)
i—1 j=1
The conditions on joints and friction being identical with (2.9), (2.11)
and (2.12) with the appropriate complementarity conditions,it follows
that o
(v, ¢, ¢, 8 X)) € L(v,0). (3.2)
By Theorem 2.2, Lemke’s algorithm will find a solution in £(v~,0).

Also, it is worth mentioning that v # v~ since nM"y~ < 0 and

n(M7ye > 0.

3.2. THE DECOMPRESSION PHASE

Let vT be the velocity after the decompression phase. Each contact con-
straint will generate a decompression impulse, dependent on the coeffi-
cient of restitution e;. For instance, the contact constraint j will gener-
ate an impulse cg(]) = ejcfz(]) +c£(3). The additional impulse cﬁm >01is
necessary to prevent interpenetration. Either the contact breaks, and
then nWot >0, 2 - 0, or it is maintained and then nv* =0 |
cz(J ) > 0. Therefore the same type of complementarity as (2.10),
(n(j)T)vJr >0 compl. to =0) > 0.

is generated. Hence solving for the post-collision velocity will be similar
to (2.13). The restitution impulse is

P
Fr=3%" e, (3.3)
7j=1
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10 M. ANITESCU and F.A.POTRA

We assume that the tangential impulse is irreversible and does not
contribute to the restitution force. The conservation of impulse requires

p
M@t — o) -3 @) _ Z(n(”Ci(” + DWWy = Fr. (3.4)
. ]:1

The same friction model gives rise to equations analogue to (2.11),
(2.12). By Theorem 2.2 the post-collision velocity, vt , can be found
by Lemke’s algorithm since
(vF, e, &, 6%, ) € L(v°, FT). (3.5)
There are two special cases worth noting. One is when e; = 0, j =
1..p (totally inelastic collision). Then F" = 0 and v = v is a solution
in L£(v° 0) with all constraint impulses being 0, and A* = A°. In this
case we can say that there is no decompression phase.

The other case concerns frictionless contacts. Our remark is an
extension of a similar one [10]. Namely, we assume

— (a) all new contacts generated by collision have the same elasticity
coefficient e. Usually there is only one such contact, but some spe-
cial cases might have several simultaneous collisions, like a block
falling flat on a tabletop.

— (b) The elasticity coefficients characterizing the other contacts are
less than €, e; <€, 1 <35 <p.

— (c) The pre-collision velocities satisfy the contact constraints exact-
ly, (n(¢g7))Tv~ = 0, for the contacts j that were maintained
immediately before the collision. (this would be the case for a suit-
ably adapted implicit integration scheme for example).

Under these assumptions a solution of the problem (3.5) is v = (1 +
€)ve — v, with 20 = (e — ei)cﬁ(z). This means that the only contacts
that break at decompression are the ones originating from collision.

A disadvantage of the decompression phase is that for each collision,
two LCP’s need to be solved. Based on the previous observation, a
simplified model for for partially inelastic collision would be to simply
use v = (1 + €)v® — v, where € is the elasticity coefficient of the
contacts generated by collision.

c

Lemma 8.1. If, for the decompression phase, v = (1 + €)v¢ — v~
then vt Mo+ < v~ My,
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SOLVABLE CONTACT PROBLEMS WITH FRICTION 11

Proof Let v, = M3, 4, = M3v~, 43 = M7v*. Then since
(v°, 8,8, 3°,X¢) € L(v™,0), we have 72 (v — 1) < 0 by (2.21) (since

h = 0). Obviously, v3 = 72 + €(y2 — 71). Therefore

2
Ivsll* =73 v2 + €(v2 = m1) (v2 — M)+

2¢v3 (2 — 1) <1 e +eE(re—m)" < (3.6)
Y32+ (2 =) (2 =) <73 vt
(o =1 (2 = m) = 294 (72 = m) = || (3.7)
Hence [|v3]| < ||v1]|| which proves the claim. 0

The property in the conclusion of the Lemma means that the kinetic
energy cannot increase by resolving collisions using v+ = (14¢€)v°—v~.
This is a desirable property for any collision resolution.

