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Schizophrenia has often been conceived as a disorder of connectivity between components of large-scale brain networks. We tested this
hypothesis by measuring aspects of both functional connectivity and functional network topology derived from resting-state fMRI time
series acquired at 72 cerebral regions over 17 min from 15 healthy volunteers (14 male, 1 female) and 12 people diagnosed with schizo-
phrenia (10 male, 2 female). We investigated between-group differences in strength and diversity of functional connectivity in the
0.06 – 0.125 Hz frequency interval, and some topological properties of undirected graphs constructed from thresholded interregional
correlation matrices. In people with schizophrenia, strength of functional connectivity was significantly decreased, whereas diversity of
functional connections was increased. Topologically, functional brain networks had reduced clustering and small-worldness, reduced
probability of high-degree hubs, and increased robustness in the schizophrenic group. Reduced degree and clustering were locally
significant in medial parietal, premotor and cingulate, and right orbitofrontal cortical nodes of functional networks in schizophrenia.
Functional connectivity and topological metrics were correlated with each other and with behavioral performance on a verbal fluency
task. We conclude that people with schizophrenia tend to have a less strongly integrated, more diverse profile of brain functional
connectivity, associated with a less hub-dominated configuration of complex brain functional networks. Alongside these behaviorally
disadvantageous differences, however, brain networks in the schizophrenic group also showed a greater robustness to random attack,
pointing to a possible benefit of the schizophrenia connectome, if less extremely expressed.

Introduction
It was first proposed by 19th century pioneers such as Theodor
Meynert (1833–1892) and Carl Wernicke (1848 –1905) that psy-
chotic disorders might arise from abnormal axonal connectivity
between anatomically dissected cortical regions. This seminal hy-
pothesis of disconnection or cortical miswiring in psychosis
(Catani and ffytche, 2005; Catani and Mesulam, 2008), based on
morbid anatomy and clinical intuition, has more recently been gen-

eralized to the concept of dysconnectivity: abnormal relationships
between neurons, at multiple scales of space and time, compatible
with—but not necessarily implying—anatomical disconnection
(Volkow et al., 1988; Weinberger et al., 1992; Friston and Frith, 1995;
Friston, 1996; Bullmore et al., 1997). Dysconnectivity in schizophre-
nia is considered an intermediate disease phenotype, conceivably
attributable to various degenerative, developmental, and/or genetic
mechanisms (Meyer-Lindenberg and Weinberger, 2006). One dis-
tinctive and mechanistically plausible hypothesis links functional
dysconnectivity at the macro-scale of neuroimaging to abnormal
synaptic modulation at the micro-scale of cellular signaling (Stephan
et al., 2009).

Meta-analytic reviews of MRI studies of schizophrenia have
provided strong evidence for abnormal gray matter density in-
creases in basal ganglia, and decreases in bilateral frontal, cingu-
late, temporal, and insular cortex, and thalamus (Ellison-Wright
et al., 2008; Glahn et al., 2008). Diffusion tensor imaging (DTI)
studies of white matter organization have replicably found re-
duced anisotropy of diffusion in left frontal and temporal lobes
(Ellison-Wright and Bullmore, 2009). Convergent evidence
across diverse cognitive task conditions also indicates abnormal
fMRI activation of dorsal and ventral prefrontal, anterior cingu-
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late, and posterior cortical regions (Minzenberg et al., 2009). The
most parsimonious explanation of this pattern of multiple local
structural and functional abnormalities is that schizophrenia is
represented at the scale of neuroimaging by a disconnected con-
figuration of these gray matter regions and their interconnecting
white matter tracts in MRI and DTI data, which is somehow
reflected in abnormal functional connectivity in fMRI data.

More direct support for the functional dysconnectivity hy-
pothesis comes from resting-state fMRI studies of disorder-
related differences in interregional functional connectivity
(Liang et al., 2006; Bluhm et al., 2007; Zhou et al., 2007a,b; Jafri et
al., 2008; Whitfield-Gabrieli et al., 2009; Fornito and Bullmore,
2010; Salvador et al., 2010), defined as the statistical association
between spatially distributed neurophysiological time series
(Friston, 1994). In parallel, graph theoretic measurements of the
topological properties of complex brain networks have found
that they are less hierarchical, less small-world, less clustered, and
less efficiently wired in schizophrenia (Bassett et al., 2008; Liu et
al., 2008; Bullmore and Sporns, 2009). These differences might be
expected to impair higher-order cognitive functions demanding
access to large, integrated neuronal workspaces (Dehaene and

Naccache, 2001). Working memory impairments have been
linked to reduced cost efficiency of magnetoencephalographic
networks in schizophrenia (Bassett et al., 2009). However, if the
functional consequences of altered topology in schizophrenia are
entirely negative, why have evolutionary processes not selected
against risk genes for this highly heritable disorder?

We measured functional connectivity and network metrics in
no-task fMRI data recorded from 15 healthy volunteers and 12
people with schizophrenia, and we investigated how brain func-
tional organization was expressed in terms of these various, in-
terdependent metrics, and how it related to cognitive function;
see Figure 1 for schematic overview.

