
Artificial Intelligence Review 6, 3--34,  1992. 

An Introduction to Case-Based Reasoning* 

Janet L. Kolodner** 

College of Computing, Georgia Institute of Technology, Atlanta, GA 30332-0280, 
U.S.A. 

Abstract. Case-based reasoning means using old experiences to understand and 
solve new problems. In case-based reasoning, a reasoner remembers a previous 
situation similar to the current one and uses that to solve the new problem. Case- 
based reasoning can mean adapting old solutions to meet new demands; using old 
cases to explain new situations; using old cases to critique new solutions; or 
reasoning from precedents  to interpret a new situation (much like lawyers do) or 
create an equitable solution to a new problem (much like labor mediators do). This 
paper discusses the processes involved in case-based reasoning and the tasks for 
which case-based reasoning is useful. 
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A host is planning a meal for a set of people who include, among others, several 
people who eat no meat or poultry, one of whom is also allergic to milk 
products, several meat-and-potatoes men, and her friend Anne. Since it is 
tomato season, she wants to use tomatoes as a major ingredient in the meal. As 
she is planning the meal, she remembers the following: 

I once served tomato tart (made from mozzerella cheese, tomatoes, Dijon mustard, basil, and 
pepper,  all in a pie crust) as the main dish during the summer when I had vegetarians come for 
dinner. It was delicious and easy to make. But I can't serve that to Elana (the one allergic to 
milk). 

I have adapted recipes for Elana before by substituting tofu products for cheese. I could do 
that, but I don' t  know how good the tomato tart will taste that way. 

She decides not to serve tomato tart and continues planning. Since it is summer, 
she decides that grilled fish would be a good main course. But now she 
remembers something else. 

Last time I tried to serve Anne grilled fish, she wouldn't  eat it. I had to put hotdogs on the grill 
at the last minute. 

This suggests to her that she shouldn't serve fish, but she wants to anyway. She 
considers whether there is a way to serve fish that Anne will eat. 

I remember  seeing Anne  eat mahi-mahi in a restaurant. I wonder  what kind of fish she will eat. 
The fish I served her was whole fish with the head on. The fish in the restaurant was a fillet 
and more  like steak than fish. I guess I need to serve a fish that is more like meat than fish. 
Perhaps swordfish will work. I wonder  if Anne  will eat swordfish. Swordfish is like chicken, 
and I know she eats chicken. 
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Here she is using examples and counterexamples of a premise (Anne doesn't eat 
fish) to try to derive an interpretation of the premise that stands up to scrutiny. 

The hypothetical host is employing Case-Based Reasoning (CBR) (e.g., 
Hammond 1989c, Kolodner 1988a, Riesbeck and Schank 1989) to plan a meal. 
In case-based reasoning, a reasoner remembers previous situations similar to 
the current one and uses them to help solve the new problem. In the example 
above, remembered cases are used to suggest a means of solving the new 
problem (e.g., to suggest a main dish), to suggest a means of adapting a solution 
that doesn't quite fit (e.g., substitute a tofu product for cheese), to warn of 
possible failures (e.g., Anne won't eat fish), and to interpret a situation (e.g., why 
didn't Anne eat the fish, will she eat swordfish?). 

Case-based reasoning can mean adapting old solutions to meet new de- 
mands; using old cases to explain new situations; using old cases to critique new 
solutions; or reasoning from precedents to interpret a new situation (much like 
lawyers do) or create an equitable solution to a new problem (much like labor 
mediators do). 

If we watch the way people around us solve problems, we are likely to 
observe case-based reasoning in use all around us. Attorneys are taught to use 
cases as precedents for constructing and justifying arguments in new cases. 
Mediators and arbitrators are taught to do the same. Other professionals are 
not taught to use case-based reasoning, but often find that it provides a way to 
solve problems efficiently. Consider, for example, a doctor faced with a patient 
who has an unusual combination of symptoms. If he's seen a patient with similar 
symptoms previously, he is likely to remember the old case and propose the old 
diagnosis as a solution to his new problem. If proposing those disorders was 
time-consuming previously, this is a big savings of time. Of course, the doctor 
can't assume the old answer is correct. He/she must still validate it for the new 
case in a way that doesn't prohibit considering other likely diagnoses. Neverthe- 
less, remembering the old case allows him to generate a plausible answer easily. 

Similarly, a car mechanic faced with an unusual mechanical problem is likely 
to remember other similar problems and to consider whether their solutions 
explain the new one. Doctors evaluating the appropriateness of a therapeutic 
procedure or judging which of several are appropriate are also likely to 
remember instances using each procedure and to make their judgements based 
on previous experiences. Problem instances of using a procedure are particu- 
larly helpful here; they tell the doctor what could go wrong, and when an 
explanation is available explaining why the old problem occurred, they focus the 
doctor in finding out the information he needs to make sure the problem won't 
show up again. We hear cases being cited time and again by our political leaders 
in explaining why some action was taken or should be taken. And many 
management decisions are made based on previous experience. 

Case-based reasoning is also used extensively in day-to-day common-sense 
reasoning. The meal planning example above is typical of the reasoning we all 
do from day to day. When we order a meal in a restaurant, we often base 
decisions about what might be good on our other experiences in that restaurant 
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and those like it. As we plan our household activities, we remember what 
worked and didn't work previously, and use that to create our new plans. A 
childcare provider mediating an argument between two children remembers 
what worked and didn't work previously in calming such situations, and bases 
her suggestion on that. 

In general, the second time solving some problem or doing some task is 
easier than the first because we remember and repeat the previous solution. We 
are more competent the second time because we remember our mistakes and go 
out of our way to avoid them. 

The quality of a case-based reasoner's solutions depends on four things: 
• the experiences it's had, 
• its ability to understand new situations in terms of those old experiences, 
• its adeptness at adaptation, and 
• its adeptness at evaluation. 

The less experienced reasoner will always have fewer experiences to work 
with than the more experienced one. But, as we shall see, the answers given by a 
less experienced reasoner won't necessarily be worse than those given by the 
experienced one if he is creative in his understanding and adaptation. Any 
programs we write to automatically do case-based reasoning will need to be 
seeded with a representative store of experiences. Those experiences (cases) 
should cover the goals and subgoals that arise in reasoning and should include 
both successful and failed attempts at achieving those goals. Successful attempts 
will be used to propose solutions to new problems. Failed attempts will be used 
to warn of the potential for failure. 

The second, that of understanding a new problem in terms of old experiences 
has two parts: recalling old experiences and interpreting the new situation in 
terms of the recalled experiences. The first we call the indexing problem. In 
broad terms, it means finding in memory the experience closest to a new 
situation. In narrower terms, we often think of it as the problem of assigning 
indexes to experiences stored in memory so that they can be recalled under 
appropriate circumstances. Recalling cases appropriately is at the core of case- 
based reasoning. 

Interpretation is the process of comparing the new situation to recalled 
experiences. When problem situations are interpreted, they are compared and 
contrasted to old problem situations. The result is an interpretation of the new 
situation, the addition of inferred knowledge about the new situation, or a 
classification of the situation. When new solutions to problems are compared to 
old solutions, the reasoner gains an understanding of the pros and cons of doing 
something a particular way. We generally see interpretation processes used 
when problems are not well understood and when there is a need to criticize a 
solution. When a problem is well understood, there is little need for interpretive 
processes. 

The third, adaptation, is the process of fixing up an old solution to meet the 
demands of the new situation. Eight methods for adaptation have been identified. 
They can be used to insert something new into an old solution, to delete 
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something, 6r to make a substitution. Applying adaptation strategies straight- 
forwardly results in competent but often unexciting answers. Creative answers 
result from applying adaptation strategies in novel ways. 

One of the hallmarks of a case-based reasoner is its ability to learn from its 
experiences, as a doctor might do when he caches a hard-to-solve problem so 
that he can solve it easily another time. In order to learn from experience, a 
reasoner requires feedback so that it can interpret what was right and wrong 
with its solutions. Without feedback, the reasoner might get faster at solving 
problems but would repeat its mistakes and never increase its capabilities. Thus, 
evaluation and consequent repair are important contributors to the expertise of 
a case-based reasoner. Evaluation can be done in the context of the outcomes 
of other similar cases, can be based on feedback or can be based on simulation. 

1. REASONING USING CASES 

There are two styles of case-based reasoning: problem solving and interpretive. 
In the problem solving style of case-based reasoning, solutions to new problems 
are derived using old solutions as a guide. Old solutions can provide almost- 
right solutions to new problems and they can provide warnings of potential 
mistakes or failures. In the example above, cases suggest tomato tart as a main 
dish, a method of adapting tomato tart for those who don't eat cheese, and a 
type of fish that Anne will eat. A case also warns of the potential for a failure -- 
Anne won't eat certain kinds of fish. 

In the interpretive style, new situations are evaluated in the context of old 
situations. A lawyer, for example, uses interpretive case-based reasoning when 
he uses a series of old cases to justify an argument in a new case. But interpre- 
tive CBR can also be used during problem solving, as we saw the host in our 
initial example do when trying to justify serving swordfish to a guest known not 
to like some kinds of fish. 

As we shall see, both styles of case-based reasoning depend heavily on a case 
retrieval mechanism that can recall useful cases at appropriate times, and in 
both, storage of new situations back into memory allows learning from experi- 
ence. The problem solving style is characterized by heavy use of adaptation 
processes to generate solutions and interpretive processes to judge derived 
solutions. The interpretive style uses cases to provide justifications for solutions, 
allowing evaluation of solutions when no clear-cut methods are available and 
interpretation of situations when definitions of the situation's boundaries are 
open-ended or fuzzy. We will show examples of both kinds o f  case-based 
reasoning in this section and discuss the applicability of both. 