Remark In [6] the authors claim that the property from the above
Lemma holds for all two dimensional configurations. This statement
is based on the claim [6, pg 480] “Since G is symmetric and positive
semidefinite and € is a diagonal matrix consisting of elements 0 < ey <
1, it follows that

%AgeGeAc — %AEGAC <0/

The last inequality is violated for Ag = (_12) G = (% Z) and

€= (0(')5 (1] ) although all these matrices satisfy the assumptions. This

makes invalid the previous statement and the proof of the kinetic ener-
gy inequality in [6].

4. Strategy for integrating the equations of motion

Various numerical schemes can be devised based on the previous sec-
tions. In what follows we propose a simple Euler integration method to
find a numerical solution for the time interval [0, 7.

v=1" g=q% time = 0;
while (time < T)
Gnew = q + hv; . ~
Find (vpew, €y, én, B, A) € L(v, hk) (7, D,n, M are evaluated
at qnew, k is evaluated at (q,v))
if (no collision detected between time and time + h)
time = time + h, ¢ = qnew; ¥ = Vnew;
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12 M. ANITESCU and F.A.POTRA

else
Estimate the collision time timey,e,,, collision
position and velocity gpe, and v
Find (v¢, &, ¢, 6%, \°) € L(v™,0);
Find (v, %, &8, 3%, \%) € L(v¢, F"), with F"
defined in (3.3);
(Alternately, choose v = (1 + e)v —v ")
time = timenew, ¥V =07, ¢ = Qnew-
end if
end while

Several details need to be specified. We assume that the initial veloc-
ity 00 is consistent with the constraints, i.e. that (n/)(gg))"v° > 0 and
(D (g0))Tv° = 0 for i = 1..m, j = 1..p. If that were not true, a colli-
sion would take place. The algorithm can be easily modified to handle
an initial collision. At each step an LCP of the form (2.13) is solved.
To set it up, 7, D, 71, k, M need to be specified. Following the discussion
in subsection 2.1, all these qualities are evaluated at gpe,. Variants of
this scheme would be to evaluate the data or parts of it at g or ¢ + %v
[11]. The integration time-step does not have to be constant during the
integration an can be changed at each step. One can easily devise a
variant of this algorithm which uses a more sophisticated integration
method (Runge-Kutta for example).

Also, the collision detection rules need to be specified. A (theoreti-
cally) simple collision rule would be to check for ®()(q) < 0 (interpen-
etration). One problem is that the LCP decides take-off based on the
condition (I>,(;)(q)v > 0 but this does not necessarily mean that there
was no interpenetration, for ®%(g) can be negative, due to numerical
error. If a new collision between the bodies occurs before @ (g) > 0
it cannot be detected based on the sign of ®®(q). A solution would
be to use a Nonlinear rather than a Linear Complementarity Prob-
lem [11] which enforces the constraint ®(#(g) > 0 with the cost of
additional computation. Another solution, in the case when interpene-
tration persists even though the LCP (2.13) dictates take-off, would be

to check for @gl)(q)v < 0 (normal velocity becomes negative) as a col-
lision condition. This ensures that either there is no interpenetration,
or there is an instantaneous decrease in interpenetration. This aspect
shows the necessity of a good integration of the geometric and dynamic
algorithms, for the outcome can be contradictory due to the discrete
nature of the numerical schemes.

Assume that the contact constraint (i) is exactly satisfied at the
current time moment, ®@ (¢(*+1)) = 0 and the LCP results in
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SOLVABLE CONTACT PROBLEMS WITH FRICTION 13

n®" (g+D)y(+1) > 0. Then 40 (¢) + ho(+D) > 0. Therefore take-
off is certain at least on a small time interval following the current
moment. This is an important property which shows the robustness of
the formulation in the vicinity of the constraint manifold.

