
Artificial Intelligence Review 6, 3--34, 1992.

An Introduction to Case-Based Reasoning*

Janet L. Kolodner**

College of Computing, Georgia Institute of Technology, Atlanta, GA 30332-0280,
U.S.A.

Abstract. Case-based reasoning means using old experiences to understand and
solve new problems. In case-based reasoning, a reasoner remembers a previous
situation similar to the current one and uses that to solve the new problem. Case-
based reasoning can mean adapting old solutions to meet new demands; using old
cases to explain new situations; using old cases to critique new solutions; or
reasoning from precedents to interpret a new situation (much like lawyers do) or
create an equitable solution to a new problem (much like labor mediators do). This
paper discusses the processes involved in case-based reasoning and the tasks for
which case-based reasoning is useful.

Key Words: Case-based reasoning, problem-solving, experience

A host is planning a meal for a set of people who include, among others, several
people who eat no meat or poultry, one of whom is also allergic to milk
products, several meat-and-potatoes men, and her friend Anne. Since it is
tomato season, she wants to use tomatoes as a major ingredient in the meal. As
she is planning the meal, she remembers the following:

I once served tomato tart (made from mozzerella cheese, tomatoes, Dijon mustard, basil, and
pepper, all in a pie crust) as the main dish during the summer when I had vegetarians come for
dinner. It was delicious and easy to make. But I can't serve that to Elana (the one allergic to
milk).

I have adapted recipes for Elana before by substituting tofu products for cheese. I could do
that, but I don' t know how good the tomato tart will taste that way.

She decides not to serve tomato tart and continues planning. Since it is summer,
she decides that grilled fish would be a good main course. But now she
remembers something else.

Last time I tried to serve Anne grilled fish, she wouldn't eat it. I had to put hotdogs on the grill
at the last minute.

This suggests to her that she shouldn't serve fish, but she wants to anyway. She
considers whether there is a way to serve fish that Anne will eat.

I remember seeing Anne eat mahi-mahi in a restaurant. I wonder what kind of fish she will eat.
The fish I served her was whole fish with the head on. The fish in the restaurant was a fillet
and more like steak than fish. I guess I need to serve a fish that is more like meat than fish.
Perhaps swordfish will work. I wonder if Anne will eat swordfish. Swordfish is like chicken,
and I know she eats chicken.

4 JANETL. KOLODNER

Here she is using examples and counterexamples of a premise (Anne doesn't eat
fish) to try to derive an interpretation of the premise that stands up to scrutiny.

The hypothetical host is employing Case-Based Reasoning (CBR) (e.g.,
Hammond 1989c, Kolodner 1988a, Riesbeck and Schank 1989) to plan a meal.
In case-based reasoning, a reasoner remembers previous situations similar to
the current one and uses them to help solve the new problem. In the example
above, remembered cases are used to suggest a means of solving the new
problem (e.g., to suggest a main dish), to suggest a means of adapting a solution
that doesn't quite fit (e.g., substitute a tofu product for cheese), to warn of
possible failures (e.g., Anne won't eat fish), and to interpret a situation (e.g., why
didn't Anne eat the fish, will she eat swordfish?).

Case-based reasoning can mean adapting old solutions to meet new de-
mands; using old cases to explain new situations; using old cases to critique new
solutions; or reasoning from precedents to interpret a new situation (much like
lawyers do) or create an equitable solution to a new problem (much like labor
mediators do).

If we watch the way people around us solve problems, we are likely to
observe case-based reasoning in use all around us. Attorneys are taught to use
cases as precedents for constructing and justifying arguments in new cases.
Mediators and arbitrators are taught to do the same. Other professionals are
not taught to use case-based reasoning, but often find that it provides a way to
solve problems efficiently. Consider, for example, a doctor faced with a patient
who has an unusual combination of symptoms. If he's seen a patient with similar
symptoms previously, he is likely to remember the old case and propose the old
diagnosis as a solution to his new problem. If proposing those disorders was
time-consuming previously, this is a big savings of time. Of course, the doctor
can't assume the old answer is correct. He/she must still validate it for the new
case in a way that doesn't prohibit considering other likely diagnoses. Neverthe-
less, remembering the old case allows him to generate a plausible answer easily.

Similarly, a car mechanic faced with an unusual mechanical problem is likely
to remember other similar problems and to consider whether their solutions
explain the new one. Doctors evaluating the appropriateness of a therapeutic
procedure or judging which of several are appropriate are also likely to
remember instances using each procedure and to make their judgements based
on previous experiences. Problem instances of using a procedure are particu-
larly helpful here; they tell the doctor what could go wrong, and when an
explanation is available explaining why the old problem occurred, they focus the
doctor in finding out the information he needs to make sure the problem won't
show up again. We hear cases being cited time and again by our political leaders
in explaining why some action was taken or should be taken. And many
management decisions are made based on previous experience.

Case-based reasoning is also used extensively in day-to-day common-sense
reasoning. The meal planning example above is typical of the reasoning we all
do from day to day. When we order a meal in a restaurant, we often base
decisions about what might be good on our other experiences in that restaurant

CASE-BASED REASONING 5

and those like it. As we plan our household activities, we remember what
worked and didn't work previously, and use that to create our new plans. A
childcare provider mediating an argument between two children remembers
what worked and didn't work previously in calming such situations, and bases
her suggestion on that.