1.1. CBR and Problem Solving, 

The host in the initial example used problem solving case-based reasoning to 
propose tomato tart as the main dish and to suggest a means of adapting it to 
suit the guest allergic to milk products. Also as part of the problem solving 
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process, she used a remembered case to anticipate that one of the guests would 
not eat fish, causing her to plan around that problem. 

Problem solving case-based reasoning is useful for a wide variety of problem 
solving tasks, including planning, diagnosis, and design. In each of these, cases 
are useful in suggesting solutions and in warning of possible problems that 
might arise. 

1.1.1. CBR for design 
We can view the meal planning example as a kind of design problem. In design, 
problems are defined as a set of constraints, and the problem solver is required 
to provide a concrete artifact that solves the constraint problem. Usually the 
given constraints underspecify the problem, i.e., there are many possible solu- 
tions. Sometimes, however, the constraints overconstrain the problem, i.e., there 
is no solution if all constraints are fulfilled. In that case, solving the problem 
requires respecifying the problem so that the most important constraints are 
fulfilled and other are compromised. 

Consider, for example, the meal planner in the initial example. She must 
satisfy the likes and dislikes of her guests, must keep the meal inexpensive, must 
make the meal hearty, and must use tomatoes. In addition, she must make the 
main and side dishes compatible with each other, must not repeat major ingre- 
dients across dishes, must make the appetizer complement the rest of the meal, 
etc. Many different meals would do this. For example, vegetarian lasagne would 
work as a main dish if one tray were made with tofu instead of cheese. And any 
number of side dishes and appetizers would complement it. Several other pasta 
dishes would also suffice as main dishes, each with any number of side dishes 
and appetizers to complement it. A combination of main dishes, one of which 
would satisfy the meat-and-potatoes people, another the vegetarians, etc., and 
complementary side dishes and appetizers would also work. With so many 
options, where should the planner begin? 

Suppose now that this meal planner remembers a meal she served to a large 
group of people. It was easy to make in large quantities, inexpensive, hearty, 
and used tomatoes. In that meal, she served antipasto, lasagne, a large green 
salad, and garlic bread. Only this time, she has vegetarians coming for dinner 
and one guest is allergic to milk products. The lasagne can be adapted to better 
fit the new situation by taking out the meat. The antipasto can be adapted by 
substituting tuna for the meat. This will satisfy all constraints except the one 
specifying that one guest doesn't eat dairy products. The meal can be further 
adapted such that in one tray of lasagne, tofu cheese substitute is used instead 
of cheese. This adaptation of the old menu is now suitable for the new situation. 

This is an example of an underconstrained problem. The constraints provide 
guidelines but don't point the reasoner toward a particular answer. In addition, 
the search space is huge, and while there are many answers that would suffice, 
they are sparse enough within the search space that standard search methods 
might spend a long time finding one. Furthermore, the problem is too big to 
solve in one chunk, but the pieces of the problem interact with each other in 
strong ways. Solving each of the smaller pieces of the problem in isolation and 
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putting it all back together again would almost always violate the interactions 
between the parts. 

For these kinds of problems, which I like to call hardly decomposable, cases 
can provide the glue that holds a solution together. Rather than solving the 
problems by decomposing them into parts, solving for each, and recomposing 
the parts, as can be done with nearly-decomposable problems, a case suggests 
an entire solution, and the pieces that don't fit the new situation are adapted. 
While considerable adaptation might be necessary to make an old solution fit a 
new situation, this methodology is almost always preferable to generating a 
solution from scratch when there are many constraints and when solutions to 
parts of problems cannot be easily recomposed. In fact, engineering and 
architectural design is almost entirely a process of adapting an old solution to fit 
a new situation or merging several old solutions to do the same. 

Solving a problem by adapting an old solution allows the problem solver to 
avoid dealing with many constraints, and keeps it from having to break the 
problem into pieces needing recomposition. For example, the compatibility of 
the main and side dishes is never considered while solving the problem since 
the old case provides that. Nor are ease of preparation, expense, or heartiness 
considered in generating a solution. The old case provides solutions to those 
constraints also. The problem is never broken into parts that need to be recom- 
posed. Rather, faulty components are corrected in place. 

The other major role of cases in design, as for all problem solving tasks, is to 
point out problems with proposed solutions. When the meal planner remembers 
the meal where Anne didn't eat fish, it is warned of the potential that its 
proposed solution will fail. 

Several problem solvers have been built to do case-based design. JULIA 
(Kolodner 1987, Hinrichs 1988, Hinrichs 1989) plans meals, and the examples 
shown above are all among those JULIA has solved. CYCLOPS (Navinchandra 
1988) uses case-based reasoning for landscape design. KRITIK (Goel 1989, Goel 
and Chandrasekaran 1989) combines case-based with model-based reasoning 
for design of small mechanical assemblies. It uses case-based reasoning to 
propose solutions and uses the model to verify its proposed solutions, to point 
out where adaptation is needed, and to suggest adaptations. 

At least one design problem solver is being put to use in the real world. 
CLAVIER (Barletta and Hennessy 1989) is being used at Lockheed to lay out 
pieces made of composite materials in an oven to bake. The task is a apparently 
a black art, i.e., there is no complete causal model of what works and why. 
Pieces of different sizes need to be in particular parts of the oven, but the size 
of some pieces and density of a layout might keep other pieces for heating 
correctly. The person who was in charge of layout kept a card file of his 
experiences, both those that worked and those that didn't. Based on those 
experiences, CLAVIER can place pieces in appropriate parts of the oven and 
avoid putting pieces in the wrong places. It works as well as the expert whose 
experiences it uses, and is thus useful to Lockheed when the expert is unavail- 
able. CLAVIER almost always uses several cases to do its design. One provides 
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an overall layout, which is adapted appropriately. The others are used to fill in 
holes in the layout that adaptation rules by themselves cannot cover. 

One can also look at mediation as a kind of design in which the problem 
specification is overconstrained rather than underconstrained. In mediation, two 
adversaries have conflicting goals. It is impossible to fulfill the entire set of goals 
of either side. The role of the mediator is to derive a compromise solution that 
partially achieves the goals of both adversaries as well as possible. 

In solving overconstrained problems, the design specifications must be 
respecified while solving the problem. When overconstrained problems are 
solved by constraint methods, many different ways of relaxing constraints must 
usually be attempted before settling on a set that work. When case-based 
reasoning is used, a close solution to the constraint relaxation problem is 
provided by the remembered case, and it is adapted. MEDIATOR (Simpson 
1985, Kolodner and Simpson 1989), the earliest case-based problem solver, 
solved simple resource disputes, e.g., two children wanting the same candy bar 
or two faculty members wanting to use the copy machine at the same time. 
PERSUADER (Sycara 1987) solved labor management disputes. In generating 
solutions to new labor-management disputes, PERSUADER first applied parame- 
ter adjustment strategies to the best old solution it remembered to make 
relatively easy changes in an old contract, the kind that must be made all the 
time, e.g., cost of riving adaptations. This resulted in a ballpark solution. It then 
applied special purpose critics to evaluate the ballpark solution in order to 
identify more specialized problems with an old contract, e.g., to recognize 
whether or not the company could afford the contract. It then adapted the 
ballpark solution appropriately either by using an adaptation strategy suggested 
by another case, or by applying another specialized set of critics. Finally, it used 
another special purpose set of critics to adapt the solution in order to com- 
pensate for any changes that upset the equity of the old solution. 

In almost all design problems, more than one case is necessary to solve the 
problem. Design problems tend to be large, and while one case can be used to 
solve some of it, it is usually not sufficient for solving the whole thing. In 
general, some case provides a framework for a solution and other cases are 
used to fill in missing details. In this way, decomposition and recomposition are 
avoided, as are large constraint satisfaction and relaxation problems. 

1.1.2. CBR for planning 
Planning is the process of coming up with a sequence of steps or schedule for 
achieving some state of the world. The state that must be achieved may be 
designated in concrete terms, as in e.g., designating the end state for the Tower 
of Hanoi problem (configure the game board such that disk 1 is on top of disk2 
is on top of disk3 and all are on peg3) or describing the end result of making a 
delivery (the box labeled 'Klein' should be on the Klein driveway). Or it can be 
designated in terms of constraints that must be satisfied, as in e.g., scheduling 
the gates at an airport (each flight should be assigned a gate, no two flights 
should be at a gate at once, no on-time flight should have to wait for a gate . . . .  ). 
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In the first case, the end product of the planning process is a set of steps. In the 
second, the end product is a schedule or state of the world, but a planning 
process must be used to create it. 

An early case-based planner was CHEF (Hammond 1989a). CHEF created 
new recipes based on those it already knew about. For example, in creating a 
recipe that combined beef and broccoli, it remembered its recipe for chicken 
and snow peas and adapted that recipe appropriately. First, beef was substituted 
for chicken and broccoli for snow peas. Then, the set of steps used to create 
chicken and snow peas was fixed. Since beef has no bone, the deboning step 
was deleted. Since broccoli takes longer to cook than snow peas, the time 
designation was changed in the stepwhere the vegetable was cooked. 

There are many problems that must be dealt with in planning. First is the 
problem of protections. Good plans are sequenced, whenever possible, such 
that late steps in the plan don't undo the results of earlier steps and so that 
preconditions of late steps in the plan are not violated by the results of earlier 
steps. (See Charniak and McDermott (1985) for an excellent explanation of 
these problems.) This requires that the effects of plan steps be projected into 
the future (the rest of the plan). Second is the problem of preconditions. A 
planner must make sure that preconditions of any plan step are fulfilled before 
scheduling that plata step. Thus, planning involves scheduling steps that achieve 
preconditions in addition to scheduling major steps themselves. These two 
problems together, when solved by traditional methods, require considerable 
computational effort. As the number of plan steps increases, the computational 
complexity of projecting effects and comparing preconditions increases expo- 
nentially. 

