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Abstract. A linear complementarity formulation for dynamic multi-rigid-body con-tact problems with Coulomb friction is presented. The formulation, based on explicitEuler integration and polygonal approximation of the friction cone, is guaranteedto have a solution for any number of contacts and contact con�guration. A modelwith the same property is formulated for impact problems with friction and nonzeroelasticity coe�cient. An explicit Euler scheme based on these formulations is pre-sented and is proved to have uniformly bounded velocities as the stepsize tends tozero for the Newton-Euler formulation in body coordinates.Key words: Impacts with friction, multi-body dynamics, complementarity prob-lems, contact constraints. 1. IntroductionDynamic multi-rigid-body contact problems arise in several researchareas, especially robotics and virtual reality. They are concerned essen-tially with modeling the dynamic behavior of several rigid bodies incontact.The usual approach in treating such problems has been to set upat each discrete moment in time a Linear Complementarity Problem(LCP), whose solution, if it exists, gives the accelerations and con-tact forces at that moment. The accelerations are subsequently usedto advance in time via a numerical integration scheme. For frictionlesscontact con�gurations, a solution to the corresponding LCP is knownto always exist [1]. However friction cannot be neglected in most appli-cations of interest. Several friction models that determine accelerationshave been proposed [1, 2, 3], based either on Coulomb's friction law oron approximations of it. Unfortunately for all these models the exis-tence of a solution of the corresponding LCP can be guaranteed onlyfor some special cases. Several examples are known for which there are� The work of this author was supported in part by NSF Grant DMS 9305760.



2 M. ANITESCU and F.A.POTRAno accelerations consistent with the contact constraints [3], even in thecase where just one contact is involved.A new approach proposed in [11] is to combine the LCP de�ningthe accelerations with the integration step for the velocities in orderto obtain a discrete problem having velocities and contact impulses asunknowns, rather than accelerations. The main advantage is that thenew problem has a solution for a much larger class of applications (it isguaranteed to have a solution for one contact with friction, regardlessof the con�guration).In this paper, we will modify the model used in [11], such that thenew formulation, although identical in spirit with the previous one,will be guaranteed to have a solution, regardless of the con�gurationand number of contacts. To our knowledge this is the �rst consistentdiscretization of the dynamic multi-body contact problem with frictionthat is guaranteed to have a solution for the general case. Althoughthe solution is not be guaranteed to be unique, Lemke's algorithm [8]will always �nd a solution to our formulation. In addition to the con-straints used in [11], our model also incorporates frictionless joint-typeconstraints.The discrete model in the Newton-Euler formulation in body coor-dinates has several properties that are also found in real dynamics sys-tems. This is likely to increase the believability of the simulations, animportant goal especially for virtual reality. We prove that the increasein kinetic energy cannot exceed the one obtained in the same con�gu-ration, with no contacts enforced. The increase in kinetic energy is atmost quadratic with respect to time if the external forces are uniformlybounded and at most exponential if the external forces grow at mostlinearly with respect to the position and velocity. We hope that theseproperties will be very helpful in a future paper, where we intend toanalyze the behavior of our numerical solution as the stepsize goes tozero.An important problem in simulating multi-rigid-body-contact withfriction is appropriate handling of impact. Several models exist for prob-lems with totally plastic collisions (zero elasticity coe�cient) [1, 11],partial elastic or elastic collisions in the absence of friction [10] (restitu-tion coe�cient between 0 and 1) as well as for partial elastic or elasticcollision with Coulomb friction in two dimensions [6]. In the presentpaper we develop solvable models in two or three dimensions that takefriction into account for collision situations with nonzero restitutioncoe�cient.We will also show that, for our model, an important class of impactshave a simpler resolution than the general case. For these cases weprove that the kinetic energy after impact cannot exceed the kinetic
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SOLVABLE CONTACT PROBLEMS WITH FRICTION 3energy before impact. In [6] the authors claim that the above propertyis shared by all con�gurations of the respective two dimensional model.Unfortunately their proof is based on an incorrect proposition, as wewill show at the end of Section 3.The paper is organized as follows. In Section 2 we describe the con-straints and the LCP model, and we prove its solvability. In Section 3we present the model collision resolution and some of its alternatives.In Section 4 we present an explicit Euler step integration algorithm.In Section 5 we prove that the velocities computed by the algorithmare uniformly bounded as the step-size tends to zero. In section 6 wediscuss the conclusions. The most technical proofs are deferred to theAppendix. 