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Abstract of the Dissertation

A Numerical Investigation of the Richtmyer-Meshkov
Instability
Using Front Tracking
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n
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State University of New York
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The method of front tracking is used to simulate the shock-tube exper-
iments of Meshkov and Benjamin to predict perturbation amplitude growth
rates. The results of the simulations are in much better agreement with ex-
periment than previous simulations or theory. This improved agreement is
explained by showing that simplifications in the theories, such as assumptions

of incompressibility or linearity, miss crucial aspects of the experiments and
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thus the theories give incorrect growth rates. In addition, it is shown that
for simulations the correct time period for measurement of the instability is
crucial in getting agreement with experiment.

The long-time behavior of the growth rates is discussed and the simulations
are compared to an incompressible potential flow model for bubble velocities
due to Hecht, et al. It is determined that the model adequately describes
late-time behavior if modifications are made to take into account early time
compressibility effects.

Finally, the simulations are validated through comparison with a linearized

theory which is valid in the limit of small amplitudes.
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Chapter 1

Introduction and Motivation

The behavior of shock-accelerated gas interfaces has received a great deal of
attention due its fundamental importance in the study of various technological
applications and natural phenomena. The basic phenomenon studied in this
work is the Richtmyer-Meshkov instability. This instability is generated when
a shock wave refracts through an interface separating two gases, causing per-
turbations on the interface to grow with time. It was originally predicted by
Richtmyer [62] and subsequently observed in the experiments of Meshkov [54].

Presented here are the results of front tracking simulations of the Richtmyer-
Meshkov instability. These simulations predict perturbation growth rates that
are much closer to those in experiments than has previously been attained
numerically or analytically. This improvement is due to the accuracy and
stability of the front tracking method used in these computations as well as
due to the proper consideration of nonlinear effects and measurement timing.
The failure of the theories, which make assumptions about small amplitudes

and/or incompressibility, is explained through an empirical analysis of nonlin-



ear, compressible waves. In addition, the asymptotic behavior of perturbation
growth is studied and it is shown that a long term decay in the growth rate
is to be expected and is part of the solution to the Euler equations, not a
numerical artifact. Finally, the code is validated in a unique and convincing
way by comparing the nonlinear simulations with reduced amplitudes with the
solution of a linearized set of equations.

Preliminary accounts of this work can be found in [16, 17, 18, 19, 43, 45]

and [47].

1.1 The Richtmyer-Meshkov Instability

Consider the situation shown in Figures 1.1 and 1.2. These figures show the
initial and late-time configurations of a simulation of shock induced mixing
in a supernova. In the first frame of Figure 1.1 we see the initial conditions.
A circular shock wave is moving outward and will strike a perturbed circular
material interface separating the heavy interior gas from the light outer gas.
The second frame is an enlarged view of the initial conditions. Figure 1.2
shows the late time configuration. Instead of expanding in a circular fashion
as may be expected given the nearly circular initial conditions, the initial
perturbations have grown significantly and have forced heavy interior material
deep into the surrounding light material. It is this growth of perturbations
which constitutes the Richtmyer-Meshkov instability. This behavior has been
suggested as one explanation for recent supernova observations in which z-rays

from deep within the core of the exploding star are observed much earlier than
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Figure 1.1: Results of simulation showing shock-wave induced mixing of gases.
This type of mixing is thought to occur in supernovae. The initially small perturba-
tions on the interface grow into large structures reaching deep into the surrounding
material. This figure shows the initial configuration of the simulation.

~

Figure 1.2: Late time behavior of the interface. The initially smooth interface
perturbations have grown into large, complex structures reaching deep into the
outer material. The outermost wave is the transmitted shock and the innermost
wave is the trailing edge of the reflected rarefaction.




would be expected based on spherically symmetric models [2, 37, 59].

The Richtmyer-Meshkov instability also plays an important role in Inertial
Confinement Fusion (ICF), a method proposed for generating usable energy
from nuclear fusion [51, 68]. In ICF a small spherical fuel pellet made of a
deuterium-tritium mix surrounded by a heavy shell is irradiated by a strong
laser. The resulting explosive ablation generates a shock wave which com-
presses the pellet and, if the temperature and pressure are large enough, ig-
nites a fusion reaction. The Richtmyer-Meshkov instability will limit the yield
from this reaction since asymmetries will limit the amount of compression and

will also force cold outer fuel into the central hot spot required for fusion.

1.2 Shock Tube Experiments

While many of the applications of Richtmyer-Meshkov instabilities involve cir-
cular geometries, most experiments have been performed in the rectangular
geometry of a shock tube. Experiments in this geometry have the advantage
of ease of setup and measurement, in addition to allowing simpler mathemat-
ical analysis. A diagram of such an experiment is given in Figure 1.3. The
first frame shows a shock wave in a gas moving downward toward a mate-
rial interface. We are viewing the interaction in a moving reference frame in
which the mean position of the interface will be stationary after the passage
of the shock. The interface is initially sinusoidal. In experiments this shape
is imposed through the use of a thin (less than 1gm thick) membrane. In

the second frame the shock is refracting through the interface, producing a
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Figure 1.3: A schematic representation of the geometry of the Richtmyer-Meshkov
instability. The interaction consists of the collision of a shock wave with a mate-
rial interface. The refraction of the shock by the interface produces reflected and
transmitted waves. The instability consists of the growth of perturbations of the
material interface with time.

transmitted shock wave and a reflected wave which may be either a shock or
rarefaction. The type of reflected wave that is produced depends on the ther-
modynamic properties of the two gases as well as the strength of the incident
shock wave [32, 71]. By the third frame the shock has completed its refraction
through the interface and both the transmitted and reflected waves are moving
away from the interface. Due to shock compression the amplitude of the per-
turbation is smaller immediately after the interaction than it was originally.
The amplitude will begin to increase again due to vorticity deposited on the
interface by the refraction. The final frame shows the interface at late time.
The initially smooth sinusoidal perturbation has grown into irregular “spikes”
of the heavy fluid below reaching into the lighter material above and “bubbles”
of the lighter material surrounding the spikes. We can see in this last picture
the “mushroom caps” on the spikes that are characteristic of this instability.

Note the width of the region of interpenetration has increased significantly.



1.3 Measurements

The primary quantity of interest in simulations and experiments of the Richtmyer-
Meshkov instability is the width of the mixing layer as a function of time, i.e.
the total amount of interpenetration of each material into the other. It is this
quantity which determines the extent of heavy/light mixing in a supernova or
which determines the effects of instabilities in an ICF pellet.

It is convenient to measure not the full width of the mixing layer but
the perturbation amplitude, a(t), defined as one-half of the vertical distance
between the tips of the spikes and the tips of bubbles. This is exactly one-
half of the mixing zone width. Also of interest is the perturbation amplitude

growth rate a(1).

1.4 Current Status

Currently there is no satisfactory understanding of the Richtmyer-Meshkov
instability. While the theoretical models agree well with each other and most
numerical simulations agree with the theory, so far these fail to agree with
most experimental results, predicting perturbation growth rates that are 40%
to 200% larger than found in experiments. Due to the agreement of theory
and computation it has generally been thought that the disagreement is due
to experimental effects, specifically the effects of the membrane which initially
separates the two experimental gases in shock tubes. Models of the membrane
effect are not available, however, and this explanation has not been tested.

Theory and simulation have much to add in the study of the Richtmyer-



Meshkov instability. Theory gives us a deeper understanding than can be
achieved through experiment alone, while simulation gives us the ability to
make measurements that may be impractical or impossible to make in ex-
periments and to perform on a computer more experiments than would be
feasible to realize in a laboratory. It is very important to resolve the discrep-
ancies between experiment, theory and simulation if we are to make significant
progress in understanding the Richtmyer-Meshkov instability. We believe that
this paper helps provide an improved understanding of this important and

fundamental fluid interaction.



Chapter 2

Previous Work

There has been extensive work on the Richtmyer-Meshkov instability since the
pioneering papers of Richtmyer [62] and Meshkov [54]. The literature can be
divided into three areas: theory, experiment and simulation. Reviewed here is
the literature relevant to the present work. See also the review by Rupert [63].

Of particular interest are the differences between the amplitude growth
rates found by the theories, experiments and simulations, as well as whether

each predicts a constant or a decaying growth rate.

2.1 Theory

There is currently no simple theory for Richtmyer-Meshkov instability growth
rates which does not make assumptions of incompressibility, linear flow or
potential flow. In Chapter 7 it is shown that all of these assumptions are
violated in the experiments considered and it is primarily for this reason that

there is disagreement between theories and experiment.



2.1.1 The Impulsive Model

The impulsive model, due to Richtmyer [62], is widely used to estimate insta-
bility growth rates due to its simplicity and its intuitive derivation. Richtmyer
noted the similarities between the shock-induced instability and the Rayleigh-
Taylor instability, which results when a heavy fluid is accelerated by a lighter
one, and suggested that the shock-induced instability could be treated as a
Rayleigh-Taylor instability with an impulsive acceleration. Indeed, as was
later observed in shock tube experiments and simulations, the two instabilities
are qualitatively similar in that they both have the same complex spike and
bubble structures at late time (see Figure 1.3).

To derive Richtmyer’s impulsive growth rate estimate we first consider the
case of Rayleigh-Taylor instability between two incompressible fluids with an
infinitesimal interface perturbation of the form a(?) cos(kx), where a(t)k < 1.
Under these conditions a linearized equation for the perturbation amplitude

as a function of time can be derived [26]:

i—kAga = 0 (2.1)
a(t=0) = ao (2.2)
a(t=0) = 0 (2.3)

where A = (p1 — po)/(p1+ po) is the Atwood ratio and ¢(?) is the gravitational
acceleration pointing from the 1 fluid to the 0 fluid. This equation predicts
stability for A < 0 and exponentially growing perturbations for A > 0.

Richtmyer proceeded by replacing the constant acceleration ¢ by an im-



pulsive acceleration. That is, he set g(f) = Av - é(¢) in (2.1), where Awv is the
change in interface velocity due to the action of the shock wave and 6(%) is the
Dirac delta function. Making the substitution and integrating (2.1) gives an

amplitude growth rate of
a(t) = kAAva(0+4) (2.4)

where the post-shock amplitude, a(0+), has been used in the integration and
is given by
Av
a(04) = a(0—=)(1 — —), (2.5)

S

s being the incident shock speed. We interpret the subscripts 0 and 1 in the
Atwood ratio calculation to denote the gases with the incident and transmitted
shocks, respectively. Equation (2.4) is known as Richtmyer’s impulsive model.
While the Rayleigh-Taylor instability has an exponential growth rate the
impulsive model (2.4) predicts a constant growth rate for the Richtmyer-
Meshkov instability. It is not clear, though, that this growth rate is realistic.
There are several assumptions made: first, that the effects of a shock wave can
be accurately modeled by an impulsive acceleration. Second, the derivation
assumes that the effects of compressibility are negligible after the passage of
the shock and, lastly, it assumes that the instability can be linearized.
Richtmyer originally considered only the case in which the shock refraction
produced a reflected shock. As shown in [71], for polytropic gases a reflected

rarefaction will result if the fluid parameters satisty poco > p1c; and, as is the

10



case in all experiments considered here,

Pe ind T Pa ea -
behind head <9 Y1P1 — YopPo ‘ (2.6)
Pahead (70 —I' 1)/)0 - (71 —I' 1)/)1
The relation between the acoustic impedances pc implies that if
. (2.7)
g Po

then a reflected rarefaction will result. Since vo/v1 > 3/5 it is quite often the
case that the inequality p; < po implies a reflected rarefaction. Meyer and
Blewett [56] used this fact to extend Richtmyer’s impulsive model (2.4) to the
reflected rarefaction case by allowing negative Atwood ratios.

According to (2.4) a negative Atwood ratio implies a negative growth rate.
This can be interpreted as an inversion of the interface, which is indeed ob-
served in experiments. For the case of a reflected rarefaction it is necessary in
general to replace the post-shock amplitude in equation (2.4) by the average
of the pre- and post- shock amplitudes in order to obtain agreement with sim-
ulations. This averaging process has no theoretical justification and is used
only because it works better than other combinations.

