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Abstract of the DissertationA Numerical Investigation of the Richtmyer-MeshkovInstabilityUsing Front TrackingbyRichard Lansing HolmesinApplied MathematicsState University of New Yorkat Stony Brook1994The method of front tracking is used to simulate the shock-tube exper-iments of Meshkov and Benjamin to predict perturbation amplitude growthrates. The results of the simulations are in much better agreement with ex-periment than previous simulations or theory. This improved agreement isexplained by showing that simpli�cations in the theories, such as assumptionsof incompressibility or linearity, miss crucial aspects of the experiments andiii



thus the theories give incorrect growth rates. In addition, it is shown thatfor simulations the correct time period for measurement of the instability iscrucial in getting agreement with experiment.The long-time behavior of the growth rates is discussed and the simulationsare compared to an incompressible potential ow model for bubble velocitiesdue to Hecht, et al. It is determined that the model adequately describeslate-time behavior if modi�cations are made to take into account early timecompressibility e�ects.Finally, the simulations are validated through comparison with a linearizedtheory which is valid in the limit of small amplitudes.
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Chapter 1Introduction and MotivationThe behavior of shock-accelerated gas interfaces has received a great deal ofattention due its fundamental importance in the study of various technologicalapplications and natural phenomena. The basic phenomenon studied in thiswork is the Richtmyer-Meshkov instability. This instability is generated whena shock wave refracts through an interface separating two gases, causing per-turbations on the interface to grow with time. It was originally predicted byRichtmyer [62] and subsequently observed in the experiments of Meshkov [54].Presented here are the results of front tracking simulations of the Richtmyer-Meshkov instability. These simulations predict perturbation growth rates thatare much closer to those in experiments than has previously been attainednumerically or analytically. This improvement is due to the accuracy andstability of the front tracking method used in these computations as well asdue to the proper consideration of nonlinear e�ects and measurement timing.The failure of the theories, which make assumptions about small amplitudesand/or incompressibility, is explained through an empirical analysis of nonlin-1



ear, compressible waves. In addition, the asymptotic behavior of perturbationgrowth is studied and it is shown that a long term decay in the growth rateis to be expected and is part of the solution to the Euler equations, not anumerical artifact. Finally, the code is validated in a unique and convincingway by comparing the nonlinear simulations with reduced amplitudes with thesolution of a linearized set of equations.Preliminary accounts of this work can be found in [16, 17, 18, 19, 43, 45]and [47].1.1 The Richtmyer-Meshkov InstabilityConsider the situation shown in Figures 1.1 and 1.2. These �gures show theinitial and late-time con�gurations of a simulation of shock induced mixingin a supernova. In the �rst frame of Figure 1.1 we see the initial conditions.A circular shock wave is moving outward and will strike a perturbed circularmaterial interface separating the heavy interior gas from the light outer gas.The second frame is an enlarged view of the initial conditions. Figure 1.2shows the late time con�guration. Instead of expanding in a circular fashionas may be expected given the nearly circular initial conditions, the initialperturbations have grown signi�cantly and have forced heavy interior materialdeep into the surrounding light material. It is this growth of perturbationswhich constitutes the Richtmyer-Meshkov instability. This behavior has beensuggested as one explanation for recent supernova observations in which x-raysfrom deep within the core of the exploding star are observed much earlier than2



Figure 1.1: Results of simulation showing shock-wave induced mixing of gases.This type of mixing is thought to occur in supernovae. The initially small perturba-tions on the interface grow into large structures reaching deep into the surroundingmaterial. This �gure shows the initial con�guration of the simulation.
Figure 1.2: Late time behavior of the interface. The initially smooth interfaceperturbations have grown into large, complex structures reaching deep into theouter material. The outermost wave is the transmitted shock and the innermostwave is the trailing edge of the reected rarefaction.3



would be expected based on spherically symmetric models [2, 37, 59].The Richtmyer-Meshkov instability also plays an important role in InertialCon�nement Fusion (ICF), a method proposed for generating usable energyfrom nuclear fusion [51, 68]. In ICF a small spherical fuel pellet made of adeuterium-tritium mix surrounded by a heavy shell is irradiated by a stronglaser. The resulting explosive ablation generates a shock wave which com-presses the pellet and, if the temperature and pressure are large enough, ig-nites a fusion reaction. The Richtmyer-Meshkov instability will limit the yieldfrom this reaction since asymmetries will limit the amount of compression andwill also force cold outer fuel into the central hot spot required for fusion.1.2 Shock Tube ExperimentsWhile many of the applications of Richtmyer-Meshkov instabilities involve cir-cular geometries, most experiments have been performed in the rectangulargeometry of a shock tube. Experiments in this geometry have the advantageof ease of setup and measurement, in addition to allowing simpler mathemat-ical analysis. A diagram of such an experiment is given in Figure 1.3. The�rst frame shows a shock wave in a gas moving downward toward a mate-rial interface. We are viewing the interaction in a moving reference frame inwhich the mean position of the interface will be stationary after the passageof the shock. The interface is initially sinusoidal. In experiments this shapeis imposed through the use of a thin (less than 1�m thick) membrane. Inthe second frame the shock is refracting through the interface, producing a4



Incident Shock

Contact

(a)

Shock
Refraction

(b)

Reflected Wave

Transmitted Shock

(c) (d)Figure 1.3: A schematic representation of the geometry of the Richtmyer-Meshkovinstability. The interaction consists of the collision of a shock wave with a mate-rial interface. The refraction of the shock by the interface produces reected andtransmitted waves. The instability consists of the growth of perturbations of thematerial interface with time.transmitted shock wave and a reected wave which may be either a shock orrarefaction. The type of reected wave that is produced depends on the ther-modynamic properties of the two gases as well as the strength of the incidentshock wave [32, 71]. By the third frame the shock has completed its refractionthrough the interface and both the transmitted and reected waves are movingaway from the interface. Due to shock compression the amplitude of the per-turbation is smaller immediately after the interaction than it was originally.The amplitude will begin to increase again due to vorticity deposited on theinterface by the refraction. The �nal frame shows the interface at late time.The initially smooth sinusoidal perturbation has grown into irregular \spikes"of the heavy uid below reaching into the lighter material above and \bubbles"of the lighter material surrounding the spikes. We can see in this last picturethe \mushroom caps" on the spikes that are characteristic of this instability.Note the width of the region of interpenetration has increased signi�cantly.5



1.3 MeasurementsThe primary quantity of interest in simulations and experiments of the Richtmyer-Meshkov instability is the width of the mixing layer as a function of time, i.e.the total amount of interpenetration of each material into the other. It is thisquantity which determines the extent of heavy/light mixing in a supernova orwhich determines the e�ects of instabilities in an ICF pellet.It is convenient to measure not the full width of the mixing layer butthe perturbation amplitude, a(t), de�ned as one-half of the vertical distancebetween the tips of the spikes and the tips of bubbles. This is exactly one-half of the mixing zone width. Also of interest is the perturbation amplitudegrowth rate _a(t).1.4 Current StatusCurrently there is no satisfactory understanding of the Richtmyer-Meshkovinstability. While the theoretical models agree well with each other and mostnumerical simulations agree with the theory, so far these fail to agree withmost experimental results, predicting perturbation growth rates that are 40%to 200% larger than found in experiments. Due to the agreement of theoryand computation it has generally been thought that the disagreement is dueto experimental e�ects, speci�cally the e�ects of the membrane which initiallyseparates the two experimental gases in shock tubes. Models of the membranee�ect are not available, however, and this explanation has not been tested.Theory and simulation have much to add in the study of the Richtmyer-6



Meshkov instability. Theory gives us a deeper understanding than can beachieved through experiment alone, while simulation gives us the ability tomake measurements that may be impractical or impossible to make in ex-periments and to perform on a computer more experiments than would befeasible to realize in a laboratory. It is very important to resolve the discrep-ancies between experiment, theory and simulation if we are to make signi�cantprogress in understanding the Richtmyer-Meshkov instability. We believe thatthis paper helps provide an improved understanding of this important andfundamental uid interaction.
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Chapter 2Previous WorkThere has been extensive work on the Richtmyer-Meshkov instability since thepioneering papers of Richtmyer [62] and Meshkov [54]. The literature can bedivided into three areas: theory, experiment and simulation. Reviewed here isthe literature relevant to the present work. See also the review by Rupert [63].Of particular interest are the di�erences between the amplitude growthrates found by the theories, experiments and simulations, as well as whethereach predicts a constant or a decaying growth rate.2.1 TheoryThere is currently no simple theory for Richtmyer-Meshkov instability growthrates which does not make assumptions of incompressibility, linear ow orpotential ow. In Chapter 7 it is shown that all of these assumptions areviolated in the experiments considered and it is primarily for this reason thatthere is disagreement between theories and experiment.8



2.1.1 The Impulsive ModelThe impulsive model, due to Richtmyer [62], is widely used to estimate insta-bility growth rates due to its simplicity and its intuitive derivation. Richtmyernoted the similarities between the shock-induced instability and the Rayleigh-Taylor instability, which results when a heavy uid is accelerated by a lighterone, and suggested that the shock-induced instability could be treated as aRayleigh-Taylor instability with an impulsive acceleration. Indeed, as waslater observed in shock tube experiments and simulations, the two instabilitiesare qualitatively similar in that they both have the same complex spike andbubble structures at late time (see Figure 1.3).To derive Richtmyer's impulsive growth rate estimate we �rst consider thecase of Rayleigh-Taylor instability between two incompressible uids with anin�nitesimal interface perturbation of the form a(t) cos(kx), where a(t)k� 1.Under these conditions a linearized equation for the perturbation amplitudeas a function of time can be derived [26]:�a� kAga = 0 (2.1)a(t = 0) = a0 (2.2)_a(t = 0) = 0 (2.3)where A = (�1��0)=(�1+�0) is the Atwood ratio and g(t) is the gravitationalacceleration pointing from the 1 uid to the 0 uid. This equation predictsstability for A � 0 and exponentially growing perturbations for A > 0.Richtmyer proceeded by replacing the constant acceleration g by an im-9



pulsive acceleration. That is, he set g(t) = �v � �(t) in (2.1), where �v is thechange in interface velocity due to the action of the shock wave and �(t) is theDirac delta function. Making the substitution and integrating (2.1) gives anamplitude growth rate of _a(t) = kA�va(0+) (2.4)where the post-shock amplitude, a(0+), has been used in the integration andis given by a(0+) = a(0�)(1� �vs ); (2.5)s being the incident shock speed. We interpret the subscripts 0 and 1 in theAtwood ratio calculation to denote the gases with the incident and transmittedshocks, respectively. Equation (2.4) is known as Richtmyer's impulsive model.While the Rayleigh-Taylor instability has an exponential growth rate theimpulsive model (2.4) predicts a constant growth rate for the Richtmyer-Meshkov instability. It is not clear, though, that this growth rate is realistic.There are several assumptions made: �rst, that the e�ects of a shock wave canbe accurately modeled by an impulsive acceleration. Second, the derivationassumes that the e�ects of compressibility are negligible after the passage ofthe shock and, lastly, it assumes that the instability can be linearized.Richtmyer originally considered only the case in which the shock refractionproduced a reected shock. As shown in [71], for polytropic gases a reectedrarefaction will result if the uid parameters satisfy �0c0 > �1c1 and, as is the10