2. The contact model2.1. The constraints and the complementarity conditionIn our model, a contact constraint is expressed as �(q) � 0, where �(q)is a continuously di�erentiable function and q is a vector parameterizingthe position (state) of the multi-body system. If the contact has beenestablished for a while, then ddt�(q(t)) � 0. In case this quantity is(strictly) is positive, we have take-o�, or breaking of the contact. Inother words the contact becomes inactive. Assuming that the positionis a di�erentiable function, one gets �q(q(t)) _q � 0, or�q(q(t))v(t) � 0 (2.1)with a strict inequality meaning that the contact breaks.Let us assume now that we perform a numerical simulation at dis-crete moments in time and that q(l),v(l) and k are the computed posi-tions, velocities and external forces at time step l. Let h be the corre-sponding integration step-length. Then an explicit Euler step de�nesthe computed positions at time step l+1 as q(l+1) = q(l)+hv(l). Inequal-ity (2.1) gives (n(q(l+1)))T v(l+1) � 0; (2.2)where n = n(q) = �q(q)T denotes the Jacobian of the constraint or thecontact normal. This de�nition of the contact normal can be extendedeven for a reasonably small interpenetration [7]. We note that in [11]inequality (2.2) is replaced by a similar inequality which involves onlyposition values (n(q(l+1)))T q(l+1) � �0; (2.3)
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4 M. ANITESCU and F.A.POTRAwhere �0 is chosen to make this inequality a good approximation of thecontact constraint. It turns out that the ability of working with (2.2)rather than with (2.3) is going to be essential for the developments inthe present paper.It can be easily seen that the left-hand side of (2.2) is the normalvelocity at the contact point. Let cnn be the normal force exercisedby the constraint. Since the contact can only assume compressive forcewe have cn � 0. In case of take-o� we have (n(q(l+1)))T v(l+1) > 0 andthere is no contact force (cn = 0). This generates a complementaritycondition: both the normal force and the normal velocity are nonneg-ative, and if one of them is positive then the other one must vanish. Itis convenient to denote this complementarity condition by writing(n(q(l+1))T vl+1 � 0 compl. to cn � 0:A multi-body dynamic system has also joint constraints, which aredetermined by equality constraints of the type �(q) = 0, where �(q) isa continuously di�erentiable function of q. The corresponding velocityconstraint becomes (�(q(l+1)))T v(l+1) = 0; (2.4)where � = �(q) = �q(q)T is the Jacobian of the constraint. The forceexercised by such a constraint is c��, [5], where c� can be any realnumber (positive or negative).In considering friction we use the same approach as in [11]. Namelywe consider Coulomb friction and we assume that the contact forcehas two components: a normal component cn and a tangential(friction)component. The Coulomb friction law requires the contact force to liein a circular cone (or elliptic cone for anisotropic friction). This is adi�cult condition to deal with since it leads to a nonlinear complemen-tarity problem which is much more di�cult to analyze and/or to solvenumerically. Therefore the cone is approximated by a polygonal cone[11, 2] dFC(q) = fcnn+D� j cn � 0; � � 0; eT� � �cng (2.5)where e = [1; 1; :::; 1]T 2 RI u and u is the number of edges of the polyg-onal approximation and � is the friction coe�cient. The u columns ofD represent vectors of the space tangent to the contact (in the twodimensional simulations D has just two columns). Also it is assumedthat if a vector d is among the columns of D, so is �d. The new com-plementarity conditions can be written as�e+DTv(l+1) � 0 compl. to � � 0 (2.6)�cn � eT� � 0 compl. to � � 0 (2.7)
solvable8.tex; 30/01/1997; 1:25; no v.; p.4



SOLVABLE CONTACT PROBLEMS WITH FRICTION 5The complementarity of the vectors of (2.6) is understood componen-twise. If �cn � eT� > 0 then � = 0 and therefore DT v(l+1) � 0. Butif there is a column d of D such that dT v(l+1) > 0, then for the col-umn corresponding to �d we have �dT v(l+1) < 0 contradicting the nonnegativity of DT v(l+1). Therefore DT v(l+1) = 0. Since the columns ofDT span the tangent plane at the contact, this means precisely thatthe tangential velocity is zero. Therefore if the contact force is insidethe cone dFC(q) the bodies involved in contact do not exhibit relativemotion.By negating the above implication it follows that, if the bodies incontact are in relative motion, then at least one of the elements ofDTv(l+1) is positive, forcing �cn � eT� = 0. Also, from the comple-mentarity condition (2.6) we have �TDT v(l+1) � 0, so that the frictionforce exhibits negative work, as expected. It can be shown that as theapproximation to the Coulomb friction cone is more accurate (i.e., whenu!1), the angle between the friction force and the relative velocitytends to �, if the bodies in contact have nonzero tangential contactvelocity. Therefore in the limit, the above friction model behaves likethe Coulomb friction model.2.2. The Newton law and the LCPWe will assume that our multi-body system has p contacts and m jointconstraints. A superscript (j) will denote an object associated with thecontact (j). The superscript (l) on v and q denotes the velocities andpositions at time-step (l). The Newton Law for forces isMdvdt = Fc + Fextwhere Fc is the force due to the constraints and Fext represents Cori-olis and external forces. M is the mass matrix. In an explicit Eulerintegration setting, this becomes:M(v(l+1) � v(l)) = hFc + hFextThe constraint forces are composed of the forces presented in the pre-vious subsection. Therefore adding the Newton Law to the comple-mentarity conditions from the previous sections, we get the following(generalized) LCP:M(vl+1 � v(l))� mXi=1 �(i)c(i)� �
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6 M. ANITESCU and F.A.POTRA� pXj=1 (n(j)c(j)n +D(j)�(j)) = hk (2.8)�(i)T vl+1 = 0; i = 1::m (2.9)n(j)T vl+1 � 0; compl. to c(j)n � 0; j = 1::p (2.10)�(j)e(j) +D(j)T vl+1 � 0; compl. to �(j) � 0; j = 1::p (2.11)�(j)c(j)n � e(j)T �(j) � 0; compl. to �(j) � 0; j = 1::p (2.12)Here k represents the external and Coriolis forces. Note that the vari-ables cn; c� ; � represent impulses rather than forces (they are forcesmultiplicated by h, the step-length). The (generalized) LCP can bewritten in the following matrix form:266664 M �~� �~n � ~D 0~�T 0 0 0 0~nT 0 0 0 0~DT 0 0 0 ~E0 0 ~� � ~ET 0 377775266664 v(l+1)~c�~cn~�~� 377775+ b = 26664 00~�~�~� 37775 (2.13)24 ~cn~�~� 35T 24 ~�~�~� 35 = 0; 24 ~cn~�~� 35 � 0; 24 ~�~�~� 35 � 0:Here ~� = [�(1); :::; �(p)], ~c� = [c(1)� ; :::; c(p)� ]T , ~n = [n(1); :::; n(p)],~cn = [c(1)n ; :::; c(p)n ]T , ~� = [�(1)T ; :::; �(p)T ], ~D = [D(1); :::;D(p)], � =[�(1); :::; �(p)], ~� = diag(�(1); :::; �(p))T and ~E = diag(e(1); :::; e(p)) andb = h�Mv(l) � hk; 0; 0; 0; 0iT : (2.14)To prove that such a problem has always a solution, we �rst provethe following solvability theorem.Theorem 2.1. Consider a (mixed) LCP of the form 00s ! = 0@ M �F �HF T 0 0HT 0 N 1A xy� !+  �k0b ! (2.15)s � 0; � � 0; �T s = 0; (2.16)where M;N;F;H are given matrices and b; k are given vectors of theappropriate dimension.If M is a symmetric positive de�nite matrix, N a copositive matrix[8, Def. 3.8.1] and b a nonnegative vector having only nonnegative ele-ments (in particular all components of b can be 0), then the above
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SOLVABLE CONTACT PROBLEMS WITH FRICTION 7LCP has a solution. Lemke's algorithm, with precautions taken againstcycling, will always �nd a solution � of the LCP obtained by eliminat-ing x and y, and then a solution (x; y; �) of the original LCP can berecovered by solving for x and y in the �rst two rows of (2.15).Proof See Appendix A.Theorem 2.2. For any positive de�nite mass matrix M and nonneg-ative friction coe�cients, the LCP (2.13) has a solution which can becomputed by Lemke's algorithm.Proof Let N be the matrix made of the last three sets of rows andcolumns of the matrix form 2.13. Since the matrix is the sum betweena positive semide�nite matrix (having ~E and � ~ET as its blocks) and amatrix with nonnegative coe�cients (~�) it follows that it is copositive.By de�ning H = [~n ~D 0], the conclusion follows after using Theorem2.1 . 2We denote the solution set of LCP (2.13) by L(v(l); hk), so that wecan write (2.13) as (v(l+1); ~c� ; ~cn; ~�; ~�) 2 L(v(l); hk) (2.17)The solution set of the LCP (2.13) also depends on q(l) and h since~�; ~n;M; ~D are evaluated at q(l+1) = q(l) + hv(l) but we will focus onthe dependency of (2.13) on the free term (2.8). The previous theoremproves precisely that the set L(v(l); hk) is nonempty and that a pointin it can be found by Lemke's algorithm.2.3. Energy properties of the formulationIn this subsection, we assume that the mass matrix is constant duringthe simulation. This happens with the Newton-Euler formulation inbody coordinates [9]. This assumption allows us to prove a propertyof the formulation that reproduces a similar property in real dynamicssystems.Theorem 2.3. The kinetic energy at the new step, 12v(l+1)TMv(l+1),cannot exceed the kinetic energy 12(v(l) + hM�1k)TM(v(l) + hM�1k)of the system in the same con�guration, with no constraints enforced.Proof From (2.8) we have, after multiplying with v(l+1)Tv(l+1)TM(v(l+1) � v(l)) =Pmi=1 v(l+1)T �(i)c(i)� ++ pXj=1 (v(l+1)T n(j)c(j)n + v(l+1)TD(j)�(j)) + hv(l+1)T k: (2.18)
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8 M. ANITESCU and F.A.POTRAUsing (2.9), (2.10) and (2.13) we getv(l+1)TM(v(l+1) � v(l)) = pXj=1(v(l+1)TD(j)�(j)) + hv(l+1)T k (2.19)From (2.11), (2.12) and (2.13) it follows that v(l+1)TD(j)�(j)= ��(j)eT�(j) = ��(j)�(j)c(j)n . Thereforev(l+1)TM(v(l+1) � v(l)) = �Ppj=1(�(j)�(j)c(j)n )+hv(l+1)T k � hv(l+1)T k (2.20)Let 
2 = M1=2v(l+1); 
1 = M1=2v(l); � = M�1=2k. Then (2.20) can bewritten as 
T2 (
2 � 
1) � h
T2 � (2.21)or 
T2 
2 � 
T2 (
1 + h�) � k
2kk
1 + h�k, the last inequality resultingfrom the Cauchy inequality. Therefore k
2k � k
1 + h�k. Taking thesquares, dividing by 2 and replacing with the original variables yields12v(l+1)TMv(l+1) � 12(v(l) + hM�1k)TM(v(l) + hM�1k) (2.22)which proves the claim. 23. The collision modelMost existing models for instantaneous inelastic collision can be seenas particular cases of contact dynamics problems, for h = 0, cf. [1, 11].In this section, we will present a simple partially elastic collision modelwith friction based on the approach used for frictionless collision in[10]. For two dimensions the approach is similar with the one in [6]but, in addition, a solution to the model is guaranteed to be found. Wewill not consider cases for which portions of the tangential impulse isreversible (like in the highly elastic materials used in making superballs[6]) although our model can be easily modi�ed to include some form oftangential impulse restitution.The collision is assumed to have two phases: compression and decom-pression. The collision will generate a new contact (between the bod-ies that collide) , which, in the compression phase, is added to thosealready existent on the contact list. Each contact is characterized byan elasticity coe�cient, ej ; j = 1::p.