Materials and Methods
Sample
We recruited 15 healthy (nonpsychotic) volunteers (14 male, 1 female)
and 12 people with chronic schizophrenia (10 male, 2 female), diagnosed
according to standard operational criteria in the Diagnostic and Statisti-
cal Manual of Mental Disorders IV (American Psychiatric Association,
2000). The two groups were matched for age, premorbid IQ estimated
using the National Adult Reading Test (Nelson, 1992), and years of ed-

Figure 1. Schematic of fMRI data analysis pipeline. Regional mean fMRI time series were estimated by applying a prior anatomical template image to each individual fMRI dataset after its
coregistration with the template in standard space; wavelet analysis was used to bandpass filter the regional time series and to estimate frequency-specific measures of functional connectivity
between regions; functional connectivity matrices were thresholded to generate binary undirected graphs or brain functional networks; between-group differences in functional connectivity,
principal components, and network topological metrics were assessed by permutation testing.
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ucation. Symptom severity scores were measured using the Positive and
Negative Syndrome Scale (PANSS) scale (Kay et al., 1987). For subject
details, see Table 1. All patients were receiving antipsychotic drugs, and
four were receiving additional psychotropic medication. The average
(�SD) dose, in chlorpromazine equivalents (Woods, 2003; Bazire,
2005), was 487 � 433 mg/d. To mitigate acute drug effects on fMRI data,
patients did not receive their usual medication on the day of scanning.
Healthy volunteers were screened for major psychiatric disorders using
the Mini International Neuropsychiatric Interview (Sheehan et al.,
1998); none were taking psychoactive medication. All subjects provided
informed consent in writing and the protocol was approved by the Ad-
denbrooke’s NHS Trust Local Research Ethics Committee.

Cognitive testing
The FAS version of the Controlled Oral Word Association Test (Benton
et al., 1976) was used to assess verbal fluency. The participant was asked
to say as many words as possible beginning with the letter F, A, or S within
1 min, and the test score was simply the total number of words generated.
Forward and backward digit span was assessed by Wechsler Memory
Scale-III Digit Span (Wechsler, 1997).

Acquisition and preprocessing of fMRI data
Functional MRI data were acquired while subjects were lying quietly in
the scanner with eyes closed for 17 min 12 s. We used a GE Signa system
(General Electric) operating at 1.5 T at the BUPA Lea Hospital (Cam-
bridge, UK). In each session, 516 gradient-echo T2*-weighted echo pla-
nar images depicting blood oxygenation level-dependent contrast were
acquired from 16 noncontiguous near-axial planes: repetition time � 2 s,
echo time � 40 ms, flip angle � 70°, voxel size � 3.05 � 3.05 � 7.00 mm,
section skip � 0.7 mm, matrix size � 64 � 64, field of view (FOV) �
240 � 240 � 123 mm. The first 4 volumes were discarded to allow for T1
equilibration effects, leaving 512 volumes per session. Each dataset was
corrected for head movement by realignment and regression (Suckling et
al., 2006) and subsequently registered to MNI stereotactic standard space
by a 12 parameter affine transform maximizing normalized correlation
with a customized EPI template image (within-modality). Registered
images were spatially smoothed with a Gaussian kernel (6 mm at full
width half-maximum), and the time series were high-pass filtered (cutoff
frequency: 1/120 � 0.008 Hz).

Anatomical parcellation and wavelet decomposition
For each individual dataset, up to 90 regional mean time series were
estimated by averaging voxel time series within each of the 90 anatomi-
cally defined regions (excluding the cerebellum) comprising the Auto-
mated Anatomical Labeling (AAL) template image (Tzourio-Mazoyer et
al., 2002). Because of the limited FOV size in the z-dimension, cerebellar
regions had to be omitted to ensure sufficient coverage at the top of the
brain. Regional time series were only included in further analysis if good
quality fMRI data were available for �50% of subjects; due to suscepti-
bility artifacts at the base of the brain, this criterion excluded 18 regions
from consideration (supplemental Table 1, available at www.jneurosci.
org as supplemental material), leaving a complete dataset of 72 regions
(supplemental Table 2, available at www.jneurosci.org as supplemental
material) for all participants.

The maximal overlap discrete wavelet transform (Percival and Walden,
2000) was used to decompose each individual regional mean fMRI time

series into the following scales or frequency intervals: scale 1, 0.125–
0.250 Hz; scale 2, 0.060 – 0.125 Hz; scale 3, 0.030 – 0.060 Hz; and scale 4,
0.015– 0.030 Hz. Following initial analyses of functional connectivity at
all scales (Table 2), subsequent analysis focused on data at scale 2, which
is compatible with prior studies indicating that endogenous fMRI dy-
namics of neuronal origin are most salient at frequencies of �0.1 Hz.

Functional connectivity metrics
At each scale, the wavelet correlation, �1 � ri,j � �1, and mutual infor-
mation, mi,j � 0, were estimated between each possible {i, j} pair of
regions. Although wavelet correlations can be negative in these (and
other) fMRI data, we have found that they are almost always positive
(supplemental Fig. 1, available at www.jneurosci.org as supplemental
material). This is an indication that connections between regions are not
predominantly conferred through anti-correlation, which we would
have had to treat separately otherwise. Connectivity strength, R� , and
average mutual information, M� , were defined for each subject as the
mean of all pairwise correlations or mutual informations, respectively.