Case-based reasoning deals with these problems by providing plans that have 
already been used and in which these problems have already been worked out. 
The planner is required only to make relatively minor fixes in those plans rather 
than having to plan from scratch. A recipe, for example, provides an ordering of 
steps that plans for and protects preconditions of each of its steps. 

Case-based reasoning also suggests solutions to more complex planning 
problems. (See Marks, Hammond, and Converse (1989) for a nice explanation 
of these problems.) For example, in the real world, the number of goals compet- 
ing for achievement at any time is quite high, and new ones are formed in the 
normal course of activity. If we try to achieve each one independently of the 
others, then planning and execution time are at least the sum of achieving each 
one, and probably more because of interactions. If a planner can notice the 
possibility of achieving several goals simultaneously or in conjunction with each 
other, this complexity can be cut significantly. Case-based reasoning provides a 
method for doing this. Previously-used plans are saved and indexed by the 
conjunction of goals they achieve. If the conjunct of goals is repeated, the old 
plan that achieves them together can be recalled and repeated. 

Another set of complexities that crop up in planning come from dealing with 
the relationship between planning and execution in a realistic way. While the 
traditional view of planning, as suggested above, was that a planner would 
create a plan (sequence of steps) to be executed later, the newer view of 
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planning says that planning and execution must be combined, That is, we cannot 
expect a well-thought-out sequence of steps to work when executed in the real 
world. There are several reasons for this. First, it is unrealistic to think that all 
knowledge needed to plan well is known at the start of planning -- we often find 
things out as we go along, and some things we never know for sure. Second, the 
world is unpredictable. Unexpected interruptions crop up (e.g., a fire alarm 
rings in the middle of doing some task). Agents who were unknown at the time 
of planning change things in an unexpected way (e.g., someone buys all the nails 
of a particular kind that you needed for your plan and they are unavailable). 
And we can't predict the actions of known agents all the time (e.g., someone 
else in the family got hungry for chocolate and ate the chocolate chips you were 
planning to use in your baking). In general, conditions in the world can change 
between coming up with a plan and carrying it out. 

This requires that our planners be able to put off at least some planning until 
execution time when more is known and that they be able to do execution-time 
repairs on already-derived plans that cannot be carried out. In addition, if the 
planner can anticipate execution-time problems, fewer repairs will have to be 
done at execution time. 

Case-based reasoners are addressing many of these issues. PLEXUS (Alterman 
1988), a program that knows how to ride a subway, is able to do execution-time 
repairs by adapting and substituting semantically-similar steps for those that 
have failed. For example, when riding the New York subway, having ridden 
BART in the past, PLEXUS expects to find a machine to buy a ticket from. When 
it doesn't see one, it finds another plan that would achieve the same purpose as 
buying a ticket from a machine. It does this by finding an appropriate sibling or 
close cousin of the violated plan step in its semantic network. It attempts to 
substitute another ticket-buying plan it knows about, buying tickets from a 
cashier (as is done to get into the movies). It adapts that plan by substituting 
token for ticket, since it is a token that is necessary in the New York subway. 

CHEF (Hammond 1989a) addresses the problem of anticipating problems 
before execution time by learning from its problematic experiences. When 
problems happen at execution time, CHEF attempts to explain them and then to 
figure out how they could be repaired. It stores its hypothesized repair in 
memory, and indexes the case by features that are likely to predict that the 
problem will recur, Before it begins plan derivation, it looks for failure situa- 
tions and uses any it finds to anticipate the problems they point out. Later, it 
uses the repaired failure situations to suggest a plan that will avoid the problem 
it has anticipated. Once, for example, CHEF created a strawberry souffle by 
modifying a receipt for a vanilla souffle. When it made the strawberry souffle, 
the souffle did not rise. It explained the failure to rise as an imbalance in the 
amount of leavening and liquid with too much liquid. Since one way to get rid 
of extra liquid is to pour it off, it hypothesized that had it poured off the extra 
liquid created when the strawberries were pulped, the souffle would have risen. 
It indexed the whole case as a souffle with fruit. The next time it attempted to 
make a souffle with fruit, it remembered this case before attempting planning, 
warning it of the potential for an imbalance between liquid and leavening. 
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During planning, the repaired strawberry souffle recipt suggested pouring off 
the liquid created by pulping the fruit. 

Other case-based planners address other of these problems. TRUCKER (Ham- 
mond 19891a) is an errand running program that keeps track of its pending 
goals and is able to take advantage of opportunities that arise that allow it to 
achieve goals earlier than expected. MEDIC (Turner 1989) is a diagnosis pro- 
gram. It is able to reuse previous plans for diagnosis but is flexible enough in its 
reuse to be able to follow up on unexpected turns of events. Thus, if it is 
tracking down a pulmonary complaint and the patient offers information about 
a heart condition that it had not known about previously, MEDIC analyzes which 
i s  more important to follow up. If it turns out the heart problem is more 
important, MEDIC will interrupt its current diagnosis plan and move to the 
more appropriate one, and will return to the original one if appropriate later. 
EXPEDITOR plans the events in the life of a single parent who must deal with 
kids and work. It caches its experiences achieving multiple goals by interleaving 
them. While it is slow in its initial planning, it gains competence over time as it 
is able to reuse its plans. Finally, the CSI BATTLE PLANNER (Goodman 1989) 
shows how cases can be used to criticize and repair plans before they are 
executed. 

1.1.3. CBR for diagnosis 
In diagnosis, a problem solver is given a set of symptoms and asked to explain 
them~ When there are a small number of possible explanations, one can view 
diagnosis as a classification problem. When the set of explanations cannot be 
enumerated easily, we can view diagnosis as the problem of creating an explana- 
tion. A case-based diagnostician can use cases to suggest explanations for 
symptoms and to warn of explanations that have been found to be inappro- 
priate in the past. The following example is from an early case-based reasoning 
project called SHRINK (Kolodner and Kolodner 1987), designed to be a psy- 
chiatric diagnostician. 

A psychiatrist sees a patient who exhibits clear signs of Major Depression. The patient also 
reports, among other things, that she recently had a stomach problem that doctors could find 
no organic cause for. While random complaints are not usually given a great deal of attention 
in psychiatry, this time the doctor is reminded of a previous case in which he diagnosed a 
patient for Major Depression who also complained of a set of physical problems that could 
not be explained organically: Only later did he realize that he should also have taken those 
complaints into account; he then made the diagnosis of Somatization Disorder with Secondary 
Major Depression. Because he is reminded of the previous case, the psychiatrist hypothesizes 
that this patient too might have Somatization Disorder with Depression secondary to that and 
follows up that hypothesis with the appropriate diagnostic investigation. 

Here the doctor uses the diagnosis from the previous case to generate a hy- 
pothesis about the diagnosis in the new case. This hypothesis provides the 
doctor with a reasoning shortcut and also allows him to avoid the mistake made 
previously. In addition, the hypothesis from the previous case causes him to 
focus his attention on aspects of the case that he would not have considered 
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otherwise: the unexplainable physical symptoms associated with Somatization 
Disorder. 

Of course, one cannot expect a previous diagnosis to apply intact to the new 
case. Just as in planning and design, it is often necessary to adapt an old 
diagnosis to fit a new situation. CASEY (Koton 1988) was able to diagnosis heart 
problems by adapting the diagnoses of previous heart patients to new patients. 

For example, when CASEY was trying to diagnose a patient Newman, it was 
reminded of another patient David. While both shared many symptoms, there 
were also differences between them. Newman, for example, had calcified heart 
valves and syncope on exertion, while David did not. CASEY adapted the 
diagnosis for David to account for these differences. Newman's aortic valve 
calcification was inserted as a additional evidence for aortic valve disease, his 
syncope was inserted as additional evidence for limited cardiac output, and 
mitral valve disease was added to the diagnosis. 

CASEY is a relatively simple program built on top of an existing model-based 
diagnostic program. When a new case is similar to one it has seen previously, it 
is several orders of magnitude more efficient at generating a diagnosis than is 
the model-based program (Koton 1988). And, because its adaptations are based 
on a valid causal model, its diagnoses are as accurate as those made from 
scratch based on the same causal model. 

Cases are also useful in diagnosis in pointing the way out of previously- 
experienced reasoning quagmires. While this normally happens as a side effect 
of SHRINK's and CASEY's reasoning, PROTOS (Bariess 1989) is designed to 
ensure that this happens in an efficient way. PROTOS diagnoses hearing dis- 
orders. In this domain, many of the diagnoses manifest themselves in similar 
ways, and only subtle differences differentiate them. A novice is not aware of 
the subtle differences: experts are. PROTOS begins as a novice, and when it 
makes mistakes, a 'teacher" explains its mistakes to it. As a result, PROTOS learns 
these subtle differences. As it does, it leaves difference pointers in its memory 
that allow it to move easily from the obvious diagnosis to the correct one. In 
one problem it worked on. for example PROTOS thought that its new case was 
an instance of cochlear-age. When it examined the most prototypical case of 
cochlear-age, however, it was not a very good match. However, it there was a 
difference link labeled notch-at-4k connecting that case to another case whose 
diagnosis was cochlear-age-and-noise. Since the new case had the feature notch- 
at-4k, it followed that link, found a case very similar to its new one, and was 
able to make a valid diagnosis first time around. 