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SOLVABLE CONTACT PROBLEMS WITH FRICTION 93.1. The Compression PhaseSuppose that the collision is a proper collision, in the sense that it hasa nonzero normal velocity. In other words, there is at least a contact,say de�ned by index j = 1, such that n(1)T v� < 0, where v� denotesthe pre-collision velocities.In the compression phase, the dynamic system will respond with con-straint impulses (generated by joints, contacts, or friction). We denotethe impulses by the same symbols as in (2.13) but with superscriptc. Let vc be the velocity at the end of the compression phase. At theend of compression, each contact from the list is either maintainedccn � 0; nT vc = 0, or is breaking, ccn = 0; nT vc � 0. Therefore we recov-er the same complementarity conditions as in (2.10). Conservation ofimpulse requiresM(vc � v�)� mXi=1 �(i)cc(i)� � pXj=1(n(j)cc(j)n +D(j)�c(j)) = 0 (3.1)The conditions on joints and friction being identical with (2.9), (2.11)and (2.12) with the appropriate complementarity conditions,it followsthat (vc; ~cc� ; ~ccn; ~�c; ~�c) 2 L(v�; 0): (3.2)By Theorem 2.2, Lemke's algorithm will �nd a solution in L(v�; 0).Also, it is worth mentioning that vc 6= v�, since n(1)T v� < 0 andn(1)T vc � 0.3.2. The decompression phaseLet v+ be the velocity after the decompression phase. Each contact con-straint will generate a decompression impulse, dependent on the coe�-cient of restitution ej . For instance, the contact constraint j will gener-ate an impulse cd(j)n = ejcc(j)n +cx(j)n . The additional impulse cx(j)n � 0 isnecessary to prevent interpenetration. Either the contact breaks, andthen n(j)v+ � 0 , cx(j)n = 0, or it is maintained and then n(j)v+ = 0 ,cx(j)n � 0. Therefore the same type of complementarity as (2.10),(n(j)T )v+ � 0 compl. to cx(j)n � 0:is generated. Hence solving for the post-collision velocity will be similarto (2.13). The restitution impulse isF r = pXj=1 ejn(j)cc(j)n : (3.3)
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10 M. ANITESCU and F.A.POTRAWe assume that the tangential impulse is irreversible and does notcontribute to the restitution force. The conservation of impulse requiresM(v+ � vc)� mXi=1 �(i)cx(i)� � pXj=1(n(j)cx(j)n +D(j)�x(j)) = F r: (3.4)The same friction model gives rise to equations analogue to (2.11),(2.12). By Theorem 2.2 the post-collision velocity, v+ , can be foundby Lemke's algorithm since(v+; ~cx� ; ~cxn; ~�x; ~�x) 2 L(vc; F r): (3.5)There are two special cases worth noting. One is when ej = 0; j =1::p (totally inelastic collision). Then F r = 0 and v+ = vc is a solutionin L(vc; 0) with all constraint impulses being 0, and ~�x = ~�c. In thiscase we can say that there is no decompression phase.The other case concerns frictionless contacts. Our remark is anextension of a similar one [10]. Namely, we assume� (a) all new contacts generated by collision have the same elasticitycoe�cient �. Usually there is only one such contact, but some spe-cial cases might have several simultaneous collisions, like a blockfalling 
at on a tabletop.� (b) The elasticity coe�cients characterizing the other contacts areless than �, ej � �, 1 � j � p.� (c) The pre-collision velocities satisfy the contact constraints exact-ly, (n(j)(q�))T v� = 0, for the contacts j that were maintainedimmediately before the collision. (this would be the case for a suit-ably adapted implicit integration scheme for example).Under these assumptions a solution of the problem (3.5) is v+ = (1 +�)vc � v�, with cx(i)n = (�� ei)cc(i)n . This means that the only contactsthat break at decompression are the ones originating from collision.A disadvantage of the decompression phase is that for each collision,two LCP's need to be solved. Based on the previous observation, asimpli�ed model for for partially inelastic collision would be to simplyuse v+ = (1 + �)vc � v�, where � is the elasticity coe�cient of thecontacts generated by collision.Lemma 3.1. If, for the decompression phase, v+ = (1 + �)vc � v�,then v+TMv+ � v�Mv�.
