
A posteriori agreementfor clock synchronizationon broadcast networksINESC Technical Report RT/62-92L. Rodrigues, P. Ver��ssimoJanuary 1992

LIMITED DISTRIBUTION NOTICEA shorter version of this report was published in the Digest of Papers, The 22thInternational Symposium on Fault-Tolerant Computing, July, 1992, Boston - USA,c
 1992 IEEE. In view of copyright protection, its distribution is limited to peercommunications and speci�c requests. 0

A posteriori agreementfor clock synchronizationon broadcast networks�Lu��s Rodrigues, Paulo Ver��ssimoTechnical University of LisboaINESCye-mail:...ler@inesc.pt, paulov@inesc.ptAbstractWe present a clock synchronization algorithm, dubbed a posteriori agreement,based on a new variant of the well-known convergence non-averaging technique. Byexploiting an obvious characteristic of broadcast networks, the e�ect of messagedelivery delay variance is largely reduced. In consequence, the precision achievedby the algorithm is drastically improved. Accuracy preservation is near to optimal.Our solution, however, does not require the use of dedicated hardware.
�A shorter version of this report was published in the Digest of Papers, The 22th International Sym-posium on Fault-Tolerant Computing, July, 1992, Boston - USA, c
 1992 IEEEyInstituto de Engenharia de Sistemas e Computadores, R. Alves Redol, 9 - 6o - 1000 Lisboa - Portugal,Tel.+351-1-3100000 This work has been supported in part by the CEC, through Esprit Project 1226 -DELTA-4, and JNICT, through Programa Ciência.1

Contents1 Introduction 32 The clock synchronization problem 43 The Approach taken 64 A Model of Broadcast networks 95 A posteriori agreement 115.1 Generating, detecting and agreeing on a simultaneous broadcast : : : : 115.2 Achieving precision : 135.3 Improving rate : 145.4 Initialization and integration : 156 Discussion and Conclusions 16A Proof of correctness 18A.1 Assumptions : 18A.2 De�nitions : 18A.3 Proof of correctness: precision : 18A.4 Proof of correctness: envelope rate : 21A.5 Maintaining continuous clocks : 22A.5.1 Precision : 22A.5.2 Envelope rate : 23A.5.3 Rate : 23A.6 Conclusion of proof : 24B Proof of bounds on number of processors 25C Glossary of notation 27
2

1 IntroductionA global timebase is a mandatory requirement of distributed real-time systems, to allowdecentralized agreement on the time to trigger actions, or on the time at which eventsoccurred. It is also a very useful block for building fault-tolerant distributed algorithms.In consequence, the availability of global time in distributed systems, namely fault-tolerant real-time ones, should be encouraged.It is possible to provide such a timebase by using a centralized time service, resi-dent in a single node of the system. This solution is not fault-tolerant, exhibits poorperformance if clocks need to be frequently read, and errors are introduced due to vari-ation of transmission delays. The common solution for the global timebase problem lieson using the processor hardware clock to create a virtual clock at each node, which islocally read. All virtual clocks are synchronized by a clock synchronization algorithm.Surveys of existing clock synchronization algorithms can be found in [20,18,12].The context of the present work was the design of a global timebase for the real-time and fault-tolerant distributed DELTA-41 architecture [17] based on broadcast LANs(local area networks). The result was a new variant of the convergence non-averagingtechnique. The algorithm, tolerant of crash and omission faults in general and arbitraryclock faults, is highly precise and accurate, without any hardware support.The algorithm uses properties of broadcast networks to drastically attenuate thetraditional limitation imposed by message delivery delay variance on the obtained pre-cision. However, it preserves close-to-optimal rate drift. To our knowledge, this presentsa signi�cant improvement over previous software-based algorithms. We also know of nosolution for the clock synchronization problem that fully exploits the intrinsic attributesof broadcast networks.The protocol works as follows: synchronization starts with each processor dissemi-nating a start message at a pre-agreed instant on its clock; after a series of broadcastexchanges, each tentatively initiating a new virtual clock, an agreement is obtained bothon a broadcast yielding high precision, and on the clock to synchronize from in order toyield the best accuracy possible. It was thus dubbed a posteriori agreement.The paper is organized as follows. The main concepts about clock synchronization,needed along the text, are brie
y introduced in section 2. The approach taken is de-scribed in section 3. In introducing our solution, section 4 describes a broadcast networkmodel, while section 5 presents the concept of a posteriori agreement and describes thesynchronization protocol. Concluding remarks are are provided in section 6 and formalproof of correctness is presented in Appendix.1Delta-4, ended in December 1991, was a CEC Esprit II consortium, formed by Ferranti-CSL (GB),Bull (F), Credit Agricole (F), IEI (I), IITB (D), INESC (P), LAAS (F), LGI (F), MARI (GB), NCSR(GB), Renault (F), SEMA (F), Un. of Newcastle (GB), designing an open, dependable, distributedarchitecture. 3

2 The clock synchronization problemThe goal of clock synchronization is to establish a global timebase in a distributed systemcomposed of a set of processes which can interact exclusively by message exchange.Processes can only observe time through a clock. For convenience, a clock is usuallyrepresented by a function c(t) that maps (non-observable) real time2 to clock time(notation closely follows that of [20]).If every process had access to a common reference time, it could use it as the globaltimebase. One way to grant such an access is through a radio receiver, capturing aninternational time standard like the Universal Time Coordinated, UTC. However, thisapproach can be economically very expensive, thus only a limited number of perfectclocks may be made available in the system. Global time can then be obtained troughremote readings of one of the reliable time sources. This approach also possesses severaldrawbacks. Since processors communicate only through message exchange, clock read-ing can be very expensive in tra�c and time. Moreover remote interactions introducereading errors due to unpredictable message transit delays and some form of agreemen-t protocol should be implemented if the reading is also pretended to be fault-tolerant.Furthermore, the availability of radio time may be insu�cient for some applications [12].Another common solution to achieve a global timebase is to provide each processorin the distributed system with an imperfect physical clock pc. The clock at a correctprocessor k can then be viewed as implementing, in hardware, an increasing, continuous3function pck that maps real time t to a clock time pck(t) which, for some positiveconstants �p and �p, satis�es:PC 1 (Physical Clock Initial value)0 � pck(0) � �pPC 2 (Correct Physical Clock Rate)0 � 1� �p � pck(t2)� pck(t1)t2 � t1 � 1 + �p for 0 � t1 < t2Through a clock synchronization algorithm it is possible to derive, from the physicalclock at each node k, a virtual clock vck satisfying the following conditions:VC 1 (Precision) jvck(t)� vcl(t)j � �v; for 0 � t2In an assumed Newtonian time frame.3It is known that digital clocks have a �nite granularity and increase by ticks. This notion is of utmostrelevance to derive ordering and synchronism properties of real-time systems [12], i.e. in using clocks.In the de�nition of the clock proper and of a synchronization algorithm, as in this paper, we chose tosimplify our expressions in this matter, using the continuous clock approximation, since the �rst aim ofthe paper is to explain the reader a new method to synchronize clocks. We will indeed take granularityinto account in a report about implementation of the algorithm and quanti�cation of its properties, thatwe are currently preparing. 4