Note that the discussion of reflected waves is based on the one dimen-
sional theory and is only accurate for small initial amplitudes. Larger initial
amplitudes can result in different behaviors.

Other work on the impulsive model includes its extension to circular and
multilayer geometries by Mikaelian [57] and a discussion by Sturtevant [67]
regarding possible ambiguities in the calculation of the post-shock amplitude,

a(0+).
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2.1.2 Linear Theory

Recognizing the limitations in the derivation of the impulsive model, Richt-
myer tackled the first two assumptions, the impulsive effects of the shock and
incompressibility, by solving numerically a linearized system of compressible
gas dynamics equations to calculate interface growth rates. The linear equa-
tions take into account compressibility effects, but they do not address the
problem of finite amplitudes, i.e. we still have the requirement a(?)k < 1.
Recently Yang, Zhang and Sharp [71] extended the linear theory of Richtmyer
by including the case of a reflected rarefaction.

Briefly, derivation of the linearized system begins with the nonlinear Euler
equations. Using the geometry described in Figure 1.3, a shock wave moving
in the negative y-direction striking an unperturbed interface is taken to be the
zero order solution. Small perturbations to the resulting Riemann solution
are introduced and only first order quantities are kept. It is assumed that the
interface perturbation is always sinusoidal and that all perturbed quantities ¢
have the form q(z,y,t) = qo(y,t) + 6q(y,t)e’**, where qo(y,1) is the Riemann
solution (and independent of x) and k is the wavenumber of the perturbation.
If this solution ansatz is substituted into the Euler equations and terms of
greater than first order in the 6¢’s are ignored it can be shown that in each
region bounded by the Riemann solution waves (contact, transmitted and
reflected waves) the pressure perturbation 6 P(y,t) satisfies the modified wave
equation

5Ptt = 03(5Pyy — k25P) (28)

12



where ¢y is the unperturbed sound speed in the region. For the reflected
rarefaction case a set of three coupled PDE’s is found for the region between
the rarefaction edges.

In addition to the pressure equation (2.8) and the equations in the rarefac-
tion fan, there are boundary conditions to consider. For the reflected shock
case there are three boundaries: the transmitted shock, the reflected shock
and the contact. For the reflected rarefaction case there are four since the
reflected shock is replaced by the leading and trailing edges of the rarefaction.
These boundary conditions are quite complicated and the reader is referred to
the papers of Richtmyer [62] and Yang, et al. [71] for more details.

The solution of the linearized equations and boundary conditions generally
predicts amplitude growth rates which begin at zero, rise quickly to a peak
and subsequently perform decaying oscillations about a limiting value. Yang
et al. [T1] compared the predictions of the impulsive model (2.4) to the limiting
results of the linearized theory, much as Richtmyer did but for a wider range
of shock strengths and Atwood ratios. It was found that the impulsive model
agrees well with the linearized predictions for weak shocks and Atwood ratios
close to 1 and less well as the shock strength increases and /or the Atwood ratio
goes to 0. This behavior is reasonable considering that the impulsive model
assumes compressibility effects are negligible and this assumption will break
down as the shock becomes stronger. In these comparisons the linearized
predictions should be regarded as more accurate (in its domain of validity)

than the impulsive model as it makes fewer approximating assumptions and

13



has a rigorous theoretical basis.

An interesting use of the linear theory is to validate the nonlinear front
tracking simulations, using the fact that a correct nonlinear simulation should
converge to the linear theory at early times as the initial perturbation ampli-

tude decreases. Such a validation is performed in Chapter 8.

2.1.3 Fraley’s Model

Fraley [36] has derived a model for the amplitude growth rate based on Laplace
transforms of linearized Euler equations. As it results from a linearization,
Fraley’s model has the same region of validity as the linear theory of Richtmyer
and Yang et al. His model has the advantage that it allows simplifications for
very strong or very weak shocks.

Mikaelian found that for some fluid configurations Fraley’s model is in
better agreement with his simulations than the impulsive model. See [58]. The

predictions of Fraley’s model are compared to the front tracking simulations

in Chapter 7.

2.1.4 Potential Flow Model

Hecht et al. [46] derived a model for the bubble velocity in the Rayleigh-Taylor
instability which they extended to include the Richtmyer-Meshkov instability.
Their model is unique in that it is intended to address multiple timescales in
the instability, late time as well as the linear period, and all initial amplitudes.

This model is based on the assumption that the dynamics of the bubble

can be adequately described by considering only the flow near the bubble tips.

14



They also assume that the flow is incompressible and irrotational in this region
so that a velocity potential can be defined. They limit their analysis to the
case A ~ 1. Their model gives the rather surprising prediction that the bubble
reaches an asymptotic velocity of 2/(3kt) independent of the initial amplitude
and shock strength. In Chapter 6 it is shown that this model does a good job
predicting the asymptotic velocity of the bubble if early time compressibility
effects are taken into account.

It should be stressed that this model addresses only the bubble velocity. In
the applications discussed (supernovae, ICF) it is usually the spike behavior

that is most important.

2.1.5 Other Theories

There are other theories of fluid instabilities that are related to the subject
of this paper but not directly applicable. For the Rayleigh-Taylor instability
see [26] and [65]. In [7, 12,13, 14, 15] Bernstein and Book consider the stability
of explosions and implosions while Goodman [41] considers the stability of self-

similar expansions against convection.

2.2 Experiments

There are relatively few examples of Richtmyer-Meshkov instability experi-
ments that use a sharp sinusoidal perturbation. Besides the early experi-
ments of Meshkov there are more recent experiments by Benjamin and Zayt-

sev, Aleshin et al. We perform simulations of certain experiments of Meshkov

15



Incident Shock

Test Test
Gas Gas

e 1 2
Air Air \ >\ _

Membranes

Figure 2.1: A schematic representation of Meshkov’s experimental shock tube. A
shock is generated in air which strikes the test section. This produces a shock in the
first test gas which will strike the perturbed membrane and excite the instability.

and Benjamin.

2.2.1 Meshkov

In 1970 Meshkov reported on shock tube experiments testing the predictions
of Richtmyer’s impulsive and linear theories. He used several combinations of
air, Freon-22, helium and carbon dioxide. The experimental setup consisted
of a test section containing the two gases of interest separated by a thin ni-
trocellulose membrane approximately 1 micron thick. A small perturbation
of wavelength 4cm and amplitude either 2mm or 4mm was imposed on the
membrane. This test section was enclosed in a shock tube filled with air with
another membrane on each end of the test section to enclose it. A Mach 1.52
shock in air was generated in the shock tube which struck the end of the test
section and generated a shock there. This shock wave struck the interface and

excited the instability. A schematic diagram is given in Figure 2.1.
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Schlieren photographs of the test section allowed Meshkov to obtain a time
history of the perturbation amplitude. His experiments showed the expected
qualitative behavior, with the perturbation amplitude growing in time and, in
the experiments with a reflected rarefaction, an interface phase inversion.

While the instability growth appeared to be linear in his experiments, the
growth rates did not agree with those predicted by the impulsive model. In
experiments with a shock in helium incident on an interface with air, for ex-
ample, the impulsive model predicts a growth rate that is approximately three
times too large. Similar discrepancies were reported for the other gas combi-
nations as well. He attributes the difference to the fact that the experimental
amplitude is beyond the small-amplitude linear regime, to diffusion during the
experiment, and to possible impurity of the gases. It should be noted that his

comparisons are made to the transformed impulsive model

d(a/a(0-)) _,_,al0+)
a0 (2:9)

where | = Av -t is the distance traveled by the interface.

Meshkov solved the Riemann problem between the driving air shock and
the incident test gas in order to find the incident shock strength and an es-
timate of the shock compressed interface amplitude, a(0+), used in equa-
tion (2.9). It is important to do this calculation before comparing Meshkov’s

experiments to other theories or to simulations.
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2.2.2 Benjamin

More recent experiments have been performed by Benjamin [4, 5, 6]. In his
experiments Benjamin used two gas combinations: an air shock incident on
an interface with sulfur hexafluoride (SFg) and an air shock incident on an
interface with helium. In both cases a thin (0.5 micron) membrane was used
to separate the gases.

Benjamin’s air-SFg and air-helium experiments showed the expected quali-
tative behavior, with an interface inversion for the air-helium experiments and
growth of the perturbations with time. He reports a factor of 1.35 disagreement
between the growth rates of the impulsive model and his SFg experiments.
However, to find the amplitude of the compressed interface for use in (2.4) he
extrapolates backward in time from his late time amplitudes and finds an ini-
tial shock-compressed amplitude that is approximately 35% smaller than pre-
dicted by (2.5). The use of this extrapolated amplitude is not well-established,
especially in light of the agreement between the shock-compressed amplitudes
given by (2.5) and the nonlinear front tracking simulations (see Chapters 4).
Using the amplitude given by (2.5) Benjamin’s experimental growth rates are
a factor of two smaller than predicted by the impulsive model.

Similarly, in his air-helium experiments he finds a growth rate one-half
the value predicted by the impulsive model using the average of the pre- and
post-shock amplitudes in equation (2.4).

Benjamin finds, as did Meshkov, that the growth rate of the interface is

fairly constant during the observation period. At the end of the single shock
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experiments ka ~ 1.4, well past the time nonlinear effects are expected.

2.2.3 Zaytsev, Aleshin et al.

Zaytsev, Aleshin et al. [1, 72] conducted Richtmyer-Meshkov instability exper-
iments using very strong incident shocks, approximately Mach 3.5, striking an
argon-xenon interface. Their experimental growth rates agreed relatively well
with the impulsive model. In addition, they saw a decay in the perturbation
growth rate at late times when ka = 3.

There are several possible reasons why they achieve agreement with the
impulsive model. First, they use a much stronger shock wave than either
Meshkov or Benjamin (Mach 3.5 vs. 1.52 and 1.2, respectively) which should
help negate strength and inertial effects of the membrane. In addition, they
used a thicker membrane (2u¢m) which would reduce diffusion across the in-
terface before shocking. It may also be significant that the monotonic gases

used in these experiments have very similar equations of state.

2.2.4 Related Experiments

Some related experiments using continuous interfaces are those of Sturtevant
and Brouilette [21], Bonazza [11] and Brouilette [20]. See also [35] for a report
of Richtmyer-Meshkov experiments using the Nova laser. Budzinski [22] and
Jacobs [48] report on experiments using shocked cylinders in air, Budzinski
using helium cylinders and Jacobs using helium and SFg. In [23] and [49]
Budzinski et al. and Jacobs et al. present experiments using shocked SFg

curtains.
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2.3 Nonlinear Simulations

As mentioned above, Richtmyer [62] and Yang, et al. [71] report the results
of linearized simulations of the Richtmyer-Meshkov instability. These linear
simulations generally agree with the impulsive model in their predictions of
amplitude growth rates. However, these predictions do not agree with the
results of experiment. Since the linear simulations and the impulsive model
ignore some of the nonlinear physical effects it is possible that these effects are
significant in experiments and must be included in any model. One method
to study these effects on the Richtmyer-Meshkov instability is to perform fully
nonlinear compressible simulations of the Euler equations.

Previous simulations of Richtmyer-Meshkov experiments generally show a
significant discrepancy between the simulated growth rates and the experi-
mentally measured ones. Indeed, the fully nonlinear simulations have, so far,
given results closer to the linear simulations than to the experiments. Since
the simulations did not model strength or inertial effects of the membrane used

in experiments, this is commonly cited as the reason for the discrepancy.