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SOLVABLE CONTACT PROBLEMS WITH FRICTION 11Proof Let 
2 =M 12 vc, 
1 =M 12 v�, 
3 =M 12 v+. Then since(vc; ~cc� ; ~ccn; ~�c; ~�c) 2 L(v�; 0), we have 
T2 (
2 � 
1) � 0 by (2.21) (sinceh = 0). Obviously, 
3 = 
2 + �(
2 � 
1). Thereforek
3k2 = 
T2 
2 + �2(
2 � 
1)T (
2 � 
1)+2�
T2 (
2 � 
1) � 
T2 
2 + �2(
2 � 
1)T � (3.6)
T2 
2 + (
2 � 
1)T (
2 � 
1) � 
T2 
2+(
2 � 
1)T (
2 � 
1)� 2
T2 (
2 � 
1) = k
1k2: (3.7)Hence k
3k � k
1k which proves the claim. 2The property in the conclusion of the Lemma means that the kineticenergy cannot increase by resolving collisions using v+ = (1+�)vc�v�.This is a desirable property for any collision resolution.Remark In [6] the authors claim that the property from the aboveLemma holds for all two dimensional con�gurations. This statementis based on the claim [6, pg 480] \Since G is symmetric and positivesemide�nite and � is a diagonal matrix consisting of elements 0 � �N �1, it follows that 12�TC�G��C � 12�TCG�C � 0:00The last inequality is violated for �C = � 1�2 � G = � 4 22 4 � and� = � 0:5 00 1 � although all these matrices satisfy the assumptions. Thismakes invalid the previous statement and the proof of the kinetic ener-gy inequality in [6].4. Strategy for integrating the equations of motionVarious numerical schemes can be devised based on the previous sec-tions. In what follows we propose a simple Euler integration method to�nd a numerical solution for the time interval [0; T ].v = v0, q = q0; time = 0;while (time < T )qnew = q + hv;Find (vnew; ~c� ; ~cn; ~�; ~�) 2 L(v; hk) (~�; ~D; ~n;M are evaluatedat qnew, k is evaluated at (q; v))if (no collision detected between time and time+ h)time = time+ h, q = qnew, v = vnew;
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12 M. ANITESCU and F.A.POTRAelse Estimate the collision time timenew, collisionposition and velocity qnew and v�;Find (vc; ~cc� ; ~ccn; ~�c; ~�c) 2 L(v�; 0);Find (v+; ~cx� ; ~cxn; ~�x; ~�x) 2 L(vc; F r), with F rde�ned in (3.3);(Alternately, choose v+ = (1 + e)vc � v�)time = timenew, v = v+, q = qnew.end ifend whileSeveral details need to be speci�ed. We assume that the initial veloc-ity v0 is consistent with the constraints, i.e. that (n(j)(q0))T v0 � 0 and(�(i)(q0))T v0 = 0 for i = 1::m; j = 1::p. If that were not true, a colli-sion would take place. The algorithm can be easily modi�ed to handlean initial collision. At each step an LCP of the form (2.13) is solved.To set it up, ~�; ~D; ~n; k;M need to be speci�ed. Following the discussionin subsection 2.1, all these qualities are evaluated at qnew. Variants ofthis scheme would be to evaluate the data or parts of it at q or q+ h2v[11]. The integration time-step does not have to be constant during theintegration an can be changed at each step. One can easily devise avariant of this algorithm which uses a more sophisticated integrationmethod (Runge-Kutta for example).Also, the collision detection rules need to be speci�ed. A (theoreti-cally) simple collision rule would be to check for �(i)(q) � 0 (interpen-etration). One problem is that the LCP decides take-o� based on thecondition �(i)q (q)v > 0 but this does not necessarily mean that therewas no interpenetration, for �(i)(q) can be negative, due to numericalerror. If a new collision between the bodies occurs before �(i)(q) > 0it cannot be detected based on the sign of �(i)(q). A solution wouldbe to use a Nonlinear rather than a Linear Complementarity Prob-lem [11] which enforces the constraint �(i)(q) � 0 with the cost ofadditional computation. Another solution, in the case when interpene-tration persists even though the LCP (2.13) dictates take-o�, would beto check for �(i)q (q)v � 0 (normal velocity becomes negative) as a col-lision condition. This ensures that either there is no interpenetration,or there is an instantaneous decrease in interpenetration. This aspectshows the necessity of a good integration of the geometric and dynamicalgorithms, for the outcome can be contradictory due to the discretenature of the numerical schemes.Assume that the contact constraint (i) is exactly satis�ed at thecurrent time moment, �(i)(q(l+1)) = 0 and the LCP results in
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SOLVABLE CONTACT PROBLEMS WITH FRICTION 13n(i)T (q(l+1))v(l+1) > 0. Then ddh�(i)(q(l)+ hv(l+1)) > 0. Therefore take-o� is certain at least on a small time interval following the currentmoment. This is an important property which shows the robustness ofthe formulation in the vicinity of the constraint manifold.There is a class of con�gurations for which these algorithms cannotbe guaranteed to sweep the interval [0; T ] in �nite time. One examplewould be a ball bouncing on the 