VC 2 (Rate) 1� �v � vck(t2)� vck(t1)t2 � t1 � 1 + �v; for 0 � t1 < t2VC 3 (Envelope Rate)1� �� � vck(t)� vck(0)t � 1 + ��; for 0 � tVC 4 (Accuracy) jvck(t)� tj � �v ; for 0 � tPrecision �v characterizes how closely virtual clocks are synchronized to each other,�v is the drift rate of virtual clocks, �� is the long term drift rate of virtual clocks, and �vcharacterizes how closely virtual clocks are synchronized to real time any moment andthis is the correct use for accuracy of clocks. Due to the nonzero drift rate of physicalclocks, accuracy cannot be ensured unless some external source of real time is available.When an external source of real time is used to provide accuracy, the algorithm is saidto implement external synchronization. When such source is not used (often it is notavailable in the system) the algorithm is said to implement internal synchronization. Inthe context of internal synchronization, a good algorithm should maintain clocks as closeas possible to the best real time source available, which may be one of the correct clocksin the system. In that sense, of minimizing4 �v and ��, it should preserve accuracy, andthat term will be used in this paper when informally discussing these attributes.Note that in the context of internal synchronization, the term accuracy is oftenused to identify the envelope rate property. However, while accuracy (as it is de�nedhere) compares the instantaneous clock values with real time, envelope rate states thatcorrect logical clocks are within a linear envelope of real time. On the other hand, therate property more restrictive than the envelope rate since it bounds the the drift ofvirtual clocks in any time interval. Also note that the envelope rate can be smaller thanrate.Since physical hardware clocks can be permanently drifting from each other, virtualclocks must be re-synchronized from time to time. A clock synchronization algorithmshould then be able to:� generate a periodic re-synchronization event. The time interval between successivesynchronizations is called the re-synchronization interval, denoted T .� provide each correct processor with a value to adjust the virtual clocks in such away that conditions VC 1 and VC 2 hold.The clock adjustment can be applied instantaneously or spread over a time interval.In both techniques, for the sake of convenience, the adjustment is usually modeled bythe start of a new virtual clock upon each re-synchronization event.4In any case, limited to �p [22]. 5

The computation of the adjustment can be modeled by the evaluation of a con-vergence function [20]. The precision enhancement property speci�es the best precisionguaranteed after any two clock value evaluations at di�erent processors. The worst-caseclock precision, �v, is obtained by adding the term due to the convergence functionto the imprecision generated by the drift between clocks during the re-synchronizationinterval T . However, since the drift, �p in PC 2, is typically of the order of 10�6s, theprecision enhancement property of the convergence function is the relevant factor. Itshould be noted that the resynchronization interval cannot be made arbitrarily small:resynchronization periods should not overlap and should be long enough to allow ad-justments to be spread (furthermore if resynchronization is performed too frequently,the tra�c overhead may be signi�cant).3 The Approach takenThe applications in view for real-time systems in general require accuracy towards somereal time reference. When a good external synchronization source is not available,algorithms that preserve accuracy, like the one in [22], become important. Additionally,those systems oriented to distributed computer control require a precision better thanthat normally achieved with software-based algorithms.In fact, a major limitation of all known software clock synchronization algorithmsdesigned for arbitrary networks, is that precision is limited either by the variance of themessage delivery delay [14], or by its upper bound [22]. This problem may be attenu-ated in special architectures, either by implementing clock synchronization exclusivelyby hardware [8,13] or by using hybrid schemes [18,11] which attempt at reducing thatvariance. Probabilistic or statistical solutions to damp the e�ect of the variance havealso been proposed [4,2]. Both approaches are not without disadvantages: hardwaresolutions are dedicated, while the tra�c overhead of probabilistic solutions increaseswith the desired probability of success.An alternative path was followed here, based on the observation that a majority ofthe distributed systems requiring clocks (eg. real-time) are based on broadcast LANs.In fact, local area networks are commonly in use today. However, we know of noprevious solution for the clock synchronization problem that fully exploits the intrinsicattributes of these networks: error rate is low, transmission delay is bounded but withhigh variance, median transmission delay is close to the minimum, and message receptionis tight in absence of errors, meaning that the low-level message reception signal occursat approximately the same time in all nodes that receive it. This is a crucial feature forthe mechanism underlying the synchronization algorithm, as will be shown ahead.Protocols using the convergence-non-averaging technique [7,22,1] are attractive. S-ince what is disseminated is the event that \a node believes it is now a pre-agreed time"rather than a response to a read clock request, they are inherently resilient to failures,requiring less messages and synchronization cycles than averaging algorithms[14,16,3].Before proceeding, we present our assumptions about the system:� clocks may have arbitrary failures (eg. provide erroneous or con
icting valueswhen read); 6

� clock server processes (the ones running the protocol over the network) may havefailures from crash to uncontrolled omission or timing failures;� the maximum number of clock-process pairs with failures during a protocol exe-cution is fp.The reader will note that the combined assumption of arbitrary-failure clocks and\omissive"-failure processes is realistic and not constraining, by allowing faulty pro-cesses to be arbitrarily delayed or even omit their participation in the algorithm inan uncontrolled manner, whereas their \assertive" failed behavior is limited to sendingwrong clock values, thus avoiding impersonation, collusion, etc. This removes the dif-�culty of handling genuinely arbitrary-failure (eg. Byzantine) processes. However, webelieve the results presented here can be extended to the latter, by using signatures [22]and redundant broadcast channels.The network is a single-channel broadcast LAN, as detailed ahead:� the network components are fail-silent, con�ned to crash if they exceed a givennumber of omission failures;� during a protocol execution there is a bound fo on the number of omission failuresproduced by the network.It is possible to put a bound on the time to send a message, to process a receivedmessage and read a clock value, etc.:� both the network and the clock server sub-systems are synchronous, in the senseof displaying known and bounded processing and communication delays.A study on the in
uence of network timing properties on clock synchronizationpresented in [12] will help explaining our method. It decomposes a message deliverydelay in the following terms:� Send Time, �send, to assemble the message and issue the send request;� Access Time, �access, for the sender to access the channel;� Propagation Time, �prp, for the channel to copy the message to all recipient links5;� and Receive time, �rec, to process the message at the receiver.The precision of an algorithm is in
uenced by the variances, ��:::, of these terms,which together make up the message delivery delay variance.We �nd the algorithm of Srikanth & Toueg appealing for its simplicity and easeof implementation, and because it yields optimal accuracy [22]. One of its problems isthat in order to achieve su�cient evidence [20] processes relay messages, which allowsthe di�erence between two synchronization actions at di�erent nodes to be as large as5This is the physical propagation time, dependent on the variable distance between nodes.7

the maximum message delivery delay. Were it not so, the di�erence would neverthelessbe of the order of the variance in delivery delay. In reasoning about the potential ofbroadcast networks, two ideas from other algorithms struck our attention. An algorithmby Babaoglu [1] stipulates a property whereby an event is generated in all processes at\the same" real time. That event is simulated by a protocol. In a broadcast network,it is easily achieved by the indication of reception of a message 6. However, errors mayoccur and the message may not get to all nodes. An algorithm by Cristian [4], onthe other hand, makes several attempts to read time from a server, probabilisticallyexpecting to get a good result value. Let us consider the operation of broadcasting aread command to all clocks in a LAN and get all replies in a bounded time, despiteerrors. In a real-time LAN it is possible to de�ne a bound on the number of tries andthe amount of time needed to execute the operation above 7.The reader will now note four attributes of such a fault-less broadcast which arecrucial for the understanding of the algorithm proposed:� (i) Send and Access errors do not count in a single fault-less broadcast;� (ii) the message S transmitted arrives virtually at the same time on all nodes, thedi�erence corresponding to the Propagation error;� (iii) processing times of S reception at any two nodes vary at most by the Receiveerror;� (iv) all replies to S get back to the transmitter.If message S, addressed to all including the sending node, meant: \Let us syn-chronize! I think the time is H. What time is it on your clocks?", one concludes thefollowing:� precision enhancement: in response to S, a new virtual clock is tentatively initiatedeverywhere with H, at the same physical time more or less an error equal to thePropagation plus Receive errors;� accuracy preservation: also at that time, the clock of each recipient is read anddelivered back to the sender; the sender selects the best clock in terms of accuracy(eg. the median of the clocks, in internal synchronization, or one of those thathave a time reference, in external synchronization) and computes its di�erence toH, to adjust accuracy of the tentative clocks.This happens every time a process broadcasts S with success. There will be anumber of tentative virtual clocks launched, and an agreement protocol is run (a pos-teriori) to disseminate the chosen one, together with the adjustment, through the clockprocesses.Precision obtained at the end of execution will depend not only on the Receiveand Propagation errors, but also on the clock rate drift, as with other agreement-based6See section 4 for a formalization of this statement.7See [24] for details. 8