Generating a diagnosis from scratch is a time-consuming task. In almost all 
diagnostic domains, however, there is sufficient regularity for a case-based 
approach to diagnosis generation to provide efficiency. Of course, the diagnos- 
tician cannot assume that a case-based suggestion is the answer. The case-based 
suggestion must be validated. Often, however, validation is much easier than 
generation. In those kinds of domains, case-based reasoning can provide big 
wins. 
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1.1.4. CBR for explanation 
Explaining anomalies is prevalent in all of our problem solving and under- 
standing activities as people. If we read in the paper about a plane crash, we try 
to explain why it happened. If we fall at something we are doing, we try to 
explain what went wrong so we won't repeat it. If we hear of someone doing 
something unexpected, we try to explain it. Explanation has been called the 
credit assignment problem and the blame assignment problem, depending on 
whether one is explaining a success or a failure. In general, it is the problem of 
zeroing in on or identifying what was responsible for something that happened. 
It is a problem that the AI world has been grappling with for some time. 

A case-based approach to explanation (Schank, 1986) says that one can 
explain a phenomenon by remembering a similar phenomenon, borrowing its 
explanation, and adapting it to fit. The SWALE (Kass and Leake 1988) program 
does just that. When it hears that Swale, a racehorse in the prime of its life, died 
in its stall, it remembers several similar situations, each of which allows it to de- 
rive an explanation for the Swale case. When it remembers Jim Fixx dying of a 
heart attack after a run, it considers whether Swale had just been out for a run 
and if he had a heart condition that his owners had been unaware of. When it 
remembers Jams Joplin, it considers whether Swale was taking illicit drugs. 
Some explanations it can derive in this way are more plausible than others and 
some require more adaptation than others. For example, in considering the 
Janis Joplin explanation, it must also come up with someone who wanted Swale 
to have the drugs (Joplin wanted them herself, but a horse can't) and a reason 
why that person would want Swale to have the drugs. This requires quite a bit 
more inference than an explanation based on the Jim Fixx experience. 

Thus, case-based explanation requires a retrieval mechanism that can retrieve 
similar cases, an adaptation mechanism that must be quite creative, and a 
validation mechanism that can decide if a proposed explanation has any merit. 

1.2 Interpretive CBR 

Interpretive case-based reasoning is a process of evaluating situations or solu- 
tions in the context of previous experience. It takes a situation or solution as 
input, and its output is a classification of the situation, an argument supporting 
the classification or solution, and/or  justifications supporting the argument or 
solution. It is useful for situation classification, evaluation of a solution, argu- 
mentation, justification of a solution, interpretation, or plan, and projection of 
effects of a decision or plan. 

Supreme Court justices use interpretive case-based reasoning when they 
make their decisions. They interpret a new case in light of previous cases. Is this 
case like the old one? How is it the same? How is it different? Suppose we 
interpret it in some way, what are its implications. Lawyers use interpretive 
case-based reasoning when they use cases to justify arguments. 

People on the street use interpretive case-based reasoning every day. The 
child who says, 'But you let sister do it', is using a case to justify his/her argu- 
ment. Managers making strategic decisions base their reasoning on what's been 
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true in the past. And we often use interpretive case-based reasoning to evaluate 
the pros and cons of a problem solution. An arbitrator, for example, who has 
just come up with a salary for a football player, might look at other players with 
similar salaries to judge if this new salary is consistent with other salary deci- 
sions. A battle planner might look at battles where strategies similar to the one 
he has just chosen were used to project the effects of his chosen strategy. 

Interpretive case-based reasoning is most useful for evaluation when there 
are no computational methods available to evaluate a solution or position. 
Often, in these situations, there are so many unknowns that even if computa- 
tional methods were available, the knowledge necessary to run them would 
usually be absent. A reasoner who uses cases to help evaluate and justify 
decisions or interpretations is making up for his lack of knowledge by assuming 
that the world is consistent. 

We briefly discuss three tasks where interpretive case-based reasoning is 
useful: justification, interpretation, and projection. In justification, one shows 
cause or proof of the tightness of an argument, position, or solution. In inter- 
pretation, one tries to place a new situation in context. Projection means 
predicting the effects of a solution. All of these tasks share the common thread 
of argumentation. Some cases will support one interpretation or effect. Others 
will support a different one. The reasoner must compare and contrast the cases 
to each other to finally come up with a solution. 

1.2.1. Justification and adversarial reasoning 
Adversarial reasoning means making persuasive arguments to convince others 
that we or our positions are fight. Lawyers argue adversarially on a day to day 
basis. So do the rest of us as we try to convince others of our position on some 
issue. We also argue adversarily with ourselves when trying to convince our- 
selves of the quality or utility of some solution we have just derived. In making a 
persuasive argument, we must state a position and support it, sometimes with 
hard facts and sometimes with valid inferences. But often the only way to justify 
a position is by citing relevant previous experiences or cases. 

The American legal system is a case-based system. There are many rules, but 
each has terms that are underspecified and many contradict each other. The 
definitive way of interpreting laws is to argue based on cases. Law thus provides 
a good domain for the study of adversarial reasoning and case-based justifica- 
tion. Much of the work in this area is in the legal domain (Rissland 1983, Bain 
1986, Ashley 1987, 1988, Branting 1989,). 

HYPO (Ashley, 1988, Rissland and Ashley 1987) is the earliest and most 
sophisticated of the case-based legal reasoners. HYPO's methods for creating an 
argument and justifying a solution or position has several steps. First, the new 
situation is analyzed for relevant factors. Based on these factors, similar cases 
are retrieved. They are positioned with respect to the new situation. Some 
support it and some are against it. The most on-point cases of both sets are 
selected. The most on-point case supporting the new situation is used to create 
an argument for the proposed solution. Those in the non-support set are used 
to pose counter-arguments. Cases in the support set are then used to counter 
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the counter-arguments. The result of this is a set of three-ply arguments in 
support of the solution, each of which is justified with cases. An important side 
effect of creating such arguments is that potential problem areas get highlighted. 

Consider, for example, a non-disclosure case that HYPO argued, 1 John Smith 
had developed a structural analysis program called N1ESA while an employee of 
SDRC. He had generated the idea for the program and had been completely re- 
sponsible for its development. When joining SDRC, he had signed an Employee 
Confidential Information Agreement in which he agreed not to divulge or use 
any confidential information. Upon leaving SDRC, he went to work for EMRC 
as VP for engineering. Eleven months later, EMRC began marketing a structural 
analysis program called NIESA, Smith had used his development notes from 
SDRC's NIESA program in developing the new program. SDRC had disclosed 
parts of the NIESA code to some fifty customers. Now, SDRC is suing John Smith 
for violations of the non-disclosure agreement. 

HYPO is arguing for the defendant (SDRC). It uses the factors present in this 
case to pose a set of questions that must be answered: Did disclosure of NIESA 
code to 50 customers annul John Smith's non-disclosure agreement? Did the 
fact that Smith was the sole developer annul the non-disclosure agreement? 
Several cases are recalled, and an argument is made based on Midland-Ross v. 
Sunbeam that, since the plaintiff disclosed its product information to outsiders, 
the defendant should win a claim for trade secrets misappropriation. However, 
a counter-argument can be created based on differences between the two cases. 
In the Midland-Ross case, there was disclosure to many more outsiders, and the 
defendant received something of value for entering into the agreement. This 
point can be supported by Data General v. Digital Computer, where the 
plaintiff won, even though it had disclosed to more outsiders than in the 
Midland-Ross case. However, a rebuttal is made based on that case. In that case 
the defendant won because the disclosures were restricted. In this case, dis- 
closure was to the sole developer of the new product. 

We see similar argumentation and justification in day-to-day argumentation. 
For example,: we would expect an almost-thirteen year old who is told by his 
parents that he cannot to go see a midnight showing of Little Shop of Horrors to 
use all the cases at his disposal to plead his case. If his friend, who is already 13, 
is allowed to see it, he will cite that case in his favor. If his sister has been 
allowed to go at midnight to see it, he will cite that. And as his parents give their 
arguments, he will use other cases to counter those. 

In general, cases are useful in constructing arguments and justifying positions 
when there are no concrete principles or only a few of them, if principles are 
inconsistent, or if their meanings are not well-specified. 

1.2.2. Classification and interpretation 
Is swordfish a fish Anne will eat or isn't it? This is the interpretive question the 
reasoner in the example at the beginning of this chapter must face. In general, 
interpretation in the context of case-based reasoning means deciding whether a 
concept fits some open-ended or fuzzy-bordered classification. The classifica- 
tion might be derived on the fly (e.g., types of fish Anne will eat) or it might be 
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well-known but not well-defined in terms of necessary, and sufficient conditions. 
Many of the classifications we assume are defined are classifications of the 
open-ended variety. For  example, we assume that a vehicle means a thing with 
wheels used for transportation, but when a sign says ~No vehicles in the park',  it 
is probably not referring to a wheelchair or a baby stroller, both of which fit our  
simple definition. Making such distinctions is much of what lawyers are asked to 
do everyday. Similarly, when a physician must determine if someone is schizo- 
phrenic or an audiologist must determine if someone has a particular hearing 
disorder, the recognition process is fraught with ambiguity. There are many 
ways schizophrenia can show itself, and necessary and sufficient conditions 
don't  say how to deal with the borderline cases. And, as we see in the swordfish 
example, we are called on to do interpretive reasoning quite often as we do our 
everyday common-sense tasks. 