2.3.1 Meyer and Blewett

The first published results of nonlinear Richtmyer-Meshkov instability simula-
tions are from Meyer and Blewett [56]. They use a Lagrangian code to simulate
Meshkov’s experiments. They report growth rates from an early-time period
of linear growth and find that the simulated growth rate is very close to that

predicted by the impulsive model (2.4). Thus their simulations give the same
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factor of two increase in the growth rate relative to experiments as does the
impulsive model. It is important to note that in the two simulations for which
they give explicit amplitude vs. time data they do not run their simulations for
the full experimental time and, in fact, end their simulations before Meshkov
has taken any experimental data. It is be shown in Chapter 5 that measuring
growth rates too early makes a dramatic difference in the results.

Note that in order to reach agreement with the impulsive model in the
case of negative Atwood ratios Meyer and Blewett used the average of the pre-
and post-shock amplitudes as the impulsive model initial amplitude (compare

equation (2.5)).
2.3.2 Cloutman and Wehner

More recently Cloutman and Wehner [29] performed simulations of Benjamin’s
1988 experiments [4] using an Eulerian code and a volume tracking interface
algorithm. Their simulations show a much larger growth rate than experiment—
again by a factor of two in both the air-SFg and air-helium simulations. They
report only a single growth rate for each simulation so it is not clear whether
they observe decay in the growth rate.

Cloutman and Wehner discuss additional simulations using a three-dimensional
initial perturbation of the form ag cos(k,x) cos(ky,y) (for the two-dimensional
experiments k, = 0). The growth rates from these simulations are lower than
those of the two dimensional simulations and closer to that found in experi-
ment. An interesting aspect of the decrease in the growth rates is that a three

dimensional extension of the impulsive model (2.4) would predict a growth
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rate proportional to \/m Thus the impulsive model indicates growth
rates larger by a factor of v/2 in three dimensions compared with three dimen-
sions. This inconsistency with simulations may indicate that the linearized
theories are not applicable, although there is the possibility that their three
dimensional simulations were underresolved and predicted incorrect growth

rates.

2.3.3 Benjamin, Besnard and Haas

In [6] Benjamin, Besnard and Haas report the results of their simulations
using an Eulerian code with SLIC [60]. While their simulations are in good
agreement with the impulsive model (2.4) at early times, they note a decay
in the growth rate that at late times reduces the growth rate to experimental
levels. Averaging the simulation growth rate over the experimental time period
reduces the discrepancy with experiment to a level approximately 40% higher
than the experimental average and approximately 20% higher than the front
tracking simulations of the same experiment (see Chapter 4). They contend
that the decay is numerical rather than physical. The decay is an important
aspect of their computations (and of the front tracking simulations as well)
and is considered in detail in Chapter 6.

They also report that the mean translational velocity of the air-SFg and
air-helium interfaces is significantly larger than expected based on 1D theory or
nonlinear simulation. They interpret this to be an indication of contamination
of the experimental gases due to pre-shock diffusion across the membrane.

This is considered in Chapter 5.
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2.3.4 Other Experimental Simulations

In [9] the results of several numerical codes, including the front tracking
method, are reported. Among the results presented are the simulated growth
rates of Benjamin’s 1988 air-helium experiment. All of these rates were much
larger than experiment, again by a factor of two except for front tracking which
was off by a factor of approximately 1.6. The large difference between the nu-
merical results and the experimental results, as well as the striking agreement
among the various numerical methods, led the authors of that paper to suspect

the experimental membrane effects as part of the reason for the discrepancy.

2.3.5 Other Simulations

There are many other reports of Richtmyer-Meshkov instability simulations
which do not address the agreement between codes and experiment. See, for

example, [25, 52, 58, 61], and the volumes [8], [33] and [50].
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Chapter 3

Front Tracking Method

Front Tracking is a numerical method for high resolution computations involv-
ing well defined waves. The basic idea of front tracking is to couple a standard
numerical method on a rectangular grid with lower dimensional dynamic mov-
ing grids to follow the desired waves. It has been used successfully in simula-
tions of compressible gas dynamics (present work as well as [24, 27, 38, 39]),
oil and water reservoirs [34, 40] and elasto-plastic waves [70].

The main advantage of front tracking is that it eliminates the numerical
diffusion that is inherent in any standard finite-difference method. By tracking
discontinuous waves one can explicitly include jumps in the state variables
across the waves and keep all discontinuities perfectly sharp. This is in contrast
with finite difference codes that typically spread shocks over 3-4 computational
zones and contact discontinuities over much larger regions. It is much less
diffusive than interface reconstruction methods such as SLIC [60] which reduce
but do not eliminate numerical diffusion.

The lack of numerical diffusion is most important in computing wave inter-
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Figure 3.1: Pressure profiles of 1D shock waves in air using two shock-capturing
methods and front tracking. a) Lax-Wendroff, b) MUSCL, ¢) Front tracking. Front
tracking completely eliminates post-shock oscillation. In addition, behind the shock-
captured waves we see a slight dip in pressure due to an entropy error at shock
initiation. Front tracking is not susceptible to such errors.

actions. With front tracking one can resolve the shock-contact interactions in
the Richtmyer-Meshkov instability at sub-grid level. In addition, Menikoff
showed [53] that the artificially large shock transition regions of standard
shock-capturing schemes can cause errors in the computation of wave interac-
tions.

Another advantage of front tracking is that by tracking the discontinuities
and applying special algorithms to them nonlinear instabilities and post-shock
oscillations common to other methods are reduced (see Figure 3.1).

Front tracking also gives position and state information for measuring the
growth of the unstable interfaces, which is quite useful for the Richtmyer-

Meshkov instability computations presented here.

Details of the front tracking method have been given elsewhere [28, 44].

25



The following description concentrates on those aspects of the method which

are most important for the success of the present computations.

3.1 Tracked Waves

Figure 3.2 shows the basic front tracking setup with a tracked wave embedded
in a rectangular grid. A tracked wave, known as a front or curve, is a piece-
wise linear representation of a physical wave. Each linear segment of the curve
is called a bond and the intersection of two bonds is known as a point. State
variables are assigned on each side of a point to represent the limiting value of
the interior states as we approach the point from either side. The two states
represent the discontinuity across the wave. Since the discontinuity is sharp
numerical diffusion is eliminated. An orientation is given along the curve so
that we may speak of the “left” and “right” states at a point, the “next” and
“previous” bonds on a curve and the “start” and “end” points of a curve or a
bond.

The points where curves intersect (or self-intersect) are called nodes. Since
the boundaries of the domain are represented by curves as well, all curves
begin and end at nodes. States are assigned to the node along each incoming
curve to represent the limiting values as the node is approached along each
side of the curve.

Nodes correspond to wave interactions and can be identified by the number
and type of waves meeting there. For example, during the initial refraction of

the shock in the Richtmyer-Meshkov calculations the incident shock, incident
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Figure 3.2: Schematic representation of the grids used in front tracking. A one
dimensional curve is embedded in a two-dimensional rectangular finite difference
grid. The curve is piece-wise linear with state data on each side of the points. An
orientation is assigned which defines right- and left-hand states.
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contact, transmitted shock, deflected contact and reflected waves all meet at
a single point where the incident shock is refracted by the material interface.
This is known as a refraction node. Similarly, where a tracked wave meets
the boundary a boundary node is created. Other node types in gas dynamics
include Mach nodes for Mach triple points and cross nodes at shock-shock in-
teractions. Each node type uses a different algorithm for updating its position
and states for each time step.

In addition to the states along curves we have cell-centered state values
on the underlying rectangular grid. To facilitate the calculation of states at
arbitrary points in the domain we perform a front-limited triangulation of the
dual computational grid (formed by the cell centers) and tracked fronts (see
Figure 3.3). The triangulation is constrained so that no triangle crosses a
tracked front. A corner of an individual triangle is either a dual-grid corner,
a point on a tracked front or an intersection between a tracked front and a
lattice cell boundary. The states at these positions serve as data for a linear
interpolation of the solution into the interior of the triangle. The triangulation
in the front tracking code differs from other triangular representations of a
flow in that the tracked waves are dynamic and the the triangulation must be
regenerated at each time step.

It is not necessary to track all the waves in a given computation. In some
of the simulations presented here only the contact discontinuity was tracked—
the incident, transmitted and reflected waves being captured by the interior

(Godunov-type) scheme.
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Figure 3.3: An example of the triangulation of the computational domain in the
region of a tracked wave. The thick line is the tracked front. The vertices of the
triangles are points on the tracked front, corners of the computational dual grid and
intersections of the front with the grid. Since states are available at all vertices of
a triangle the state at an arbitrary point interior to a triangle can be computed by
interpolation.
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3.2 A Front Tracking Time Step

A time step is done in two parts in front tracking. The first part is the
propagation of the tracked fronts using front positions and states and interior
states at time ¢ to find new front positions and states on the fronts at time
t + At. The second part of the time step is the updating of the interior
(non-front) states using the new front information as boundary data. The
interior states are updated using a version of Colella’s Eulerian MUSCL, a
second-order Godunov-type method [3, 30, 69]. Care is taken at interior states
affected by the tracked waves during the time step to avoid differencing across

a discontinuity.

3.2.1 Front Propagation

The front propagation is further divided into two steps: curve propagation

and node propagation. Some of the following can be found in [28].

Curve Propagation

Curves are propagated by updating all non-nodal points of each curve. Normal
and tangential directions to the curve are found at each point to be propagated
(Figure 3.4). These directions are used to split the propagation into a normal
update and a tangential update by operator splitting of the Euler equations
in the form

w7t [ V) f)] + 7 [ V) ()] = hu) (3.1)
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Figure 3.4: The normal and tangential vectors at a point to be propagated. The
states used in the normal update computation are labeled as srr,sr, sl and sll.
where u(¥, 1) is the state vector, 17 and { are unit normal and tangential vectors
along the curve, f(u) is the flux and h(u) is the vector of source terms, if any.
It is during the normal step that the point is moved to its new location. In
practice all of the normal propagations are completed before the tangential
propagations.

The initial steps of a normal propagation are the same for all wave types.
Right and left states, S, and 5;, are taken at the point to be propagated, as

well as two more states, S,, and Sy, a distance Az in a normal direction on
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the right and left sides of the curve (see Figure 3.4). Using these states a
non-local Riemann problem is solved as follows. Between S, and 5; we solve a
Riemann problem and follow the wave of the proper family (contact, forward or
backward shock, rarefaction leading edge or rarefaction trailing edge) to obtain
an estimate of the new point position at time ¢t + At. From this new position
we trace back characteristics on each side of the wave to the initial data to find
states there. From here we use the characteristic equations and the Rankine-
Hugoniot conditions to find time-updated states at t + At. The particular
characteristic method used depends on the wave being tracked, i.e. shock wave,
contact or rarefaction edge, since each type of wave has different types of
characteristic information coming into it and different jump conditions. We
give here the details on the forward shock wave calculation. Other waves are
propagated in a similar manner. For convenience the discussion will be limited
to the case of polytropic gases.

The update of the ahead state uses the information coming in from the

three ahead characteristics. Along these characteristics A1 : Cfl—f = u+ cand
Ao : Cfl—f = u we have the following equations:

dwy = cj—}g (3.2)

dw_ = cj—}g (3.3)

ds = 0 (3.4)

2c
y—1

where the wy = + u are the Riemann invariants, S is the specific entropy,
~ is the polytropic exponent and R is the universal gas constant Ry divided

by the molecular weight of the gas.
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Figure 3.5: Diagram showing estimate of new wave position at time ¢t + At and
traceback of characteristics to initial line.

The equations (3.2-3.4) are discretized as

cAS
A = .
w4+ 7R (3 5)
AS = 0 (3.6)

using the states S,1,95,2 and S,3 from the characteristic traceback step as
initial data (see Figure 3.5). This results in nonlinear algebraic equations
which can be solved for the state ahead of the shock. For the state behind the
shock we use the discretized equation for the Riemann invariant w; along the

characteristic Ay emanating from state 53 along with the Rankine-Hugoniot

conditions in the form

% = —m (3.7)
% = —m? (3.8)
o p? + P /P

po  L+uEP/P 3
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where [-] denotes the jump in a quantity across the shock, m is the mass
flux, p = % is the density, p? = % and the subscripts 0 and 1 denote
states ahead and behind the shock, respectively. The combination of the jump
conditions with a discretization of the equation along the characteristic results
in four simultaneous equations which can be solved for the four state variables
Py, p1,uy and m. These variables completely specify the behind state.