Connectivity strength is a global measure of connectivity. The regional
strength of connectivity R� (i) was likewise defined for the ith region as the
average of the correlations between it and all other regions in the brain:

R� 	i
 �
�j ri, j

N � 1
. (1)

The regional diversity of connections, Var(R(i)), was defined as the
variance of the correlations between the ith index region and all other
regions:

Var	R	i

 �
�j 	ri, j � R� 	i

2

N � 1
. (2)

Globally, connectivity diversity was defined as the average regional diver-
sity across the 72 brain regions.

Principal component analysis (PCA) was performed on the scale 2
wavelet coefficients, and a measure of global integration (Tononi et al.,
1994; Friston, 1996) was estimated by the ratio of the first eigenvalue to
the sum of all other eigenvalues: I � (�1)/�j�2

N �j.

Functional network metrics
Undirected graphs were constructed from the scale 2 wavelet correlation
matrices (Achard et al., 2006; Achard and Bullmore, 2007; Meunier et al.,
2009) [see Bullmore and Sporns (2009) for a general review of graph
theory in relation to neuroscience]. Any correlation ri,j in the functional
connectivity matrix C greater than a given threshold, �, was retained as an
edge connecting regions i and j in the adjacency matrix A; if ri,j � �, no
edge connects regions i and j. Graphs of different connection densities or
costs are produced by thresholding at different values of �; the connec-
tion density is the number of edges in a graph comprising N nodes

Table 1. Demographic and clinical characteristics of the sample

Healthy volunteers
(N � 15) (mean � SD)

People with schizophrenia
(N � 12) (mean � SD)

Age (years) 33.3 � 9.2 32.8 � 9.2
Premorbid NART IQ 113 � 6 112 � 9
Years of education 13.3 � 6.4 12.8 � 2.4
Gender 14 male, 1 female 10 male, 2 female
Symptom severity (PANSS scale) — Positive: 4.0 � 4.2

Negative: 8.3 � 5.4
General: 15.4 � 9.8

NART, National Adult Reading Test.

Table 2. Global functional connectivity measures and associated group differences
at different frequency intervals

Frequency band (Hz) Healthy Schizophrenia

t test (df � 25)
Permutation
test ( p)p t

Wavelet correlationa

0.125– 0.250 0.3213 0.2752 0.1899 1.3473 0.1045
0.060 – 0.125 0.4238 0.3289 0.0123 2.6974 0.0070
0.030 – 0.060 0.5063 0.4382 0.1235 1.5938 0.0610
0.015– 0.030 0.5806 0.5119 0.1761 1.3924 0.0905

Wavelet mutual informationb

0.125– 0.250 0.0383 0.0344 0.3812 0.8914 0.2130
0.060 – 0.125 0.0528 0.0407 0.0305 2.2933 0.0130
0.030 – 0.060 0.0720 0.0625 0.3065 1.0440 0.1580
0.015– 0.030 0.0983 0.0849 0.2543 1.1668 0.1345

Bold indicates significance.
aRepeated-measures ANOVA: group effect, F � 3.944, p � 0.0581, df � 1; frequency band effect, F � 81.15,
p � 0.0001, df � 3; group � frequency band interaction, F � 0.6754, p � 0.5704, df � 3.
bRepeated-measures ANOVA: group effect, F � 2.229, p � 0.1479, df � 1; frequency band effect, F � 79.83,
p � 0.0001, df � 3; group � frequency band interaction, F � 0.5857, p � 0.6262, df � 3.
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divided by the maximum number of possible edges [(N 2 � N )/2]. When
studying the topological properties of such graphs across a number of
individuals, we prefer to consider graphs that are fully connected for all
subjects (i.e., degree k(i) �1 for all nodes) and that have nonrandom
topological organizational properties. These criteria defined a regime of
cost or connection densities in the range 37–50%: below a connection
density of 37%, some graphs began to fragment, and above a connection
density of 50%, graph topology becomes increasingly random
(Humphries et al., 2006) and less small-world. Work on brain connec-
tivity in macaques (Kaiser and Hilgetag, 2006) suggests that connections
at higher costs are likely to be nonbiological. All network results reported
in this study are thus averages of the various metrics estimated for each
individual network over a range of connection densities 37–50% (14
values, 1% increments) (Bassett et al., 2008). The following graph metrics
were estimated.

Degree. Degree, k(i), is simply equal to the number of edges connecting
the ith region to the rest of the network:

k	i
 � �
j

Ai, j, (3)

where A is the binary adjacency matrix obtained by thresholding the
functional connectivity matrix, C.

Regional efficiency. Regional efficiency, E(i) (Latora and Marchiori,
2001; Achard and Bullmore, 2007), is computed for each node in a graph,
G, as follows:

E	i
 �
1

N � 1 �
j�G

1

Li, j
. (4)

Here Li,j is the minimum path length between regions i and j. Global
efficiency, E( G), is the mean regional efficiency over all nodes.