synchronization protocols. The time required to run the agreement in
uences precisionby a factor of �p. However, its e�ect can be neglected, given that �p is very small, asdiscussed in section 2. The Receive error may be practically canceled with co-processorsand interrupt treatment, provided that there is an upper bound for message receptioninterrupt service latency and that bound is small. Then it may be intuitively said thatprecision is optimal, in the sense that it cannot be better than the variance of thedi�erence between physical reception times of a message at any two nodes (Propagationerror).Accuracy 8, on the other hand, cannot be optimal in the terminology of Srikanth& Toueg, but is very close to it. The worst of the correct clocks will form a bound ofthe rate drift envelope. The algorithm will, in worst-case, synchronize by that clock,deviating to the outside of the envelope at most by the measure of the maximumReceiveerror, which as just discussed can be made very small9. If a method could be devisedto prove that in the presence of a su�cient number of clocks, the median clock wouldbe away from the envelope bounds by more that the reading error, then the rate driftwould be optimal.After introducing the model of network used, the ideas informally sketched abovewill be formally presented.4 A Model of Broadcast networksThis section shows that broadcast networks have a number of properties on whichclock synchronization may be built, namely the ability to deterministically generate asimultaneous event at all correct processes in the system.In order not to depend on a particular network, the best approach is to de�ne anabstract broadcast network, such that standard local area networks or their variants arerepresented [9,10,6,15]. The network model of [23] is followed, though modi�ed to bemore generic. The abstract network components are: the channel, which comprises thepassive medium and the interfacing electronics; and the adapter, comprising the low-level network protocols, implemented partly in VLSI partly in �rmware. The abstractbroadcast network appears to the user processes/protocols (namely the clock processes)as a low-level service with a set of properties and an interface 10.PropertiesBNP 1 (Broadcast) Nodes receiving an uncorrupted message transmission, receive the samemessage 11.8Obviously taken in the sense of accuracy preservation, which for internal synchronization meansfollowing a correct hardware clock, i.e. respecting an envelope rate (cf. x2).9Note that statistically, most executions will held optimal rate drift since for deviation to occur amajority of correct clocks must run at the worst case rate drift, which is has a low probability.10This model �ts practically any LAN attachment one may think of, from workstation type on-boardVLSI controller to separate controller on multiboard computer. The little added functionality may beachieved by modifying the LAN driver or writing a shell on top of it.11A message is a generic name for a piece of encapsulated information that circulates on the network.It may contain a user-level message 9

BNP 2 (Error detection) Nodes detect any corruption done by the network in a locally re-ceived message and discard it.The network is thus prevented from altering messages, impersonating other sendersor delivering con
icting information to di�erent processors on the same broadcast. Ex-isting broadcast networks usually implement cyclic redundancy checks for this purpose.BNP 3 (Bounded Omissions) In a network with N nodes, in a known interval, correspond-ing to a series of M unordered message transmissions, omission failures may occur in at mostfo transmissions.This assumption yields a very simple solution to the membership problem as ex-plained in the next section. It is equivalent to expecting that in fo+1 transmissions, atleast one is heard by all nodes. It has a very high coverage in LANs, provided that fois well chosen. This assumption is used to stipulate the maximum number of omissionfailures done by the network components during the synchronization protocol executionand, together with property BNP refbnp:delay below, enforce a means for detectingfaulty processors without having to introduce a membership protocol. Note that anomission failure may be perceived inconsistently, i.e. a transmission that is not seen byonly some (or one) of the recipients.BNP 4 (Bounded Transmission Delay) The time between any broadcast send request andthe relevant delivery at those nodes that receive the message, is bounded by two known constants�min < �max.The variance in the message delivery delay, ��, is then:�� = �max � �minSecuring property BNP4 for a network depends on network type and on additionalassumptions about its operation, namely that rate and inter-arrival time of messagetransmission requests are bounded. Existence of the bounds just mentioned allowsestimating individual transmission delays in the presence of bounded background loadsand queue lengths. In these conditions, �max holds for every one of several concurrenttransmission requests. For details about enforcing reliable real-time operation on aLAN, the reader is referred to [24].BNP 5 (Tightness) Nodes receiving an uncorrupted message transmission, receive it at realtime values that di�er, at most, by a known small constant ��tight.It is important to understand the timing properties of local broadcast networks. ThePropagation error is very small: in an Ethernet, for example, the maximum di�erencebetween the times of physical reception of a message is less than 20 �s. The Receiveerror cannot be disregarded: however, ��rec remains more or less constant and maybe improved as discussed earlier in the text. On the contrary, the variance of theAccess time, ��access, is hardly controlled and it can have a signi�cant range, stronglydepending on variations of the network load and other operating factors (eg. collisions10

in Ethernet, token rotation time in a Token-passing LAN). It is the dominant term inmessage delivery delay variance, ��, and given that:��tight = ��prp +��reca relevant timing property of architectures based on local broadcast networks is formu-lated the following way: ��tight � ��An aim of the a posteriori agreement technique is to improve precision by makingthe clock synchronization algorithm depend on ��tight (instead of �� or �max).5 A posteriori agreementThe principles of using the Tightness property (BNP 5) to allow very precise and accu-rate clock synchronization were already discussed. In the presence of failures though,incorrect processes/clocks may participate, and broadcasts may be only received by asubset (possibly empty) of the nodes in the system. We de�ne simultaneous broad-cast as a broadcast that is received by all correct processes in the system. The clocksynchronization algorithm should then be able to:� (i) ensure that at least one simultaneous broadcast is generated;� (ii) ensure that all correct processes choose the same simultaneous broadcast tosynchronize their clocks, even when several simultaneous broadcasts are generated;� (iii) ensure that a simultaneous broadcast is generated often enough to preventvirtual clocks to drift apart more that the desired precision;� (iv) to ensure that a new clock, when it starts to be used, has a value that preservesthe desired envelope rate.First, it is described how a simultaneous broadcast can be generated and detected.Then, the achievement of precision and of rate are discussed. Finally, the initializationand integration of clocks are discussed.5.1 Generating, detecting and agreeing on a simultaneousbroadcastThe protocol is very simply based on having every process perform the same two basicactions: broadcast once a \start synchronization" message; and reply (in broadcast)to such messages coming from other processes. This way, modi�cation of failure as-sumptions only in
uences the number of processes required to run synchronizationssuccessfully. 11