There is a class of configurations for which these algorithms cannot
be guaranteed to sweep the interval [0, 7] in finite time. One example
would be a ball bouncing on the floor with a restitution coefficient
strictly between 0 and 1. The ball will sustain an infinite number of
collisions in finite time, and the algorithm cannot get past the moment
the ball has 0 velocity. One solution to this problem is to require that
the restitution coefficient is zero for normal collision velocities less than
a certain value.

5. Uniform boundedness of the numerical solution with
respect to integration time step

In this section we analyze the properties of our formulation for the
case of the Newton-Euler [9] equations in body coordinates. The main
advantage in using this formulation is that the mass matrix is constant
throughout the simulation. The drawback is that the Coriolis force,
which is quadratic in velocity, has to be taken into account, which
complicates the regularity analysis, because the assumption that the
force is bounded, used in [11] is not obvious in this case. For one body,
the Newton-Euler equations in body coordinates are [9, §2.4]

mi® + w® x mob = f° (5.1)
Tt 4 Wb x Twb =7

where m is the mass of the body, Z is the inertia matrix (which is
diagonal for a suitable choice of coordinates). The vectors v® and w’
represent the translational and rotational velocities in body coordi-
nates. The term f. = —[(w® x mv®)T, (W’ x Zw”)T]T is the Coriolis
force. An important property of the Coriolis force is [vbT,wa}fc = 0.
This reflects the fact that the Coriolis force produces no work (it is
perpendicular to the velocity), and will be a significant asset in prov-
ing the uniform boundedness of velocities. It should also be mentioned
that for two dimensional simulations, the Newton-Euler formulation in
global coordinates [9, §2.4], generates a constant mass matrix and does
not exhibit Coriolis force.

We consider a dynamical system under the action of three types of
external forces: forces whose magnitudes increase at most linearly with
the distances (e.g. elastic forces), forces whose magnitude increase at
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14 M. ANITESCU and F.A.POTRA

most linearly with the velocity (e.g. viscous friction), and forces which
are bounded during the simulation time interval [0 T']. The following
theorem proves that the kinetic energy obtained by the algorithm in
the previous section is uniformly bounded on the time-interval [0 T].
The step-size is not necessarily constant during the integration, but it
is bounded by h. In other words for a given h, the time steps h; can be
different during the integration but they have to be smaller than h (h
is just an upper bound on the individual step—sizes, and not necessarily
the time—step).

Theorem 5.1. Assume that the algorithm from the previous section
solves a finite number of collisions between 0 and 7" and that the colli-
sion resolution method ensures that the kinetic energy after the collision
is no greater than the one before collision. Let v(0),v(T) and ¢(0), ¢(T)
be the velocity and position at the beginning and the end of the simu-
lation period.

a) If the external force is of the form k(v,q) = f.(v) + ki(v.q
ka(v) + k3(q), where ||k (v, q)[| < di, |[k2(v)|| < dallv]| and [|k3(q)]
dsl|ql|, Vg, v, then for all sufficiently small h

oI (T)Mu(T) < (vT (0)Mw(0) + ||g(0)[|*)e*T 4 2¢Te*T.  (5.3)
b) If ka(v) = k3(g) = 0, then for all sufficiently small h

VT (T)Mo(T) < \JoT (0)Mv(0) + T + 1. (5.4)

In both cases, c is a constant that depends solely on d; > 0,7 = 1..3
and on the mass matrix M.

) +
| <

Proof See Appendix B.

The forces considered in the previous theorem cover most cases of
external forces in real dynamical systems. Therefore we see that for fair-
ly general situations our algorithm provides solutions that are uniformly
bounded as h | 0 for the Newton-Euler formulation. If ks (v) = —dav,
dy > 0 (damping force) and k3(q) = 0 it can be shown that the veloc-
ities satisfy a bound like (5.4). Another interesting point is that if the
external forces (except for the Coriolis force) are uniformly bounded as
T — o0, then the increase in velocity is at most linear with respect to
time, which is also true in real dynamical systems.