Clustering coefficient. Clustering coefficient, C(i), of a node v is the
ratio of connected triangles, �v, to connected triples, �v. The clustering
coefficient of a graph is as follows:

C	G
 �
1

�V�� ���V�

��

��
, (5)

where V� is the set of nodes with degree �2 (Watts and Strogatz, 1998;
Schank and Wagner, 2005).

Small-worldness. Small-worldness, 	, is a property of a network with
high clustering, C, but low characteristic path length, L, compared to the
clustering, CR, and path length, LR, of a comparable random graph
(Watts and Strogatz, 1998; Humphries et al., 2006). Path length can be
estimated as the inverse of global efficiency (Latora and Marchiori,
2001), allowing the following formulation (Achard and Bullmore, 2007)
of small-worldness:

	 �
C/CR

E	G
R/E	G

, (6)

where E( G)R is the global efficiency of a comparable random graph. A
network is said to be “small-world” when 	 � 1.

Robustness. Robustness, 
, indicates the network’s resilience to either
targeted, 
t, or random, 
r, attack. In a targeted attack, hubs are removed
one by one in order of degree, k, while in a random attack, nodes are
removed at random independent of their degree. Each time a node was
removed from the network, we recalculated the size of the largest con-
nected component, s. Robustness is then usually visualized by a plot of
the size of the largest connected component, s, versus the number of
nodes removed, n (Achard et al., 2006) (supplemental Fig. 2, available at
www.jneurosci.org as supplemental material). The robustness parame-
ter, 
, is defined as the area under this s versus n curve. More robust
networks retain a larger connected component even when several nodes
have been knocked out, as represented by a larger area under the curve or
higher values of 
.

Degree distribution parameters. Degree distribution parameters for
graphs at a cost of 37% were estimated using the nonlinear fitting func-
tion in “Brainwaver” software [http://cran.r-project.org/ (Achard,
2007)]. For each subject, goodness of fit of the degree distribution to

three laws (exponential, P(k) � e � �k; power, P(k) � k � �; and truncated
power, P(k) � k ��1e k/kc ) was estimated using Akaike’s information cri-
terion. The exponentially truncated power law was the best fit for all
subjects and the parameters of this distribution (the power exponent, �,
and the lower exponential degree cutoff, kc) were estimated for each
subject.

Correlations between variables
We explored associations between all the functional connectivity, PCA-
based, and graph theoretical metrics considered in the analysis of fMRI
data (12 in total) (Table 3), simply using Pearson’s correlation coefficient
to estimate the association between each pair of variables over all subjects
in the study (N � 27) (see Fig. 5). In general, all the fMRI metrics were
(positively or negatively) correlated with each other (see supplemental
Table 3, available at www.jneurosci.org as supplemental material, for
details). As reported in more detail below, many of the brain functional
metrics were also significantly correlated with behavioral variability in
terms of verbal fluency scores. In an effort to isolate more specific asso-
ciations between behavioral variability and brain functional metrics, we
also estimated the partial correlations between each pair of variables and
tested each of them for significance. We found that partial correlations
were generally small and not significant, indicating that we cannot dis-
ambiguate any specific associations between behavioral variability and
any one of the highly intercorrelated connectivity, PCA, or graph metrics
considered in analysis of the fMRI data. We also used multivariate anal-
ysis of covariance to estimate the effects of all functional connectivity and
network metrics on the dependent variable of verbal fluency. This anal-
ysis also demonstrated that no single metric demonstrated a specific
relationship with cognitive performance when the effects of all other
connectivity and network metrics were simultaneously considered.
These results are reported in full in supplemental Tables 4 and 5 (avail-
able at www.jneurosci.org as supplemental material).

Cortical surface rendering
Caret v5.61 software (Van Essen et al., 2001) [with Atlas map (Van Essen,
2005)] was used to make cortical surface representations of the distribu-
tions of regional strength, regional diversity, degree, and clustering. The
value plotted at a given point is the value of the AAL volume at a point
below the surface at the level of cortical layer 4. We tested the significance
of the group differences in these metrics at each region using two-sample
t tests with a false-positive correction p � (1/N ) � 0.014, which is equiv-
alent to saying that we expect less than one false-positive regional result
per cortical map at this threshold. We note that this correction for mul-
tiple comparisons is not as conservative as a Bonferroni or false discovery
rate correction, and therefore we do not claim strong type I error control
for these multiple exploratory analyses at a regional level of network
organization.

Table 3. Functional connectivity and network topology metrics in the frequency
interval 0.06 – 0.125 Hz for healthy volunteers and people with schizophrenia

Healthy
volunteers
(mean � SD)