One way a case-based classifier works is to ask whether the new concept is 
enough like another one known to have the target classification. PROTOS 
(Bareiss, 1989), which diagnoses hearing disorders, works like this? Rather 
than classifying new cases using necessary and sufficient conditions, PROTOS 
does classification by trying to find the closest matching case in its case base to 
the new situation. It classifies the new situation by that case's classification. To 
do this, PROTOS keeps track of how prototypical each of its cases is and what 
differentiates cases within one classification from each other. It first chooses a 
most  likely classification, then chooses a most likely matching case in that class. 
Based on differences between the case it is attempting to match and the new 
situation, it eventually zeros in on a case that matches its new one well. 

When no case matches well enough, it is sometimes necessary to consider 
hypothetical situations. Much of the work on this type of interpretation comes 
from the study of legal reasoning. Suppose, for example, that a lawyer must 
argue that his client was not guilty of violating a nondisclosure agreement 
because the only one he disclosed to was not technically competent to copy it. 
There may be several cases that justify this argument. To test it, one might 
create hypothetical cases that go beyond the real cases in testing boundaries. 
One might propose a situation where the person disclosed to was not technical 
but was president of a company with technical personnel. Another  hypothetical 
might be one in which the person disclosed to was not technical, but his wife, 
who he disclosed to, was. Interpretation based on hypothetical cases helps in 
fine-tuning an argument for or against a particular interpretation. 

This is what HYPO (Rissland 1986, Ashley 1987) does. HYPO is the earliest 
and most sophisticated of the interpretive case-based reasoners. HYPO uses 
hypotheticals for a variety of tasks necessary for good interpretation: to redefine 
old situations in terms of new dimensions, to create new standard cases when a 
necessary one doesn't  exist, to explore and test the limits of reasonableness of a 
concept, to refocus a case by excluding some issues, to tease out hidden 
assumptions, and to organize or cluster cases. HYPO creates hypotheticals by 
making 'copies'  of a current situation that are stronger or weaker than the real 
situation for one side or the other. This work is guided by a set of modification 
heuristics that propose useful directions for hypothetical case creation based on 
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current reasoning needs. HYPO's strategies for argumentation guide selection of 
modification heuristics. For example, to counter a counterexample, one might 
propose variations on a new situation that make it more like the counterexample. 

When a concept is being created on the fly, interpretation requires an 
additional ~tep: derivation of a set of defining features for a category. For 
example, to decide if Anne will eat swordfish, one must first attempt to charac- 
terize what makes a fish Anne will eat acceptable. Otherwise, the basis for 
comparing swordfish to other fish she will eat cannot be known. Mahi-mahi, a 
fish she has eaten, is meat-like. Trout, which she won't eat, looks like fish. These 
are the dimensions we need to use in determining if swordfish is in the category. 
It is easy for us to determine what those dimensions are, but getting a computer 
to do it automatically is a challenge equivalent to the credit assignment problem. 

1.2.3. Projecting effects 
Projection, the process of predicting the effects of a decision or plan, is an 
important part of the evaluative component of any planning or decision making 
scheme. When everything about a situation is known, projection is merely a 
process of running known inferences forward from a solution to see where it 
leads. More often, however, in real-world problems, everything is not known 
and effects cannot be predicted with accuracy based on any simple set of 
inference rules. 

Consider, for example, a battlefield commander who must derive a strategy 
for an upcoming battle. Doctrine provides a set of rules for doing battle, and 
they can be used to create a first approximation of a battle plan. But doctrine 
gives rules for situations in general, not for particular situations in which the 
troops are tired, the strategies of the enemy commander are well-known, it's 
been raining for a week, or the mountains are shaped in a way that allows a trap 
to be laid. In battlefield planning, as in many other situations, the little details of 
a situation are important to the worthiness of a plan. There are many details 
that could be attended to, and only some are important. And, as in other 
adversarial situations, it is impossible to know everything about the other side, 
predict all of their strategies, or predict all of their reactions or counterplans. 
Yet a good plan must be created, and it must be evaluated based on projected 
effects. 

Cases provide a way to projecting effects based on what has been true in the 
past. Cases with similar plans that were failures can point to potential plan 
problems. If a previous plan similar to the currently proposed one failed 
because the troops were too tired, for example, the commander is warned to 
evaluate whether his troops are too tired, and if so, knows to fix his strategy to 
take that into account. He might change the plan so that tiredness will not be a 
factor, give his troops a rest, or get fresh troops in for the battle. Cases with 
similar plans that were successes give credence to the current plan. In addition, 
when parts of a plan are targeted for evaluation, cases can help with that. The 
effects of using a particular kind of trap, for example, can be evaluated by 
recalling another case where a similar trap was used. 

Automated use of cases for projection has not been a focus of case-based 
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reasoning research, but aid to a person doing projection is being addressed. 
c s r s  BATTLE PLANNER (Goodman, 1989) is a case-retrieval system whose 
interface is set up to allow a person to use cases to project effects. A student 
commander can propose a solution plan to the system. The BATTLE PLANNER 
retrieves the best-matching cases that use a similar plan and divides them into 
successful and failure situations. The person can examine the cases, use them to 
fix his plan, and then attempt a similar evaluation of the repaired plan. Or, the 
person can use the system to do a sensitivity analysis. By manipulating the 
details of his situation and looking at the changes in numbers of wins and losses 
(in effect, asking a series of 'what-if' questions), he can determine which factors 
of the current situation are the crucial ones to repair. 

Projection is one of the most important bottlenecks facing the planning 
community today. A real-world planner must be able to project effects of plan 
steps to interleave tasks with each other, to plan late steps in a plan before 
earlier ones are executed, and to set up contingencies. Case-based reasoning has 
much to contribute to solving this problem, but effort so far has gone into 
helping a person use cases to do projection, and little effort has gone into 
automating the projection process to date. 

1.2.4. lnterpretive case-based reasoning and problem solving 
Much work on interpretation has centered on the law domain and has looked at 
justifying an argument for or against some interpretation of the law. One should 
not walk away from this discussion, however, with the impression that case- 
based interpretation is merely for interpretive problems. On the contrary, it has 
much usefulness as part of the evaluative or critical component of problem 
solving and decision making whenever strong causal models are missing. 
Though there has been tittle work in the area, the processes involved in inter- 
pretative case-based reasoning have the potential to play several important roles 
for a problem solver. First, if the framework for a solution is known, or if 
constraints governing it are known, these methods could be used to choose 
cases that would provide such a solution. Second, argument creation and 
justification result in knowledge of what features are the important ones to 
focus on. Knowing where to focus is important in problem solving also. Third, a 
side effect of HYPO's methods is that it can point out which features, if they 
were present, would yield a better solution. It does this by keeping track of 
near-miss dimensions and creation of hypothetical cases. A problem solver 
could use such information to inform its adaptation processes. Finally, interpre- 
tive methods can be used to predict the usefulness, quality, or results of a 
solution. 

2, CBR AND LEARNING 

Case-based reasoning is a methodology for both reasoning and learning. A case- 
based reasoner learns in two ways. First, it can become a more efficient reasoner 
by remembering old solutions and adapting them rather than having to derive 
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answers from scratch each time. If a case was adapted in a novel way, if it was 
solved using some novel method, or if it was solved by combining the solutions 
to several cases, then when it is recalled during later reasoning, the steps 
required to solve it won't need to be repeated for the new problem. Second, a 
case-based reason becomes more competent over time, deriving better answers 
than it could with less experience. One of case-based reasoning's fort6s is in 
helping a reasoner to anticipate and thus avoid mistakes it has made in the past. 
This is possible because it catches problem situations, indexing them by features 
that predict its old mistakes. Remembering such cases during later reasoning 
provides a warning to the reasoner of problems that might come up, and the 
reasoner can work to avoid them. 

Within AI, when one talks of learning, it usually means the learning of gener- 
alizations, either through inductive or explanation-based means. While the 
memory of a case-based reasoner notices similarities between cases and can 
therefore notice when generalizations should be formed, inductive formation of 
generalizations is responsible for only some of the learning in a case-based 
reasoner. Case-based reasoning achieves much of its learning in two other ways: 
through the accumulation of new cases and through the assignment of indexes. 
New cases give the reasoner more familiar contexts for solving problems or 
evaluating situations. A reasoner whose cases cover more of the domain will be 
a better reasoner than one whose cases cover less of the domain. One whose 
cases cover failure as well as successful instances will be better than one whose 
cases cover only successful situations. New indexes allow a reasoner to fine tune 
its recall apparatus so that it remembers cases at more appropriate times. 

That is not to say that generalization is not important. Indeed, the cases a 
case-based reasoner encounters give it direction in the creation of appropriate 
generalizations, i.e., those that can be useful to its task. How can that work? 
When several cases are indexed the same way and all predict the same solution 
or all can be classified the same way, the reasoner knows that a useful gener- 
alization can be formed. In addition, the combination of indexes and predicted 
solution or classification also give the reasoner guidance in choosing the level of 
abstraction of its generalizations. Some case-based reasoners use only cases, 
others use a combination of cases and generalized cases. Even when a case- 
based reasoner does not use generalizations to reason, they are useful in helping 
the reasoner organize its cases. And, one can think of the generalization process 
as a way of evolving useful rules from cases that a rule-based reasoner could 
use. Rules could be used when they matched cases exactly, while cases would be 
used when rules were not immediately applicable. 

3. PROCESSES AND ISSUES 

The traditional view of reasoning in both artificial intelligence and cognitive 
psychology has been that the reasoner is handed a problem, and by composing 
and instantiating abstract operators, he is able to solve it. As the examples have 
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shown, the case-based reasoning paradigm takes a different approach. Rather 
than viewing reasoning as primarily a composition process, we view it as a 
process of remembering one or a small set of concrete instances or cases and 
basing decisions on comparisons between the new situation and the old in- 
stance. 