It is clear that if the discretization error of the characteristic equations (3.5)
and (3.6) is O((At)?) this procedure will result in computed states with sec-
ond order errors as well as long as the initial characteristic data given by
Sr1, 502,53 and S;3 have errors of at most second order. To see that these
states do indeed have O((At)?) errors we must show, assuming smooth flow
away from the shock, that the characteristic tracebacks find initial positions
correct through order At. These tracebacks are found by taking character-
istics from the estimated shock position and the position and states at the
estimated shock position are correct through first order. This means, then,
that the traceback position is also correct through first order. Thus the states
at the base of the approximate characteristics there have errors of second order.

Given that the number of time steps in a solution of a hyperbolic system is
O(z;) we can hope for convergence in an appropriate norm at a rate O(At).
This assumes that the front propagation is properly coupled to sufficiently
accurate tangential and interior solvers.

An alternative scheme may also be used to propagate the shock. In this

scheme the ahead state Sy is calculated using first order discretizations of the
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characteristic equations, but using them in the form

d

aP+=" = 0 (3.10)
pc
dS = 0 (3.11)

Referring to Figure 3.6, to find the state behind the shock we first solve a
Riemann problem between the states S;3 and S; and let the state Sl/ be the
state behind the forward moving wave. This has the effect of filtering out
backward moving waves. We then solve a Riemann problem between S; and
the computed ahead state Sy, letting Sy be the state behind the resulting
forward shock wave in the Riemann solution. This new state 57 is the updated
state behind the shock.

To see that this method is consistent with the equations of motion first
note that if we find the behind state by considering the discretization of the

characteristic equation for the state 53

(P, — Pig) + ——(us — ugz) = 0 (3.12)

pi3ci3
and combine this with the state ahead of the shock (5¢) and the shock jump
conditions we will have the behind state correct through first order. To show
that the Riemann solution method is consistent through first order we must
show that the Riemann solutions also satisfy the jump conditions and the
discretized characteristic equation (3.12), at least through first order. That
the Riemann solutions satisfy the jump conditions is clear. We are left, then,

with showing that they satisfy (3.12).
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Figure 3.6: A representation of the Riemann problems solved for the alternate point
propagation routine.
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The backward wave from the first Riemann problem (labeled BW; in Fig-
ure 3.6a) will be weak for sufficiently small At and the transition across BW;
can be described by the forward characteristic equation through second order

whether this wave is a shock or a rarefaction. We have, then,

(P — Ps) + (u—u) = O((Au)’) (3.13)

pP13Ci3

= O((A1)?) (3.14)

Similarly, across the wave BW, we have the following relationship between the

states S and Si:

(P =B+ — (i —w) = O((A1)°) (3.15)

1 ,
1
P16

1

pP13Ci3

= (P—P)+ (ur =) (3.16)

where the last equality follows from the fact that the state S, differs from S
by terms of third order in At. Adding (3.14) and (3.16) gives

1

pi3C3

(P, — P) + ——(u1 — uis) = O((At)?) (3.17)

which shows that the Riemann solution method is indeed consistent with the
equations of motion, at least through first order. The method is not consistent
past first order since the ahead state and the characteristic data are limited
to first order.

For the tangential update at a point we do each side of the point separately.
Since the finite difference scheme, MUSCL, uses a five point stencil we take two
states a distance Az and 2Ax along each side of the point on the normally

propagated curve. These states are then projected onto the tangent to the
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curve at that point and the finite difference scheme is used to calculate new
states at that point. The point is not moved to a new position in the tangential

step as it is during the normal step—only the states are updated.

Untangling the Fronts

After the normal propagation step we must check to see if there are any new
intersections of tracked waves. If so the intersections must be resolved. This
generally involves replacing the intersection point by a node and computing
wave interactions at the new node. As an example, early in a Richtmyer
Meshkov instability simulation the shock wave strikes the contact and pro-
duces a pair of shock refraction points. Nodes are created at these points and

transmitted and reflected waves are created as appropriate.

Node Propagation

Each type of node has a different propagation algorithm. We will discuss the
propagation of refraction nodes as these are the primary nodes of interest in
the present computations.

A diagram of a refraction node is given in Figure 3.7a. In our implemen-
tation the node propagation is done between the normal and tangential curve
propagation steps, so at the beginning of the node propagation all points on
the relevant curves have been normally propagated except for the points at the
node itself. The first step is to propagate the nodal points of the curves. This

will result in a configuration similar to Figure 3.7b. Notice that the incident
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shock and contact have a new intersection point. We take this intersection
to be the node position at the new time and remove the parts of the curves
past the intersection (frame (c)). We know the state behind the shock wave
and on both sides of the contact, as well as the angle between the shock and
the contact. If we move to a frame in which the node is stationary we can
use shock polar analysis [32, 44] to find the angles at which the reflected and
transmitted waves emanate from the node. To complete the propagation we
take rays from the node at the computed angles and intersect them with the
propagated curves, extending the curves slightly if necessary (Figure 3.7d).
We should note here that the CFL stability condition applies to curve and
node propagations as well as to interior state calculations. We take care to
ensure that At is small enough that the node position will not change by
more than some fraction of Az during the time step. This has important
consequences when calculating refraction nodes as the node velocity can be
quite large when the incident shock and contact intersect at a small angle.
We have found that our front tracking calculations can take up to 10 times
as many time steps during the critical refraction period as a standard shock-
capturing scheme, providing enhanced stability as well as increased temporal

resolution.

3.2.2 Interior States

The interior states, i.e. the states not on a tracked wave, are propagated using
the above mentioned operator-split MUSCL scheme. In each direction we

perform two passes.
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Figure 3.7: A refraction node propagation. (a) Initial configuration. (b) The points
at the node are propagated in the normal direction. (¢) The intersecting shock wave
and contact are clipped at the new intersection point and define a new node position.
(d) The reflected and transmitted waves are connected with the node at the angles

determined by shock polar analysis.
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In the first pass we update each interior state using only the rectangular
grid, ignoring for the moment the presence of any tracked waves. For points too
close to a tracked wave at either the beginning or the end of the timestep for us
to get a full stencil we must make a second pass in order to avoid differencing
across waves and introducing numerical diffusion. The states computed during
the first pass are discarded. We then modify the stencil by taking only states
which are on the same side of the tracked wave as the stencil center. We
replace those stencil states that would normally come from across a tracked
wave by states from the correct side of the tracked wave at the stencil/wave
intersection.

By organizing the interior solver into two passes we are able to vectorize a
large part of the computation. We believe that even on non-vector machines

this is more efficient.

3.3 Achieving 2nd Order Accuracy

As discussed in Section 3.2.1, the normal propagation is formally first ac-
curate. This limits the global solution to first order in the sense that if
u(x,y,t) is the exact solution and u(x,y,t) is the numerical solution then
lu(z,y, T)—a(x,y,T)||2 = O(At) for fixed times T'. Since the interior and
tangential solvers are second order it would be interesting to consider the
changes necessary to achieve second order accuracy.

Assuming that a second order normal propagation operator has been de-

vised, we consider operator splitting in the context of a second order accurate
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curve propagation routine. Referring to equation (3.1), we denote the second
order single time step normal and tangential propagation operators by H% and
Ht’f where £ = At is the time step. We can expect second order accuracy from
their combination if we apply them according to Hg/szng/z or H;f/sz; t’f/z
(see [42] or [66]). Since the current code updates the position of the tracked
wave during the normal update the latter form would be easier to implement.
In a typical splitting application, a number of time steps are done consecu-
tively which allows the half-step operators at the end of a time step to be
combined with the same half-step operator at the beginning of the subsequent

step. Thus n time steps would be combined into the form

o = gkt - uh (3.18)

i

and require only slightly more work than a simple alternation of the tangential
and normal operators. Unfortunately, however, the front tracking operators
cannot be combined in this way since the tangential and normal vectors and,
hence, the tangential and normal operators change at each step. This precludes
the combination as in (3.18) and the scheme is required to apply the three
operators at each time step. This may make splitting too expensive in a
second order calculation. If so, an unsplit method would need to be devised.

In addition to the second order curve propagation routines it would be
necessary to implement a second order update of interior points affected by
tracked waves during the time step.

These considerations imply only formal second order accuracy. Before we

could be confident that we are actually achieving this accuracy on our grids we
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would need to ensure some form of stability. This should not be hard, though,
since the interior scheme is quite stable, especially since the discontinuities will
likely be tracked. Tracked waves will also, in general, be very stable. The only
difficultly would be ensuring stability in the coupling of the interior states and

the states on the tracked waves.

3.4 Diagnostics

The method of front tracking has a unique ability to precisely measure posi-
tions and states along the unstable interface. This precision is especially useful
when we validate our code against the linear theory (see Chapter 8).

The most important diagnostics are the perturbation amplitude and the
perturbation amplitude growth rate. The amplitude is calculated as half the
difference in vertical position of the point at the center of the domain and the
vertical position of a point at an edge (see Figure 1.3). Finding an edge point
is simply a matter of taking either the starting or ending point of the contact
(we took the start). To find the center point we loop over the points on the
contact until we find the one closest to the center of the domain. Since the
distance between the points on a tracked wave is typically smaller than Az
the point we find in this looping procedure will be less than Axz/2 from the
true center of the domain. To calculate the perturbation growth rate we take
one-half of the difference in vertical velocities at these extreme points.

The precision of this procedure is both an advantage and a possible disad-

vantage. While the convergence of the simulations to the correct weak solution
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of the differential equations is in the spaces L' or L? we are using an L> mea-
sure of the growth rate. This may causes problems as we refine the mesh (see
Chapter 8). It would be useful to calculate an L' or L* measure of the growth
rate and see how this changes the behavior of the simulation growth rate under

mesh refinement. This has not been done at present.

3.5 Full vs. Partial Tracking

It is not necessary to track every wave in a front tracking computation. There
are many possible reasons for not tracking a wave. For example, one may wish
to test the effects of tracking by comparing a fully tracked simulation to one
with partial tracking (this is done in Chapter 5) or to reduce the computational
burden of tracking a very weak wave. Also, it is possible that a particular wave
interaction may result in a configuration that is not yet implemented in our
code and it would then be necessary to continue without tracking some of the
interacting waves.

Our conclusion for the Richtmyer-Meshkov simulations (explored in depth
in Chapter 5) is that tracking the contact is critical while tracking the shock is
not as important, especially at later times. Note, though, that we must track
the contact waves in order to perform our diagnostics (Section 3.4) and that
contacts must separate gases with different equations of state. Note, too, that
untracked shock waves are much more susceptible to post-shock oscillations
that can affect the growth of the perturbation, especially slow moving shock

waves as found in the air-SFg simulations (see Section 4.1.2).
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3.6 Parallelism

Many of the simulations reported here were run on Intel Paragon and Hyper-
cube parallel processor computers. The code uses a coarse grained paralleliza-
tion via domain decomposition.

Briefly, the domain is broken into rectangles, with m rectangles down and
n rectangles across. Fach processor is assigned responsibility for one of the
rectangles so that m x n processors are needed. Communication between
subdomains is simplified by the fact that we are using an explicit method.
Thus for each domain we need only append three buffer zones (for a five point
stencil) on the edges that meet a neighboring domain. These buffer zones
are used as data for the updating of the domain states, but updating states
represented by the buffer zone remain the responsibility of the neighboring
domain.

At the beginning of the timestep each processor has a full copy of states
and tracked waves in its domain and buffer zones. The front propagation pro-
ceeds normally except that we do not concern ourselves with propagating the
boundary nodes at the edges of the buffer zones. After the front propagation
there is a synchronization step during which neighboring processors pass the
front information necessary to update buffer zones with respect the new front
positions and states. Next, the interior states are propagated and another
communication is made to update the interior states in the buffer zones.