People with
schizophrenia
(mean � SD)

p value,
permutation
test

Connectivity strength 0.4238 � 0.0811 0.3289 � 0.1018 0.007
Connectivity diversity 0.0240 � 0.0047 0.0282 � 0.0046 0.016
Variance of 1st PC 43.1 � 8.4% 32.6 � 11% 0.005
Global efficiency 0.7439 � 0.0044 0.7475 � 0.0030 0.009
Average clustering 0.7423 � 0.0364 0.6917 � 0.0562 0.005
Hierarchy 0.0371 � 0.0086 0.1013 � 0.0107 0.010
Degree distr. (variance) 183 � 38 120 � 43 �0.0001
Degree distr. (power exponent) 3.259 � 1.919 6.116 � 3.427 0.005
Degree distr. (degree cut-off) 9.450 � 2.896 5.373 � 2.383 0.0005
Small-worldness 1.6144 � 0.0745 1.5300 � 0.1184 0.015
Robustness (random attack) 2.534 � 103 � 11 2.544 � 103 � 5 0.001
Robustness (targeted attack) 2.454 � 103 � 44 2.480 � 103 � 39 0.065
Verbal fluency 15.27 � 3.86 13.25 � 5.26 0.1065

p values refer to the probability of the observed between-group difference under the null hypothesis estimated by a
permutation test. distr., Distribution.
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Results
Functional connectivity: strength, diversity, and
global integration
We measured the statistical association between spatially distrib-
uted pairs of regional fMRI time series using two metrics of
frequency-specific functional connectivity. The wavelet correla-
tion is a measure of the linear association between processes in a
wavelet scale-specific frequency interval; the wavelet mutual in-
formation is a scale-specific measure of linear and nonlinear de-
pendencies between processes. By both metrics, we found that the
magnitude or strength of functional connectivity was greater at
lower frequencies (Table 2, Fig. 2). This trend for bivariate cor-
relations to be greater at lower frequencies is typical of the broad
class of multivariate long memory time series models and is
linked to the colored noise or persistent autocorrelation structure
of a single fMRI time series (Achard et al., 2008). As anticipated
by previous studies on resting-state networks in fMRI (Achard et
al., 2006), the difference between schizophrenic and comparison
groups was most salient by both metrics in the frequency interval
0.06 – 0.125 Hz (Table 2). Subsequent analysis focused in more
detail on functional connectivity and networks based on the
wavelet correlation matrices at this scale.

For each of 72 anatomically defined brain regions, we esti-
mated the strength and diversity [or variability (Campbell et al.,
1986)] of its functional connectivity to the rest of the brain in
each individual dataset. Functional connectivity strength was
generally greater, and ranged more widely over different brain

regions, in healthy volunteers than in people with schizophrenia
(Table 3, Fig. 3A). Connectivity strength was significantly re-
duced in the schizophrenic group at a regional level in medial
premotor, cingulate and parietal cortex, precentral and postcen-
tral cortex, occipital association cortex, and left inferior frontal,
superior temporal, and insular cortex (Fig. 3C; supplemental Ta-
ble 6, available at www.jneurosci.org as supplemental material).
In contrast, the diversity of functional connections was signifi-
cantly increased, on average over all regions, in the schizophrenic
group (Table 3, Fig. 3B; supplemental Table 7, available at www.
jneurosci.org as supplemental material). This difference was also
significant at a regional level in orbitofrontal, insular, and parietal
association cortex (Fig. 3D; supplemental Table 6, available at
www.jneurosci.org as supplemental material). These two aspects
of regional connectivity were negatively correlated over all sub-
jects (r � �0.4, df � 25, p � 0.04) (Fig. 3E, see Fig. 5; supple-
mental Table 3, available at www.jneurosci.org as supplemental
material). In other words, greater strength of connectivity was
associated with reduced diversity of functional connections.

Using principal component (PC) analysis to provide a mea-
sure of the global integration of functional activity in each data-
set, we found that the percentage of variance accounted for by the
first PC was significantly reduced in people with schizophrenia
(33%) compared to healthy volunteers (43%) (Fig. 3F, Table 3).

Taken overall, these results indicate that strength of brain
functional connectivity is reduced, and that individual regions

Figure 2. Functional connectivity matrices and group differences in global connectivity. A, B, Matrices of pairwise correlations at 0.060 – 0.125 Hz for individual participants: healthy controls (A)
and people with schizophrenia (B). Both axes represent the 72 regions used in the analysis, ordered by average strength in healthy subjects, and pixel color represents the level of correlation. C, D,
Connectivity strength, R� (C), and average mutual information, M� (D), at four different wavelet scales for healthy volunteers (black) and people with schizophrenia (red). The group differences
denoted by asterisks were significant at the wavelet scale 0.060 – 0.125 Hz for connectivity strength and mutual information (Table 2). Error bars indicate SD.
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have a more diverse or less globally coor-
dinated mode of connectivity to the rest of
the brain, in people with schizophrenia.

Functional networks: topology, degree
distributions, and robustness
To complement these results based on
analysis of continuous measures of associ-
ation between regions, we also measured
the topological properties of binary (un-
weighted and undirected) graphs derived
by thresholding the individual functional
connectivity matrices.

At a global level, functional networks
expressed some key organizational prop-
erties consistently across both groups. All
individual networks had economical small-
world properties, i.e., high local and
global efficiency, and broad scale degree
distributions consistent with the existence
of “hubs.” However, the quantitative val-
ues of many of these topological metrics
were significantly different between groups
(Table 3, Fig. 4).

Clustering and small-worldness were
significantly reduced by �5%, and global
efficiency was significantly increased by
�1%, in the schizophrenic group. It was
also notable that although the degree dis-
tributions of both groups were broadly
similar, there were visible differences be-
tween them (Fig. 4A,B): both higher-
degree hubs and lower-degree nodes were
more probable in the healthy brain net-
works, whereas a greater proportion of
nodes had modal degree in the schizo-
phrenic brain networks. This was re-
flected by significantly higher brain-wide
variance of regional degree in healthy vol-
unteers (Table 3).