6. Conclusions

A discrete model for solving multi-rigid-body contact problems with
friction has been presented based on Linear Complementarity Prob-
lems (LCP). The friction model is an approximation to Coulomb fric-
tion model and can be made as accurate as desired. The formulation

solvable8.tex; 30/01/1997; 1:25; no v.; p.14



SOLVABLE CONTACT PROBLEMS WITH FRICTION 15

guarantees that the contact problem always has a solution which will
be found by Lemke’s algorithm. It also has the property that the kinet-
ic energy increase after one integration step in time cannot exceed the
increase for the case where no constraint is active. Also we have for-
mulated a model for treating impact with friction for restitution coef-
ficients between 0 and 1. The model has a compression and a decom-
pression phase, each needing Lemke’s algorithm for finding a solution
(which is guaranteed to exist).

We have discussed an explicit Euler integration strategy. If the col-
lision resolution is guaranteed to yield a smaller kinetic energy after
the collision, then, under some reasonable conditions on the external
forces (at most linear increase with respect to velocity and position) the
velocities given by the numerical algorithm are uniformly bounded as
h |} 0 for the Newton-Euler formulation in body coordinates. Also the
velocities increase at most linearly with the time-interval considered
if the external force is uniformly bounded. An example of a collision
resolution that guarantees a non-increasing kinetic energy is given in
Section 3.

It is not necessary that the integration procedure use the Newton-
Euler formulation or an Euler integration scheme. Both the integration
procedure and coordinates can be changed maintaining the solvability
of the corresponding LCPs. The Euler integration approach has the
advantage that it guarantees the uniform boundedness of the velocities.

Several other issues arise in the practical implementation of the
numerical method. Lemke’s algorithm will not only compute a solu-
tion to the LCP, but it will also compute a basis of (A.1) [8]. If a basis
is known, then a solution can be computed by solving a linear system.
In many simulations changes of basis are relatively rare compared to
the total number of integration steps. Therefore, the same basis can be
used for several steps with the cost of just a linear solve and Lemke’s
algorithm will be called just when the necessity of a change of basis
is detected (a negative slack). This observation has been used before
[4, 3] with significant improvements of the computational effort. The
advantage of our setting is that it guarantees that a change of basis
which yields a solution will be computed by Lemke’s algorithm.
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Appendix
A. Proof of Theorem 2.1

We can assume without loss of generality that F7 is full row rank. If

not, we can consider just a maximal set of independent rows as being

FT. The components of y corresponding to the dependent variables can

be set to 0, and A will be in the same linear space determined by (2.15).
After solving for z in (2.15), the LCP becomes

0=FTM 'Fy+ FTM"H X+ FTM~ 'k (A1)
s=H M '"Fy+ H M'"H X+ N\+ H M~ 'k+b  (A.2)
s>0; A>0; Ms=o, (A.3)
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SOLVABLE CONTACT PROBLEMS WITH FRICTION 17

Since F is full row rank F7 M~'F is nonsingular. Therefore we can
solve for y from the first equation to get the LCP:

s=(G+ N)A+g; (A4
s>0; A>0; MNs=0, (A.5)

where
G=H"M'"H-H' M'F(FTM~'F)"'FTM~"H,
g=—H"M'F(FTM'F)Y'FTM~'k+ HT M~k + b.

By construction G is the Schur complement of N in the big matrix of
(2.15), if N = 0 [8, Def. 2.3.4]. Since the matrix in (2.15) is positive
semidefinite for N = 0, so is G [8, Thm 4.1.5]. Therefore G + N is
copositive.