With the present assumptions, the presence of fo + fp + 1 processes in the systemis required to generate at least one simultaneous broadcast, given that: each node triesonly once; fp processes may not transmit (eg. process omissions or crashes); and fonetwork omissions may occur (BNP3).Detecting the generation of a simultaneous broadcast is more delicate: it requiresfeedback from the recipients of the broadcast. Let us assume that each correct recipientbroadcasts an acknowledgment message hackbi in response to a given broadcast hbi. Forthe sake of simplicity, and without loss of generality, we de�ne �ack including all delaysrequired to disseminate a reply (including ��tight; the time to process the incomingmessage and to create and send the acknowledgment; and �max). To avoid complicatingthe algorithm with a group membership management protocol, we use a very simplescheme based on two facts:� as per BNP4, in absence of failures a correct process, after the reception of a broadcast,should receive an acknowledgment message from every other correct process by �ack (real)time (cf. x 4);� with the help of BNP3, which accounts for actual network omissions, faulty processescan be discovered, if they appear to do more than fo omission failures12.The procedure for detection of a simultaneous broadcast is depicted in �gure1 fora better understanding, although it is embedded in the algorithm of �gure2. Let P bethe set of processes in the system. Let P im be the set of correct processes in executioni (clock synchronization round i), from process's m point of view (initially P im = P)(line 10). For each processor m and for each broadcast message hbi, let Abm include allprocesses from which an hackbi message was received (l.40), and let F bm include thoseprocesses from which no acknowledgment has been received within the expected timeinterval (l.50). Let also Dm be the set of detected simultaneous broadcasts.A given process p can be considered faulty by a process m if p appears to m ashaving done more than fo omissions, i.e. appearing in more than fo F bm sets. In thatcase, m withdraws it from its view (line 60). When | because all expected repliesdid eventually arrive, or because some faulty processes were meanwhile withdrawn fromP im | the sets P im and Abm match (l.70), broadcast hbi is a simultaneous broadcast,and is inserted in Dm. The number of processors required to generate and detect asimultaneous broadcast is (fp+1)(fo+1). It is also the number required to execute thecomplete synchronization protocol. This latter number can be reduced to (2fo+ fp+1)if processes are fail-silent (clocks remaining arbitrary), for fo > fp=2, or to (2fp+1), forfo � fp=2. The proof of these bounds, omitted here for space reasons, can be found inthe Appendix.The mechanism just described does not prevent the generation of several simulta-neous clock synchronization events. An agreement protocol must be run afterwards, toselect only one broadcast, thence the name of the technique: a posteriori agreement.The algorithm does not depend on any particular protocol, as long as agreement isreached in a known bounded time. Fault-tolerant agreement protocols are well-known12Hence the utility of BNP 3 as a \synchronizing" property, without which detection of faulty processeswould be impossible in a non-space-redundant network.12

For processor m.10 let Dm = ;; Pim = P;20 case event of30 message hbi is received: let Abm = Fbm = ;;40 hackbi message is received from processor p: add p to Abm;50 �ack (real) time after the reception of hbi: set Fbm = Pim � Abm;60 9M; p s:t: #M > fo ^ 8b2M; p 2 Fbm: remove p from Pim;70 Abm = Pim: add b to Dm;80 end; /* case */Figure 1: Detecting a simultaneous broadcastand can be easily found in the literature, although existing reliable broadcast protocolsfor broadcast networks are recommended [23,5]. Given that any simultaneous broadcastwill do, agreement may be started immediately after detection of the �rst simultaneousbroadcast.5.2 Achieving precisionThe �rst phase of the algorithm (�gure 2) is very similar to the algorithm of [22]. Whenvci�1m (t) = iT , processor m decides to start the synchronization activity for round i,sending a hstart, i, mi message (l.2). Since faulty clocks/processes can send hstartimessages out of time, the \achievement of su�cient evidence" [20] is necessary, beforea message is eligible for a new virtual clock. The criterion of [22] is used: given that fpclock/process pairs may fail in an untimely manner, a hstarti message can be consideredcorrect if it has been received at least from fp + 1 distinct processes, out of 2fp + 1.A tentative virtual clock is started upon the reception of every hstart, i, mi message(l.4-6). It is kept running in a candidate state. All hstarti messages are acknowledgedby correct processors. Before the achievement of su�cient evidence, start messages areacknowledged by an hack, i, ni (l.10). After, they are acknowledged with a hcandidate,i, ni message (l.8).Each processor m monitors all acknowledgments to each message from a processorl that it received. Two di�erent sets, Alm and Clm, are used: processors responding withhacki, in Alm (l.14-15) and processors responding with hcandidatei, in Clm (l.12-13). Theprocedure to update Fnm, P im and Dim is in lines 4,6;12-15;16-19;21 (Abm is unfolded inAlm and Clm). Note that �ack can be measured locally, assuming a worst case rate forthe local physical clock, by waiting (1 + �p)�ack on the local clock (l.16).A candidate clock launched everywhere in response to a start message by a processore, is only eligible when at least fp+1 processors recognize it as such (l.20-21), by havingreplied with hcandidatei (l.8,l.12). The �rst processor m detecting the eligibility of eputs it in Dim and the agreement protocol is invoked, to choose the candidate clock tobe used during the next re-synchronization round (i) (l.21). Note (l.21) that it is notnecessary that all processes see e as candidate (Cm � Pm) but it is necessary that itcorrespond to a simultaneous broadcast (Cm +Am = Pm).Recapitulating, each simultaneous broadcast starts a set of candidate clocks that,13

For every processor m.01 case event of02 vci�1m (t) = iT :03 Pim = P; Dim = ;; broadcast (hstart, i, mi) ;04 message hstart, i, ni received from processor n05 tnm = reception (real) time of hstart, i, ni06 cci;nm (tnm) = iT ; Cnm = Anm = Fnm = ;;07 if message hstart, i, ki received from at least fp + 1 distinct processes:08 broadcast (hcandidate, i, n; vci�1m (tnm)i) ;09 else10 broadcast (hack, i, n; vci�1m (tnm)i) ;11 �;12 message hcandidate, i, l; vci�1n (tln)i received from processor n:13 n! Clm;14 message hack, i, l; vci�1n (tln)i received from processor n:15 n!Alm;16 vci�1m (t) = vci�1m (tnm) + (1 + �p)�ack:17 Fnm = Pim � Cnm � Anm;18 9M; p s:t:#M > fo ^ 8b2M; p 2 Fbm:19 p Pim;20 9e s:t: #Cem > fp ^ Cem +Aem = Pim:21 hstart, i, e; vci�1e (tne)i ! Dim; start agreement protocol ;22 cci;n and J i;nagreed :23 vcim = cci;nm + J i;n;24 end; /* case */ Figure 2: Achieving precision and ratedue to the Tightness property of the network, are no further apart than ��tight apartfrom each other. If a simultaneous broadcast can be detected and agreed in a shortamount of real time, these candidate clocks will remain close together and, at the end ofthe agreement procedure, a new virtual clock satisfying precision can start being used.The re-synchronization interval should be chosen long enough to allow a simultaneousbroadcast to be generated, detected and agreed but short enough to ensure that virtualclocks do not drift apart more that the desired worst-case precision. A formal proofthat the algorithm achieves precision and the inequalities required to parameterize theprotocol are presented in Appendix.5.3 Improving rateThe candidate clocks are initialized with iT (l.6), the value of the sender's virtual clockat the sending time of hstarti, � real time later. Clearly, while this satis�es precision,it does not preserve accuracy.One could set the candidate clocks to cci;nm (tnm) = iT + �n, however, � can only beestimated. Instead, note that by reading the clocks in a simultaneous broadcast, we doso at approximately the same time, since 8j; k jtnj � tnk j � ��tight, which is also the timeat which the candidate clocks are set to iT (l.6). Then, from the vector of clock readingsthe di�erences between clocks and iT at the reading time can be obtained. This allows14