At a regional level of analysis, we
mapped clustering and degree for each
cortical node of the network and com-
pared nodal clustering and degree be-
tween groups (Fig. 4). Consistent with the
between-group differences in global to-
pology, clustering was reduced for most cortical nodes in the
schizophrenic group, although this difference was only signifi-
cant for medial posterior parietal and anterior cingulate regions.
Degree was also significantly reduced in medial posterior parietal
and premotor cortex, and significantly increased in right orbito-
frontal cortex, in the schizophrenic group (supplemental Table 8,
available at www.jneurosci.org as supplemental material).

Possible forms of the degree distribution were evaluated more
rigorously using Akaike’s information criterion as a measure of com-
parative goodness of fit for three possible degree distributions: a
power law, P(k) � k��; an exponential, P(k) � e��k; and an expo-
nentially truncated power law, P(k) � k��1ek/kc. Of these, the expo-
nentially truncated power law was the best-fitting model for the
degree distribution for all subjects in both groups. We compared the
parameters of this distribution between the two groups (Table 3) and
found that the exponential cutoff degree (kc) was significantly lower
in the schizophrenic group. This indicates that the transition from

the scaling regimen to the exponential fall-off occurred at a lower
degree in the schizophrenic group, which corresponds to a relative
loss of hubs. We also found that the power exponent (�) was signif-
icantly higher in the schizophrenic group. Together with the lower
exponential cutoff degree, this reflects the narrower degree distribu-
tion in the schizophrenic group.

We also investigated the robustness of the networks to ran-
dom error (removal of nodes in random order) and targeted
attack (removal of nodes in descending order of degree). Under
both conditions, schizophrenic networks demonstrated greater
robustness, and this was statistically significant for robustness to
random error (Table 3; supplemental Fig. 1, available at www.
jneurosci.org as supplemental material). Robustness was signifi-
cantly negatively correlated with connectivity strength, global
integration, and degree distribution parameters (Fig. 5; supple-
mental Table 3, available at www.jneurosci.org as supplemental
material).

Figure 3. Group differences in regional connectivity metrics and global integration. A, Group mean connectivity strength for
each of the 72 regions, ordered by mean regional strength in healthy volunteers; error bars indicate SEM. B, Regional diversity of
correlations, ordered by mean diversity in healthy volunteers; error bars indicate SEM. C, Cortical surface renderings of strength.
D, Cortical surface renderings of diversity. Regions showing a significant group difference in the metric when corrected for multiple
comparisons using false-positive correction ( p � 0.014) are indicated. E, Graph to show link between group differences in
strength and diversity for individual regions. Lines connect equivalent anatomical regions in healthy volunteers (black) and people
with schizophrenia (red). F, Principal components analysis: scree plot of the proportion of variance explained by successive
principal components in people with schizophrenia (red) and healthy volunteers (black). Inset shows the group difference in the
proportion of variance explained by the first principal component. Error bars indicate SD. For details, see Table 3 and supplemental
Tables 6 and 7 (available at www.jneurosci.org as supplemental material).
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Relationships between functional connectivity, functional
networks, and behavior
Functional connectivity and network topology metrics were gen-
erally highly correlated (Fig. 5; supplemental Table 3, available at
www.jneurosci.org as supplemental material). For example,
greater strength and global integration of functional connectivity
were positively correlated with greater small-worldness, greater
clustering, and changes in degree distribution parameters indi-
cating a higher probability of high-degree hubs.

Moreover, both connectivity and topological metrics were re-
lated to variability of behavioral performance on a test of verbal
fluency. Greater fluency was positively correlated with greater
connectivity strength and integration, greater small-worldness
and clustering, and a more hub-dominated degree distribution.
These associations were statistically significant when the correla-
tions were tested pooling data from both groups (Fig. 5; supple-
mental Table 3, available at www.jneurosci.org as supplemental
material), and the pattern of results was conserved when testing
each group separately, although many of the within-group cor-
relations were not statistically significant due to smaller sample
size. Partial correlations, which estimate the component of covaria-
tion specifically attributable to the direct interaction between each
pair of variables, were generally smaller than Pearson’s correlations,
and not statistically significant (see supplemental Table 4, available
at www.jneurosci.org as supplemental material, for details).

There were no significant associations
between any connectivity or topological
metrics and either forward or backward
digit span scores. There were also no sig-
nificant associations, within the patient
group, between clinical symptom severity
[measured using the PANSS scale (Kay et
al., 1987)] or current dose of atypical an-
tipsychotic medication, and any of the
brain functional measures.

Discussion
These results corroborate and extend prior
studies indicating that brain systems mea-
sured by resting-state fMRI are abnormally
organized in schizophrenia, as anticipated
by theories of schizophrenia as a functional
dysconnectivity syndrome.