case in all experiments considered here,Pbehind � PaheadPahead < 2 1�1 � 0�0(0 + 1)�0 � (1 + 1)�1 : (2.6)The relation between the acoustic impedances �c implies that if01 > �1�0 : (2.7)then a reected rarefaction will result. Since 0/1 � 3/5 it is quite often thecase that the inequality �1 < �0 implies a reected rarefaction. Meyer andBlewett [56] used this fact to extend Richtmyer's impulsive model (2.4) to thereected rarefaction case by allowing negative Atwood ratios.According to (2.4) a negative Atwood ratio implies a negative growth rate.This can be interpreted as an inversion of the interface, which is indeed ob-served in experiments. For the case of a reected rarefaction it is necessary ingeneral to replace the post-shock amplitude in equation (2.4) by the averageof the pre- and post- shock amplitudes in order to obtain agreement with sim-ulations. This averaging process has no theoretical justi�cation and is usedonly because it works better than other combinations.Note that the discussion of reected waves is based on the one dimen-sional theory and is only accurate for small initial amplitudes. Larger initialamplitudes can result in di�erent behaviors.Other work on the impulsive model includes its extension to circular andmultilayer geometries by Mikaelian [57] and a discussion by Sturtevant [67]regarding possible ambiguities in the calculation of the post-shock amplitude,a(0+). 11



2.1.2 Linear TheoryRecognizing the limitations in the derivation of the impulsive model, Richt-myer tackled the �rst two assumptions, the impulsive e�ects of the shock andincompressibility, by solving numerically a linearized system of compressiblegas dynamics equations to calculate interface growth rates. The linear equa-tions take into account compressibility e�ects, but they do not address theproblem of �nite amplitudes, i.e. we still have the requirement a(t)k � 1.Recently Yang, Zhang and Sharp [71] extended the linear theory of Richtmyerby including the case of a reected rarefaction.Briey, derivation of the linearized system begins with the nonlinear Eulerequations. Using the geometry described in Figure 1.3, a shock wave movingin the negative y-direction striking an unperturbed interface is taken to be thezero order solution. Small perturbations to the resulting Riemann solutionare introduced and only �rst order quantities are kept. It is assumed that theinterface perturbation is always sinusoidal and that all perturbed quantities qhave the form q(x; y; t) = q0(y; t) + �q(y; t)eikx, where q0(y; t) is the Riemannsolution (and independent of x) and k is the wavenumber of the perturbation.If this solution ansatz is substituted into the Euler equations and terms ofgreater than �rst order in the �q's are ignored it can be shown that in eachregion bounded by the Riemann solution waves (contact, transmitted andreected waves) the pressure perturbation �P (y; t) satis�es the modi�ed waveequation �Ptt = c20(�Pyy � k2�P ) (2.8)12



where c0 is the unperturbed sound speed in the region. For the reectedrarefaction case a set of three coupled PDE's is found for the region betweenthe rarefaction edges.In addition to the pressure equation (2.8) and the equations in the rarefac-tion fan, there are boundary conditions to consider. For the reected shockcase there are three boundaries: the transmitted shock, the reected shockand the contact. For the reected rarefaction case there are four since thereected shock is replaced by the leading and trailing edges of the rarefaction.These boundary conditions are quite complicated and the reader is referred tothe papers of Richtmyer [62] and Yang, et al. [71] for more details.The solution of the linearized equations and boundary conditions generallypredicts amplitude growth rates which begin at zero, rise quickly to a peakand subsequently perform decaying oscillations about a limiting value. Yanget al. [71] compared the predictions of the impulsivemodel (2.4) to the limitingresults of the linearized theory, much as Richtmyer did but for a wider rangeof shock strengths and Atwood ratios. It was found that the impulsive modelagrees well with the linearized predictions for weak shocks and Atwood ratiosclose to 1 and less well as the shock strength increases and/or the Atwood ratiogoes to 0. This behavior is reasonable considering that the impulsive modelassumes compressibility e�ects are negligible and this assumption will breakdown as the shock becomes stronger. In these comparisons the linearizedpredictions should be regarded as more accurate (in its domain of validity)than the impulsive model as it makes fewer approximating assumptions and13



has a rigorous theoretical basis.An interesting use of the linear theory is to validate the nonlinear fronttracking simulations, using the fact that a correct nonlinear simulation shouldconverge to the linear theory at early times as the initial perturbation ampli-tude decreases. Such a validation is performed in Chapter 8.2.1.3 Fraley's ModelFraley [36] has derived a model for the amplitude growth rate based on Laplacetransforms of linearized Euler equations. As it results from a linearization,Fraley's model has the same region of validity as the linear theory of Richtmyerand Yang et al. His model has the advantage that it allows simpli�cations forvery strong or very weak shocks.Mikaelian found that for some uid con�gurations Fraley's model is inbetter agreement with his simulations than the impulsivemodel. See [58]. Thepredictions of Fraley's model are compared to the front tracking simulationsin Chapter 7.2.1.4 Potential Flow ModelHecht et al. [46] derived a model for the bubble velocity in the Rayleigh-Taylorinstability which they extended to include the Richtmyer-Meshkov instability.Their model is unique in that it is intended to address multiple timescales inthe instability, late time as well as the linear period, and all initial amplitudes.This model is based on the assumption that the dynamics of the bubblecan be adequately described by considering only the ow near the bubble tips.14



They also assume that the ow is incompressible and irrotational in this regionso that a velocity potential can be de�ned. They limit their analysis to thecase A � 1. Their model gives the rather surprising prediction that the bubblereaches an asymptotic velocity of 2=(3kt) independent of the initial amplitudeand shock strength. In Chapter 6 it is shown that this model does a good jobpredicting the asymptotic velocity of the bubble if early time compressibilitye�ects are taken into account.It should be stressed that this model addresses only the bubble velocity. Inthe applications discussed (supernovae, ICF) it is usually the spike behaviorthat is most important.2.1.5 Other TheoriesThere are other theories of uid instabilities that are related to the subjectof this paper but not directly applicable. For the Rayleigh-Taylor instabilitysee [26] and [65]. In [7, 12, 13, 14, 15] Bernstein and Book consider the stabilityof explosions and implosions while Goodman [41] considers the stability of self-similar expansions against convection.2.2 ExperimentsThere are relatively few examples of Richtmyer-Meshkov instability experi-ments that use a sharp sinusoidal perturbation. Besides the early experi-ments of Meshkov there are more recent experiments by Benjamin and Zayt-sev, Aleshin et al. We perform simulations of certain experiments of Meshkov15
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Schlieren photographs of the test section allowed Meshkov to obtain a timehistory of the perturbation amplitude. His experiments showed the expectedqualitative behavior, with the perturbation amplitude growing in time and, inthe experiments with a reected rarefaction, an interface phase inversion.While the instability growth appeared to be linear in his experiments, thegrowth rates did not agree with those predicted by the impulsive model. Inexperiments with a shock in helium incident on an interface with air, for ex-ample, the impulsive model predicts a growth rate that is approximately threetimes too large. Similar discrepancies were reported for the other gas combi-nations as well. He attributes the di�erence to the fact that the experimentalamplitude is beyond the small-amplitude linear regime, to di�usion during theexperiment, and to possible impurity of the gases. It should be noted that hiscomparisons are made to the transformed impulsive modeld(a=a(0�))d(l=�) = 2�Aa(0+)a(0�) (2.9)where l = �v � t is the distance traveled by the interface.Meshkov solved the Riemann problem between the driving air shock andthe incident test gas in order to �nd the incident shock strength and an es-timate of the shock compressed interface amplitude, a(0+), used in equa-tion (2.9). It is important to do this calculation before comparing Meshkov'sexperiments to other theories or to simulations.17



2.2.2 BenjaminMore recent experiments have been performed by Benjamin [4, 5, 6]. In hisexperiments Benjamin used two gas combinations: an air shock incident onan interface with sulfur hexauoride (SF6) and an air shock incident on aninterface with helium. In both cases a thin (0.5 micron) membrane was usedto separate the gases.Benjamin's air-SF6 and air-helium experiments showed the expected quali-tative behavior, with an interface inversion for the air-helium experiments andgrowth of the perturbations with time. He reports a factor of 1:35 disagreementbetween the growth rates of the impulsive model and his SF6 experiments.However, to �nd the amplitude of the compressed interface for use in (2.4) heextrapolates backward in time from his late time amplitudes and �nds an ini-tial shock-compressed amplitude that is approximately 35% smaller than pre-dicted by (2.5). The use of this extrapolated amplitude is not well-established,especially in light of the agreement between the shock-compressed amplitudesgiven by (2.5) and the nonlinear front tracking simulations (see Chapters 4).Using the amplitude given by (2.5) Benjamin's experimental growth rates area factor of two smaller than predicted by the impulsive model.Similarly, in his air-helium experiments he �nds a growth rate one-halfthe value predicted by the impulsive model using the average of the pre- andpost-shock amplitudes in equation (2.4).Benjamin �nds, as did Meshkov, that the growth rate of the interface isfairly constant during the observation period. At the end of the single shock18



experiments ka � 1:4, well past the time nonlinear e�ects are expected.2.2.3 Zaytsev, Aleshin et al.Zaytsev, Aleshin et al. [1, 72] conducted Richtmyer-Meshkov instability exper-iments using very strong incident shocks, approximately Mach 3.5, striking anargon-xenon interface. Their experimental growth rates agreed relatively wellwith the impulsive model. In addition, they saw a decay in the perturbationgrowth rate at late times when ka � 3.There are several possible reasons why they achieve agreement with theimpulsive model. First, they use a much stronger shock wave than eitherMeshkov or Benjamin (Mach 3.5 vs. 1.52 and 1.2, respectively) which shouldhelp negate strength and inertial e�ects of the membrane. In addition, theyused a thicker membrane (2�m) which would reduce di�usion across the in-terface before shocking. It may also be signi�cant that the monotonic gasesused in these experiments have very similar equations of state.2.2.4 Related ExperimentsSome related experiments using continuous interfaces are those of Sturtevantand Brouilette [21], Bonazza [11] and Brouilette [20]. See also [35] for a reportof Richtmyer-Meshkov experiments using the Nova laser. Budzinski [22] andJacobs [48] report on experiments using shocked cylinders in air, Budzinskiusing helium cylinders and Jacobs using helium and SF6. In [23] and [49]Budzinski et al. and Jacobs et al. present experiments using shocked SF6curtains. 19