the adjustment to be computed, and applied at a (short) later time.So the candidate clocks can be started with a dummy initial value (say, iT), whichwill be corrected by an appropriate adjustment, J i;n, computed by the agreement pro-cedure (l.22-23). It should be noted that the same adjustment must be applied to allclocks, otherwise precision will be a�ected.Agreement on the adjustment is very simple. All processors disseminate the re-ception time of the hstarti message, according to their (i� 1)th virtual clocks (l.8,l.10).Srikanth and Toueg have shown [22] than no clock synchronization algorithm can achievea rate drift better than that of the underlying physical clocks. Thus, optimal rate isapproached by adjusting J i;n by the physical clock of one of the correct processors. Toensure that a value in the correct envelope of time is chosen, the median clock valueshould be selected. The agreement protocol should then compute the adjustment J i;nusing J i;n = vci�1a (tna) � iT , a the agreed clock. The algorithm is depicted in �gure 2.During the re-synchronization interval, all virtual clocks drift from real time atthe rate of their underlying physical clocks (thus, following the optimal rate). At eachre-synchronization, virtual clocks are adjusted by one of the correct virtual clocks. How-ever, there is a window of uncertainty equal to the Tightness interval, ��tight. This isthe amount by which virtual clocks can deviate from the optimal real time envelopeat every re-synchronization interval. A precise formulation of how much clocks deviatefrom the optimal real time envelope (essentially ��tight) is presented in appendix. Wealso show how to transform this succession of virtual clocks in a continuously adjustedclock.5.4 Initialization and integrationInitialization can be obtained without changing the algorithm. Processors initializingthe system send hstart, 0, ni messages. Since no virtual clock is yet started, acknowledg-ment messages carry a null value in the virtual reception time �eld, that is, they are inthe form hcandidate, 0, n; 0i or hack, 0, n; 0i (needless to say, the computed adjustmentJ i;n will always be 0). The �rst virtual clock will then be started as soon as there areenough correct processors in the system.Integration can be easily implemented through a passive scheme. A processor de-siring to join the system does not send any message on the network. It simply waitsfor the reception of hstarti messages from other processors in the system. It then sendsacknowledgment messages as speci�ed by the algorithm. Since during the initializationphase, the virtual clock time of the joining process at the reception of the hstarti mes-sage will be zero, thus being discarded during the agreement protocol. Since a processormight join the system during the re-synchronization period, it might not be able to col-lect enough information to reach agreement or might agree on a candidate clock thatit did not start. In that case the joining process waits for the next re-synchronizationperiod to join the system. Note that it is trivial, as an outcome of the joining process,to include the newcomer in P. 15

6 Discussion and ConclusionsConvergence-non-averaging algorithms are attractive because they use the convergencefunction both to generate the re-synchronization event and to adjust virtual clocks.One such algorithm, by Srikanth & Toueg, strongly in
uenced our design. However,the existing algorithms of this class have a major disadvantage: the precision of theirconvergence function is directly dependent on the maximummessage transit delay in thesystem. We showed that the properties of broadcast networks can be used to overcomethis disadvantage.The a posteriori agreement approach, using the inherent tightness of fault-less broad-casts in local area networks, makes negligible the dependency of precision on messagedelay variance or maximum. Precision is thus dependent on ��tight. An applicationof a posteriori agreement to arbitrary networks using a probabilistic approach is understudy. The bound on number of processes is typical to these algorithms. Note thatcharacterizing network failures separately from processors', besides being necessary tode�ne termination in a non-redundant network, allows to blame each one for the failuresdone. If they were consolidated, they would not deviate much from the 2f + 1 bound.As a matter of fact, for fo = 1, we have 2fp + 2.Our solution is e�ective even under non-negligible loads, provided that the condi-tions for BNP4 still hold. However, it only presents signi�cant advantages when ��prp,��rec are small. ��rec is a matter of capability of the underlying operating system andhardware machinery: some systems may not allow a small and predictable preemptiontime for reception interrupts. The use of LAN bridges may originate high ��prp values.In this scenario, a posteriori agreement can be used to improve synchronization of nodesin the same segment while global synchronization could be ensured, for instance, by ahierarchical algorithm[21].Our algorithm, like consistency-based algorithms [14], requires the execution of anagreement protocol. However, the time required to reach agreement has only a secondorder e�ect on the achieved precision. We consider the cost in tra�c negligible, inface of the usual LAN bandwidths and given the bene�t in precision and determinism,with regard to other approaches [4,7,1]. Furthermore, our algorithm does not requireany particular agreement protocol (as long as it exhibits bounded termination). Sincemost fault-tolerant distributed systems are LAN-based and implement some form ofagreement protocol, our algorithm can be easily integrated in such architectures.The hardware-assisted algorithm of Kopetz [11] removes practically all componentsof the message delay variance, except the propagation error. Our algorithm, withouthardware support other than interrupts, only leaves an attenuated receive error besidesthe propagation error.With regard to accuracy, note that our algorithm, for the adjustment computation,may choose an external source instead of one of the internal clocks, as long as it hasbeen read simultaneously as well. A radio receiver time (eg. GPSS satelyte receiver)may be used to ful�ll this role, limited to just one or a few nodes | to be fault-tolerant| with that capability.A reliable broadcast protocol suite, with accompanying group membership services,can simplify implementation, and reduce execution time and number of processes. We16

have currently an implementation of the protocol over such a service, the DELTA-4xAMp group communications suite [19].AcknowledgmentsThe authors are grateful to A. Casimiro who collaborated in the implementation of a posterioriagreement in xAMp. We discussed these ideas with Sam Toueg who provided useful comments concern-ing the Srikanth & Toueg protocol. Finally, the comments from the referees, which pointed out someinconsistencies and helped improve the readability of the paper, are warmly acknowledged.

17

A Proof of correctnessA.1 AssumptionsAssumption 1 There is a known upper bound, �maxstart, on the time required for a hstartimessage to be prepared by a correct process and sent to all correct processes and processedby the recipients of the message.Assumption 2 There is a known upper bound, �maxagreem, on the time required to elect acandidate clock, after the start of the �rst candidate clock. For the sake of convenience,the time required to detect the simultaneous broadcast is also included in �maxagreem.Assumption 3 The di�erence, in real time, between the starting time of the samecandidate clock, cci;n, in two di�erent processors, is bounded by ��tight.A.2 De�nitionsDe�nition 1 Let readyi be the earliest real time value at which any correct processorn sends a hstart, i, n, 1i message, that is when vci�1n = iT .De�nition 2 Let a simultaneous candidate clock be a candidate clock started by al-l correct processors in the system. That is cci;n is a candidate clock if and only if8k2Pc 9 cci;nk .De�nition 3 Let the candidate clock that is chosen by the agreement protocol as thebasis for the virtual clock during the next re-synchronization interval be called the electedcandidate clock. Let electedi be the earliest real time value at which any correct processorstarts the elected candidate clock cci;nkDe�nition 4 Let endi be the latest real time value at which any correct processor startsthe ith virtual clock, cvik.The proof, in general, follows that in [22] closely. So, for brevity, we only presenthere the steps where main di�erences exits. We �rst show that the algorithm achievesthe precision property.A.3 Proof of correctness: precisionLemma 1 No simultaneous candidate clock is started before a correct processor is readyto do so, that is, electedi � readyi, for i � 1.Proof. No candidate clock is started until at least fp + 1 hstarti messages arereceived. Since at least one correct processor must have sent one of these messages, weget electedi � readyi. 18