oor with a restitution coe�cientstrictly between 0 and 1. The ball will sustain an in�nite number ofcollisions in �nite time, and the algorithm cannot get past the momentthe ball has 0 velocity. One solution to this problem is to require thatthe restitution coe�cient is zero for normal collision velocities less thana certain value.5. Uniform boundedness of the numerical solution withrespect to integration time stepIn this section we analyze the properties of our formulation for thecase of the Newton-Euler [9] equations in body coordinates. The mainadvantage in using this formulation is that the mass matrix is constantthroughout the simulation. The drawback is that the Coriolis force,which is quadratic in velocity, has to be taken into account, whichcomplicates the regularity analysis, because the assumption that theforce is bounded, used in [11] is not obvious in this case. For one body,the Newton-Euler equations in body coordinates are [9, x2.4]m _vb + !b �mvb = f b (5.1)I _!b + !b � I!b = � b (5.2)where m is the mass of the body, I is the inertia matrix (which isdiagonal for a suitable choice of coordinates). The vectors vb and !brepresent the translational and rotational velocities in body coordi-nates. The term fc = �[(!b � mvb)T ; (!b � I!b)T ]T is the Coriolisforce. An important property of the Coriolis force is [vbT ; !bT ]fc = 0.This re
ects the fact that the Coriolis force produces no work (it isperpendicular to the velocity), and will be a signi�cant asset in prov-ing the uniform boundedness of velocities. It should also be mentionedthat for two dimensional simulations, the Newton-Euler formulation inglobal coordinates [9, x2.4], generates a constant mass matrix and doesnot exhibit Coriolis force.We consider a dynamical system under the action of three types ofexternal forces: forces whose magnitudes increase at most linearly withthe distances (e.g. elastic forces), forces whose magnitude increase at
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14 M. ANITESCU and F.A.POTRAmost linearly with the velocity (e.g. viscous friction), and forces whichare bounded during the simulation time interval [0 T ]. The followingtheorem proves that the kinetic energy obtained by the algorithm inthe previous section is uniformly bounded on the time-interval [0 T ].The step-size is not necessarily constant during the integration, but itis bounded by h. In other words for a given h, the time steps hl can bedi�erent during the integration but they have to be smaller than h (his just an upper bound on the individual step{sizes, and not necessarilythe time{step).Theorem 5.1. Assume that the algorithm from the previous sectionsolves a �nite number of collisions between 0 and T and that the colli-sion resolution method ensures that the kinetic energy after the collisionis no greater than the one before collision. Let v(0); v(T ) and q(0); q(T )be the velocity and position at the beginning and the end of the simu-lation period.a) If the external force is of the form k(v; q) = fc(v) + k1(v; q) +k2(v) + k3(q), where kk1(v; q)k � d1, kk2(v)k � d2kvk and kk3(q)k �d3kqk; 8q; v, then for all su�ciently small hvT (T )Mv(T ) � (vT (0)Mv(0) + kq(0)k2)e2cT + 2cTe2cT : (5.3)b) If k2(v) = k3(q) = 0, then for all su�ciently small hqvT (T )Mv(T ) � qvT (0)Mv(0) + cT + 1: (5.4)In both cases, c is a constant that depends solely on di > 0; i = 1::3and on the mass matrix M .Proof See Appendix B.The forces considered in the previous theorem cover most cases ofexternal forces in real dynamical systems. Therefore we see that for fair-ly general situations our algorithm provides solutions that are uniformlybounded as h # 0 for the Newton-Euler formulation. If k2(v) = �d2v,d2 > 0 (damping force) and k3(q) = 0 it can be shown that the veloc-ities satisfy a bound like (5.4). Another interesting point is that if theexternal forces (except for the Coriolis force) are uniformly bounded asT !1, then the increase in velocity is at most linear with respect totime, which is also true in real dynamical systems.6. ConclusionsA discrete model for solving multi-rigid-body contact problems withfriction has been presented based on Linear Complementarity Prob-lems (LCP). The friction model is an approximation to Coulomb fric-tion model and can be made as accurate as desired. The formulation