2.3 Nonlinear SimulationsAs mentioned above, Richtmyer [62] and Yang, et al. [71] report the resultsof linearized simulations of the Richtmyer-Meshkov instability. These linearsimulations generally agree with the impulsive model in their predictions ofamplitude growth rates. However, these predictions do not agree with theresults of experiment. Since the linear simulations and the impulsive modelignore some of the nonlinear physical e�ects it is possible that these e�ects aresigni�cant in experiments and must be included in any model. One methodto study these e�ects on the Richtmyer-Meshkov instability is to perform fullynonlinear compressible simulations of the Euler equations.Previous simulations of Richtmyer-Meshkov experiments generally show asigni�cant discrepancy between the simulated growth rates and the experi-mentally measured ones. Indeed, the fully nonlinear simulations have, so far,given results closer to the linear simulations than to the experiments. Sincethe simulations did not model strength or inertial e�ects of the membrane usedin experiments, this is commonly cited as the reason for the discrepancy.2.3.1 Meyer and BlewettThe �rst published results of nonlinear Richtmyer-Meshkov instability simula-tions are fromMeyer and Blewett [56]. They use a Lagrangian code to simulateMeshkov's experiments. They report growth rates from an early-time periodof linear growth and �nd that the simulated growth rate is very close to thatpredicted by the impulsive model (2.4). Thus their simulations give the same20



factor of two increase in the growth rate relative to experiments as does theimpulsive model. It is important to note that in the two simulations for whichthey give explicit amplitude vs. time data they do not run their simulations forthe full experimental time and, in fact, end their simulations before Meshkovhas taken any experimental data. It is be shown in Chapter 5 that measuringgrowth rates too early makes a dramatic di�erence in the results.Note that in order to reach agreement with the impulsive model in thecase of negative Atwood ratios Meyer and Blewett used the average of the pre-and post-shock amplitudes as the impulsive model initial amplitude (compareequation (2.5)).2.3.2 Cloutman and WehnerMore recently Cloutman and Wehner [29] performed simulations of Benjamin's1988 experiments [4] using an Eulerian code and a volume tracking interfacealgorithm. Their simulations show a much larger growth rate than experiment{again by a factor of two in both the air-SF6 and air-helium simulations. Theyreport only a single growth rate for each simulation so it is not clear whetherthey observe decay in the growth rate.Cloutman and Wehner discuss additional simulations using a three-dimensionalinitial perturbation of the form a0 cos(kxx) cos(kyy) (for the two-dimensionalexperiments ky = 0). The growth rates from these simulations are lower thanthose of the two dimensional simulations and closer to that found in experi-ment. An interesting aspect of the decrease in the growth rates is that a threedimensional extension of the impulsive model (2.4) would predict a growth21



rate proportional to qk2x + k2y . Thus the impulsive model indicates growthrates larger by a factor of p2 in three dimensions compared with three dimen-sions. This inconsistency with simulations may indicate that the linearizedtheories are not applicable, although there is the possibility that their threedimensional simulations were underresolved and predicted incorrect growthrates.2.3.3 Benjamin, Besnard and HaasIn [6] Benjamin, Besnard and Haas report the results of their simulationsusing an Eulerian code with SLIC [60]. While their simulations are in goodagreement with the impulsive model (2.4) at early times, they note a decayin the growth rate that at late times reduces the growth rate to experimentallevels. Averaging the simulation growth rate over the experimental time periodreduces the discrepancy with experiment to a level approximately 40% higherthan the experimental average and approximately 20% higher than the fronttracking simulations of the same experiment (see Chapter 4). They contendthat the decay is numerical rather than physical. The decay is an importantaspect of their computations (and of the front tracking simulations as well)and is considered in detail in Chapter 6.They also report that the mean translational velocity of the air-SF6 andair-helium interfaces is signi�cantly larger than expected based on 1D theory ornonlinear simulation. They interpret this to be an indication of contaminationof the experimental gases due to pre-shock di�usion across the membrane.This is considered in Chapter 5. 22



2.3.4 Other Experimental SimulationsIn [9] the results of several numerical codes, including the front trackingmethod, are reported. Among the results presented are the simulated growthrates of Benjamin's 1988 air-helium experiment. All of these rates were muchlarger than experiment, again by a factor of two except for front tracking whichwas o� by a factor of approximately 1:6. The large di�erence between the nu-merical results and the experimental results, as well as the striking agreementamong the various numericalmethods, led the authors of that paper to suspectthe experimental membrane e�ects as part of the reason for the discrepancy.2.3.5 Other SimulationsThere are many other reports of Richtmyer-Meshkov instability simulationswhich do not address the agreement between codes and experiment. See, forexample, [25, 52, 58, 61], and the volumes [8], [33] and [50].
23



Chapter 3Front Tracking MethodFront Tracking is a numerical method for high resolution computations involv-ing well de�ned waves. The basic idea of front tracking is to couple a standardnumerical method on a rectangular grid with lower dimensional dynamic mov-ing grids to follow the desired waves. It has been used successfully in simula-tions of compressible gas dynamics (present work as well as [24, 27, 38, 39]),oil and water reservoirs [34, 40] and elasto-plastic waves [70].The main advantage of front tracking is that it eliminates the numericaldi�usion that is inherent in any standard �nite-di�erence method. By trackingdiscontinuous waves one can explicitly include jumps in the state variablesacross the waves and keep all discontinuities perfectly sharp. This is in contrastwith �nite di�erence codes that typically spread shocks over 3-4 computationalzones and contact discontinuities over much larger regions. It is much lessdi�usive than interface reconstruction methods such as SLIC [60] which reducebut do not eliminate numerical di�usion.The lack of numerical di�usion is most important in computing wave inter-24



(a) (b) (c)Figure 3.1: Pressure pro�les of 1D shock waves in air using two shock-capturingmethods and front tracking. a) Lax-Wendro�, b) MUSCL, c) Front tracking. Fronttracking completely eliminates post-shock oscillation. In addition, behind the shock-captured waves we see a slight dip in pressure due to an entropy error at shockinitiation. Front tracking is not susceptible to such errors.actions. With front tracking one can resolve the shock-contact interactions inthe Richtmyer-Meshkov instability at sub-grid level. In addition, Meniko�showed [53] that the arti�cially large shock transition regions of standardshock-capturing schemes can cause errors in the computation of wave interac-tions.Another advantage of front tracking is that by tracking the discontinuitiesand applying special algorithms to them nonlinear instabilities and post-shockoscillations common to other methods are reduced (see Figure 3.1).Front tracking also gives position and state information for measuring thegrowth of the unstable interfaces, which is quite useful for the Richtmyer-Meshkov instability computations presented here.Details of the front tracking method have been given elsewhere [28, 44].25



The following description concentrates on those aspects of the method whichare most important for the success of the present computations.3.1 Tracked WavesFigure 3.2 shows the basic front tracking setup with a tracked wave embeddedin a rectangular grid. A tracked wave, known as a front or curve, is a piece-wise linear representation of a physical wave. Each linear segment of the curveis called a bond and the intersection of two bonds is known as a point. Statevariables are assigned on each side of a point to represent the limiting value ofthe interior states as we approach the point from either side. The two statesrepresent the discontinuity across the wave. Since the discontinuity is sharpnumerical di�usion is eliminated. An orientation is given along the curve sothat we may speak of the \left" and \right" states at a point, the \next" and\previous" bonds on a curve and the \start" and \end" points of a curve or abond.The points where curves intersect (or self-intersect) are called nodes. Sincethe boundaries of the domain are represented by curves as well, all curvesbegin and end at nodes. States are assigned to the node along each incomingcurve to represent the limiting values as the node is approached along eachside of the curve.Nodes correspond to wave interactions and can be identi�ed by the numberand type of waves meeting there. For example, during the initial refraction ofthe shock in the Richtmyer-Meshkov calculations the incident shock, incident26
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contact, transmitted shock, deected contact and reected waves all meet ata single point where the incident shock is refracted by the material interface.This is known as a refraction node. Similarly, where a tracked wave meetsthe boundary a boundary node is created. Other node types in gas dynamicsinclude Mach nodes for Mach triple points and cross nodes at shock-shock in-teractions. Each node type uses a di�erent algorithm for updating its positionand states for each time step.In addition to the states along curves we have cell-centered state valueson the underlying rectangular grid. To facilitate the calculation of states atarbitrary points in the domain we perform a front-limited triangulation of thedual computational grid (formed by the cell centers) and tracked fronts (seeFigure 3.3). The triangulation is constrained so that no triangle crosses atracked front. A corner of an individual triangle is either a dual-grid corner,a point on a tracked front or an intersection between a tracked front and alattice cell boundary. The states at these positions serve as data for a linearinterpolation of the solution into the interior of the triangle. The triangulationin the front tracking code di�ers from other triangular representations of aow in that the tracked waves are dynamic and the the triangulation must beregenerated at each time step.It is not necessary to track all the waves in a given computation. In someof the simulations presented here only the contact discontinuity was tracked{the incident, transmitted and reected waves being captured by the interior(Godunov-type) scheme. 28



Figure 3.3: An example of the triangulation of the computational domain in theregion of a tracked wave. The thick line is the tracked front. The vertices of thetriangles are points on the tracked front, corners of the computational dual grid andintersections of the front with the grid. Since states are available at all vertices ofa triangle the state at an arbitrary point interior to a triangle can be computed byinterpolation.
29