Lemma 2 At the end of the ith re-synchronization period, virtual clocks di�er by atmost (1 + �p)��tight+2�p�maxagreem. That is, for i � 1 and for all correct processes n andm, jvcin(endi)� vcim(endi)j � (1 + �p)��tight + 2�p�maxagreem.Proof: By de�nition 1 and assumption 3 the value of a candidate clock, at themoment it is started at any processor, di�ers from the value of the same clock at anyother correct processor by at most (1 + �p)��tight. By Assumption 2, endi� electedi ��maxagreem. Thus, by de�nition PC 2, jvcin(endi)�vcim(endi)j � (1+�p)��tight+2�p�maxagreem.Assume that the following conditions hold for some i � 1:Assumption 4 By readyi all correct clocks have already started its (i � 1)th virtualclock.Assumption 5 For all correct processes m and n, jvcm(readyi)� vcn(readyi)j � �iv.Lemma 3 All correct processes start the elected simultaneous candidate clock soon aftera correct process is ready to do so. Speci�cally, electedi� readyi � (1��p)�1�iv+�maxstart.Proof: The �rst correct processor to send a hstarti message, does so at real timereadyi. By Assumption 5, the slowest correct clock is no more than �iv behind. Hence ev-ery correct processors sends an hstarti message no later than (1� �p)�1�iv after readyi.By Assumption 1, the hstarti message will take, at maximum, �maxstart to be dissemi-nated. Thus, the elected simultaneous candidate clock will be started no later than(1 � �p)�1�iv + �maxstart after readyi.Lemma 4 All correct processes start their ith virtual clock soon after one correct processis ready to do so. Speci�cally, endi� readyi � (1� �p)�1�iv + �maxstart + �maxagreem.Proof: By Assumption 1, endi� electedi � �maxagreem. By Lemma 3, electedi� readyi �(1 � �p)�1�iv + �maxstart. Thus endi� readyi � (1� �p)�1�iv + �maxstart + �maxagreem.Lemma 5 The adjustment J i to virtual clocks is bounded by a know constant, Jmax,that is Jmax � jJ ij 8i. Speci�cally, (1+�p)(�maxstart+2�p)+(1��p)�1�iv � Jmax � jJ ij 8i.Proof: By assumption 5, virtual clocks are no more than �iv apart at readyi. ByLemma 3 it will take at most (1 � �p)�1�iv until every correct process sends a hstartimessage. Thus, virtual clocks will drift at most 2�p(1 + �p) in this interval. The fastestclock will increase, at most (1 + �p)�maxstart during the dissemination of a hstarti message.The maximum adjustment will then be (1+�p)(�maxstart+2�p)+(1��p)�1�iv, thus provingthe lemma.Lemma 6 The period between re-synchronization is bounded. Speci�cally, endi�endi�1 � (1 � �p)�1(T + Jmax) + �maxstart + �maxagreem.19

Proof: Every correct process n sends the hstarti message for the (i � 1)th re-synchronization when vc(i�2)n = (i� 1)T . At the end of the (i� 1)th re-synchronization,the virtual clock of any correct processor will exhibit a value greater than (i�1)T�Jmax.So, all correct processors will send their hstarti messages, before endi�1+(1��p)�1(T +Jmax). In the worst case endi will happen �maxstart + �maxagreem after all correct processorshave sent hstarti, thus proving the Lemma.We now assume the following two relations:Assumption 6 (T � Jmax) > (1 � �p)�1�maxagreemAssumption 7�iv > (1 + �p)��tight + 2�p�maxagreem| {z }�1 +2�p[(1� �p)�1(T + Jmax) + �maxstart + �maxagreem]| {z }�2The term �1 corresponds to the result of the convergence function, that is, the realtime di�erence between virtual clocks at the end of the agreement protocol. The term�2 corresponds to the worst-case drift during the longest possible re-synchronizationinterval. Note that assumptions 6 and 7 specify the minimum and maximum values forthe re-synchronization period, T , for a given desired precision, �iv.Lemma 7 The maximum deviation between the ith virtual clocks of correct processesm and n is bounded. That is, for t 2 [endi�1; endi]; jvcin(t) � vcim(t)j � �iv.Proof: By Lemma 2, correct virtual clocks are at most (1 + �p)��tight + 2�p�maxagreemapart at the end of the ith period. By Lemma 6, endi� endi�1 � (T + Jmax)(1 ��p)�1 + �maxstart + �maxagreem and correct clocks drift at the rate 2�p in this interval. Thus,jvcin(t)�vcim(t)j � (1+�p)��tight+[(T+Jmax)(1��p)�1+�maxstart+�maxagreem]2�p+2�p�maxagreem,since �iv satis�es Assumption 7.Lemma 8 Synchronization periods do not overlap. That is, endi < readyi+1 �electedi+1.Proof: The �rst correct process to send a hstarti+1i message does so no earlier thanelectedi + (T � Jmax)(1 � �p). Therefore readyi+1 � electedi + (T � Jmax)(1 � �p).By Assumption 2, endi� electedi � �maxagreem. Hence, readyi+1 � endi � �maxagreem + (T �Jmax)(1 � �p) . By Lemma 1 electedi � readyi. Thus endi < readyi+1 � electedi+1,since T satis�es assumption 6.Lemma 9 The instantaneous clocks obtained through the algorithm in �gure 2 verifythe precision property (the proof is by induction on i and will be omitted for brevity).20

A.4 Proof of correctness: envelope rateWe now show that the algorithm achieves envelope rate (as above, the proof closelyfollows that of [22]). The rate property will be proven in a further section, after theintroduction of continuous clocks. Note that instantaneous clocks exhibit discontinuitiesintroduced by each re-synchronization.Lemma 10 For any execution of the algorithm, there exists a constant �maxi� , such that:vcin(t) � vc0n(0)t � 1 + �pT + (1 + �p)��tightT � (1 + �p)��tight � 1 + �maxi� ; 8i � 1; t 2 [endi; endi+1]Proof: The complete proof is omitted for brevity. Let E(t0) be the set of executionsof the algorithm in which ready1 = t0. Consider an execution e 2 E(t0) in which8k�1, electedi = readyi, and let the adjustment for the elected clock be Jfastest. In theexecution e the physical clock of process n runs at the maximum possible rate, that is,1+ �p with respect to real time. It is clear that execution e is possible. It can be shownthat, for process n, the interval of real time between consecutive re-synchronization is(T � Jfastest)(1 + �p)�1. In this period its virtual time increases by T . It can also beshown that, for the same process, the maximum adjustment, Jfastest, will be given byJfastest = (1 + �p)��tight, proving the Lemma.Lemma 11 For any execution of the algorithm, there exists a constant �mini� , such that:1� �mini� � 1� (1� �p)��tight � �pTT + (1� �p)��tight � vcin(t)� vc0n(0)t ; 8m2Pc;8i�1; t 2 [endi; endi+1]Proof: The complete proof is omitted for brevity. Let F (t0) be the set of executionsof the algorithm in which electedi = to. Consider an execution e 2 F (t0) where, 8i�1,correct process n, starts the ith clock �maxstart + ��tight in real time after vci�1n readsiT . Also, vcin is started at electedi + ��tight;8i�1. In e the physical clock of processn runs at the minimum possible rate with respect to real time. Such an executionis clearly possible. It is easy to show that vcin is a lower bound on the ith virtualclocks of all process in execution e. That is, for t 2 [endi; endi+1]; vcin � vcim;8m2Pc;m6=n.For process n, (1 � �p)�1(T � J slowest) + �maxstart is the interval of real time betweenconsecutive re-synchronizations. In this period, its virtual time increases by T . It canalso be shown that, for the same process, the minimum adjustment, J slowest, will beJ slowest = (1 � �p)(�maxstart ���tight), proving the Lemma.Lemma 12 The instantaneous clocks of the algorithm in �gure 2 verify the enveloperate property, that is 9�i� such that:1� �i� � vcik(t) � vc0k(0)t � 1 + �i�; for 0 � t1 < t2Proof: Choose �i� such that j�i�j � j�mini� j and j�i�j � j�maxi� j. From Lemmas 10 and11 it easy to show that the algorithm ensures envelope rate.21