We found excellent performance using this method of parallelization with

an almost linear increase in speed as we added processors. The largest run
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(an air-SFg simulation with a mesh of 250 zones by 1500 zones) ran for ap-
proximately 80 hours on 32 Paragon processors with 32MB of RAM each. For
comparison a 62 by 384 simulation took 15 hours on a Sun SparcStation 2 for

the same simulation real time.
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Chapter 4

Simulation Results

In this chapter the front tracking simulations of Benjamin’s 1993 air-SFg ex-
periments [6] and Meshkov’s air-helium experiments [54] are presented. The
simulations are validated in Chapter 8 and the results are analyzed in detail

in Chapters 5 and 7.

4.1 Computational Issues

There are various computational issues common to both of the experiments

we simulate. These issues are discussed in the following sections.

4.1.1 Domain

Rectangular domains are used with flow-through boundaries at the top and
the bottom and periodic boundaries at the sides.

While the flow-through boundaries are exact for steady flow, they are not
exact for unsteady flows and signals may propagate back into the domain

after the transmitted and reflected waves pass through the bottom and top
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boundaries, respectively. The domain is long enough that no signals reach the
contact during the period of interest. In addition, the contact is initialized at
a level which maximizes the time before boundary contamination.

For the air-SFg simulations a domain of 3.75cm by 22.5cm is used. Since
the sound speed in SFg is so much smaller than in air the contact is placed at
a position 5.5cm above the bottom boundary to further reduce the chance of
boundary signal contamination. The domain length and contact position are
determined from an analysis of the 1D unperturbed problem and are sufficient
to guarantee that boundary signals would not affect the computation until at
least 900us, which is later than the simulation stopping time of 850us. Indeed,
there is no evidence of boundary signals in the growth rate. The domain length
chosen appears to be optimal since if the domain length is reduced there are
changes in the growth rate curve as a result of boundary signals while there is
no change if the domain is lengthened.

The air-SFg simulations used various mesh sizes from 62 zones per wave-
length to 250 zones and the simulations appear to converge at the level of 125
zones per wavelength. This is approximately the same resolution used in the
simulations of the same experiment as given in [6].

The 125 and 250 zone/wavelength air-SFg simulations were run on an In-
tel Paragon. The computational time was approximately 16 hours using 16
processors for 125 zones.

The air-helium simulations used a domain of 4cm by 30cm. Since the

sound speed in helium is much larger than in air the contact was placed with
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its midline at an optimal position 19.9cm above the bottom boundary. The
domain length and contact position were sufficient to guarantee that boundary
signals had not affect the computation until at least the simulation completion
time of 300us. There is no evidence of boundary signals in the growth rate.
Various mesh sizes were used for the air-helium simulations, from 50 zones
per wavelength to 200 zones, and the the growth rates have converged at the
level of 100 zones per wavelength. The 100 and 200 zone/wavelength simula-
tions were run on an Intel Paragon with a computational time of approximately

12 hours using 16 processors for 100 zones.

4.1.2 Moving vs. Lab Frame

It is most convenient to use a frame of reference which moves with the average
contact position. This not only makes it easier to follow perturbation growth
with time, but it allows a somewhat smaller domain without increasing the
possibility of boundary signals. The frame velocity is calculated by solving
the 1D (unperturbed) shock-contact interaction, i.e. a Riemann problem, and
finding the velocity of the contact. This is found to be an excellent estimate
of the net perturbed contact velocity.

Moving with the contact is problematic when using untracked shock waves
in the air-SFg simulations. The low wave speed with respect to the grid of
the transmitted SFg shock is reduced even further by the change of refer-
ence frame. This results in post-shock oscillations that affected perturbation
growth by creating secondary instabilities along the contact. The problem dis-

appears when some of the vertical velocity subtracted from the states is added
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back. This nonlinear instability at slow moving waves is well-known; see, for
instance, [31]. Because of this oscillation the lab frame is always used when
working with untracked shocks. Note that there is no problem with tracked
shocks—there is no change in the results whether the lab frame or a moving

frame is used.

4.1.3 Artificial Viscosity

The front tracking code has the option to use upwind and slope-limiting arti-
ficial viscosities [30, 31] in the MUSCL solver. This is in addition to the slope
limiter built into the solver [30, 69]. Since the most unstable parts of the sim-
ulation are tracked (shock waves and contacts) it is not necessary to add sec-
ondary artificial viscosities for the fully tracked runs. It is necessary, though,
to use small amounts when working with untracked shock waves. However,
when similar amounts of viscosity are added to the fully tracked versions no
difference in calculated perturbation growth rates is found, so we are confident

that the viscosities do not adversely affect the partially tracked simulations.

4.1.4 Full vs. Half-Wavelength

All of the simulations are performed using a full perturbation wavelength as
depicted in Figure 1.3. We would prefer to take advantage of the natural
symmetry in the problem and work with only a half-wavelength. However, this
requires replacing the periodic boundaries with reflecting boundaries which
causes small changes in the perturbation growth at the boundaries. Since it is

at exactly these place that the amplitude is measured this causes unacceptable
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changes in growth rates. This is partially due to the ill-posedness of our growth

rate measure (see Section 3.4). Thus the simulations used a full wavelength.

4.1.5 Artificial Surface Tension

The interface between the fluids of interest is susceptible to secondary Kelvin-
Helmholz instabilities arising from the velocity shear across the interface, es-
pecially with the sharp interfaces in a front tracking computation. Small ir-
regularities on the interface grow exponentially and in some cases, depending
on the gases and incident shock strength, are so obvious visually that there is
concern that they may be affecting the large scale dynamics of interest. This
is especially important as the mesh is refined since the growth rate exponents
are inversely proportional to the wavelength of the perturbations which are on
the order of the grid size. In order to reduce these instabilities a small amount
of artificial surface tension can be introduced to the interface.

To determine the proper amount of surface tension we appeal to the incom-
pressible small amplitude theory (see [26], sec. 101). This theory predicts that
given a surface tension 7' a mode with wavenumber k£ will be stable against

shear instabilities if

kT
apaxU? < (4.1)
p1+ p2
where the p;’s are the densities on each side of the interface, o; = —£— and

p1+p2’

U is the velocity shear on the interface. Since we are primarily interested in
instabilities with wavelengths that are a small multiple of the mesh spacing it

is convenient to transform inequality (4.1) to
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T < ppoUzﬂAl'

= 2m(p1 + p2) (42)

where 3 is the wavelength of the instabilities we wish to suppress in units of
Az, typically 2-3. Notice that all modes with smaller wavelengths will also be
suppressed. Note also that the right hand side of (4.2) — 0 as Az — 0.
Setting the T according to (4.2) does a good job of suppressing small scale
instabilities. However, even when the appearance of the interfaces smooths
considerably the growth rates do not change so we choose not to use any

surface tension.

4.2 Air-SF; Experimental Parameters

Benjamin’s shock-tube experiments consisted of a shock in air incident on an
interface with SFg. As mentioned in Chapter 2, a thin, perturbed membrane
separates the air and SFg section of the tube. Amplitude data is taken by
shadowgraph equipment.

The important experimental parameters are given in Table 4.1. As the
experiments were conducted at Los Alamos, pressures and densities have been
adjusted to compensate for the altitude. In addition to these physical param-
eters it is necessary to find the time period over which Benjamin took data.
While he does not explicitly state the period of observation we can infer from
Figure 4 in [6] that the range of times was approximately 300us to 7T70us.

Figure 4.1 shows the interface at four times during the simulation. In this

figure the shock wave is moving downward from air into SFg and it shows
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Quantity Units Symbol Value

Perturbation wavelength cm A 3.75
Perturbation amplitude cm a(0—) 0.24
Wave number em™! k 1.675
ka(0—) 0.4
Initial density g/l Puair 0.95
g/l PSF 4.84

Initial pressure bar P 8
Shock strength Mach number M 1.2
Ratio of specific heats Vair 1.4
YSFy 1.09

Table 4.1: Air-SFg Parameters

the interface at t = —13us (where ¢t = 0 corresponds to the end of the shock
refraction), 132us, 567us and 857us. Notice how the interface appears to
be relatively sinusoidal at ¢ = 132us while at 567us the heavy SFg spike is
narrowing and the air bubbles are broadening. At ¢t = 85Tus we see the

beginnings of mushroom caps formed by a rollup of the interface.

4.3 Air-SFy Perturbation Growth

The perturbation growth history is presented in Figures 4.2 and 4.3. These fig-
ures compares the amplitude and growth rate predictions of the front tracking
simulation, experiment, impulsive model and linear theory.

To facilitate comparison with experiment a least-squares analysis of the
amplitude data is performed over the experimental interval of 300us to 770us
in order to find a single growth rate. The computed growth rate is 9.2m/s

which compares quite well with the experimental growth rate of 9.18m/s. The
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Figure 4.1: The air-SFs interface at different times during the simulation (a) ¢ =
—13us (¢t = 0 corresponds to the completion of the shock refraction) (b) ¢t = 132us,
(c) t = 567us. Notice that the interface is becoming non-sinusoidal as the SFg spike
begins to narrow and the air bubble begins to broaden. (d) ¢ = 857us. Mushroom
caps are developing due to vorticity along the interface.
linear and impulsive models agree well with each other with the linear the-
ory predicting a growth rate of 16.5m/s and the impulsive model predicting
16.1m/s, but these growth rates are approximately twice as large as found
through experiment and simulation.

The simulation amplitude is somewhat larger than found through exper-
iment. Since the computed growth rate agrees so well at experimental time
we must conclude that the difference lies in the high growth rate computed

at early time. Chapter 5 discusses the agreement between experiment and

simulation.
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Figure 4.2: Perturbation amplitude, a(t), of the shocked air-SFg interface. This
graph compares the results of experiment, front tracking simulation, linear theory
and Richtmyer’s impulsive model. The plus marks (+) show the results of one
particular experiment
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Figure 4.3: Perturbation growth rate, a(¢), of air-SFg interface. In addition to
the front tracking, linear theory and impulsive model results this figure shows the
results of a least squares fit to the front tracking amplitude data over the period of
experimental observation.
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Quantity Units Symbol Value

Perturbation wavelength cm A 4.0
Perturbation amplitude cm a(0—) 0.2
Wave number em™! k 1.57
ka(0—) 314
Initial density kg/m? Pair 1.2
kg/m3 Phelium 0.167

Initial pressure bar P 1.013
Shock strength Mach number M 1.52
Ratio of specific heats Vair 1.4
Vhelium 1.63

Table 4.2: Air-Helium Parameters

4.4 Air-Helium Experimental Parameters

Meshkov’s experiments consisted of a shock in air incident on an interface with
helium. A thin (1gm thick) nitrocellulose membrane separates the air and the
helium. Schlieren photographs are taken at regular intervals to obtain a time
history of the perturbation growth. Relevant experimental data are listed in
Table 4.2.

The amplitude data is given in [54] as a function of the contact’s transla-
tional distance down the shock tube with data given for the range of 5.2cm
to 10cm. While the results here could also be stated in terms of translation
distance it is easier to compare to other simulations if we state results as func-
tions of time. Using the 1D unperturbed theory as a guide the translational
velocity is found to be 351m/s. Thus the observation period is found to be

150 to 280us after the shock has completed its refraction through the contact.
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Figure 4.4: Air-helium interface: a) ¢t = —10, b) ¢t = 90us, ¢) t = 190us, and d)
t = 290us using 100 zones/wavelength.

Figure 4.4 shows the interface at four times in the simulation. The shock
wave is moving downward from air into helium. As expected there is an early
interface inversion followed by perturbation growth. The air spike has nar-

rowed considerably by 90us and this narrowing continues in the later frames.

4.5 Air-Helium Perturbation Growth

Figures 4.5, 4.6 and 4.7 show the perturbation growth results. These figures
compare the amplitude and growth rate predictions of the front tracking sim-
ulations, experiment, impulsive model, linear theory and simulations of Meyer
and Blewett [56].