3.2 A Front Tracking Time StepA time step is done in two parts in front tracking. The �rst part is thepropagation of the tracked fronts using front positions and states and interiorstates at time t to �nd new front positions and states on the fronts at timet + �t. The second part of the time step is the updating of the interior(non-front) states using the new front information as boundary data. Theinterior states are updated using a version of Colella's Eulerian MUSCL, asecond-order Godunov-type method [3, 30, 69]. Care is taken at interior statesa�ected by the tracked waves during the time step to avoid di�erencing acrossa discontinuity.3.2.1 Front PropagationThe front propagation is further divided into two steps: curve propagationand node propagation. Some of the following can be found in [28].Curve PropagationCurves are propagated by updating all non-nodal points of each curve. Normaland tangential directions to the curve are found at each point to be propagated(Figure 3.4). These directions are used to split the propagation into a normalupdate and a tangential update by operator splitting of the Euler equationsin the form ut + ~n � [(~n � r)f(u)] + ~t � [(~t � r)f(u)] = h(u) (3.1)30
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the right and left sides of the curve (see Figure 3.4). Using these states anon-local Riemann problem is solved as follows. Between Sr and Sl we solve aRiemann problem and follow the wave of the proper family (contact, forward orbackward shock, rarefaction leading edge or rarefaction trailing edge) to obtainan estimate of the new point position at time t+�t. From this new positionwe trace back characteristics on each side of the wave to the initial data to �ndstates there. From here we use the characteristic equations and the Rankine-Hugoniot conditions to �nd time-updated states at t + �t. The particularcharacteristic method used depends on the wave being tracked, i.e. shock wave,contact or rarefaction edge, since each type of wave has di�erent types ofcharacteristic information coming into it and di�erent jump conditions. Wegive here the details on the forward shock wave calculation. Other waves arepropagated in a similar manner. For convenience the discussion will be limitedto the case of polytropic gases.The update of the ahead state uses the information coming in from thethree ahead characteristics. Along these characteristics �� : dxdt = u � c and�0 : dxdt = u we have the following equations:dw+ = cdSR (3.2)dw� = cdSR (3.3)dS = 0 (3.4)where the w� = 2c�1 �u are the Riemann invariants, S is the speci�c entropy, is the polytropic exponent and R is the universal gas constant R0 dividedby the molecular weight of the gas. 32
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Figure 3.5: Diagram showing estimate of new wave position at time t + �t andtraceback of characteristics to initial line.The equations (3.2{3.4) are discretized as�w� = �c�SR (3.5)�S = 0 (3.6)using the states Sr1; Sr2 and Sr3 from the characteristic traceback step asinitial data (see Figure 3.5). This results in nonlinear algebraic equationswhich can be solved for the state ahead of the shock. For the state behind theshock we use the discretized equation for the Riemann invariant w+ along thecharacteristic �+ emanating from state Sl3 along with the Rankine-Hugoniotconditions in the form [P ][u] = �m (3.7)[P ][V ] = �m2 (3.8)�1�0 = �2 + P1=P01 + �2P1=P0 (3.9)33



where [�] denotes the jump in a quantity across the shock, m is the massux, � = 1V is the density, �2 = �1+1 and the subscripts 0 and 1 denotestates ahead and behind the shock, respectively. The combination of the jumpconditions with a discretization of the equation along the characteristic resultsin four simultaneous equations which can be solved for the four state variablesP1; �1; u1 and m. These variables completely specify the behind state.It is clear that if the discretization error of the characteristic equations (3.5)and (3.6) is O((�t)2) this procedure will result in computed states with sec-ond order errors as well as long as the initial characteristic data given bySr1; Sr2; Sr3 and Sl3 have errors of at most second order. To see that thesestates do indeed have O((�t)2) errors we must show, assuming smooth owaway from the shock, that the characteristic tracebacks �nd initial positionscorrect through order �t. These tracebacks are found by taking character-istics from the estimated shock position and the position and states at theestimated shock position are correct through �rst order. This means, then,that the traceback position is also correct through �rst order. Thus the statesat the base of the approximate characteristics there have errors of second order.Given that the number of time steps in a solution of a hyperbolic system isO( 1�t ) we can hope for convergence in an appropriate norm at a rate O(�t).This assumes that the front propagation is properly coupled to su�cientlyaccurate tangential and interior solvers.An alternative scheme may also be used to propagate the shock. In thisscheme the ahead state S0 is calculated using �rst order discretizations of the34



characteristic equations, but using them in the formdP � du�c = 0 (3.10)dS = 0 (3.11)Referring to Figure 3.6, to �nd the state behind the shock we �rst solve aRiemann problem between the states Sl3 and Sl and let the state S 0l be thestate behind the forward moving wave. This has the e�ect of �ltering outbackward moving waves. We then solve a Riemann problem between S 0l andthe computed ahead state S0, letting S1 be the state behind the resultingforward shock wave in the Riemann solution. This new state S1 is the updatedstate behind the shock.To see that this method is consistent with the equations of motion �rstnote that if we �nd the behind state by considering the discretization of thecharacteristic equation for the state Sl3(P1 � Pl3) + 1�l3cl3 (u1 � ul3) = 0 (3.12)and combine this with the state ahead of the shock (S0) and the shock jumpconditions we will have the behind state correct through �rst order. To showthat the Riemann solution method is consistent through �rst order we mustshow that the Riemann solutions also satisfy the jump conditions and thediscretized characteristic equation (3.12), at least through �rst order. Thatthe Riemann solutions satisfy the jump conditions is clear. We are left, then,with showing that they satisfy (3.12).35
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The backward wave from the �rst Riemann problem (labeled BW1 in Fig-ure 3.6a) will be weak for su�ciently small �t and the transition across BW1can be described by the forward characteristic equation through second orderwhether this wave is a shock or a rarefaction. We have, then,(P 0l � Pl3) + 1�l3cl3 (u0l � ul3) = O((�u)3) (3.13)= O((�t)3) (3.14)Similarly, across the wave BW2 we have the following relationship between thestates S 0l and S1:(P1 � P 0l ) + 1�0lc0l (u1 � u0l) = O((�t)3) (3.15)= (P1 � P 0l ) + 1�l3cl3 (u1 � u0l) (3.16)where the last equality follows from the fact that the state S 0l di�ers from Sl3by terms of third order in �t. Adding (3.14) and (3.16) gives(P1 � Pl3) + 1�l3cl3 (u1 � ul3) = O((�t)3) (3.17)which shows that the Riemann solution method is indeed consistent with theequations of motion, at least through �rst order. The method is not consistentpast �rst order since the ahead state and the characteristic data are limitedto �rst order.For the tangential update at a point we do each side of the point separately.Since the �nite di�erence scheme, MUSCL, uses a �ve point stencil we take twostates a distance �x and 2�x along each side of the point on the normallypropagated curve. These states are then projected onto the tangent to the37



curve at that point and the �nite di�erence scheme is used to calculate newstates at that point. The point is not moved to a new position in the tangentialstep as it is during the normal step{only the states are updated.Untangling the FrontsAfter the normal propagation step we must check to see if there are any newintersections of tracked waves. If so the intersections must be resolved. Thisgenerally involves replacing the intersection point by a node and computingwave interactions at the new node. As an example, early in a RichtmyerMeshkov instability simulation the shock wave strikes the contact and pro-duces a pair of shock refraction points. Nodes are created at these points andtransmitted and reected waves are created as appropriate.Node PropagationEach type of node has a di�erent propagation algorithm. We will discuss thepropagation of refraction nodes as these are the primary nodes of interest inthe present computations.A diagram of a refraction node is given in Figure 3.7a. In our implemen-tation the node propagation is done between the normal and tangential curvepropagation steps, so at the beginning of the node propagation all points onthe relevant curves have been normally propagated except for the points at thenode itself. The �rst step is to propagate the nodal points of the curves. Thiswill result in a con�guration similar to Figure 3.7b. Notice that the incident38



shock and contact have a new intersection point. We take this intersectionto be the node position at the new time and remove the parts of the curvespast the intersection (frame (c)). We know the state behind the shock waveand on both sides of the contact, as well as the angle between the shock andthe contact. If we move to a frame in which the node is stationary we canuse shock polar analysis [32, 44] to �nd the angles at which the reected andtransmitted waves emanate from the node. To complete the propagation wetake rays from the node at the computed angles and intersect them with thepropagated curves, extending the curves slightly if necessary (Figure 3.7d).We should note here that the CFL stability condition applies to curve andnode propagations as well as to interior state calculations. We take care toensure that �t is small enough that the node position will not change bymore than some fraction of �x during the time step. This has importantconsequences when calculating refraction nodes as the node velocity can bequite large when the incident shock and contact intersect at a small angle.We have found that our front tracking calculations can take up to 10 timesas many time steps during the critical refraction period as a standard shock-capturing scheme, providing enhanced stability as well as increased temporalresolution.3.2.2 Interior StatesThe interior states, i.e. the states not on a tracked wave, are propagated usingthe above mentioned operator-split MUSCL scheme. In each direction weperform two passes. 39
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In the �rst pass we update each interior state using only the rectangulargrid, ignoring for the moment the presence of any tracked waves. For points tooclose to a tracked wave at either the beginning or the end of the timestep for usto get a full stencil we must make a second pass in order to avoid di�erencingacross waves and introducing numerical di�usion. The states computed duringthe �rst pass are discarded. We then modify the stencil by taking only stateswhich are on the same side of the tracked wave as the stencil center. Wereplace those stencil states that would normally come from across a trackedwave by states from the correct side of the tracked wave at the stencil/waveintersection.By organizing the interior solver into two passes we are able to vectorize alarge part of the computation. We believe that even on non-vector machinesthis is more e�cient.3.3 Achieving 2nd Order AccuracyAs discussed in Section 3.2.1, the normal propagation is formally �rst ac-curate. This limits the global solution to �rst order in the sense that ifu(x; y; t) is the exact solution and ~u(x; y; t) is the numerical solution thenku(x; y; T )� ~u(x; y; T )kL2 = O(�t) for �xed times T . Since the interior andtangential solvers are second order it would be interesting to consider thechanges necessary to achieve second order accuracy.Assuming that a second order normal propagation operator has been de-vised, we consider operator splitting in the context of a second order accurate41



curve propagation routine. Referring to equation (3.1), we denote the secondorder single time step normal and tangential propagation operators byHk~n andHk~t where k = �t is the time step. We can expect second order accuracy fromtheir combination if we apply them according to Hk=2~n Hk~t Hk=2~n or Hk=2~t Hk~nHk=2~t(see [42] or [66]). Since the current code updates the position of the trackedwave during the normal update the latter form would be easier to implement.In a typical splitting application, a number of time steps are done consecu-tively which allows the half-step operators at the end of a time step to becombined with the same half-step operator at the beginning of the subsequentstep. Thus n time steps would be combined into the formHnk = Hk=2~t (Hk~nHk~t )n�1Hk~nHk=2~t (3.18)and require only slightly more work than a simple alternation of the tangentialand normal operators. Unfortunately, however, the front tracking operatorscannot be combined in this way since the tangential and normal vectors and,hence, the tangential and normal operators change at each step. This precludesthe combination as in (3.18) and the scheme is required to apply the threeoperators at each time step. This may make splitting too expensive in asecond order calculation. If so, an unsplit method would need to be devised.In addition to the second order curve propagation routines it would benecessary to implement a second order update of interior points a�ected bytracked waves during the time step.These considerations imply only formal second order accuracy. Before wecould be con�dent that we are actually achieving this accuracy on our grids we42