As we have seen, cases are used in two very different ways during reasoning. 
They provide ballpark solutions that are adapted to fit a new situation, and they 
provide concrete evidence for or against some solution that drives a criticism or 
evaluation procedure. Case-based reasoning is thus a process of ' remember a 
case and adapt its solution' or ' remember a case and evaluate the new one based 
on its outcome'. 

The two styles of case-based reasoning arise through emphasis on one or the 
other of the two uses of cases. In problem solving situations, we tend to empha- 
size the use of cases to propose solutions; in interpretive situations (e.g., law), 
we tend to emphasize using cases for criticism and justification. As our exam- 
ples above show, however, the two styles are not completely disjoint. We use 
interpretive methodologies to criticize and justify a solution to a problem. And 
one might need to answer questions (solve problems) in order to interpret a 
situation. 

The major processes shared by reasoners that do case-based reasoning are 
case retrieval and case storage (also called memory update). In order to make 
sure that poor  solutions are not repeated along with the good ones, case-based 
reasoners must also evaluate their solutions. 

The two styles of case use, however, each require that different reasoning be 
done once cases are retrieved. In problem solving CBR, a ballpark solution to 
the new problem is proposed by extracting the solution from some retrieved 
case. This is followed by adaptation, the process of fixing an old solution to fit a 
new situation, and criticism, the process of evaluating the new solution before 
trying it out. In interpretive CBR, a ballpark interpretation or desired result is 
proposed, sometimes based on retrieved cases, sometimes imposed from the 
outside (as when a lawyer's client requires a certain result). This is followed by 
justification, the process of creating an argument for the proposed solution, 
done by a process of comparing and contrasting the new situation to prior 
cases, and criticism, the process of justifying the argument, done by generating 
hypothetical situations and trying the argument out on those. 

These steps are in some sense recursive. The criticize and adapt steps, for 
example, often require new cases to be retrieved. There are also several loops in 
the process. Criticism may lead to additional adaptation, so might evaluation. 
And when reasoning is not progressing well using one case, the whole process 
may need to be restarted from the top with a new case chosen. Figure 1 
summarizes their relationship. 

As we've shown in our examples, case-based reasoning is a natural reasoning 
process in people, and it has the potential to alleviate many of the complexity 
problems plaguing the AI endeavor. In order to build systems, however, there 
are several issues that must be addressed, many of them the same ones we must 
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Fig. 1. The case-based reasoning cycle. 

address to explain the reasoning people do. In the following sections, we give a 
short overview of each step and discuss the issues that must be addressed to 
explain it and make it work well on the computer. 

3.1. Case Retr ieval  

Remembering is the process of retrieving a case or set of cases from memory. In 
general, it consists of two substeps: 
• Recall previous eases. The goal of this step is to retrieve "good" cases that 

can support reasoning that comes in the next steps. Good cases are those that 
have the potential to make relevant predictions about the new case. Retrieval 
is done by using features of the new case as indexes into the case base. Cases 
labeled by subsets of those features or by features that can be derived from 
those features are recalled. 

• Select the best subset. This step selects the most promising case or cases to 
reason with from those generated in step 1. The purpose of this step is to 
winnow down the set of relevant cases to a few most-on-point candidates 
worthy of intensive consideration. Sometimes it is a appropriate to choose 
one best case, sometimes a small set is needed. 
One problem here is that sometimes two cases need to be judged similar 

even though they share few surface features. Football and chess strategies, for 
example, have much in common though the concrete features of the games are 
dissimilar. One is played on a board, the other on a field, one has pieces, the 
other people, one has teams competing with each other, the other individuals. 
What they have in common is more abstract features, shared by competitive 
games. There are two sides in opposition, each wants to win, each wants the 
other side to lose, both games involve planning and counterplanning, both 
involve positions on a playing field, though it is an actual field with people for 
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football and a board with pieces for chess. Nevertheless, you might expect a 
football expert who knows how to plan a fork to notice a potential fork situa- 
tion in a chess game he is playing and to plan a set of moves based on that. One 
way to deal with this problem is to use more than just the surface representation 
of a case for comparison. Cases must also be compared at more abstract levels 
of representation. The issue we must address is which of the abstract ways of 
representing a case are the right ones to use for comparisons (Birnbaum and 
Collins 1988, Collins 1987). 

Another problem is that a new situation and a case might share some 
derivable features while not sharing surface features. In predicting who will win 
a battle, for example, the ratio of defender strength to attacker strength is 
predictive but neither defender strength nor attacker strength by itself is. Cases 
need to be judged similar based on the ratio (a derived feature) rather than the 
individual values (surface features). Similarly in diagnosis. It is often the hy- 
pothesized disorders or conditions (derived features) that need to be compared 
in two cases to judge a current situation and previous case similar rather than 
the symptoms the patients manifest (surface features). The issue here is to come 
up with a way of generating derived features for cases in an efficient way. We 
need guidance in generating derived features because some are expensive to 
derive, and even if all were cheap, it would be expensive to generate all possible 
derived features of a case. 

And of course we need to derive fast retrieval algorithms for massive 
libraries of cases (Kolodner 1984, 1988b). 

These problems comprise what we have called the indexing problem. 
Broadly, the indexing problem is the problem of retrieving applicable cases at 
appropriate times (despite all the problems cited above). In general, it has been 
addressed as a problem of assigning labels, called indexes, to cases that desig- 
nate under what conditions each case can be used to make useful inferences. 
These labels have been treated much like indexes in a book. Old cases are 
indexed by those labels, one uses a new situation as a key into that index and 
traverses appropriate indexing paths to find relevant cases. Researchers are 
working on specifying what kinds of indexes are most useful, designating 
vocabularies for indexes, creating algorithms and heuristics for automating 
index choice, organizing cases based on those indexes, searching memory using 
those indexes, and choosing the best of the retrieved cases. The tension between 
using indexes to designate usefulness and direct search while at the same time 
not allowing them to overly dominate what can be recalled is one of the most 
important issues in case-based reasoning. 

3.2. Proposing a Ballpark Solution 

In this step, relevant portions of the cases selected during retrieval are extracted 
to form a ballpark solution to the new case. In problem solving, this step 
normally involves selecting the solution to the old problem, or some piece of it, 
as a ballpark solution to the new one. In interpretation, this step involves 
partitioning the retrieved cases according to the interpretations or solutions they 
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predict and, based on that, assigning an initial interpretation to the new prob- 
lem. Alternatively, the initial interpretation might be given (as when a lawyer 
needs to argue for his/her client). In that situation, there is no need for this step. 

For example, a problem solver attempting to plan a meal focuses on the meal 
plan of a re'called case and uses it as its ballpark solution. Or, if it is attempting 
to derive some piece of a meal plan, it focuses on the analogous piece in the old 
case. Thus, when JULIA is trying to design an easy-to-prepare and cheap meal 
for 20 people, if it remembers a meal where antipasto salad, lasagne, broccoli, 
and spumoni were served, that solution will be the ballpark solution after this 
step. When it is trying to choose a main dish, if it is reminded of the same case, 
lasagne (its main dish) will be its ballpark solution. 

An interpretive program, in this step, decides which of the possible inter- 
pretations to begin reasoning with. PROTOS, for example, in this step uses a 
coarse evaluation function to distinguish which of the many possible interpreta- 
tions proposed by the recalled cases is closest to its new case. HYPO, on the 
other hand, has its desired result given to it. Thus, its work doesn't actually 
begin until the next step. 

There are several issues that arise in constructing a ballpark solution. First is 
the question of how appropriate portions of an old case can be selected for 
focus. An old case could be quite large, and it is important that the parts of it 
with no relevance to the new situation don't get in the way. On the other hand, 
it is possible that seemingly unrelated parts of an old case can provide guide- 
lines. The best answer we have to this problem so far is twofold: First, the goals 
of the reasoner determine where to focus in the old case. The reasoner focuses 
attention on that part of the old case that was relevant to achieving the rea- 
soner's current goal in the past. Thus, if the reasoner is trying to derive a 
solution, focus is on the previous solution. If the reasoner is trying to derive a 
particular part of a solution, focus is on that part of the solution in the previous 
case. If the reasoner is trying to interpret a situation, its classification in the old 
case is the focus. Second, the internal structure of the old case, especially the 
dependencies between different parts of the case, tell the reasoner how to 
expand focus in relevant ways. Thus, when the reasoner focuses on the solution 
or classification in an old case, those features of the case that led to selection of 
that solution or classification are also in focus. 

Another issue has to do with how much work to do in this step before 
passing control to adaptation or justification processes. Often there are rela- 
tively easy and automatic, some would say c o m m o n - s e n s e ,  adaptations that can 
be made in an old solution before it undergoes the scrutiny of harder adaptation 
processes. For example, in labor mediation, adjustment of salary and other 
benefits based on cost of living is an expected adjustment. Such adjustments 
might also be made to old interpretations before creating arguments for them. 
Especially in interpretive reasoning, easy adjustments in this step before harder 
reasoning kicks in may be more advantageous than making adjustments after 
arguments have been mounted. This way, argumentation is based on a more 
realistic solution. 

A third issue has to do with choice of an interpretation in interpretive 
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reasoning. In programs that have been written to date, either the interpretation 
the program starts with is given or it is chosen doing a coarse evaluation of the 
alternatives. If one can get to the 'right' answer no matter where one starts, then 
choice of a first alternative is merely an efficiency issue. However, if all alterna- 
tives are not connected in some way, initial choice of a first alternative might 
impact accuracy. Thus, where to begin in doing interpretation is a real issue. 