Functional connectivity and networks
in schizophrenia
One novel aspect of the study is that it is
the first, we believe, to report a patho-
physiological profile for schizophrenia in
terms of both connectivity and topologi-
cal metrics. Given that the topological
metrics are estimated on a binary adja-
cency matrix constructed by thresholding
the continuous association matrix of in-
terregional connectivity measures, one
would expect these two sets of metrics to
be related, and indeed they were. For
example, both strength and global inte-
gration of connectivity were positively
correlated with small-worldness and clus-
tering, whereas diversity of connections
was negatively correlated with clustering.
Functional networks in both groups con-
sistently demonstrated small-world and

other topological properties that have previously been described
in normal human and nonhuman brain networks, and are likely
to represent highly conserved principles of brain network archi-
tecture (Bassett and Bullmore, 2009; Bullmore and Sporns,
2009). Here, the shift to reduced strength and greater diversity of
functional connectivity in the schizophrenic group (Fig. 6) was as-
sociated with a less clustered and hub-dominated network topology.

Some of these findings directly replicate prior fMRI and EEG
reports of reduced functional connectivity, globally or regionally
(Liang et al., 2006; Bluhm et al., 2007; Liu et al., 2008), or
reduced clustering and small-worldness of functional net-
works (Micheloyannis et al., 2006; Liu et al., 2008; Rubinov et al.,
2009) in schizophrenia. Notably, however, other studies have
reported regionally increased functional connectivity (Zhou et
al., 2007a,b; Whitfield-Gabrieli et al., 2009; Salvador et al., 2010).
It is unclear why some studies should report predominantly de-
creased connectivity, and others increased connectivity. How-
ever, between-study differences in defining regions of interest or
network nodes, differences in preprocessing strategies and con-
nectivity metrics, and the inherent variability in small-medium
sized patient samples, may all play a role. Larger and method-
ologically more comparable future studies will be useful.

Some of our other findings are consistent with, rather than
directly replicable of, prior observations based on somewhat dif-

Figure 4. Group differences in topological properties of brain functional networks. A, B, Pooled degree distributions (A) and
cumulative degree distributions (B) for healthy volunteers (black) and people with schizophrenia (red), showing lower probability
of high-degree network hubs in schizophrenia. C, D, Cortical surface renderings of degree (C) and clustering (D). Regions showing
a significant group difference in the metric when corrected for multiple comparisons using false-positive correction ( p � 0.014)
are indicated. For details, see Table 3 and supplemental Table 8 (available at www.jneurosci.org as supplemental material).
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ferent metrics. For example, our finding
of reduced probability of high-degree
hubs is compatible with previous observa-
tions of reduced degree and centrality of
network hubs in schizophrenia (Rubinov
et al., 2009). Likewise, our observation of
greater diversity of connectivity between a
single region and the rest of the brain (Fig.
3) seems compatible with prior observa-
tions of reduced homogeneity of neural
activity within a single region in schizo-
phrenia (Liu et al., 2006), given that adja-
cent subregions with dissimilar activity
will likely show dissimilar connectivity,
contributing to regional diversity. Con-
nectivity diversity in brain networks has
not been previously investigated, although
studies of social interactions have used anal-
ogous metrics (Knoke and Yang, 2008). In
fact, while high between-subject variability
in candidate traits of schizophrenia is
common (Preston and Weinberger, 2005),
previous reports of any disorder-related dif-
ferences in within-subject variability in
fMRI are few (Manoach et al., 2001; Barch et
al., 2003; Jafri et al., 2008).

Broadly speaking, many of our results
are compatible with the idea that there is a
“subtle randomization” of the functional
network architecture in schizophrenia
(Rubinov et al., 2009). Given that similar
shifts to randomness, or de-differentiation,
have been described as characteristic of net-
work architectural changes with normal ag-
ing (Cabeza, 2001) and in a wide range of
other disorders [including brain tumors,
epilepsy, and Alzheimer’s disease (Stam et
al., 2009)], we need to understand more
clearly which aspects of a less centralized,
more robust network configuration are spe-
cific to schizophrenia and which might be
common to a group of clinically distinct
randomized or de-differentiated network
syndromes.

Relationship to other aspects
of schizophrenia
We now more speculatively consider how
our analytical metrics might relate to the
behavioral phenotype in schizophrenia.
In this study, each subject’s performance
on a verbal fluency task was correlated with many of the analytical
metrics. Verbal fluency tasks test the ability to generate multiple
words with a given starting letter, or in a given semantic category,
in limited time. Verbal fluency performance in schizophrenia has
been shown to predict functional outcomes for independent liv-
ing (Jaeger et al., 2003) and daily problem-solving skills (Rempfer
et al., 2003; Revheim et al., 2006). In schizophrenia, verbal flu-
ency is best predicted by psychomotor speed, rather than execu-
tive functioning or memory (van Beilen et al., 2004), and
processing speed seems to mediate the link between verbal flu-
ency performance and functional outcome in schizophrenia
(Ojeda et al., 2008). Our results suggest that impaired verbal

fluency, presumably reflecting slower processing speed, is associ-
ated with a less strongly connected, less globally integrated, less
clustered, and less hub-dominated brain functional organization.
However, we did not find a significant association between task
performance and global network efficiency, despite prior data
and theory indicating that topological efficiency and cost effi-
ciency correlate with intelligence and executive task performance
(Dehaene and Naccache, 2001; Bassett et al., 2009; Li et al., 2009;
van den Heuvel et al., 2009).