would need to ensure some form of stability. This should not be hard, though,since the interior scheme is quite stable, especially since the discontinuities willlikely be tracked. Tracked waves will also, in general, be very stable. The onlydi�cultly would be ensuring stability in the coupling of the interior states andthe states on the tracked waves.3.4 DiagnosticsThe method of front tracking has a unique ability to precisely measure posi-tions and states along the unstable interface. This precision is especially usefulwhen we validate our code against the linear theory (see Chapter 8).The most important diagnostics are the perturbation amplitude and theperturbation amplitude growth rate. The amplitude is calculated as half thedi�erence in vertical position of the point at the center of the domain and thevertical position of a point at an edge (see Figure 1.3). Finding an edge pointis simply a matter of taking either the starting or ending point of the contact(we took the start). To �nd the center point we loop over the points on thecontact until we �nd the one closest to the center of the domain. Since thedistance between the points on a tracked wave is typically smaller than �xthe point we �nd in this looping procedure will be less than �x=2 from thetrue center of the domain. To calculate the perturbation growth rate we takeone-half of the di�erence in vertical velocities at these extreme points.The precision of this procedure is both an advantage and a possible disad-vantage. While the convergence of the simulations to the correct weak solution43



of the di�erential equations is in the spaces L1 or L2 we are using an L1 mea-sure of the growth rate. This may causes problems as we re�ne the mesh (seeChapter 8). It would be useful to calculate an L1 or L2 measure of the growthrate and see how this changes the behavior of the simulation growth rate undermesh re�nement. This has not been done at present.3.5 Full vs. Partial TrackingIt is not necessary to track every wave in a front tracking computation. Thereare many possible reasons for not tracking a wave. For example, one may wishto test the e�ects of tracking by comparing a fully tracked simulation to onewith partial tracking (this is done in Chapter 5) or to reduce the computationalburden of tracking a very weak wave. Also, it is possible that a particular waveinteraction may result in a con�guration that is not yet implemented in ourcode and it would then be necessary to continue without tracking some of theinteracting waves.Our conclusion for the Richtmyer-Meshkov simulations (explored in depthin Chapter 5) is that tracking the contact is critical while tracking the shock isnot as important, especially at later times. Note, though, that we must trackthe contact waves in order to perform our diagnostics (Section 3.4) and thatcontacts must separate gases with di�erent equations of state. Note, too, thatuntracked shock waves are much more susceptible to post-shock oscillationsthat can a�ect the growth of the perturbation, especially slow moving shockwaves as found in the air-SF6 simulations (see Section 4.1.2).44



3.6 ParallelismMany of the simulations reported here were run on Intel Paragon and Hyper-cube parallel processor computers. The code uses a coarse grained paralleliza-tion via domain decomposition.Briey, the domain is broken into rectangles, with m rectangles down andn rectangles across. Each processor is assigned responsibility for one of therectangles so that m � n processors are needed. Communication betweensubdomains is simpli�ed by the fact that we are using an explicit method.Thus for each domain we need only append three bu�er zones (for a �ve pointstencil) on the edges that meet a neighboring domain. These bu�er zonesare used as data for the updating of the domain states, but updating statesrepresented by the bu�er zone remain the responsibility of the neighboringdomain.At the beginning of the timestep each processor has a full copy of statesand tracked waves in its domain and bu�er zones. The front propagation pro-ceeds normally except that we do not concern ourselves with propagating theboundary nodes at the edges of the bu�er zones. After the front propagationthere is a synchronization step during which neighboring processors pass thefront information necessary to update bu�er zones with respect the new frontpositions and states. Next, the interior states are propagated and anothercommunication is made to update the interior states in the bu�er zones.We found excellent performance using this method of parallelization withan almost linear increase in speed as we added processors. The largest run45



(an air-SF6 simulation with a mesh of 250 zones by 1500 zones) ran for ap-proximately 80 hours on 32 Paragon processors with 32MB of RAM each. Forcomparison a 62 by 384 simulation took 15 hours on a Sun SparcStation 2 forthe same simulation real time.
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Chapter 4Simulation ResultsIn this chapter the front tracking simulations of Benjamin's 1993 air-SF6 ex-periments [6] and Meshkov's air-helium experiments [54] are presented. Thesimulations are validated in Chapter 8 and the results are analyzed in detailin Chapters 5 and 7.4.1 Computational IssuesThere are various computational issues common to both of the experimentswe simulate. These issues are discussed in the following sections.4.1.1 DomainRectangular domains are used with ow-through boundaries at the top andthe bottom and periodic boundaries at the sides.While the ow-through boundaries are exact for steady ow, they are notexact for unsteady ows and signals may propagate back into the domainafter the transmitted and reected waves pass through the bottom and top47



boundaries, respectively. The domain is long enough that no signals reach thecontact during the period of interest. In addition, the contact is initialized ata level which maximizes the time before boundary contamination.For the air-SF6 simulations a domain of 3.75cm by 22.5cm is used. Sincethe sound speed in SF6 is so much smaller than in air the contact is placed ata position 5.5cm above the bottom boundary to further reduce the chance ofboundary signal contamination. The domain length and contact position aredetermined from an analysis of the 1D unperturbed problem and are su�cientto guarantee that boundary signals would not a�ect the computation until atleast 900�s, which is later than the simulation stopping time of 850�s. Indeed,there is no evidence of boundary signals in the growth rate. The domain lengthchosen appears to be optimal since if the domain length is reduced there arechanges in the growth rate curve as a result of boundary signals while there isno change if the domain is lengthened.The air-SF6 simulations used various mesh sizes from 62 zones per wave-length to 250 zones and the simulations appear to converge at the level of 125zones per wavelength. This is approximately the same resolution used in thesimulations of the same experiment as given in [6].The 125 and 250 zone/wavelength air-SF6 simulations were run on an In-tel Paragon. The computational time was approximately 16 hours using 16processors for 125 zones.The air-helium simulations used a domain of 4cm by 30cm. Since thesound speed in helium is much larger than in air the contact was placed with48



its midline at an optimal position 19.9cm above the bottom boundary. Thedomain length and contact position were su�cient to guarantee that boundarysignals had not a�ect the computation until at least the simulation completiontime of 300�s. There is no evidence of boundary signals in the growth rate.Various mesh sizes were used for the air-helium simulations, from 50 zonesper wavelength to 200 zones, and the the growth rates have converged at thelevel of 100 zones per wavelength. The 100 and 200 zone/wavelength simula-tions were run on an Intel Paragon with a computational time of approximately12 hours using 16 processors for 100 zones.4.1.2 Moving vs. Lab FrameIt is most convenient to use a frame of reference which moves with the averagecontact position. This not only makes it easier to follow perturbation growthwith time, but it allows a somewhat smaller domain without increasing thepossibility of boundary signals. The frame velocity is calculated by solvingthe 1D (unperturbed) shock-contact interaction, i.e. a Riemann problem, and�nding the velocity of the contact. This is found to be an excellent estimateof the net perturbed contact velocity.Moving with the contact is problematic when using untracked shock wavesin the air-SF6 simulations. The low wave speed with respect to the grid ofthe transmitted SF6 shock is reduced even further by the change of refer-ence frame. This results in post-shock oscillations that a�ected perturbationgrowth by creating secondary instabilities along the contact. The problem dis-appears when some of the vertical velocity subtracted from the states is added49



back. This nonlinear instability at slow moving waves is well-known; see, forinstance, [31]. Because of this oscillation the lab frame is always used whenworking with untracked shocks. Note that there is no problem with trackedshocks{there is no change in the results whether the lab frame or a movingframe is used.4.1.3 Arti�cial ViscosityThe front tracking code has the option to use upwind and slope-limiting arti-�cial viscosities [30, 31] in the MUSCL solver. This is in addition to the slopelimiter built into the solver [30, 69]. Since the most unstable parts of the sim-ulation are tracked (shock waves and contacts) it is not necessary to add sec-ondary arti�cial viscosities for the fully tracked runs. It is necessary, though,to use small amounts when working with untracked shock waves. However,when similar amounts of viscosity are added to the fully tracked versions nodi�erence in calculated perturbation growth rates is found, so we are con�dentthat the viscosities do not adversely a�ect the partially tracked simulations.4.1.4 Full vs. Half-WavelengthAll of the simulations are performed using a full perturbation wavelength asdepicted in Figure 1.3. We would prefer to take advantage of the naturalsymmetry in the problem and work with only a half-wavelength. However, thisrequires replacing the periodic boundaries with reecting boundaries whichcauses small changes in the perturbation growth at the boundaries. Since it isat exactly these place that the amplitude is measured this causes unacceptable50



changes in growth rates. This is partially due to the ill-posedness of our growthrate measure (see Section 3.4). Thus the simulations used a full wavelength.4.1.5 Arti�cial Surface TensionThe interface between the uids of interest is susceptible to secondary Kelvin-Helmholz instabilities arising from the velocity shear across the interface, es-pecially with the sharp interfaces in a front tracking computation. Small ir-regularities on the interface grow exponentially and in some cases, dependingon the gases and incident shock strength, are so obvious visually that there isconcern that they may be a�ecting the large scale dynamics of interest. Thisis especially important as the mesh is re�ned since the growth rate exponentsare inversely proportional to the wavelength of the perturbations which are onthe order of the grid size. In order to reduce these instabilities a small amountof arti�cial surface tension can be introduced to the interface.To determine the proper amount of surface tension we appeal to the incom-pressible small amplitude theory (see [26], sec. 101). This theory predicts thatgiven a surface tension T a mode with wavenumber k will be stable againstshear instabilities if �1�2U2 � kT�1 + �2 (4.1)where the �i's are the densities on each side of the interface, �i = �i�1+�2 , andU is the velocity shear on the interface. Since we are primarily interested ininstabilities with wavelengths that are a small multiple of the mesh spacing itis convenient to transform inequality (4.1) to51



T � �1�2U2��x2�(�1 + �2) (4.2)where � is the wavelength of the instabilities we wish to suppress in units of�x, typically 2-3. Notice that all modes with smaller wavelengths will also besuppressed. Note also that the right hand side of (4.2) ! 0 as �x! 0.Setting the T according to (4.2) does a good job of suppressing small scaleinstabilities. However, even when the appearance of the interfaces smoothsconsiderably the growth rates do not change so we choose not to use anysurface tension.4.2 Air-SF6 Experimental ParametersBenjamin's shock-tube experiments consisted of a shock in air incident on aninterface with SF6. As mentioned in Chapter 2, a thin, perturbed membraneseparates the air and SF6 section of the tube. Amplitude data is taken byshadowgraph equipment.The important experimental parameters are given in Table 4.1. As theexperiments were conducted at Los Alamos, pressures and densities have beenadjusted to compensate for the altitude. In addition to these physical param-eters it is necessary to �nd the time period over which Benjamin took data.While he does not explicitly state the period of observation we can infer fromFigure 4 in [6] that the range of times was approximately 300�s to 770�s.Figure 4.1 shows the interface at four times during the simulation. In this�gure the shock wave is moving downward from air into SF6 and it shows52