3.3. Adaptation 

In problem solving CBR, old solutions are used as inspiration for solving new 
problems. Since new situations rarely match old ones exactly, however, old 
solutions must be fixed to fit new situations. In this step, called adaptation, the 
ballpark solution is adapted to fit the new situation. There are two major steps 
involved in adaptation: figuring out what needs to be adapted and doing the 
adaptation. 

Issues in adaptation arise from both steps. We start by considering adapta- 
tion itself. For any particular domain or task, we can come up with a set of 
adaptation strategies or heuristics. We can implement those and create a 
working system. This is rather ad hoc, however. One big question we must 
address is whether there is a general set of adaptation strategies that we can 
start with for any domain and that provide guidelines for defining specialized 
adaptation strategies. Taking the meat out of a recipe to make it vegetarian is a 
strategy specific to recipe adaptation, for example, but it is a specialization of a 
more general strategy that we call delete secondary component. This strategy 
states that a secondary component of an item can be deleted if it performs no 
necessary function. For each type of adaptation strategy, we must also designate 
the knowledge necessary for its application. 

Also important in adaptation is methodologies for noticing inconsistences 
between old solutions and new needs and, based on that, choosing what should 
be adapted. Some of the bookkeeping methods developed elsewhere in AI (e.g., 
reason-maintenance, constraint propagation) are useful here, but are used in 
much different ways than in their original formulations. 

3.4. Justification and Criticism 

In these steps, a solution or interpretation is justified, often before being tried 
out in the world. When all knowledge necessary for evaluation is known, one 
can think of this step as a validation step. However, in many situations, there 
are too many unknowns to be able to validate a solution. We can criticize 
solutions using all of the techniques of interpretive case-based reasoning. One 
way is to compare and contrast the proposed solution to other similar solutions. 
This requires a recursive call to memory processes in order to retrieve cases 
with similar solutions. For example, if there is an already-known instance of a 
similar situation failing, the reasoner must consider whether or not the new 
situation is subject to the same problems. Alternatively, if there is an already- 
known instance of a similar situation but the problem situations are very 
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different, the reasoner might consider whether the new situation was solved in a 
fair way. For example, in contract negotiations, a mediator might come up with 
a salary proposal and before proposing it look to see what other workers have 
similar salaries and whether the proposed salary fits current precedents. 

We might also propose hypothetical situations to test the robustness of a 
solution. Yet another way to criticize a solution is to run a simulation (coarse or 
high fidelity) and check the results. 

Criticism may require retrieval of additional cases and may result in the need 
for additional adaptation, this time called repair. 

Major issues here include strategies for evaluation using cases, strategies for 
retrieving cases to use in interpretation, evaluation, and justification; the genera- 
tion of appropriate hypotheticals and strategies for using them; and the assign- 
ment of blame or credit to old cases. 

3.5 Evaluation 

In this step, the results of reasoning are tried out in the real world. Feedback 
about the real things that happened during or as a result of executing the 
solution are obtained and analyzed. If results were as expected, further analysis 
is not necessary in this step, but if they were different than expected, explana- 
tion of the anomalous results is necessary. This requires figuring out what 
caused the anomaly and what could have been done to prevent it. Explanation 
can sometimes be done by case-based reasoning. 

This step is one of the most important for a case-based reasoner. It gives it a 
way of evaluating its decisions in the real world, allowing it to collect feedback 
that enables it to learn. Feedback allows it to notice the consequences of its 
reasoning. This in turn facilitates analysis of its reasoning and explanation of 
things that didn't go exactly as planned. This analysis, in turn, allows a reasoner 
both to anticipate and avoid mistakes it has been able to explain sufficiently and 
to notice previously unforeseen opportunities that it might have a chance to 
reuse. 

Evaluation is the process of judging the goodness of a proposed solution. 
Sometimes evaluation is done in the context of previous cases, sometimes it is 
based on feedback from the world, sometimes it is based on a mental or real 
simulation. Evaluation includes explaining differences (e.g., between what is 
expected and what actually happens), justifying differences (e.g., between a 
proposed solution and one used in the past), projecting outcomes, and compar- 
ing and ranking of alternative possibilities. The result of evaluation can be 
additional adaptation, or repair, of the proposed solution. 

3.6. Memory Update 

In this step, the new case is stored appropriately in the case memory for future 
use. A case is comprised of the problem, its solution, plus any underlying facts 
and supporting reasoning that the system knows how to make use of, and its 
outcome. The most important process that happens at this time is choosing the 
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ways to 'index' the new case in memory. Indexes must be chosen such that the 
new case can be recalled during later reasoning at times when it can be most 
helpful. It should not be over-indexed, since we would not want it recalled 
indiscriminately. This means that the reasoner must be able to anticipate the 
importance of the case to later reasoning. Memory's indexing structure and 
organization are also adjusted in this step. 

This problem shares all of its issues with the first: we must choose appro- 
priate indexes for the new case using the right vocabulary, and we must at the 
same time make sure that all other items remain accessible as we add to the 
case library's store. 

4. APPLICABILITY OF CASE-BASED REASONING 

4.1 Range of Applicability and Real- World Usefulnegs 

We start by considering why a doctor, or anybody else trained in the practice of 
making logical decisions, would make case-based inferences. After all, the 
doctor is trained to use facts and knowledge, and case-based reasoning looks 
like it is based on hearsay. The answer is simple. The doctor is trained to 
recognize disorders in isolation and to recognize common combinations of 
disorders, He also knows the etiology of disorders, i.e., how they progress. But 
he cannot be trained to recognize every combination of disorders, and the 
knowledge he has of disease processes is time consuming to use for generation 
of plausible diagnoses. If he has used his knowledge of disease process to solve 
a hard problem once, it makes sense to cache the solution in such a way that it 
can be reused. That is, once he has learned to recognize a novel combination of 
disorders, if he remembers that experience, he will be able to recognize it again, 
just as he recognizes more common combinations, without the difficult reason- 
ing necessary the first time. The logical medical judgment comes in later in 
deciding whether or not the patient does indeed have the proposed set of 
diseases. 

Similarly, we can't expect a computer program to be seeded with all the 
possible combinations of problems it might encounter. Nor can we expect it to 
have efficient algorithms for generating plausible solutions from scratch all the 
time. A model-based trouble shooting system, for example, might know very 
well how something functions. That doesn't necessarily mean that it can gener- 
ate solutions to problems easily, especially when more then fault could be 
possible at any time. Similarly, while a causal model may be helpful in verifying 
a design, it may not provide enough information to be able to generate designs 
in underconstrained or overconstrained situations. Just as case-based reasoning 
provides a way for people to generate solutions easily, it also provides a way for 
a computer program to propose solutions efficiently when previous similar 
situations have been encountered. This doesn't mean that causal reasoning is 
without merit. On the contrary, it must play the role that the medical doctor's 
logic plays after a solution is proposed. The causal-model-based system needs to 



28 J A N E T  L. K O L O D N E R  

work along with the case-based system to identify changes that must be made in 
an old solution, to ensure valid adaptations, and to verify proposed solutions. 
Indeed, CASEY (Koton 1988) and KRITIK (Goel and Chandrasekaran 1989) do 
just that, CASEY for the task of heart failure diagnosis and KRrrIK for design of 
simple mechanical objects. 

So case-based reasoning is useful to people and machines that know a lot 
about a task and domain because it gives them a way of reusing hard reasoning 
they've done in the past. It is equally useful, however, to those who know little 
about a task or domain. Consider, for example, a person who has never done 
any entertaining yet has to plan the meal specified in the introduction. His own 
entertaining experience won't help him. But if he has been to dinner parties, he 
has a place to start. If he remembered meals he'd been served under circum- 
stances similar to those he has to deal with, he could use one of those to get 
started. For example, if he could generate a list of large dinner parties he has 
attended, he could, for each one, figure out whether it was easy to make and 
inexpensive, and when he remembered one, adapt it to fit. 

Case-based reasoning is also useful when knowledge is incomplete and/or  
evidence is sparse. Logical systems have trouble dealing with either of these 
situations because they want to base their answers on what is well-known and 
sound. More traditional AI systems use certainty factors and other methods of 
inexact reasoning to counter these problems, all of which require considerable 
effort on the part of the computer and none of which seem intuitively very 
plausible. Case-based reasoning provides another method for dealing with 
incomplete knowledge. A case-based reasoner makes assumptions to fill in 
incomplete or missing knowledge based on what his experience tells him, and 
goes on from there. Solutions generated this way won't always be optimal, or 
even right, but if the reasoner is careful about evaluating proposed answers, the 
case-based methodology gives him a way to generate answers easily. 

While the advantages of case-based reasoning are easily evident when an old 
solution is fairly close to that needed in the new case, case-based reasoning also 
can provide advantage even if the old solution is far from what is needed. There 
are two possibilities. Those features of the remembered case that must be ruled 
out in the new situation can be added to its description and a new case recalled, 
or the recalled case can be used as a starting point for coming up with a new 
solution. When there is considerable interaction between the parts of a solution, 
then even if large amounts of adaptation are required to derive an acceptable 
solution, it may still be easier than generating a solution from scratch. And the 
case provides something concrete to base reasoning on. For many people, this is 
a preferred reasoning style. 