A.5 Maintaining continuous clocksLet ta;in be the real time when processor n accepts the ith virtual clock. Instantaneousvirtual clocks exhibit discontinuities at each re-synchronization since there is usuallya nonnull di�erence between two consecutive clocks, given by: vcin(ta;in) � vci�1n (ta;in).Continuous clocks can be obtained this di�erence is spread over a real time interval�spread.De�nition 5 A continuous virtual clock can be obtained from the instantaneous virtualclocks, using the following function: vcm(t) = vc0m for t < ta;1k : (1)vcm(t) = vci�1m + (vc1m(ta;im)� vci�1m (ta;im))(t � ta;im)�spread for ta;im < t < ta;im +�spread: (2)vcm(t) = vcim for ta;im +�spread < t < ta;(i+1)m : (3)We now show that the precision and the envelope rate of the virtual clocks still hold.Additionally, we also prove the rate property.A.5.1 PrecisionLemma 13 If jvci�1n (t)� vci�1m (t)j � �(t) then we have jvcin(t)� vci�1m (t)j � �(t) + (1 +�p)��tight.Proof: Let tin be the real time instant at which vcin is started. By the Tightnessproperty , jtim � tinj � ��tight; 8n;m. Thus, jvci�1m (tim) � vci�1m (tin)j � (1 + �p)��tight.At ta;in , vcin is adjusted accordingly to the virtual clock value of some correct clock, vck.The adjustment, is computed using vcin(tin) = vci�1k (tik); tin+��tight � tik � tin+��tightthat is, jvcim(tin) � vci�1n (tin)j � �(tin) + (1 + �p)��tight. By other words, a new virtualclock vcin is adjusted in such a way that the instantaneous drift from any other previousclock vci�1m is bounded by (1+ �p)��tight. Since jvci�1m (t)� vcim(t)j will remain constantthereafter, we will have: jvci�1m (t) � vcin(t)j � �(t) + (1 + �p)��tight, thus proving theLemma.Lemma 14 The continuous clocks obtained by de�nition 5 based on instantaneousclocks resulting from algorithm in �gure 2 verify the precision property. More precisely:jvcn(t) � vcm(t)j � �iv + (1 + �p)��tight � �v.Proof:For every time value t, exists i such that: (1) t 2 [max(ta;i�1m ; ta;i�1n); min(ta;im ; ta;in)];or (2) t 2 [min(ta;im ; ta;in); max(ta;im ; ta;in)]; (3) t 2 [max(ta;im ; ta;in); min(ta;i+1m ; ta;i+1n)]. ByLemma 9, instantaneous clocks are always within �iv of each other, thus the proof istrivial for cases (1), and (3). For case (2) the proof follows directly from lemma 13 wherewe have bounded jvi�1m (t) � vin(t)j during the interval [min(ta;im ; ta;in); max(ta;im ; ta;in)].22

A.5.2 Envelope rateLemma 15 The continuous clocks obtained by de�nition 5 based on instantaneousclocks resulting from algorithm in �gure 2 verify the envelope rate property, that is9�� such that: 1� �� � vcm(t) � vcm(0)t � 1 + ��; for 0 � tProof: Assume �� � �i�. By Lemma 12 the proof is trivial for values of t outside thespreading intervals, ta;im < t < ta;im +�spread. From de�nition 5, during these intervals, wehave: vci�1m (t) � vcm(t) � vcim(t) for ta;im < t < ta;im +�spread, thus proving the Lemma,for all t.A.5.3 RateLemma 16 The di�erence, �vc, between two consecutive instantaneous virtual clocksis majored by:�vc > �iv+2�p[(1��p)�1�iv+�maxstart+�maxagree]+(1+�p)��tight > jvc1n(ta;in)�vci�1n (ta;in)j; 8i;nProof: By assumption 5, virtual clocks are no more than �v apart at readyi. ByLemma 3 the elected simultaneous candidate clock will be started no later than (1 ��p)�1�v + �maxstart after readyi. Virtual clocks will drift at most 2�p[(1 � �p)�1�v + �maxstart]during this interval. By assumption 3 elected clocks are started within (1 + �p)�tight ofeach other. By assumption 2 it will take at most �maxagree to agree on the virtual clock.The maximum di�erence between virtual clocks will then be the sum of these factors.Lemma 17 The continuous clocks obtained by de�nition 5 based on instantaneousclocks resulting from algorithm in �gure 2 verify the rate property, that is 9�v suchthat: 1� �p � �vc�spread < vcm(t2) � vcm(t1)t2 � t1 < 1 + �p + �vc�spreadIn the time interval between de�ned by ta;ik < t < ta;ik +�spread the continuous virtualclock follows the instantaneous virtual clock, thus its rate equals that of the underlyingphysical clock, that is �p. During ta;ik < t < ta;ik + �spread, the di�erence �vc is spreadover �spread, thus proving the lemma assuming �v � �p + �vc�spread .Lemma 18 The maximum interval over which the di�erence between consecutive in-stantaneous clocks can be spread, �spread, is given by: �spread � (T � Jmax)(1 + �)�1.Proof: The spreading interval must be smaller than the minimum real time betweenany two consecutive re-synchronizations. In the proof of Lemma 10 we have shown thatthis interval is given by, (T � Jmax)(1 + �)�1, thus proving the Lemma. This gives aminorant for the rate of continuous virtual clocks.23

A.6 Conclusion of proofTheorem 1 The algorithm of �gure 2 is a synchronization algorithm.The proof follows directly from de�nitions 1, 2, 3 and lemmas 14, 15 and 17.