Quantity Units Symbol ValuePerturbation wavelength cm � 3.75Perturbation amplitude cm a(0�) 0.24Wave number cm�1 k 1.675ka(0�) 0.4Initial density g/l �air 0.95g/l �SF6 4.84Initial pressure bar P .8Shock strength Mach number M 1.2Ratio of speci�c heats air 1.4SF6 1.09Table 4.1: Air-SF6 Parametersthe interface at t = �13�s (where t = 0 corresponds to the end of the shockrefraction), 132�s, 567�s and 857�s. Notice how the interface appears tobe relatively sinusoidal at t = 132�s while at 567�s the heavy SF6 spike isnarrowing and the air bubbles are broadening. At t = 857�s we see thebeginnings of mushroom caps formed by a rollup of the interface.4.3 Air-SF6 Perturbation GrowthThe perturbation growth history is presented in Figures 4.2 and 4.3. These �g-ures compares the amplitude and growth rate predictions of the front trackingsimulation, experiment, impulsive model and linear theory.To facilitate comparison with experiment a least-squares analysis of theamplitude data is performed over the experimental interval of 300�s to 770�sin order to �nd a single growth rate. The computed growth rate is 9.2m/swhich compares quite well with the experimental growth rate of 9.18m/s. The53



Figure 4.1: The air-SF6 interface at di�erent times during the simulation (a) t =�13�s (t = 0 corresponds to the completion of the shock refraction) (b) t = 132�s,(c) t = 567�s. Notice that the interface is becoming non-sinusoidal as the SF6 spikebegins to narrow and the air bubble begins to broaden. (d) t = 857�s. Mushroomcaps are developing due to vorticity along the interface.linear and impulsive models agree well with each other with the linear the-ory predicting a growth rate of 16.5m/s and the impulsive model predicting16.1m/s, but these growth rates are approximately twice as large as foundthrough experiment and simulation.The simulation amplitude is somewhat larger than found through exper-iment. Since the computed growth rate agrees so well at experimental timewe must conclude that the di�erence lies in the high growth rate computedat early time. Chapter 5 discusses the agreement between experiment andsimulation. 54
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(a)Figure 4.2: Perturbation amplitude, a(t), of the shocked air-SF6 interface. Thisgraph compares the results of experiment, front tracking simulation, linear theoryand Richtmyer's impulsive model. The plus marks (+) show the results of oneparticular experiment
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Quantity Units Symbol ValuePerturbation wavelength cm � 4.0Perturbation amplitude cm a(0�) 0.2Wave number cm�1 k 1.57ka(0�) .314Initial density kg/m3 �air 1.2kg/m3 �helium 0.167Initial pressure bar P 1.013Shock strength Mach number M 1.52Ratio of speci�c heats air 1.4helium 1.63Table 4.2: Air-Helium Parameters4.4 Air-Helium Experimental ParametersMeshkov's experiments consisted of a shock in air incident on an interface withhelium. A thin (1�m thick) nitrocellulose membrane separates the air and thehelium. Schlieren photographs are taken at regular intervals to obtain a timehistory of the perturbation growth. Relevant experimental data are listed inTable 4.2.The amplitude data is given in [54] as a function of the contact's transla-tional distance down the shock tube with data given for the range of 5.2cmto 10cm. While the results here could also be stated in terms of translationdistance it is easier to compare to other simulations if we state results as func-tions of time. Using the 1D unperturbed theory as a guide the translationalvelocity is found to be 351m/s. Thus the observation period is found to be150 to 280�s after the shock has completed its refraction through the contact.56



Figure 4.4: Air-helium interface: a) t = �10, b) t = 90�s, c) t = 190�s, and d)t = 290�s using 100 zones/wavelength.Figure 4.4 shows the interface at four times in the simulation. The shockwave is moving downward from air into helium. As expected there is an earlyinterface inversion followed by perturbation growth. The air spike has nar-rowed considerably by 90�s and this narrowing continues in the later frames.4.5 Air-Helium Perturbation GrowthFigures 4.5, 4.6 and 4.7 show the perturbation growth results. These �gurescompare the amplitude and growth rate predictions of the front tracking sim-ulations, experiment, impulsive model, linear theory and simulations of Meyerand Blewett [56].As with the air-SF6 simulations a least-squares analysis of the amplitudedata is performed over the experimental interval of 150�s to 280�s to �nd asingle growth rate. The computed least squares growth rate is 25m/s which isapproximately 55% larger than the experimental value of 16m/s. However, thevalue reported by Meyer and Blewett, 47m/s, is three times the experimentalvalue. As can be seen in Figures 4.6 and 4.7, the front tracking simulations57
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agree well over the early-time interval for which Meyer and Blewett have sim-ulation data. The di�erence in reported growth rates is due to the fact thatthey measure the growth rate much earlier than the experimental time andcatch the early time peak in growth rate. Much more is said on the subject inChapter 5.The linear and impulsivemodels agree well with each other, but the growthrates are much larger than those found through experiment and simulation.The impulsive model predicts a growth rate of 56m/s while the linear theoryasymptotic growth rate is 51m/s.The computed amplitude is larger than found through experiment. Again,as with the air-SF6 simulations, since the computed growth rate agrees wellat experimental time we must conclude that the di�erence lies in the highgrowth rate computed at early times t < 100�s. We have more to say on theagreement between experiment and simulation in the next chapter.
60



Chapter 5Agreement with ExperimentAs mentioned in Chapter 1 previous simulations of the Richtmyer-Meshkovinstability have predicted growth rates up to 200% too large when comparedwith experimental results. In Chapter 4 the growth rate results of front track-ing simulations were presented which were much closer to the experimentalgrowth rates than the previous simulations. Indeed, the simulations of theair-SF6 experiments of Benjamin predicted the experimental growth rates ex-actly while the simulations of Meshkov's air-helium experiments were only55% larger than experiment while previous simulations of the same experi-ments were 200% too large. We believe there are two factors involved in thisimprovement. First, the increased resolution and lack of numerical di�usionwith provided by front tracking are necessary to correctly model the experi-ments and, second, the growth rates are measured only during the period ofactual experimental measurement.The failure of theory to agree with experiment is discussed later, in Chap-ter 7. 61



5.1 Role of Front TrackingTo test the e�ects of tracking, the air-SF6 simulations were run with the track-ing of certain waves disabled. The untracked waves, then, were captured bythe underlying �nite-di�erence scheme. It is necessary to use a tracked con-tact wave to separate gases with di�erent equations of state, so the interfaceis always tracked. It is possible, though, to selectively untrack the other wavesin the problem to judge their e�ects. For this test, for example, simulationswere run without the transmitted shock, the reected shock or both. Thesimulation was also run with the incident shock untracked. Note that withan untracked incident shock there is no tracking of the waves scattered fromthe shock refraction so that only the contact wave was tracked. Even withthis minimal amount of tracking there is very little di�erence in the computedgrowth rates. In Figures 5.1 and 5.2 we see a superposition of the growthrate and amplitude curves found using an untracked incident shock and thecurves for the fully tracked simulations. It is clear that untracking the shockhas relatively little e�ect on the simulations even at very early times when thetransition width of the shock wave is expected to have its greatest e�ect. Infact, the two growth curves are almost identical and the slight di�erence ingrowth rates has little e�ect on the amplitude.We conclude from the agreement between the fully tracked and the par-tially tracked simulations that the important element in correctly computingthe growth rates is the tracking of the interface itself. There are several pos-sible reasons for this. First, there is no numerically generated mass di�usion62
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or smearing of the interface. We believe this to be particularly important.Second, the vorticity along the interface which drives the instability is sharplycaptured by the front tracking method. Finally, front tracking has an unsur-passed ability to measure interface positions and velocities. We believe that acombination of these factors lead to the improved agreement with experiment.Meniko� [53] has suggested that a shock refraction can lead to entropyerrors at the contact due to the arti�cially larger shock width. In the fronttracking simulations with an untracked incident shock wave there were nodetectable entropy errors. Either this simulation is not susceptible to sucherrors or the method used to track the contact eliminates them.5.2 Role of TimingIn Chapter 4 the front tracking results for Meshkov's air-helium experimentsare compared to those of Meyer and Blewett [56]. As can be clearly seen inFigure 4.6 the front tracking results agree quite well with theirs, yet they quotea growth rate of 47m/s which is 200% larger than the experimental value of16m/s experiment while the front tracking simulations predict a growth rateonly 55% larger, 25m/s. This di�erence is due mainly to the di�erence inperiods of growth rate measurement. The front tracking growth rate measure-ments are made during the experimental time period after there has been asigni�cant decay in growth rates from an early time peak. By only simulatingthe �rst 80�s of the experiment (and, hence, stopping before any experimen-tal data is taken), Meyer and Blewett made their measurements squarely in64



the middle of the high growth period. This is clear from Figure 4.7. Thefront tracking least squares estimate of the velocity during this time periodis 53.5m/s.It should be noted that the amplitude vs. time data given by Meyer andBlewett is inconsistent with their quoted growth rate. A least squares growthrate estimate taken from their amplitude data gives a growth rate of 55m/s,as does a direct measurement of the slope of their best-�t line. The reason forthis inconsistency is unknown.As with the air-helium simulations, in the air-SF6 case the experimen-tal time period, 300�s to 770�s, is used for measuring growth. A di�erentmeasurement period results in a di�erent growth rate. For example, if themeasurement is made during the period between 150-620�s the growth rateincreases from 9.2m/s to 11.0m/s.It is almost universal in the literature for authors to quote a single growthrate �gure for Richtmyer-Meshkov unstable interfaces without any details re-garding its determination. While this is likely to be motivated by the singlegrowth rates that have been found in experiments and predicted by the im-pulsive model there is no way to know how these authors have calculated theirgrowth rates. It is possible that these authors have not measured their growthrates at the proper time and thus overstated growth rates, as was the casewith Meyer and Blewett. 65