As with the air-SFg simulations a least-squares analysis of the amplitude
data is performed over the experimental interval of 150us to 280us to find a
single growth rate. The computed least squares growth rate is 25m/s which is
approximately 55% larger than the experimental value of 16m/s. However, the
value reported by Meyer and Blewett, 47m/s, is three times the experimental

value. As can be seen in Figures 4.6 and 4.7, the front tracking simulations
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Figure 4.5: Perturbation amplitude a(¢) of the shocked air-helium interface. The
graph shows the amplitudes from experiment (4), front tracking simulation (FT),
linear theory, impulsive model.
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Figure 4.6: An enlargement of amplitude graph. This figure shows the early time
agreement between the front tracking simulations and those of Meyer and Blewett
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Figure 4.7: Perturbation amplitude growth rate a(t) of a shocked air-helium in-
terface. We show the growth rates from front tracking simulations, linear theory,
impulsive model and the simulations of Meyer and Blewett (marked M-B) as well

as the experimental average and the best-fit estimate from the front tracking am-
plitudes.
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agree well over the early-time interval for which Meyer and Blewett have sim-
ulation data. The difference in reported growth rates is due to the fact that
they measure the growth rate much earlier than the experimental time and
catch the early time peak in growth rate. Much more is said on the subject in
Chapter 5.

The linear and impulsive models agree well with each other, but the growth
rates are much larger than those found through experiment and simulation.
The impulsive model predicts a growth rate of 56m /s while the linear theory
asymptotic growth rate is 51m/s.

The computed amplitude is larger than found through experiment. Again,
as with the air-SFg simulations, since the computed growth rate agrees well
at experimental time we must conclude that the difference lies in the high
growth rate computed at early times ¢ < 100us. We have more to say on the

agreement between experiment and simulation in the next chapter.

60



Chapter 5

Agreement with Experiment

As mentioned in Chapter 1 previous simulations of the Richtmyer-Meshkov
instability have predicted growth rates up to 200% too large when compared
with experimental results. In Chapter 4 the growth rate results of front track-
ing simulations were presented which were much closer to the experimental
growth rates than the previous simulations. Indeed, the simulations of the
air-SFg experiments of Benjamin predicted the experimental growth rates ex-
actly while the simulations of Meshkov’s air-helium experiments were only
55% larger than experiment while previous simulations of the same experi-
ments were 200% too large. We believe there are two factors involved in this
improvement. First, the increased resolution and lack of numerical diffusion
with provided by front tracking are necessary to correctly model the experi-
ments and, second, the growth rates are measured only during the period of
actual experimental measurement.

The failure of theory to agree with experiment is discussed later, in Chap-

ter 7.
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5.1 Role of Front Tracking

To test the effects of tracking, the air-SFg simulations were run with the track-
ing of certain waves disabled. The untracked waves, then, were captured by
the underlying finite-difference scheme. It is necessary to use a tracked con-
tact wave to separate gases with different equations of state, so the interface
is always tracked. It is possible, though, to selectively untrack the other waves
in the problem to judge their effects. For this test, for example, simulations
were run without the transmitted shock, the reflected shock or both. The
simulation was also run with the incident shock untracked. Note that with
an untracked incident shock there is no tracking of the waves scattered from
the shock refraction so that only the contact wave was tracked. Even with
this minimal amount of tracking there is very little difference in the computed
growth rates. In Figures 5.1 and 5.2 we see a superposition of the growth
rate and amplitude curves found using an untracked incident shock and the
curves for the fully tracked simulations. It is clear that untracking the shock
has relatively little effect on the simulations even at very early times when the
transition width of the shock wave is expected to have its greatest effect. In
fact, the two growth curves are almost identical and the slight difference in
growth rates has little effect on the amplitude.

We conclude from the agreement between the fully tracked and the par-
tially tracked simulations that the important element in correctly computing
the growth rates is the tracking of the interface itself. There are several pos-

sible reasons for this. First, there is no numerically generated mass diffusion
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Figure 5.1: Growth rate graph for air-SFs simulations with untracked incident
shock superimposed on graph for fully tracked simulation. There is little difference
between the simulations.
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Figure 5.2: Amplitudes for air-SFs simulations with tracked and untracked incident
shock waves. The small differences in growth rate accumulate, but the amplitudes

are quite close.
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or smearing of the interface. We believe this to be particularly important.
Second, the vorticity along the interface which drives the instability is sharply
captured by the front tracking method. Finally, front tracking has an unsur-
passed ability to measure interface positions and velocities. We believe that a
combination of these factors lead to the improved agreement with experiment.

Menikoff [53] has suggested that a shock refraction can lead to entropy
errors at the contact due to the artificially larger shock width. In the front
tracking simulations with an untracked incident shock wave there were no
detectable entropy errors. FEither this simulation is not susceptible to such

errors or the method used to track the contact eliminates them.

5.2 Role of Timing

In Chapter 4 the front tracking results for Meshkov’s air-helium experiments
are compared to those of Meyer and Blewett [56]. As can be clearly seen in
Figure 4.6 the front tracking results agree quite well with theirs, yet they quote
a growth rate of 47m/s which is 200% larger than the experimental value of
16m /s experiment while the front tracking simulations predict a growth rate
only 55% larger, 25m/s. This difference is due mainly to the difference in
periods of growth rate measurement. The front tracking growth rate measure-
ments are made during the experimental time period after there has been a
significant decay in growth rates from an early time peak. By only simulating
the first 80us of the experiment (and, hence, stopping before any experimen-

tal data is taken), Meyer and Blewett made their measurements squarely in
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the middle of the high growth period. This is clear from Figure 4.7. The
front tracking least squares estimate of the velocity during this time period
is 53.5m/s.

It should be noted that the amplitude vs. time data given by Meyer and
Blewett is inconsistent with their quoted growth rate. A least squares growth
rate estimate taken from their amplitude data gives a growth rate of 55m/s,
as does a direct measurement of the slope of their best-fit line. The reason for
this inconsistency is unknown.

As with the air-helium simulations, in the air-SFg case the experimen-
tal time period, 300us to 770us, is used for measuring growth. A different
measurement period results in a different growth rate. For example, if the
measurement is made during the period between 150-620ps the growth rate
increases from 9.2m/s to 11.0m/s.

It is almost universal in the literature for authors to quote a single growth
rate figure for Richtmyer-Meshkov unstable interfaces without any details re-
garding its determination. While this is likely to be motivated by the single
growth rates that have been found in experiments and predicted by the im-
pulsive model there is no way to know how these authors have calculated their
growth rates. It is possible that these authors have not measured their growth
rates at the proper time and thus overstated growth rates, as was the case

with Meyer and Blewett.
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5.3 Amplitude Disagreement,

While there is good agreement between the simulations and experiment in
terms of the perturbation growth rates, there is still a discrepancy between
the simulation and experimental amplitudes. Looking at Figure 4.2 we see
that the front tracking amplitude curve and the experiment best-fit line are
parallel, which is to be expected since the velocities agree during that time
period, but the amplitude predicted by the front tracking simulation is approx-
imately 1.5mm too large. Similarly, Figure 4.5 shows that there is an offset of
approximately 3mm between the simulation amplitude and the experimental
best-fit at the beginning of the observation period.

The amplitude disagreement must be due to a lower experimental growth
rate during the pre-observation period since we have good agreement during
the observation period. Figures 4.3 and 4.7 show an extreme peak in simula-
tion growth rates before the observations take place and the most reasonable
explanation of the discrepancy in amplitudes is that the experimental growth
rates simply do not experience this peak. There are several possible reasons
for this. The first possibility is that diffusion across the membrane before
the shock refraction has affected the early time growth. Benjamin [6] states
that there appears to be pre-shock diffusion in some of his experiments while
Sturtevant also describes problems with diffusion across membranes in his ex-
periments [67]. Another possibility is that the material strength properties of
the membrane retard early time growth. It is also possible that the membrane

fragments are accelerating the mixing of the gases and this post-shock diffu-
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sion is affecting the growth. Unfortunately, we cannot be sure what causes
the amplitude difference until we have early time experimental data. Lacking
this data it would be helpful to have simulations which simulate both pre- and

post-shock mass diffusion in order to assess the possible effects.

5.4 Translational Velocities

In addition to perturbation growth rates it is instructive to consider interface
translational velocities, where the interface velocity is defined to be the average
of the velocities at the tip of the spike and of the bubble measured in the lab
frame. While Meshkov does not report translational velocities, Benjamin [6]
quotes an interface translational velocity of 85m/s for his air-SFg simulations.
The front tracking simulations predict a velocity 24% smaller, 65.1m/s dur-
ing the experimental observation period (see Figure 5.3). For comparison
the translational velocity of an unperturbed interface is calculated through
the solution of a 1D Riemann problem and the predicted velocity is 66.8m /s,
slightly larger than the front tracking prediction. The unperturbed transla-
tional velocity is expected to be larger than the perturbed velocity based on
mass conservation since the SFg spike, being narrower than the air bubble, will
move faster than the bubble. Since the spike motion is opposite the overall
motion of the contact it reduces the translational velocity.

The simulations of Benjamin et al. [6] also show translational velocities
slightly below the 1D prediction and they attribute it to pre-shock diffusion

across the membrane. In an attempt to measure the effects of diffusion on
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Figure 5.3: Contact translational velocity for the air-SFg simulation.
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translational velocities a 1D simulation was run using the experimental gas and
shock parameters except that the sharp interface was replaced by a transition
region of linearly increasing density and constant pressure. Different transition
lengths were used and the effects on the translational velocity were measured.
No significant changes in velocity were found and we failed to confirm diffusion
as a possible cause of the velocity difference.

It is important to understand the velocity discrepancy since it may hold

clues to the unresolved difference in amplitudes.
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Chapter 6

Asymptotic Behavior

6.1 Decay

A striking feature of the growth rates shown in Figures 4.3 and 4.7 is a signif-
icant decrease in the numerical growth rate from an early peak while experi-
ment, linear theory and the impulsive model predict nearly constant rates. As
can be seen in Figures 6.1 and 6.2, the decay continues to late time for the
air-SFg case. This decay was noted by Benjamin, Besnard and Haas [6] and
taken to be numerical in origin. It is our belief, though, that the decay is a
real effect and is a feature of the solution of the Euler equations.

The decay in growth rates appears to be real for several reasons. First,
while a decaying growth rate was not observed in the experiments we simulate
other experiments, notably those of Meshkov [55], Aleshin et al. [1] and Zaytsev
et al. [72], do show decaying growth rates. Decay is also seen in the simulations
of Meyer and Blewett [56], Blewett [10] and Samtaney [64]. In addition, the
potential flow model of Hecht et al. (section 6.2) predicts a decay in the bubble

velocity for the case of a reflected shock (which is true for air-SFg). Another
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Figure 6.1: Growth rate results of long time air-SFs simulation. This simulation
runs to a time approximately 2.5 times the end of the experiment.
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Figure 6.2: Amplitude results of long time air-SFg simulation.
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feature of the simulations which suggest that the decay is that the decay is
independent of mesh size. While the overall level of the growth rate changes
with the mesh the decay rate is invariant (see Figure 8.6) when the effects
of numerical diffusion should decrease with Az. Finally, as nonlinear effects
become important, especially the roll up along the sides of the interface evident
in the last frame of Figure 4.1, we expect the growth rate to suffer as more
energy is put into the smaller scale motion.

It is our conclusion, then, that the decay in interface growth rates is a real
effect and not a numerical artifact. The decay is a very important feature of
the simulations and without it there would be no agreement between the front
tracking simulations and experiment. Of considerable interest, then, is the
reason for the lack of decay in the experiments simulated here. While we can-
not be sure, it is possible that some of the diffusion effects in the experiments
that are believed to reduce the early time growth (section 5.3) affect the late

time decay. New simulations and experiments are necessary to test this.

6.2 Bubble Velocity

Besides considering the full perturbation growth rate it is instructive to analyze
the long time bubble and spike behaviors separately.