24

B Proof of bounds on number of processorsIn order to generate and detect an universal broadcast, (fp + 1)(fo + 1) processors arerequired.Proof of necessity: Assume that only fo + fofp + fp processors are used. Let Pfbe the set of failed processors and Pc be the set of correct processors. Consider anexecution where fp processors are failed and do not generate any broadcast. In thisexecution, only fo+fofp messages are generated. Consider also that these messages canbe grouped in disjoint sets M0, M1, . . ., Mfp such that:8b2M09po2Pc s:t po 62 Abpc8pc2Pc (4)8b2Mi9pi2Pf s:t pi 62 Abpc8pc2Pc (5)8i;j; 1 � i � fp; 1 � j � fp pi 6= pj (6)8i; o � i � fp;#Mi = fo (7)In this execution, messages in M0 cannot be detected as universal broadcasts dueto omissions during the acknowledgment phases. Messages in each set Mi cannot bedetected as universal broadcasts due to lack of acknowledgments from one of the failedprocessors. Each failed processor, pi a�ects a di�erent set of messages, Mi. This isexecution is clearly possible. Since failed processors a�ect disjoint subsets of messagesof size fo they cannot be detected as failed, thus, they are not removed from Pcm byany correct processor. It is easy to see that, in this execution, we never have Abm =Pcm 8m2Pc;8b2M.Proof of su�ciency: Let Mo be the set of messages a�ected by omissions. By de�-nition #Mo � fo. Let Mi be the set of messages a�ected by missing acknowledgmentsfrom failed processor pi. If #Mi > fo, processor pi will be removed from Pc. Thus, inorder to contribute to prevent a message from being detected as universal broadcast,#Mi � fo. There are at most fp failed processors, thus:#fMo;M1; . . . ;Mfpg � #Mo +#M1 + . . . + #Mfp � fo + fpfoThat is, at most fo+fpfo messages can be disturbed by omissions or failed processors.Thus, its su�cient to generate fo + fpfo + 1 messages to detect a universal broadcast.Since failed processors may never generate any broadcast, at most fo + fpfo + 1+ fp =(fo+1)(fp+1) processors are required in the system to generate and detect a universalbroadcast. 2Additionally, there is a lower bound on the number of processes in order for achieve-ment of su�cient evidence to be possible: 2fp+1 [22]. In principle, the maximum of thetwo should be followed. A simple analysis shows that the previously presented boundis always greater than this one, except for fo = 0, which is non-interesting, so the �rstbound (fo + 1)(fp + 1) is dominant.If the assumption about process behavior is strengthened to crash failure, maintain-ing the others (arbitrary clocks, controlled network omissions), the number of processorsneeded comes down to 2fo + fp + 1. In fact, 2fo + 1 messages are needed, since when25

processes start doing omissions, they do not recover. Adding fp which, having failed,may never send their messages, we arrive at the result given. Achievement of su�-cient evidence still requires 2fp + 1 processors. When fo � fp=2, both expressions areequivalent. Otherwise, the maximum of them should hold.

26

C Glossary of notationpck physical clock at processor k.vck virtual clock at processor k.vcik round i instantaneous virtual clock at processor k.cci;nk round i candidate clock at processor k, started upon reception of hstarti messagefrom processor n.J i;n agreed adjustment to the elected candidate clock cci;n.�spread real time interval over each discontinuities in instantaneous virtual clocks arespread to obtain a continuous clock.�p correct rate of physical clocks.�v correct rate of virtual clocks.�� correct envelope rate of virtual clocks.�v precision of virtual clocks.�v accuracy of virtual clocks.T resynchronization interval.�b network broadcast delay.��b variability of network broadcast delay.��simul simultaneity of network broadcast reception.hbi broadcast message b.hackbi acknowledgment to broadcast message b.P set of processors.Pcm set of correct processors, from processor's m point of view.Abm set of correct processors, from whom processor m received an acknowledgment tomessage b.F bm set of correct processors, from whom processorm did not receive an acknowledgmentto message b within a prede�ned time interval.fo network omission faults.fp processor faults. 27

References[1] Ozalp Babao~glu and Rog�erio Drummond. (Almost) No Cost Clock Synchroniza-tion. In Digest of Papers, The 17th International Symposium on Fault-TolerantComputing, Pittsburgh, PA, USA, July 1987.[2] D. Couvet, G. Florin, and S. Natkin. A Statistical Clock SynchronizationAlgorithmfor Anisotropic Networks. In Proceedings of the Tenth Symposium on ReliableDistributed Systems, pages 41{51. IEEE, 1991.[3] F. Cristian, Aghili. H., and R. Strong. Clock Synchronization in the Presence ofOmission and Performance Faults. In Digest of Papers, The 16th InternationalSymposium on Fault-Tolerant Computing, pages 218{223, Viena - Austria, July1986. IEEE.[4] Flaviu Cristian. Probabilistic Clock Synchronization. Distributed Computing,Springer Verlag, 1989(3), 1989.[5] Flaviu Cristian. Synchronous atomic broadcast for redundant broadcast channels.Technical report, IBM Almaden Research Center, San Jose,California, USA, 1990.[6] FDDI. FDDI Token-Ring Media Access Control (MAC). ANSI X3.139, 1987.[7] Joseph Y. Halpern, Barbara Simons, Ray Strong, and Danny Dolev. Fault-TolerantClock Synchronization. In Proceedings of the 3Rd ACM Symp. on Principles ofDistributed Computing, pages 89{102, Vancouver Canada, August 1984.[8] A.L. Hopkins, T.B. Smith, and J.H. Lala. FTMP - A Highly Reliable Fault-TolerantMultiprocessor for Aircraft. Proceedings IEEE, 66(10):1221{1240, October1978.[9] ISO DIS 8802/4-85, Token Passing Bus Access Method, 1985.[10] ISO DP 8802/5-85, Token Ring Access Method, 1985.[11] Hermann Kopetz and Wilhelm Ochsenreiter. Clock Syncronization in DistributedReal-Time Systems. IEEE Transactions on Computers, C-36(8):933{940, August1987.[12] Hermann Kopetz and Wolfgang Schwabl. Global time in distributed real-timesystems. Technical Report 15/89, Technische Universitat Wien, Wien Austria,October 1989.[13] C.M Krishna, K.G. Shin, and R.W. Butler. Ensuring Fault Tolerance of Phase-Locked Clocks. IEEE Transac. Computers, C-43(8):752{756, August 1985.[14] L. Lamport and P. Melliar-Smith. Synchronizing Clocks in the Presence of Faults.Journal of the ACM, 32(1):52{78, January 1985.[15] G. LeLann. The 802.3d protocol: A variation of the ieee802.3 standard for real-timelans. Technical report, INRIA, France, 1987.28

[16] Jennifer Lundelius and Nancy Lynch. A New Fault-Tolerant Algorithm for ClockSyncronization. In Proceedings of the 3rd ACM SIGACT-SIGOPS Symp. on Prin-ciples of Distrib. Computing, pages 75{88, Vancouver-Canada, August 1984.[17] D. Powell, editor. Delta-4 - A Generic Architecture for Dependable DistributedComputing. ESPRIT Research Reports. Springer Verlag, November 1991.[18] Parameswaran Ramanathan, Kang G. Shin, and Ricky W. Butler. Fault-TolerantClock Synchronization in Distributed Systems. IEEE,Computer, pages 33{42, Oc-tober 1990.[19] L. Rodrigues and P. Ver��ssimo. xAMp: a Multi-primitive Group CommunicationsService. Technical Report RT/xx-92, INESC, Lisboa, Portugal, February 1992.[20] Fred B. Schneider. Understanding Protocols for Byzantine Clock Synchronization.Technical report, Cornell University, Ithaca, New York, August 1987.[21] K. G. Shin and P. Ramanathan. Clock Synchronization of a Large MultiprocessorSystem in the Presence of Malicious Faults. IEEE Trans. Computers, C-36(1):2{12,January 1987.[22] T. K. Srikanth and Sam Toueg. Optimal Clock Synchronization. Journal of theAssociation for Computing Machinery, 34(3):627{645, July 1987.[23] P. Ver��ssimo and Jos�e A. Marques. Reliable broadcast for fault-tolerance on localcomputer networks. In Proceedings of the Ninth Symposium on Reliable DistributedSystems, Huntsville, Alabama-USA, October 1990. IEEE. Also as INESC AR/24-90.[24] P. Ver��ssimo, J. Ru�no, and L. Rodrigues. Enforcing real-time behaviour of LAN-based protocols. In Proceedings of the 10th IFAC Workshop on Distributed Com-puter Control Systems, Semmering, Austria, September 1991. IFAC.
29