5.3 Amplitude DisagreementWhile there is good agreement between the simulations and experiment interms of the perturbation growth rates, there is still a discrepancy betweenthe simulation and experimental amplitudes. Looking at Figure 4.2 we seethat the front tracking amplitude curve and the experiment best-�t line areparallel, which is to be expected since the velocities agree during that timeperiod, but the amplitude predicted by the front tracking simulation is approx-imately 1.5mm too large. Similarly, Figure 4.5 shows that there is an o�set ofapproximately 3mm between the simulation amplitude and the experimentalbest-�t at the beginning of the observation period.The amplitude disagreement must be due to a lower experimental growthrate during the pre-observation period since we have good agreement duringthe observation period. Figures 4.3 and 4.7 show an extreme peak in simula-tion growth rates before the observations take place and the most reasonableexplanation of the discrepancy in amplitudes is that the experimental growthrates simply do not experience this peak. There are several possible reasonsfor this. The �rst possibility is that di�usion across the membrane beforethe shock refraction has a�ected the early time growth. Benjamin [6] statesthat there appears to be pre-shock di�usion in some of his experiments whileSturtevant also describes problems with di�usion across membranes in his ex-periments [67]. Another possibility is that the material strength properties ofthe membrane retard early time growth. It is also possible that the membranefragments are accelerating the mixing of the gases and this post-shock di�u-66



sion is a�ecting the growth. Unfortunately, we cannot be sure what causesthe amplitude di�erence until we have early time experimental data. Lackingthis data it would be helpful to have simulations which simulate both pre- andpost-shock mass di�usion in order to assess the possible e�ects.5.4 Translational VelocitiesIn addition to perturbation growth rates it is instructive to consider interfacetranslational velocities, where the interface velocity is de�ned to be the averageof the velocities at the tip of the spike and of the bubble measured in the labframe. While Meshkov does not report translational velocities, Benjamin [6]quotes an interface translational velocity of 85m/s for his air-SF6 simulations.The front tracking simulations predict a velocity 24% smaller, 65.1m/s dur-ing the experimental observation period (see Figure 5.3). For comparisonthe translational velocity of an unperturbed interface is calculated throughthe solution of a 1D Riemann problem and the predicted velocity is 66.8m/s,slightly larger than the front tracking prediction. The unperturbed transla-tional velocity is expected to be larger than the perturbed velocity based onmass conservation since the SF6 spike, being narrower than the air bubble, willmove faster than the bubble. Since the spike motion is opposite the overallmotion of the contact it reduces the translational velocity.The simulations of Benjamin et al. [6] also show translational velocitiesslightly below the 1D prediction and they attribute it to pre-shock di�usionacross the membrane. In an attempt to measure the e�ects of di�usion on67
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translational velocities a 1D simulation was run using the experimental gas andshock parameters except that the sharp interface was replaced by a transitionregion of linearly increasing density and constant pressure. Di�erent transitionlengths were used and the e�ects on the translational velocity were measured.No signi�cant changes in velocity were found and we failed to con�rm di�usionas a possible cause of the velocity di�erence.It is important to understand the velocity discrepancy since it may holdclues to the unresolved di�erence in amplitudes.
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Chapter 6Asymptotic Behavior6.1 DecayA striking feature of the growth rates shown in Figures 4.3 and 4.7 is a signif-icant decrease in the numerical growth rate from an early peak while experi-ment, linear theory and the impulsive model predict nearly constant rates. Ascan be seen in Figures 6.1 and 6.2, the decay continues to late time for theair-SF6 case. This decay was noted by Benjamin, Besnard and Haas [6] andtaken to be numerical in origin. It is our belief, though, that the decay is areal e�ect and is a feature of the solution of the Euler equations.The decay in growth rates appears to be real for several reasons. First,while a decaying growth rate was not observed in the experiments we simulateother experiments, notably those of Meshkov [55], Aleshin et al. [1] and Zaytsevet al. [72], do show decaying growth rates. Decay is also seen in the simulationsof Meyer and Blewett [56], Blewett [10] and Samtaney [64]. In addition, thepotential ow model of Hecht et al. (section 6.2) predicts a decay in the bubblevelocity for the case of a reected shock (which is true for air-SF6). Another70
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feature of the simulations which suggest that the decay is that the decay isindependent of mesh size. While the overall level of the growth rate changeswith the mesh the decay rate is invariant (see Figure 8.6) when the e�ectsof numerical di�usion should decrease with �x. Finally, as nonlinear e�ectsbecome important, especially the roll up along the sides of the interface evidentin the last frame of Figure 4.1, we expect the growth rate to su�er as moreenergy is put into the smaller scale motion.It is our conclusion, then, that the decay in interface growth rates is a reale�ect and not a numerical artifact. The decay is a very important feature ofthe simulations and without it there would be no agreement between the fronttracking simulations and experiment. Of considerable interest, then, is thereason for the lack of decay in the experiments simulated here. While we can-not be sure, it is possible that some of the di�usion e�ects in the experimentsthat are believed to reduce the early time growth (section 5.3) a�ect the latetime decay. New simulations and experiments are necessary to test this.6.2 Bubble VelocityBesides considering the full perturbation growth rate it is instructive to analyzethe long time bubble and spike behaviors separately.Hecht et al. [46] have developed a model for the motion of the bubbletip in the Rayleigh-Taylor instability and extended the analysis to includethe Richtmyer-Meshkov instability. Their analysis makes four assumptions:(a) that the dynamics of the bubble are determined only by the ow in the72
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region near the bubble tip, (b) that the ow there is irrotational, so that avelocity potential can be de�ned, (c) that the Atwood ratio A � 1, and (d)that the ow is incompressible. Note that the assumption A � 1 implies areected shock con�guration. Under these assumptions they are able to solvethe potential ow equations for the bubble velocity at all times after shockrefraction. While a detailed analysis of their model is beyond the scope of thiswork their model does lead to a simple asymptotic estimate for the bubblevelocity that is easy to test. This asymptotic velocity is in the formvbubble = 13kt=2 + v�11 (6.1)measured in a frame moving with the velocity of an unperturbed contact,where v�11 is an unspeci�ed parameter with the units of velocity.The predictions of equation (6.1) with v�11 = 0 are compared to the resultsof the long time air-SF6 simulations in Figure 6.3. In addition, a curve �t tothe data from 1350�s to the end of the simulation is superimposed. The curveis of the form vbubble(t) = ct�� where the factors c = 437:7 and � = 0:8135 aredetermined via a linear best-�t to the log time-log velocity curve as shown inFigure 6.4. The period of the �tting is found by comparing the �ts at varioustimes and determining that they converge to the value given by beginning at1350�s. The decay rate of the numerical simulation is of the same magnitudeas that predicted from the theory, although it is slightly lower. There is ano�set between the potential ow and simulation velocity curves which couldbe reduced by changing v�11 corresponding to a shift in time.Note that this model applies only to bubbles and not to spikes. We empha-74



size that the e�ects of compressibility remain important at times signi�cantlylater than the time of passage of the initial shock through the interface. Indeed,the amplitude o�set is likely to be due in part to the fact that early-time com-pressible wave interactions discussed in Chapter 7 are not properly includedin the incompressible potential ow model.6.3 Spike VelocityIt is interesting to note that the spike velocity can also be �t by a power law.Figure 6.5 is a plot of vspike and a �t of the data given by vspike = 512:9t�0:5836.As seen in Figure 6.4 the �t to the data is excellent from time t = 500�s tothe end of the simulation.The decay in bubble and spike velocities should be contrasted with theRayleigh-Taylor instability. In the Rayleigh-Taylor case the bubble velocityapproaches a constant, positive value while the spike undergoes constant ac-celeration [65]. This di�erence is surely related to the constant energy inputin the Rayleigh-Taylor instability compared to the single acceleration in theRichtmyer-Meshkov instability.
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Chapter 7Invalidity of TheoriesAccording to the discussion of Chapter 4, the impulsive model and linear the-ory seriously overstate the perturbation growth rates for both the air-SF6 andair-helium cases. In this chapter it is shown that the simplifying assumptionsmade by these theories are not valid during the experimental measurementperiod and it is primarily for this reason that the theories disagree with ex-periment. Particular emphasis is placed on the assumption that the ow islinear, i.e. that it can be described by linear equations.Similarly, it is shown that the assumption of incompressibility in the po-tential ow model is violated. Fraley's model is also discussed.7.1 Simulation vs. Linear Theory7.1.1 Air-SF6Referring to Figure 4.3 (reproduced here as Figure 7.1) we see that the lineartheory of Richtmyer and Yang et al. agrees well with the nonlinear air-SF6simulations until the time that the peak velocities are reached except for a77
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and the growth rate curve has smoothed considerably. Note the pair of Machtriple points at the far right of this �gure.Figure 7.4 shows pressure plots of the solution to the linearized equationsand of the solution to the nonlinear Euler equations at time t = 195�s, nearthe time of the most severe divergence of the two solutions. We call attentionto two important features of linear solutions: they do not allow the focusingof characteristics and the linearization constrains the geometry of the wavefronts to be sinusoidal. These two restrictions prevent the production of theadditional shocks that are present in the nonlinear solution, i.e. there is nocascade of reected shocks from the self-interaction of the transmitted andreected waves. The linear solution displays a series of acoustic waves, but theydo not sharpen into shocks and are thus much weaker than the correspondingwaves of the nonlinear solution. Note that the strong waves in the nonlinearsolution come in pairs and thus we have two pressure maxima and minima aswe cross the tube in the x-direction. This is in contrast to the linear theorywhich in which all quantities are assumed to have sinusoidal perturbationsand, hence, a single maximum and minimum value.The analysis of secondary waves can be followed further in time to accountfor the plateau in _a(t) during the observation period. Note that during theobservational window this ringing of waves near the interface subsides. It is atthis point that the hypotheses of the potential ow model begin to be satis�ed,as discussed in section 7.3.Besides the e�ects of the nonlinear wave interactions, the other reason for82



the divergence of nonlinear theory from linear is in the overall downward trend,or decay, in the growth rate. In the nonlinear simulations the decay is seen inboth the spike and the bubble velocities. (see Figure 7.3). The validity of thedecay is discussed in detail in Chapter 6.We should point out that the sharp downward movement in the nonlinearsimulation at the peak growth rate is duplicated in the linear theory, althoughnot as strongly. It appears that some of the downward motion, then, can berepresented as the result of a compressible, linear wave, while the rest of themotion is due to the nonlinearity and \breaking" of the wave.We consider the linear theory's assumption that the interface remains sinu-soidal in Figure 7.5. It is clear from this �gure that the interface is becomingnon-sinusoidal by t = 132�s, well before the experimental observation period.The sinusoidal interface assumption also constrains the spike and bubble ve-locities to be the same. It can be seen in Figure 7.3 this is clearly not thecase.The behavior of the linear solution is consistent with simple order of mag-nitude estimates of its time of validity. We work with a dimensionless timet� = kc0M0t, where k is the wave number of the perturbation, c0 is the soundspeed of the uid ahead of the incident shock and M0 is the incident shockMach number. In terms of t� the validity of the linear solution ist�min � ka(0�)� t�� 1=[ka(0�)] � t�max: (7.1)Using the experimental parameters of Table 4.1 we �nd that t�max � 2:5which corresponds to a time t � 36�s. Keep in mind that this time is by83