It is convenient to denote the above LCP as LCP(G+N,g) and to
call \ its solution (once A is found then s = (G + N)X + g). Let now
z be a solution of LCP(G+N,0). Then 2z7’Gz = 0. Since G is pos-
itive semidefinite and symmetric, it follows that Gz = 0. Let w =
—(FTM~'F)='FTM~'Hz Then we have from the definition of G and
the last relation

0=F'M 'Fw+FTM 'Hz (A.6)
0=H"M'Fw+H" M~ "Hz. (A7)

By multiplying the first relation by w’ and the last relation by z” and
adding them up, we obtain (Hz + Fw)" M~'(Hz + Fw) = 0. Since M
is symmetric and positive definite, it follows that Hz + Fw = 0 and
2lg=wl FTM= k4 2THT M~ k42T = (Fw+Hz)"M~'k+2"b > 0.

Therefore, we have proved that if z is a solution of LCP(G+N,0)
then g7z > 0. Therefore, by Corollary 4.4.12 of [8] Lemke’s algorithm,
with precautions taken against degeneracy will find a solution A to the
LCP(G+N,g) and, by solving for z and y in the first two rows of (2.15),
a solution (z,y, A) to the initial LCP. 0.

B. Proof of Theorem 5.1

Lemma B.1. Let {z,}_,, {w, })_,, be two finite nonnegative sequences

and {hy, ilvz_ol a positive sequence such that Z;-V:_Ol hj = T. Let ¢,

1 = 1..5 be positive constants. Assume that the sequences satisfy the
following inequalities:

zTQH_l < z,% + clhnzfZ + cohnwy, + cshpzn + cahy, (B.1)
Wpa1 < Wy + cshpzp (B.2)
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18 M. ANITESCU and F.A.POTRA

for 0 < n < N—1.Let ¢ = max 2¢;, i = 1..5. Then 22 < (23 +wyg)e®T +
2cTe® T w; < (22 4+ wg)e®T + 2c¢Te?! | Vi < N.

Proof Using the inequality 22, < 22 + 1 we can write

z?lﬂ < 22 4 crhp2E + cohpwy + c3hpzn + cahy, (B.3)
< 22+ e1hnzl + cohpwy + cshp(22)2 4+ 1/2) + c4hy, (B.4)
< zfl + chnz?l + chpwy, + chy,. (B.5)

We also have that

Wyt < Wy 4 cshpzy < wy + cshn(22/2 +1/2) (B.6)
< wy + chnzfZ + chpwy, + chy,. (B.7)
Let r, = 22 4+ wy. By adding (B.5) with (B.7) we obtain

Tnt1 < T+ 2chpry + 2chy, < rpet 4 2ch,,. (B.8)

Let u, = > o h;. We will prove that 7, < (rg + 2cu,_1)e?*»-! by
induction. It is obvious for n = 1. Assume it is true for n. Then

Tni1 < rpe2tn 4+ 9ch, < (ro + 20un,1)626“"‘1626h” + 2ch,, (B.9)
< (1o + 2cup—1)e* + 2ch,e?®n = (rg 4+ 2cuy, )e’*"(B.10)

Using the fact that u; < T for 0 <i < N — 1, we can write 22 < r; <

(28 + wo + 2cT)e® T, w; < r; < (28 +wo + 2¢T)e* T, for 0 < i < N_,
which proves the claim. .

Proof of Theorem 5.1 a) By Theorem 2.3 we have
DT M) < (0D 4 By MU T M (D 4 By M k).