Prior evidence suggests that low-frequency functional net-
works are constrained by the topology of underlying anatom-
ical networks (Honey et al., 2007). Thus we would expect the

Figure 5. Matrix of correlations between global functional connectivity metrics, topological metrics, and verbal fluency score
across all participants. Nonsignificant correlations ( p � 0.05) are left blank. The inset shows a scatter plot of verbal fluency versus
connectivity strength, where the lines indicate the best linear fits for the data within each group (red, people with schizophrenia;
black, healthy volunteers) and for the data pooled over both groups (green). For details, see supplemental Table 3 (available at
www.jneurosci.org as supplemental material).

Figure 6. Hypothetical schematic of group differences in functional connectivity. People with schizophrenia show both higher
diversity at each region and lower variance in connectivity strength across the brain. This can be conceptualized as a randomization
or de-differentiation of functional connectivity.
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functional dysconnectivity of schizophrenia to be at least partly
explicable in terms of anatomical disconnection, as reported in
MRI or DTI studies of white matter anatomy (Bassett et al.,
2008; Zhou et al., 2008); but this remains to be compellingly
demonstrated. Future studies could also further test the con-
trasting mechanistic hypothesis that functional dysconnectiv-
ity and related network metrics are attributable to underlying
abnormalities of synaptic plasticity in schizophrenia (Stephan
et al., 2009).

These results, and most prior studies, have tended to focus
on intuitively or demonstrably disadvantageous aspects of the
schizophrenia connectome—such as lower integration of con-
nectivity (Liu et al., 2006), lower clustering and small-worldness
(Liu et al., 2008), reduced hierarchy and inefficiently increased
wiring distance (Bassett et al., 2008), or reduced cost efficiency
(Bassett et al., 2009). Given the high heritability of schizophre-
nia, and the theoretically predicted frequency of risk genes in
the general population, might there be aspects of the schizo-
phrenia connectome that confer advantages, if expressed less
extremely? This could help explain persistence of risk genes
despite selection pressures acting against the adverse aspects
of the schizophrenia connectome.

One possible advantage identified here is the greater robust-
ness to random attack of functional networks in schizophrenia.
This means simply that the whole brain network is less likely to
fragment into disconnected islands as regional nodes are re-
moved at random. This could conceivably offer the survival
advantage of greater resilience of global brain function in the
face of multifocal brain lesions due to disease or injury. We
might predict decreased incidence or severity of distributed
brain disorders such as Alzheimer’s disease in first-degree rel-
atives of people with schizophrenia. We know of no prior data
that can immediately test this hypothesis directly; but it seems
intuitively convergent with prior theory that risk for Alzhei-
mer’s disease may be relatively increased in individuals with
greater capacity for higher brain functions (Arendt, 2001). In
any case, hub-dominated networks are less robust to random
attack (Fig. 5); thus, disadvantages to integrated workspace
functions due to reduced hub dominance will generally be
offset by greater network robustness.

Methodological limitations
The main limitation of the study is the modest sample size (N �
27), limiting the power of comparative analysis between groups
and justifying a multiple-comparisons correction that effected
less than maximal strength of type 1 error control at the regional
level of analysis. The modest sample size, especially in relation
to the number of variables considered (13), also impacted
adversely on the capacity of this dataset to elucidate bivariate
or multivariate associations between variables. The long ac-
quisition time of the datasets (17 min) will have benefited the
precision of estimation of correlations and networks derived
from them (Achard et al., 2008). Conversely, longer time se-
ries are less likely to represent a stable brain functional state;
future studies might profitably measure behavioral arousal
prospectively and/or model nonstationary or time-resolved
changes in functional connectivity over the course of the scan-
ning period (Chang and Glover, 2010) (supplemental Fig. 3,
Table 9, available at www.jneurosci.org as supplemental ma-
terial). Head motion may confound fMRI data, but this was
individually corrected, and realignment parameters showed
no between-group differences. Cardiac and respiratory
sources can also contribute to variance in fMRI series, but

neuronal sources are usually regarded as making the major
contribution to oscillations in the frequency interval (0.06 –
0.125 Hz) investigated here. Medication is another possible
confound; dopamine receptor antagonists can alter functional
connectivity and network parameters (Honey et al., 2003;
Achard and Bullmore, 2007). Although people with schizo-
phrenia were withdrawn from medication �20 h before scan-
ning, mitigating acute pharmacological effects, all had been
treated with antipsychotics for several years. However, anti-
psychotic dosage (in chlorpromazine equivalents) was not sig-
nificantly correlated with any of the connectivity or network
metrics. Data were scrutinized for acceptable image quality
and brain regions where susceptibility artifact or incomplete
brain coverage had compromised image quality in �50% of
participants were excluded: analysis was thus based on a subset
of 72 regions (rather than the 90 template regions); a list of
excluded regions, including inferior temporal and prefrontal
regions relevant to schizophrenia, is provided in supplemental
Tables 1 and 2 (available at www.jneurosci.org as supplemen-
tal material).
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