Figure 7.5: A test of the sine-shaped interface assumption of the linear theory forthe air-SF6 case. Sine waves of the same amplitude are superimposed on plots ofthe nonlinear interface: a) t = 132�s, b) t = 567�s.no means rigorous. It is the result of dimensional analysis and can vary bya multiplicitive factor, but it is at least consistent with the time of validityactually observed.The discussion regarding the comparison between the linear theory andfront tracking applies to the impulsive model as well. It is interesting to notethat the impulsive model and linear theory agree well in their predictions ofthe long time growth rate. Thus the compressibility e�ects included do not aidin the agreement with experiment. It is the sinusoidal interface and linearityassumptions, then, that drive the disagreement.7.1.2 Air-Helium 84
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opposing the bubble motion. This gradient is not evident in the linear solutionand the growth rates diverge.We cannot validate the decay in the air-helium simulations via the po-tential ow model as we did in Chapter 6 since that model is valid only forthe case of reected shock. There is no reason to believe, though, that thedecay mechanism for the reected shock case will not operate in the reectedrarefaction case. This decay again results in the disagreement between thegrowth rate predictions of the linear and the nonlinear theories.The early time agreement between the theories is somewhat surprisingwhen we look at the interface pro�les. In Figure 7.8 we see that during theinversion process the interface is very non-sinusoidal and remains so from thatpoint on. The later time non-sinusoidal pro�les help to explain the di�erencesbetween the linear and nonlinear theories. In addition, we see in the bubbleand spike velocity plots of Figures 7.9 and 7.10 that there is no symmetry inthese velocities as predicted by the theory.The inequality 7.1 suggests a validity limit on the linear equations of t �40�s. This is again consistent with the observed time of agreement betweenthe linear and nonlinear theories.7.2 Experiment vs. Linear TheoryThe nonlinear simulations and the linear theory agree at early time for bothair-SF6 and air-helium, but the linear theory seriously overstates the experi-mentally observed growth rate while the nonlinear simulations agree quite well86
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Figure 7.8: A test of the sine-shaped interface of the linear theory for the air-heliumcase. Sine waves of the same amplitude are superimposed on plots of the nonlinearinterface: a) t = 22�s (the vertical scale in this frame has been stretched 15 timesto show the details of the inversion process), b) t = 90�s, and c) t = 190�s.
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µFigure 7.10: Air-helium simulation spike velocity.with experiments. This dual agreement is possible due to the e�ects of thenonlinear, compressible waves and growth rate decay observed in the simula-tions. Thus even though the linear theory agrees with the nonlinear theory atearly times it lacks the features that reduce the nonlinear simulation growthrate and, hence, fails to agree with experiment.7.3 Potential Flow ModelThe potential ow model of Hecht et al. [46] is intended to predict the bub-ble velocity in the Rayleigh-Taylor and Richtmyer-Meshkov instabilities forall times following shock refraction. For the Richtmyer-Meshkov instabilityit applies only to the case of a reected shock wave and thus the followingdiscussion applies only to the air-SF6 simulations.We have not made the detailed calculations necessary to �nd the potential89



ow growth rates at early times and instead concentrate on the asymptoticvelocity predicted by the model and con�rmed in section 6.2. In that sectionwe �nd that the predicted t�1 decay rate is nearly correct but that there is ano�set between the potential ow model and the front tracking simulations. Asthe potential ow model is an incompressible model it cannot account for theearly time compressible features which we �nd to be so important in the bubbledynamics (section 7.1). We believe, then, that model fails to agree completelybecause it is applied too early, before its assumptions are valid, and that theagreement would be better if the model was applied to the conditions later inthe run when compressibility is less important. More work needs to be done tocon�rm this. However, this model does help to justify the decay in the growthrates.7.4 Fraley's ModelFraley's model (see section 2.1.3), like the potential ow model, applies onlyto the case of a reected shock. Using his weak shock approximation we�nd his model predicts a growth rate of 9.31m/s for the air-SF6 simulations.This compares well with the experimental value of 9.18m/s. This apparentagreement is, in the author's opinion, fortuitous. Since this model is based ona linearization of the Euler equations it has the same region of validity as thelinear theory of Richtmyer and Yang et al. This model also makes a sinusoidalinterface assumption. In addition, it predicts a single velocity which, giventhe decaying growth rates in the simulation, would give poor agreement had90



the measurement period been di�erent.7.5 Improved TheoriesIt is interesting at this point to speculate on the possible forms of improvedtheories of the Richtmyer-Meshkov instability which correctly predict pertur-bation growth rates and amplitudes. An improved theory should have thefollowing features:1) Good agreement with experiments or simulations.2) A range of validity incorporating multiple timescales3) A minimum of simplifying assumptions4) Ease of solutionIdeally, a successful model will allow useful simpli�cations or approximationswhich can be used to easily estimate growth rates in the same way that theimpulsive model does. The discussion regarding growth rate decay in Chap-ter 6 suggests that simple scaling laws apply to the late time interface growthrate. A model which successfully predicts these laws will be especially useful.Considering the relative success of the incompressible potential ow modelit appears that is necessary to relax the linear and/or the sinusoidal inter-face assumptions. One approach is to allow multiple sinusoidal modes in thesolution to the linearized equations. Indeed, the nonlinear pressure waves ofFigures 7.2, 7.4 and 7.7 do have the appearance of second harmonics. Thisroute is currently being attempted by Zhang [73].Another possibility would be to extend the potential ow model to include91



the spike regime. The current model assumes a free surface and the spike willbe singular in nature, so to make the extension one must allow A < 1.The development of an improved model of the Richtmyer-Meshkov insta-bility will be a signi�cant advance, for it should lead to an improved under-standing of the important mechanisms in interface development.
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Chapter 8Validation and MeasurementSensitivityIn this chapter the front tracking simulations are validated and issues of diag-nostic sensitivity are discussed.8.1 Comparison to Linear TheoryThe linear theory of Richtmyer [62] and Yang, et al. [71] described in Chap-ter 2 provides a unique method to validate the the early time behavior ofthe nonlinear front tracking simulations. The validation is accomplished byrunning the nonlinear simulations with very small amplitudes and comparingthe results to the linear theory. Since the linear theory applies in the limitof small amplitudes the nonlinear simulations are expected to converge to thepredictions of the linear theory as the amplitudes are reduced. It should benoted that in the linearization the amplitude growth rate _a(t) is proportionalto the initial amplitude a(0�) and that the convergence is in the normalizedgrowth rate _a(t)=a(0�). 93
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perturbation to 83.2% of its original value. The nonlinear simulations agreewell with this value, even at full experimental amplitudes where the simulationspredict compression at a level of 83.7%. Compare this to the method used byBenjamin in [4] and [6] where he estimates the post-shock amplitude as they-intercept of a least squares �t to the experimental data (see section 2.2.2).One interesting aspect of the convergence of the nonlinear theory to thelinear theory is that we do not see an appreciable increase in the time ofagreement between the theories as we reduce the nonlinear amplitude. Thisis evident from Figure 8.3 which shows the convergence of the nonlinear air-SF6 simulation growth rates to the linear theory growth rates in terms of_a(t)=a(0�). The nonlinear simulations agree well with the linearized theoryuntil they approach the growth rate peak at t� � 11 (in normalized time unitst� = Mckt, M being the incident shock Mach number and c the ahead soundspeed) when they begin to diverge from the linear theory. We see that thesimulation growth rates approach those of the linear theory with reductions inamplitude, but without any real increase in the time of agreement. A similarphenomenon occurs in the air-helium simulations.In addition, it has been widely assumed that there is an amplitude thresh-old below which the linear theory is valid. This is the case for the Rayleigh-Taylor instability [65]. As can be seen in Figure 8.4 there is no such thresh-hold for the Richtmyer-Meshkov instability since at the time of growth ratedisagreement we have widely di�erent amplitudes. Considering the discussionin Chapter 7 regarding the inuence of shock curvature on the growth rate, it96
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plitude. Indeed, convergence of the simulations to the correct weak solutionsof the Euler equations would be expected to take place in L1 or L2 while thepointwise measure we are using is an L1 measure. Unfortunately, no L1 con-sistent measure of interface amplitude is currently implemented and the causeof this convergence behavior remains unresolved.We have found that the growth rates are also sensitive to the CFL constantused in the simulations. Again this behavior is localized to the spike tip andalmost certainly has the same cause as the lack of convergence under meshre�nement.
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Chapter 9Future Work and Conclusion9.1 Future WorkThere is still much work to be done on the Richtmyer-Meshkov instability.There is as of yet no complete understanding of the important physical e�ectswhich control the instability.Of particular importance is an understanding of the growth rate decay, forwhile this is not evident in the experiments of Benjamin or Meshkov, it is avery important feature of the simulations. The development of models whichimprove upon the linear theory, impulsive model and the potential ow modelshould help.It will also be useful to study the e�ects of di�usion along the interfaceboth before and after shocking. It is possible that di�usion is responsible forthe di�erence between simulation and experimental amplitudes as well as thedi�erence in translational velocities. New simulations and experiments areneeded for this. 102



9.2 ConclusionIn this paper we have presented the results front tracking simulations of theexperiments of Benjamin and Meshkov were presented. It was found thatmuch of the interface behavior can only be explained in terms of nonlinear,compressible physics that is not captured in the simpli�ed linear theory andimpulsive model. We have shown that our simulations give better agreementwith experimental growth rates than previous simulations and we discuss var-ious reasons for the remaining di�erences. Finally, we discuss the asymptoticbehavior of the interface velocities by examining simulations which deal withpost- experimental time periods.This paper presented the results of front tracking simulations of shock tubeexperiments by Benjamin and Meshkov. It was found that the perturbationgrowth rate predictions of these simulations are in much better agreementwith those seen in experiment than has been found in previous simulationsor theories. Simulations have previously predicted growth rates up to 200%larger than experiment which agrees with the theoretical predictions.This improved agreement is explained in terms of the accuracy and stabilityof the front tracking method. Another reason for the improved agreement isthat the growth rate measurements are made during the experimental timeperiod. Errors in measurement timing can dramatically a�ect the apparentresults.A detailed analysis of the growth rate curve for the air-SF6 simulations wasmade. This analysis showed that nonlinear and compressible e�ects are very103



important in the history of the perturbation growth and cannot be ignored.Thus the assumptions of the theories, linearity and incompressibility, are vio-lated in the experiments. The invalidity of these assumptions contributes todisagreement between the theories and experiment.The long term development of the interface was considered. It was shownthat the bubble velocities were nearly consistent with a potential ow modelwhich predicts a decay like t�1. In addition, it was shown that the spikevelocities could also be �t by a power law.
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