Let v = M'/250 and x = M~/2k(g),»(")). Then the last relation
can be rewritten as

2 2 2 T 2
YN < Yy + lx D)7 = Iy O) + 29" x + B X O (B.11)
By the definition of the Coriolis force we have v” f, = 0. Therefore

Y x = 00" (£o(0®) + k1 (00, ¢V) + Ea (0D) + ka(g")) (B.12)
= 00" (k1 (v, qD) + ko (v D) + k3(¢®)) (B.13)
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SOLVABLE CONTACT PROBLEMS WITH FRICTION 19
where x; = M~"/2k;,i = 1,2,3. By using the inequalities in the hypoth-
esis, we get

Y 0 (00, ¢0) + x2(v0) + x3(g")) <
IOl (er + eally @ + eslla ), (B.15)
IxO1 < (e1 + 2y + eslla®l + ealy @), (B.16)

where the constants ¢;, 7 = 1..4 depend only on the constants d;,7 = 1..4

and the mass matrix. The term (:4||’y(l)||2 is a bound on the Coriolis
force. Therefore, according to (B.11) we can write

YOI < Iy O1 + 27O (1 + ol @ + esllg®@)
2
+h2 X0, (B.17)

Denoting z = ||| and w; = ||¢| we get
2

2l < 20+ eihyz + eolyzi + cshpwz + B X)) (B.18)

Also, ¢ = ¢ + h® = ¢ 4 B M ~1/2~40) and therefore
wip1 < wyp + hyesz, (B.19)
where ¢5 depends only on the mass matrix and w; = ||¢¥)||. Let ¢ =

max 2¢;, 1 = 1..5. We choose h such that

1
(e1 + e2(|[voll” + llgol| + 2¢T)zeT
+(es + e (Il + laol| +26T)e T2 < 5. (B.20)

We will prove by induction that
c
2l < 20+ cilyz + eolyz) + cshpwyz + §hl- (B.21)

for 0 <1 < N. From (B.18) it follows that it is sufficient to prove by
induction that , e

X" < 5. (B.22)
For [ = 0 this follows from (B.16) and (B.20) with

2 C
IX°N < (er + 2V N+ e3llg @] + eal /%) < o

Assume that (B.22), and hence (B.21), holds for some 0 <n < N — 1.
From (B.19) it follows that the sequences wy, z;, 0 < [ < n — 1 satisfy
the conditions from Lemma B.1. Since Z?‘l hy < T, we have

2F < (22 + wo)e* T + 2cTe* T 0<I<n-—1,
wy < (zg + wo)eQCT + 2¢Te*T, 0<I<n-1.
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20 M. ANITESCU and F.A.POTRA

Using (B.20) and (B.16) we deduce that f,||x (™ ||2 < § which completes
the induction.

Therefore wy, z; satisfy (B.21) and (B.19) and the assumptions of
Lemma B.1, for 0 <! < N, so that the conclusion follows.

b) A similar sequence of inequalities shows that

2 2 2
YOI < YO + 2hgen Iy O ) + hallx | (B.23)

Here ¢; is a constant dependent on d; and the mass matrix, M. Fol-
lowing the hypothesis on the external force, we have that

IO < er + ey O (B.24)

where ¢4 depends only on the mass matrix. Let ¢ = 2max {c1,c4}. We
choose h such that

C
h(er + es(V |yl +1+¢T)?)? < 5 (B.25)

Let z; = ||7()||. We will prove by induction that

n—1
VE2+1< 214y hy (B.26)
=0

for 0 < n < N. For n = 0 the claim is obvious. Assume it is true for
n— 1< N — 1. Then by virtue of (B.23) we can write

2
22 < 22 4 2hp_1c1zn_1 + B2|xW . (B.27)
From (B.24) and the induction hypothesis it follows that:
2
b1 XV < her + eazy o)

C
< hler +ea(y/IIvoll* + 1+ 7)) < -

Therefore, from (B.27) we deduce that

N

c
5

Adding 1 to both sides, applying Cauchy’s inequality and the induction
hypothesis, we get

2 _ 2
2y S 2y +2hy qc12y 1+ by

2241<22 [ +1+ Zhn_lc\/z?lfl +1< (\/sz1 + 14 hy_1c)?

n—2
< (VAR +1+ed hy+chy1)’

=1
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which proves that (B.26) is true for n. The Theorem is proved by taking
n= N in (B.26) . |
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