4.2. Advantages of CBR 

Case-based reasoning provides many advantages for a reasoner. 
• Case-based reasoning allows the reasoner to propose solutions to problems 

quickly, avoiding the time necessary to derive those answers from scratch. 
The doctor remembering an old diagnosis or treatment experiences this benefit. 
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While the case-based reasoner has to evaluate proposed solutions like any 
reasoner does, it gets a head start on solving problems because it can generate 
proposals easily. There is considerable advantage in not having to redo time- 
consuming computations and inferences. This advantage is helpful for almost all 
reasoning tasks, including problem solving, planning, explanation, and diagnosis. 
Indeed, evaluation of CASEY (Koton 1988) shows two orders of magnitude 
speedup when a problem had been seen in the past. 
• Case-based reasoning allows a reasoner to propose solutions in domains that 

he/she/it  doesn't understand completely. 
Many domains are impossible to understand completely, often because much 
depends on unpredictable human behavior, e.g., the economy. Others nobody 
understands yet, e.g., how some medications and diseases operate. Other times, 
we simply find ourselves in situations that we don't understand well, but in 
which we must act anyway, e.g., choosing which graduate students to accept into 
a program. Case-based reasoning allows us to make assumptions and predic- 
tions based on what worked in the past without having a complete under- 
standing. 
• Case-based reasoning gives a reasoner a means of evaluating solutions when 

no algorithmic method is available for evaluation. 
Using cases to aid in evaluation is particularly helpful when there are many 
unknowns, making any other kind of evaluation impossible or hard. Instead, 
solutions are evaluated in the context of previous similar situations. Again, the 
reasoner does his/her evaluation based on what worked in the past. 
• Cases are particularly useful for use in interpreting open-ended and ill- 

defined concepts. 
As stated above, this is one use attorneys put cases to extensively. Bur it is also 
important in everyday situations. In the example above, cases were used to 
determine what was included in the concept 'fish Anne won't eat'. The perform- 
ance of PROTOS (Bareiss 1989) in classifying hearing disorders when little 
information is known shows that a case-based methodology for interpretation 
can be more accurate that a generalization-based method when classifications 
are ill-defined. PROTOS is significantly more capable and accurate than classifi- 
cation systems based on more traditional classification methods. 
• Remembering previous experiences is particularly useful in warning of the 

potential for problems that have occurred in the past, alerting a reasoner to 
take actions to avoid repeating past mistakes. 

How can this work? Remembered experiences can be successful or failure 
episodes, i.e., situations in which things did not turn out exactly as planned. 
Consider again the reasoner trying to plan a meal. He/she can be helped 
considerably, for example, if he/she remembers a meal that was supposed to be 
easy-to-prepare and inexpensive and instead was hard to make because some of 
the ingredients were hard to obtain in manufactured form and had to be made 
from scratch. The reasoner is warned, by this case, to avoid those ingredients or 
to make sure they are available before committing to a menu. 
• Cases help a reasoner to focus its reasoning on important parts of a problem 

by pointing out what features of a problem are the important ones. 
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What was important in previous situations will tend to be important in new 
ones. Thus, if in a previous case, some set of features was implicated in a failure, 
the reasoner focuses on those features to insure that the failure will not be 
repeated. Similarly, if some features are implicated in a success, the reasoner 
knows to focus on those features. Such focus plays a role in both problem 
solving and interpretive case-based reasoning. In interpretive case-based reason- 
ing, justifications and critiques are built based on those features that have 
proven responsible for failures and successes in the past. An attorney, for 
example focuses on those aspects of a new situation that mattered in previous 
cases. In problem solving, a reasoner might attempt to adapt his solution so that 
it includes more of what was responsible for previous successes and less of what 
was responsible for failures. 

4.3. Pi(alls 

Of course, there are also pitfalls in using cases to reason. A case-based reasoner 
might be tempted to use old cases blindly, relying on previous experience 
without validating it in the new situation. A case-based reasoner might allow 
cases to bias him/her/it too much in solving a new problem. And, often people, 
especially novices, are not reminded of the most appropriate sets of cases when 
they are reasoning (Holyoak 1985, Gentner 1989). People do find case-based 
reasoning a natural way to reason, however. The endeavor of explaining the 
proc.esses involved in case-based reasoning might help us to learn how to teach 
people to reason better using cases. In addition, the case memory technology we 
develop might allow us to build decision aiding systems that augment human 
memory by providing the appropriate cases while still allowing the human to 
reason in a natural and familiar way. And we can make sure our programs 
avoid this type of behavior. 

5. COGNITIVE MODEL OR METHODOLOGY FOR BUILDING EXPERT SYSTEMS? 

In case-based reasoning a model of people, or is it a methodology for building 
intelligent systems? We've been somewhat schizophrenic about this issue up to 
now, sometimes referring to people doing case-based reasoning, sometimes 
referring to machines that use the method to reason. Case-based reasoning is 
both, and explorations in case-based reasoning have been of both the ways 
people use cases to solve problems and the ways we can make machines use 
them. 

5.1. Case-Based Reasoning and People 

There is much evidence that people do, in fact, use case-based reasoning in 
their daily reasoning. Some of that evidence is hearsay -- we have observed it. 
Other evidence is experimental. Ross (Ross 1986, Ross 1989), for example, has 
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shown that people learning a new skill often refer back to previous problems to 
refresh their memories on how to do the task. Research conducted in our lab 
shows that both novice and experienced car mechanics use their own experi- 
ences and those of others to help them generate hypotheses about what is 
wrong with a car, recognize problems (e.g., a testing instrument not working), 
and remember how to test for different diagnoses (Lancaster and Kolodner 
1988, Redmond 1989). Other research in our lab shows that physicians use 
previous cases extensively to generate hypotheses about what is wrong with a 
patient, to help them interpret test results, and to select therapies when several 
are available and none are understood very well (Kolodner, unpublished). We 
have also observed architects and caterers recalling, merging, and adapting old 
design plans to create new ones. 

The programs we build are an attempt to understand the processes involved 
in reasoning in a case-based way. There are several important potential applica- 
tions of an understanding of the way people solve problems in a natural way. 
First, we might build decision aiding systems for people that can help them 
retrieve cases better. Psychologists have found that people are comfortable 
using cases to make decisions but don't always remember the right ones. The 
computer could be used as a retrieval tool to augment people's memories. 
Second, we might create teaching strategies and build teaching tools that teach 
based on good examples. If people are comfortable using examples to solve 
problems and know how to do it well, then one of our responsibilities as 
teachers might be to teach them the right ones. Third, if we understand which 
parts of this natural process are difficult to do well, we can teach people better 
how to do case-based reasoning. One criticism of using cases to make decisions, 
for example, is that it puts unsound bias into the reasoning system, because 
people tend to assume an answer from a previous case is right without justifying 
it in the new case. This tells us that we should be teaching people how to justify 
case-based suggestions and that justification or evaluation is crucial to good 
decision making. If we can isolate other problems people have in solving 
problems in a case-based way, then we can similarly teach people to do those 
things better. 

5.2. Building a Case-Based Reasoner 

As a method for building intelligent reasoning systems, case-based reasoning 
has appeal because it seems relatively simple and natural. While it is hard to get 
experts to tell you all the knowledge they use to solve problems, it is easy to get 
them to recount their war stories. In fact, several people building expert systems 
that know how to reason using cases have found it easier to build case-based 
expert systems than traditional ones (Barletta and Hennessy 1989, Goodman 
1989). A big problem in reasoning in expert domains is the high degree of 
uncertainty and incompleteness of knowledge involved. Case-based reasoning 
addresses those problems by having the reasoner rely on what has worked in 
the past. Case-based systems also provide efficiency. While we find first-princi- 
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pies problem solving systems spending large amounts of time solving their 
problems from scratch, case-based systems have been found to be several 
orders of magnitude faster (Koton 1988). 

There are several different kinds of case-based reasoning systems one might 
build. At the two extremes are fully-automated systems and retrieval-only 
systems. Fully automated systems are those that solve problems completely by 
themselves and have some means of interacting with the world to receive 
feedback on their decisions. Retrieval-only systems work interactively with a 
person to solve a problem. They act to augment a person's memory, providing 
cases for the person to consider that the person might not be aware of himself, 
but the person will be responsible for hard decisions. Then there is the whole 
range of systems in between, some requiring more on the part of the person 
using the system, some requiring less. 

There are also several purposes one might create a case-based reasoning 
system to serve. We might want it to solve problems, to suggest concrete 
answers to problems, to be suggestive without providing answers (i.e., to give 
abstract advice), or to just act as a database that can retrieve partially-matching 
cases. Much as has been the case with database systems, we can foresee case- 
based systems interacting with a person or another program. Interacting with a 
person, we can see an executive doing strategic planning asking for cases to help 
in deriving or evaluating a solution. The CSI Battle Planner (Goodman 1989) 
provides this type of capability now for battle planning. Or, we can imagine a 
tutoring system that accesses a library of examples to use in teaching. 

What is required for the simplest of systems is a library of cases that coarsely 
cover the set of problems that come up in a domain. Both success stories and 
failures must be included. And, the cases must be appropriately indexed. This 
library, along with a friendly and useful interface, provides augmentation for 
human memory. And automated processes can be built on top of it incre- 
mentally. 

NOTES 

* This article is excerpted from Case-Based Reasoning by Janet Kolodner, to be published by 
Morgan-Kaufmarm Publishers, Inc. in 1992. 

** This work was partially funded by DARt'A under Contract No. F49620-88-C-0058 monitored 
by AFOSR, by NSF under Grant No. IST-8608362, and by ARI under Contract No. MDA- 
903-86-C-173. Address correspondence to the author at the College of Computing, Georgia 
Institute of Technology, Atlanta, GA 30332-0280, email: jlk@cc.gatech.edu. 

1 Thanks to Kevin Ashley for the example. 
2 Example due to Kevin Ashley (Ashley, 1989). 
3 In a previous section, we presented PROTO as a problem solving system. Here we present it as 

an interpretive system. PROTOS' task, diagnosis, includes aspects of both uses of cases. It inter- 
prets open-ended concepts (classifications) using a case-based classification algorithm, and it 
uses an indexing scheme based on differences to avoid previously-made diagnostic mistakes. 
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