Hecht et al. [46] have developed a model for the motion of the bubble
tip in the Rayleigh-Taylor instability and extended the analysis to include
the Richtmyer-Meshkov instability. Their analysis makes four assumptions:

(a) that the dynamics of the bubble are determined only by the flow in the
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Figure 6.3: Bubble velocities for long time air-SF¢ simulation. The bubble velocity
is compared against the predictions of the potential flow model.
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region near the bubble tip, (b) that the flow there is irrotational, so that a
velocity potential can be defined, (¢) that the Atwood ratio A ~ 1, and (d)
that the flow is incompressible. Note that the assumption A &~ 1 implies a
reflected shock configuration. Under these assumptions they are able to solve
the potential flow equations for the bubble velocity at all times after shock
refraction. While a detailed analysis of their model is beyond the scope of this
work their model does lead to a simple asymptotic estimate for the bubble

velocity that is easy to test. This asymptotic velocity is in the form

1

— 6.1
3kt /2 + v (6.1)

Ububble =

measured in a frame moving with the velocity of an unperturbed contact,
where v! is an unspecified parameter with the units of velocity.

The predictions of equation (6.1) with v = 0 are compared to the results
of the long time air-SFg simulations in Figure 6.3. In addition, a curve fit to
the data from 1350us to the end of the simulation is superimposed. The curve
is of the form vyuppe(t) = ¢t~ where the factors ¢ = 437.7 and « = 0.8135 are
determined via a linear best-fit to the log time-log velocity curve as shown in
Figure 6.4. The period of the fitting is found by comparing the fits at various
times and determining that they converge to the value given by beginning at
1350pus. The decay rate of the numerical simulation is of the same magnitude
as that predicted from the theory, although it is slightly lower. There is an
offset between the potential flow and simulation velocity curves which could
be reduced by changing v corresponding to a shift in time.

Note that this model applies only to bubbles and not to spikes. We empha-
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size that the effects of compressibility remain important at times significantly
later than the time of passage of the initial shock through the interface. Indeed,
the amplitude offset is likely to be due in part to the fact that early-time com-
pressible wave interactions discussed in Chapter 7 are not properly included

in the incompressible potential flow model.

6.3 Spike Velocity

It is interesting to note that the spike velocity can also be fit by a power law.
Figure 6.5 is a plot of vy, and a fit of the data given by v,k = 512.9¢70-58%,
As seen in Figure 6.4 the fit to the data is excellent from time ¢ = 500us to
the end of the simulation.

The decay in bubble and spike velocities should be contrasted with the
Rayleigh-Taylor instability. In the Rayleigh-Taylor case the bubble velocity
approaches a constant, positive value while the spike undergoes constant ac-
celeration [65]. This difference is surely related to the constant energy input
in the Rayleigh-Taylor instability compared to the single acceleration in the

Richtmyer-Meshkov instability.
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Chapter 7

Invalidity of Theories

According to the discussion of Chapter 4, the impulsive model and linear the-
ory seriously overstate the perturbation growth rates for both the air-SFg and
air-helium cases. In this chapter it is shown that the simplifying assumptions
made by these theories are not valid during the experimental measurement
period and it is primarily for this reason that the theories disagree with ex-
periment. Particular emphasis is placed on the assumption that the flow is
linear, i.e. that it can be described by linear equations.

Similarly, it is shown that the assumption of incompressibility in the po-

tential flow model is violated. Fraley’s model is also discussed.

7.1 Simulation vs. Linear Theory

7.1.1 Air-SF;

Referring to Figure 4.3 (reproduced here as Figure 7.1) we see that the linear
theory of Richtmyer and Yang et al. agrees well with the nonlinear air-SFg

simulations until the time that the peak velocities are reached except for a
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Figure 7.1: A reproduction of the air-SFs perturbation growth rate graph from
Figure 4.3.

slight downturn in the nonlinear growth rate during the initial acceleration.
Near the peak there is a quick divergence between the growth rates, with the
linear theory saturating near its peak level and the simulation showing a sud-
den, strong downward movement. Later we see that the nonlinear simulation
shows a decay in velocity while the linear theory shows no decay at all. The
linear theory seriously overpredicts the growth rates at all but the earlies times
because it lacks these two important aspects of the growth rate—the sudden
downturns and the decay.

The sudden downturns in the front tracking simulations of the shocked
interface are due to inherently nonlinear and compressible phenomena. They
can be understood in terms of a series of re-accelerations of the material in-
terface by secondary shocks whose ultimate origins are self-interactions at the

reflected and transmitted wave edges. As seen in the color representations
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Figure 7.3: (a) Simulation air-bubble velocity (b) Simulation SFg spike velocity
These velocities are measured in a frame moving with the interface.

of the pressure field in Figure 7.2, curvature in the reflected and transmitted
waves generates additional shocks via nonlinear self-interaction. At 33us these
waves are clearly seen near the edges of the reflected shock (Figure 7.2a). As
the interaction proceeds the compression fronts steepen into shocks. These
shocks collide near the tip of the spike at about 68us as seen in Figure 7.2b,
producing a high pressure pulse near the interface that causes the growth rate
to decline. This deceleration corresponds to the first blip in the growth rate
graph Figure 7.1. At later times the waves emanating from the reflected and
transmitted edges produce a series of criss-cross shock reflections. At approx-
imately 207us (Figure 7.2¢) a strong pulse crosses the interface, leading to the
severe (and permanent) deceleration of the bubble. That this decrease is due
primarily to action at the bubble side of the interface is clear from a compar-
ison of the spike and bubble velocities given in Figure 7.3. By time ¢ = 344 us

(Figure 7.2¢) the strong wave action has moved away from the interface region
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and the growth rate curve has smoothed considerably. Note the pair of Mach
triple points at the far right of this figure.

Figure 7.4 shows pressure plots of the solution to the linearized equations
and of the solution to the nonlinear Fuler equations at time ¢ = 195us, near
the time of the most severe divergence of the two solutions. We call attention
to two important features of linear solutions: they do not allow the focusing
of characteristics and the linearization constrains the geometry of the wave
fronts to be sinusoidal. These two restrictions prevent the production of the
additional shocks that are present in the nonlinear solution, i.e. there is no
cascade of reflected shocks from the self-interaction of the transmitted and
reflected waves. The linear solution displays a series of acoustic waves, but they
do not sharpen into shocks and are thus much weaker than the corresponding
waves of the nonlinear solution. Note that the strong waves in the nonlinear
solution come in pairs and thus we have two pressure maxima and minima as
we cross the tube in the x-direction. This is in contrast to the linear theory
which in which all quantities are assumed to have sinusoidal perturbations
and, hence, a single maximum and minimum value.

The analysis of secondary waves can be followed further in time to account
for the plateau in @(¢) during the observation period. Note that during the
observational window this ringing of waves near the interface subsides. It is at
this point that the hypotheses of the potential flow model begin to be satisfied,
as discussed in section 7.3.

Besides the effects of the nonlinear wave interactions, the other reason for
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the divergence of nonlinear theory from linear is in the overall downward trend,
or decay, in the growth rate. In the nonlinear simulations the decay is seen in
both the spike and the bubble velocities. (see Figure 7.3). The validity of the
decay is discussed in detail in Chapter 6.

We should point out that the sharp downward movement in the nonlinear
simulation at the peak growth rate is duplicated in the linear theory, although
not as strongly. It appears that some of the downward motion, then, can be
represented as the result of a compressible, linear wave, while the rest of the
motion is due to the nonlinearity and “breaking” of the wave.

We consider the linear theory’s assumption that the interface remains sinu-
soidal in Figure 7.5. It is clear from this figure that the interface is becoming
non-sinusoidal by ¢ = 132us, well before the experimental observation period.
The sinusoidal interface assumption also constrains the spike and bubble ve-
locities to be the same. It can be seen in Figure 7.3 this is clearly not the
case.

The behavior of the linear solution is consistent with simple order of mag-
nitude estimates of its time of validity. We work with a dimensionless time
t, = kcgMyt, where k is the wave number of the perturbation, ¢q is the sound
speed of the fluid ahead of the incident shock and M, is the incident shock

Mach number. In terms of ¢, the validity of the linear solution is
tamin = ka(0—) < 1. < 1/[ka(0—)] = temas- (7.1)

Using the experimental parameters of Table 4.1 we find that ¢.,.,, ~ 2.5

which corresponds to a time ¢t &~ 36pus. Keep in mind that this time is by
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Figure 7.5: A test of the sine-shaped interface assumption of the linear theory for
the air-SFy case. Sine waves of the same amplitude are superimposed on plots of
the nonlinear interface: a) ¢t = 132us, b) t = 567us.

no means rigorous. It is the result of dimensional analysis and can vary by
a multiplicitive factor, but it is at least consistent with the time of validity
actually observed.

The discussion regarding the comparison between the linear theory and
front tracking applies to the impulsive model as well. It is interesting to note
that the impulsive model and linear theory agree well in their predictions of
the long time growth rate. Thus the compressibility effects included do not aid
in the agreement with experiment. It is the sinusoidal interface and linearity

assumptions, then, that drive the disagreement.

7.1.2 Air-Helium
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Figure 7.6: A reproduction of the air-helium perturbation growth rate graph from

Figure 4.7.

As with the air-SFg simulations the air-helium nonlinear front tracking simu-
lations and linear theories agree well at early times and fail to agree at later
times (Figure 7.6). The disagreement again begins near the point of maximum
growth rate where the nonlinear theory begins to decay while the linear theory
approaches a constant value.

Figure 7.7 shows a comparison between the nonlinear and linear theories for
the air-helium case. This is a plot of the pressure field at 65us which is at the
beginning of the time of rapid divergence between the growth rate predictions
of nonlinear and linear theories. As with the air-SFg case there is a significant
amount of nonlinear behavior that is not captured by the linearized theory.
Specifically, the waves generated by the transmitted shock self-interaction have
sharpened considerably and have probably steepened into shocks at this time.
Also, there are high pressure regions forming above the bubble tips along the

edges of the nonlinear simulation plot which are creating a pressure gradient
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opposing the bubble motion. This gradient is not evident in the linear solution
and the growth rates diverge.

We cannot validate the decay in the air-helium simulations via the po-
tential flow model as we did in Chapter 6 since that model is valid only for
the case of reflected shock. There is no reason to believe, though, that the
decay mechanism for the reflected shock case will not operate in the reflected
rarefaction case. This decay again results in the disagreement between the
growth rate predictions of the linear and the nonlinear theories.

The early time agreement between the theories is somewhat surprising
when we look at the interface profiles. In Figure 7.8 we see that during the
inversion process the interface is very non-sinusoidal and remains so from that
point on. The later time non-sinusoidal profiles help to explain the differences
between the linear and nonlinear theories. In addition, we see in the bubble
and spike velocity plots of Figures 7.9 and 7.10 that there is no symmetry in
these velocities as predicted by the theory.

The inequality 7.1 suggests a validity limit on the linear equations of ¢ ~
40ps. This is again consistent with the observed time of agreement between

the linear and nonlinear theories.

7.2 Experiment vs. Linear Theory

The nonlinear simulations and the linear theory agree at early time for both
air-SFg and air-helium, but the linear theory seriously overstates the experi-

mentally observed growth rate while the nonlinear simulations agree quite well
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Figure 7.8: A test of the sine-shaped interface of the linear theory for the air-helium
case. Sine waves of the same amplitude are superimposed on plots of the nonlinear
interface: a) t = 22us (the vertical scale in this frame has been stretched 15 times
to show the details of the inversion process), b) t = 90us, and ¢) ¢ = 190us.
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Figure 7.9: Air-helium simulation bubble velocity.
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Figure 7.10: Air-helium simulation spike velocity.

with experiments. This dual agreement is possible due to the effects of the
nonlinear, compressible waves and growth rate decay observed in the simula-
tions. Thus even though the linear theory agrees with the nonlinear theory at
early times it lacks the features that reduce the nonlinear simulation growth

rate and, hence, fails to agree with experiment.