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SOLVABLE CONTACT PROBLEMS WITH FRICTION 15guarantees that the contact problem always has a solution which willbe found by Lemke's algorithm. It also has the property that the kinet-ic energy increase after one integration step in time cannot exceed theincrease for the case where no constraint is active. Also we have for-mulated a model for treating impact with friction for restitution coef-�cients between 0 and 1. The model has a compression and a decom-pression phase, each needing Lemke's algorithm for �nding a solution(which is guaranteed to exist).We have discussed an explicit Euler integration strategy. If the col-lision resolution is guaranteed to yield a smaller kinetic energy afterthe collision, then, under some reasonable conditions on the externalforces (at most linear increase with respect to velocity and position) thevelocities given by the numerical algorithm are uniformly bounded ash # 0 for the Newton-Euler formulation in body coordinates. Also thevelocities increase at most linearly with the time-interval consideredif the external force is uniformly bounded. An example of a collisionresolution that guarantees a non-increasing kinetic energy is given inSection 3.It is not necessary that the integration procedure use the Newton-Euler formulation or an Euler integration scheme. Both the integrationprocedure and coordinates can be changed maintaining the solvabilityof the corresponding LCPs. The Euler integration approach has theadvantage that it guarantees the uniform boundedness of the velocities.Several other issues arise in the practical implementation of thenumerical method. Lemke's algorithm will not only compute a solu-tion to the LCP, but it will also compute a basis of (A.1) [8]. If a basisis known, then a solution can be computed by solving a linear system.In many simulations changes of basis are relatively rare compared tothe total number of integration steps. Therefore, the same basis can beused for several steps with the cost of just a linear solve and Lemke'salgorithm will be called just when the necessity of a change of basisis detected (a negative slack). This observation has been used before[4, 3] with signi�cant improvements of the computational e�ort. Theadvantage of our setting is that it guarantees that a change of basiswhich yields a solution will be computed by Lemke's algorithm.7. AcknowledgmentsThe algorithm presented in this paper has been implemented in a 2-d package in cooperation James Cremer. The software is a part ofProject Isaac. For details and additional information, see the web pageat \http://www.cs.uiowa.edu/~isaac". The authors are also very grate-
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SOLVABLE CONTACT PROBLEMS WITH FRICTION 17Since F is full row rank F TM�1F is nonsingular. Therefore we cansolve for y from the �rst equation to get the LCP:s = (G+N)�+ g; (A.4)s � 0; � � 0; �T s = 0; (A.5)where G = HTM�1H �HTM�1F (F TM�1F )�1F TM�1H;g = �HTM�1F (F TM�1F )�1F TM�1k +HTM�1k + b:By construction G is the Schur complement of N in the big matrix of(2.15), if N = 0 [8, Def. 2.3.4]. Since the matrix in (2.15) is positivesemide�nite for N = 0, so is G [8, Thm 4.1.5]. Therefore G + N iscopositive.It is convenient to denote the above LCP as LCP(G+N,g) and tocall � its solution (once � is found then s = (G + N)� + g). Let nowz be a solution of LCP(G+N,0). Then zTGz = 0. Since G is pos-itive semide�nite and symmetric, it follows that Gz = 0. Let w =�(F TM�1F )�1F TM�1Hz Then we have from the de�nition of G andthe last relation 0 = F TM�1Fw + F TM�1Hz (A.6)0 = HTM�1Fw +HTM�1Hz: (A.7)By multiplying the �rst relation by wT and the last relation by zT andadding them up, we obtain (Hz + Fw)TM�1(Hz +Fw) = 0. Since Mis symmetric and positive de�nite, it follows that Hz + Fw = 0 andzT g = wTF TM�1k+zTHTM�1k+zT b = (Fw+Hz)TM�1k+zT b � 0.Therefore, we have proved that if z is a solution of LCP(G+N,0)then gT z � 0. Therefore, by Corollary 4.4.12 of [8] Lemke's algorithm,with precautions taken against degeneracy will �nd a solution � to theLCP(G+N,g) and, by solving for x and y in the �rst two rows of (2.15),a solution (x; y; �) to the initial LCP. 2.B. Proof of Theorem 5.1Lemma B.1. Let fzngNn=0, fwngNn=0, be two �nite nonnegative sequencesand fhngN�1n=0 a positive sequence such that PN�1j=0 hj = T . Let ci,i = 1::5 be positive constants. Assume that the sequences satisfy thefollowing inequalities:z2n+1 � z2n + c1hnz2n + c2hnwn + c3hnzn + c4hn (B.1)wn+1 � wn + c5hnzn (B.2)
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18 M. ANITESCU and F.A.POTRAfor 0 � n < N�1. Let c = max 2ci, i = 1::5. Then z2i � (z20+w0)e2cT +2cTe2cT , wi � (z20 + w0)e2cT + 2cTe2cT , 8i � N .Proof Using the inequality 2zn � z2n + 1 we can writez2n+1 � z2n + c1hnz2n + c2hnwn + c3hnzn + c4hn (B.3)� z2n + c1hnz2n + c2hnwn + c3hn(z2n=2 + 1=2) + c4hn (B.4)� z2n + chnz2n + chnwn + chn: (B.5)We also have thatwn+1 � wn + c5hnzn � wn + c5hn(z2n=2 + 1=2) (B.6)� wn + chnz2n + chnwn + chn: (B.7)Let rn = z2n + wn. By adding (B.5) with (B.7) we obtainrn+1 � rn + 2chnrn + 2chn � rne2chn + 2chn: (B.8)Let un = Pni=0 hi. We will prove that rn � (r0 + 2cun�1)e2cun�1 byinduction. It is obvious for n = 1. Assume it is true for n. Thenrn+1 � rne2chn + 2chn � (r0 + 2cun�1)e2cun�1e2chn + 2chn (B.9)� (r0 + 2cun�1)e2cun + 2chne2cun = (r0 + 2cun)e2cun(B.10)Using the fact that ui � T for 0 � i � N � 1, we can write z2i � ri �(z20 + w0 + 2cT )e2cT , wi � ri � (z20 + w0 + 2cT )e2cT , for 0 � i � N ,which proves the claim. 2.Proof of Theorem 5.1 a) By Theorem 2.3 we havev(l+1)TMv(l+1) � (v(l) + hlM�1k)TM(v(l) + hlM�1k):Let 
(l) =M1=2v(l) and �(l) =M�1=2k(q(l); v(l)). Then the last relationcan be rewritten ask
(l+1)k2 � k
(l) + hl�(l)k2 = k
(l)k2 + 2
(l)T �+ h2l k�(l)k2: (B.11)By the de�nition of the Coriolis force we have vT fc = 0. Therefore
(l)T � = v(l)T (fc(v(l)) + k1(v(l); q(l)) + k2(v(l)) + k3(q(l)))(B.12)= v(l)T (k1(v(l); q(l)) + k2(v(l)) + k3(q(l))) (B.13)= 
(l)T (�1(v(l); q(l)) + �2(v(l)) + �3(q(l))); (B.14)
solvable8.tex; 30/01/1997; 1:25; no v.; p.18



SOLVABLE CONTACT PROBLEMS WITH FRICTION 19where �i =M�1=2ki; i = 1; 2; 3. By using the inequalities in the hypoth-esis, we get 
(l)T (�1(v(l); q(l)) + �2(v(l)) + �3(q(l))) �k
(l)k(c1 + c2k
(l)k+ c3kq(l)k); (B.15)k�(l)k � (c1 + c2k
(l)k+ c3kq(l)k+ c4k
(l)k2); (B.16)where the constants ci; i = 1::4 depend only on the constants di; i = 1::4and the mass matrix. The term c4k
(l)k2 is a bound on the Coriolisforce. Therefore, according to (B.11) we can writek
(l+1)k2 � k
(l)k2 + 2k
(l)k(c1 + c2k
(l)k+ c3kq(l)k)+h2l k�(l)k2: (B.17)Denoting zl = k
(l)k and wl = kq(l)k we getz2l+1 � z2l + c1hlzl + c2hlz2l + c3hlwlzl + h2l k�(l)k2: (B.18)Also, q(l+1) = q(l) + hlv(l) = q(l) + hlM�1=2
(l) and thereforewl+1 � wl + hlc5zl; (B.19)where c5 depends only on the mass matrix and wl = kq(l)k. Let c =max 2ci; i = 1::5. We choose h such that(c1 + c2(k
0k2 + kq0k+ 2cT ) 12 ecT+(c3 + c4)(k
0k2 + kq0k+ 2cT )e2cT )2 � c2h : (B.20)We will prove by induction thatz2l+1 � z2l + c1hlzl + c2hlz2l + c3hlwlzl + c2hl: (B.21)for 0 � l � N . From (B.18) it follows that it is su�cient to prove byinduction that hlk�(l)k2 � c2 : (B.22)For l = 0 this follows from (B.16) and (B.20) withk�0k � (c1 + c2k
(0)k+ c3kq(0)k+ c4k
(0)k2) � c2hlAssume that (B.22), and hence (B.21), holds for some 0 � n < N � 1.From (B.19) it follows that the sequences wl; zl, 0 � l � n� 1 satisfythe conditions from Lemma B.1. Since Pn�1l=0 hl � T , we havez2l � (z20 + w0)e2cT + 2cTe2cT ; 0 � l � n� 1;wl � (z20 + w0)e2cT + 2cTe2cT ; 0 � l � n� 1:
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20 M. ANITESCU and F.A.POTRAUsing (B.20) and (B.16) we deduce that hnk�(n)k2 � c2 which completesthe induction.Therefore wl; zl satisfy (B.21) and (B.19) and the assumptions ofLemma B.1, for 0 � l � N , so that the conclusion follows.b) A similar sequence of inequalities shows thatk
(l+1)k2 � k
(l)k2 + 2hlc1k
(l)k+ hlk�(l)k2 (B.23)Here c1 is a constant dependent on d1 and the mass matrix, M . Fol-lowing the hypothesis on the external force, we have thatk�(l)k � c1 + c4k
(l)k2 (B.24)where c4 depends only on the mass matrix. Let c = 2max fc1; c4g. Wechoose h such thath(c1 + c4(qk
0k2 + 1 + cT )2)2 � c2 : (B.25)Let zl = k
(l)k. We will prove by induction thatqz2n + 1 � qz20 + 1 + c n�1Xl=0 hl (B.26)for 0 � n � N . For n = 0 the claim is obvious. Assume it is true forn� 1 � N � 1. Then by virtue of (B.23) we can writez2n � z2n�1 + 2hn�1c1zn�1 + h2l k�(l)k2: (B.27)From (B.24) and the induction hypothesis it follows that:hn�1k�(n�1)k2 � h(c1 + c4z2n�1)2� h(c1 + c4(qk
0k2 + 1 + cT )2)2 � c2 :Therefore, from (B.27) we deduce thatz2n � z2n�1 + 2hn�1c1zn�1 + hn�1 c2 :Adding 1 to both sides, applying Cauchy's inequality and the inductionhypothesis, we getz2n + 1 � z2n�1 + 1 + 2hn�1cqz2n�1 + 1 � (qz2n�1 + 1 + hn�1c)2� (qz20 + 1 + c n�2Xl=1 hl + chn�1)2
solvable8.tex; 30/01/1997; 1:25; no v.; p.20



SOLVABLE CONTACT PROBLEMS WITH FRICTION 21which proves that (B.26) is true for n. The Theorem is proved by takingn = N in (B.26) . 2Address for correspondence: Florian A. Potra, Department of Mathematics, Uni-versity of Iowa, Iowa-City, IA 52242, USA.

solvable8.tex; 30/01/1997; 1:25; no v.; p.21