7.3 Potential Flow Model

The potential flow model of Hecht et al. [46] is intended to predict the bub-
ble velocity in the Rayleigh-Taylor and Richtmyer-Meshkov instabilities for
all times following shock refraction. For the Richtmyer-Meshkov instability
it applies only to the case of a reflected shock wave and thus the following
discussion applies only to the air-SFg simulations.

We have not made the detailed calculations necessary to find the potential
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flow growth rates at early times and instead concentrate on the asymptotic
velocity predicted by the model and confirmed in section 6.2. In that section
we find that the predicted t=! decay rate is nearly correct but that there is an
offset between the potential low model and the front tracking simulations. As
the potential flow model is an incompressible model it cannot account for the
early time compressible features which we find to be so important in the bubble
dynamics (section 7.1). We believe, then, that model fails to agree completely
because it is applied too early, before its assumptions are valid, and that the
agreement would be better if the model was applied to the conditions later in
the run when compressibility is less important. More work needs to be done to
confirm this. However, this model does help to justify the decay in the growth

rates.

7.4 Fraley’s Model

Fraley’s model (see section 2.1.3), like the potential flow model, applies only
to the case of a reflected shock. Using his weak shock approximation we
find his model predicts a growth rate of 9.31m/s for the air-SFg simulations.
This compares well with the experimental value of 9.18m/s. This apparent
agreement is, in the author’s opinion, fortuitous. Since this model is based on
a linearization of the Euler equations it has the same region of validity as the
linear theory of Richtmyer and Yang et al. This model also makes a sinusoidal
interface assumption. In addition, it predicts a single velocity which, given

the decaying growth rates in the simulation, would give poor agreement had
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the measurement period been different.

7.5 Improved Theories

It is interesting at this point to speculate on the possible forms of improved
theories of the Richtmyer-Meshkov instability which correctly predict pertur-
bation growth rates and amplitudes. An improved theory should have the

following features:

1) Good agreement with experiments or simulations.

2) A range of validity incorporating multiple timescales
3) A minimum of simplifying assumptions

4) Ease of solution

Ideally, a successtul model will allow useful simplifications or approximations
which can be used to easily estimate growth rates in the same way that the
impulsive model does. The discussion regarding growth rate decay in Chap-
ter 6 suggests that simple scaling laws apply to the late time interface growth
rate. A model which successfully predicts these laws will be especially useful.

Considering the relative success of the incompressible potential flow model
it appears that is necessary to relax the linear and/or the sinusoidal inter-
face assumptions. One approach is to allow multiple sinusoidal modes in the
solution to the linearized equations. Indeed, the nonlinear pressure waves of
Figures 7.2, 7.4 and 7.7 do have the appearance of second harmonics. This
route is currently being attempted by Zhang [73].

Another possibility would be to extend the potential flow model to include
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the spike regime. The current model assumes a free surface and the spike will
be singular in nature, so to make the extension one must allow A < 1.

The development of an improved model of the Richtmyer-Meshkov insta-
bility will be a significant advance, for it should lead to an improved under-

standing of the important mechanisms in interface development.

92



Chapter 8

Validation and Measurement
Sensitivity

In this chapter the front tracking simulations are validated and issues of diag-

nostic sensitivity are discussed.

8.1 Comparison to Linear Theory

The linear theory of Richtmyer [62] and Yang, et al. [71] described in Chap-
ter 2 provides a unique method to validate the the early time behavior of
the nonlinear front tracking simulations. The validation is accomplished by
running the nonlinear simulations with very small amplitudes and comparing
the results to the linear theory. Since the linear theory applies in the limit
of small amplitudes the nonlinear simulations are expected to converge to the
predictions of the linear theory as the amplitudes are reduced. It should be
noted that in the linearization the amplitude growth rate a(¢) is proportional
to the initial amplitude a(0—) and that the convergence is in the normalized

growth rate a(t)/a(0—).
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Figure 8.1: Convergence of the nonlinear air-SFs simulations to the linearized solu-
tion for small amplitudes. Amplitude convergence is measured in terms of the rela-
tive difference between the nonlinear and linear solutions, |a(t) — ay, (1)|/(|au.(t)] +
|a(0—)|) where a(0—) is the initial amplitude of the perturbation. The horizontal
axis is in dimensionless time units kcqMyt, where k is the wave number of the per-
turbation, ¢q is the sound speed in the gas ahead of the incident shock and M, is
the incident shock Mach number.

Figure 8.1 presents the convergence of nonlinear air-SFg simulations to the
linear theory. The simulations use the experimental parameters of Table 4.1
except that they use a series of reduced initial amplitudes with ka(0—) =
0.4 (experimental value), 0.2 and 0.1. We can see from this figure that the
nonlinear simulations are indeed converging to the results of the linear theory
as the initial amplitude is reduced.

Figure 8.2 shows the results of a similar set of simulations for air-helium
using the experimental gas parameters of Table 4.2 and, again, a series of
reduced amplitudes with ka(0—) = 0.2,0.1 and 0.05. The experimental value

of ka(0—) is 0.31. Once more we see convergence of the nonlinear simulations
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Figure 8.2: The convergence of the nonlinear air-helium simulations to the lin-
earized solution for small initial amplitudes.
to the results of the linear theory at early times.

Based on the success of these tests we are confident that the code is correct
and that the refraction process is computed correctly. It is a unique feature
of the front tracking code that we can precisely measure the interface position
and perform such diagnostics.

It is clear from Figure 8.2 that the convergence of the air-helium simulations
is not as good as with air-SFg. Since the convergence is in the limit of small
amplitudes it is likely that we are not using amplitudes small enough to see
good agreement.

Another point of agreement between the linear theory and the nonlinear
simulations is in the amount of compression caused by the shock. This is seen
in Figures 8.1 and 8.2 as a zero amplitude differential at ¢ = 0. According

to equation (2.5) the linear theory predicts a compression of the interface
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perturbation to 83.2% of its original value. The nonlinear simulations agree
well with this value, even at full experimental amplitudes where the simulations
predict compression at a level of 83.7%. Compare this to the method used by
Benjamin in [4] and [6] where he estimates the post-shock amplitude as the
y-intercept of a least squares fit to the experimental data (see section 2.2.2).

One interesting aspect of the convergence of the nonlinear theory to the
linear theory is that we do not see an appreciable increase in the time of
agreement between the theories as we reduce the nonlinear amplitude. This
is evident from Figure 8.3 which shows the convergence of the nonlinear air-
SFg simulation growth rates to the linear theory growth rates in terms of
@(t)/a(0—). The nonlinear simulations agree well with the linearized theory
until they approach the growth rate peak at f. &~ 11 (in normalized time units
t. = Mckt, M being the incident shock Mach number and ¢ the ahead sound
speed) when they begin to diverge from the linear theory. We see that the
simulation growth rates approach those of the linear theory with reductions in
amplitude, but without any real increase in the time of agreement. A similar
phenomenon occurs in the air-helium simulations.

In addition, it has been widely assumed that there is an amplitude thresh-
old below which the linear theory is valid. This is the case for the Rayleigh-
Taylor instability [65]. As can be seen in Figure 8.4 there is no such thresh-
hold for the Richtmyer-Meshkov instability since at the time of growth rate
disagreement we have widely different amplitudes. Considering the discussion

in Chapter 7 regarding the influence of shock curvature on the growth rate, it
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Figure 8.4: Amplitudes corresponding to the air-SFy growth rate convergence tests.
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Figure 8.5: Perturbation amplitude growth under mesh refinement for the air-
helium simulation. This plot shows the results of simulations using 50, 100 and 200
zones per wavelength. The growth has converged by 100 zones.

is possible that these effects decrease slowly with reductions in amplitude.

8.2 Mesh Refinement

Figure 8.5 shows a mesh refinement test for the air-helium simulations where
resolutions of 50, 100 and 200 zones per wavelength are used. As can be seen
from the figure, the growth rate has converged by 100 zones, the level used for
the results presented in Chapter 4.

Figure 8.6 shows a similar test for the air-SFg simulations at resolutions of
62, 125 and 250 zones per wavelength. It appears from this figure that we do
not have convergence in the growth rate. In fact, the differences in growth rates
between 62 and 125 zones and 125 and 250 zones are nearly the same, which

would indicate that we are very far from achieving convergence. A resolution
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Figure 8.6: Mesh refinement studies for air-SFg at resolutions of 62, 125 and 250
zones per wavelength.
of 125 zones per wavelength, however, has been sufficient for convergence in
other simulations of this type [6, 9, 29, 56] and the cause to this apparent lack
of convergence is not likely to be underresolution.

In order to understand the convergence behavior of the growth rate we look
at the bubble and spike behaviors separately. Referring to Figures 8.7 and 8.8
we see that there is relatively little change in the bubble velocity with mesh
refinement and that most of the refinement changes take place in the region
of the spike. Due to the smaller radius of curvature at the spike tip compared
to the bubble tip and the larger amount of wave activity taking place in this
region this region will be more sensitive to changes in the mesh.

We suspect that the convergence behavior is due to the extreme sensitivity

of the pointwise amplitude measure to local oscillations in the interface am-
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Figure 8.7: Mesh refinement tests for the air-SFg bubble velocities. The bubble

velocity has converged.
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Figure 8.8: Mesh refinement tests for the air-SFs spike velocity. The spike velocity
continues to increase with mesh refinement.
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plitude. Indeed, convergence of the simulations to the correct weak solutions
of the Euler equations would be expected to take place in L' or L? while the
pointwise measure we are using is an L° measure. Unfortunately, no L' con-
sistent measure of interface amplitude is currently implemented and the cause
of this convergence behavior remains unresolved.

We have found that the growth rates are also sensitive to the CFL constant
used in the simulations. Again this behavior is localized to the spike tip and
almost certainly has the same cause as the lack of convergence under mesh

refinement.
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Chapter 9

Future Work and Conclusion

9.1 Future Work

There is still much work to be done on the Richtmyer-Meshkov instability.
There is as of yet no complete understanding of the important physical effects
which control the instability.

Of particular importance is an understanding of the growth rate decay, for
while this is not evident in the experiments of Benjamin or Meshkov, it is a
very important feature of the simulations. The development of models which
improve upon the linear theory, impulsive model and the potential low model
should help.

It will also be useful to study the effects of diffusion along the interface
both before and after shocking. It is possible that diffusion is responsible for
the difference between simulation and experimental amplitudes as well as the
difference in translational velocities. New simulations and experiments are

needed for this.
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9.2 Conclusion

In this paper we have presented the results front tracking simulations of the
experiments of Benjamin and Meshkov were presented. It was found that
much of the interface behavior can only be explained in terms of nonlinear,
compressible physics that is not captured in the simplified linear theory and
impulsive model. We have shown that our simulations give better agreement
with experimental growth rates than previous simulations and we discuss var-
ious reasons for the remaining differences. Finally, we discuss the asymptotic
behavior of the interface velocities by examining simulations which deal with
post- experimental time periods.

This paper presented the results of front tracking simulations of shock tube
experiments by Benjamin and Meshkov. It was found that the perturbation
growth rate predictions of these simulations are in much better agreement
with those seen in experiment than has been found in previous simulations
or theories. Simulations have previously predicted growth rates up to 200%
larger than experiment which agrees with the theoretical predictions.

This improved agreement is explained in terms of the accuracy and stability
of the front tracking method. Another reason for the improved agreement is
that the growth rate measurements are made during the experimental time
period. Errors in measurement timing can dramatically affect the apparent
results.

A detailed analysis of the growth rate curve for the air-SFg simulations was

made. This analysis showed that nonlinear and compressible effects are very
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important in the history of the perturbation growth and cannot be ignored.
Thus the assumptions of the theories, linearity and incompressibility, are vio-
lated in the experiments. The invalidity of these assumptions contributes to
disagreement between the theories and experiment.

The long term development of the interface was considered. It was shown
that the bubble velocities were nearly consistent with a potential flow model
which predicts a decay like t7. In addition, it was shown that the spike

velocities could also be fit by a power law.
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