In general, the second time solving some problem or doing some task is
easier than the first because we remember and repeat the previous solution. We
are more competent the second time because we remember our mistakes and go
out of our way to avoid them.

The quality of a case-based reasoner's solutions depends on four things:
• the experiences it's had,
• its ability to understand new situations in terms of those old experiences,
• its adeptness at adaptation, and
• its adeptness at evaluation.

The less experienced reasoner will always have fewer experiences to work
with than the more experienced one. But, as we shall see, the answers given by a
less experienced reasoner won't necessarily be worse than those given by the
experienced one if he is creative in his understanding and adaptation. Any
programs we write to automatically do case-based reasoning will need to be
seeded with a representative store of experiences. Those experiences (cases)
should cover the goals and subgoals that arise in reasoning and should include
both successful and failed attempts at achieving those goals. Successful attempts
will be used to propose solutions to new problems. Failed attempts will be used
to warn of the potential for failure.

The second, that of understanding a new problem in terms of old experiences
has two parts: recalling old experiences and interpreting the new situation in
terms of the recalled experiences. The first we call the indexing problem. In
broad terms, it means finding in memory the experience closest to a new
situation. In narrower terms, we often think of it as the problem of assigning
indexes to experiences stored in memory so that they can be recalled under
appropriate circumstances. Recalling cases appropriately is at the core of case-
based reasoning.

Interpretation is the process of comparing the new situation to recalled
experiences. When problem situations are interpreted, they are compared and
contrasted to old problem situations. The result is an interpretation of the new
situation, the addition of inferred knowledge about the new situation, or a
classification of the situation. When new solutions to problems are compared to
old solutions, the reasoner gains an understanding of the pros and cons of doing
something a particular way. We generally see interpretation processes used
when problems are not well understood and when there is a need to criticize a
solution. When a problem is well understood, there is little need for interpretive
processes.

The third, adaptation, is the process of fixing up an old solution to meet the
demands of the new situation. Eight methods for adaptation have been identified.
They can be used to insert something new into an old solution, to delete

6 JANETL. KOLODNER

something, 6r to make a substitution. Applying adaptation strategies straight-
forwardly results in competent but often unexciting answers. Creative answers
result from applying adaptation strategies in novel ways.

One of the hallmarks of a case-based reasoner is its ability to learn from its
experiences, as a doctor might do when he caches a hard-to-solve problem so
that he can solve it easily another time. In order to learn from experience, a
reasoner requires feedback so that it can interpret what was right and wrong
with its solutions. Without feedback, the reasoner might get faster at solving
problems but would repeat its mistakes and never increase its capabilities. Thus,
evaluation and consequent repair are important contributors to the expertise of
a case-based reasoner. Evaluation can be done in the context of the outcomes
of other similar cases, can be based on feedback or can be based on simulation.

1. REASONING USING CASES

There are two styles of case-based reasoning: problem solving and interpretive.
In the problem solving style of case-based reasoning, solutions to new problems
are derived using old solutions as a guide. Old solutions can provide almost-
right solutions to new problems and they can provide warnings of potential
mistakes or failures. In the example above, cases suggest tomato tart as a main
dish, a method of adapting tomato tart for those who don't eat cheese, and a
type of fish that Anne will eat. A case also warns of the potential for a failure --
Anne won't eat certain kinds of fish.

In the interpretive style, new situations are evaluated in the context of old
situations. A lawyer, for example, uses interpretive case-based reasoning when
he uses a series of old cases to justify an argument in a new case. But interpre-
tive CBR can also be used during problem solving, as we saw the host in our
initial example do when trying to justify serving swordfish to a guest known not
to like some kinds of fish.

As we shall see, both styles of case-based reasoning depend heavily on a case
retrieval mechanism that can recall useful cases at appropriate times, and in
both, storage of new situations back into memory allows learning from experi-
ence. The problem solving style is characterized by heavy use of adaptation
processes to generate solutions and interpretive processes to judge derived
solutions. The interpretive style uses cases to provide justifications for solutions,
allowing evaluation of solutions when no clear-cut methods are available and
interpretation of situations when definitions of the situation's boundaries are
open-ended or fuzzy. We will show examples of both kinds o f case-based
reasoning in this section and discuss the applicability of both.

1.1. CBR and Problem Solving,

The host in the initial example used problem solving case-based reasoning to
propose tomato tart as the main dish and to suggest a means of adapting it to
suit the guest allergic to milk products. Also as part of the problem solving

C A S E - B A S E D R E A S O N I N G 7

process, she used a remembered case to anticipate that one of the guests would
not eat fish, causing her to plan around that problem.

Problem solving case-based reasoning is useful for a wide variety of problem
solving tasks, including planning, diagnosis, and design. In each of these, cases
are useful in suggesting solutions and in warning of possible problems that
might arise.

1.1.1. CBR for design
We can view the meal planning example as a kind of design problem. In design,
problems are defined as a set of constraints, and the problem solver is required
to provide a concrete artifact that solves the constraint problem. Usually the
given constraints underspecify the problem, i.e., there are many possible solu-
tions. Sometimes, however, the constraints overconstrain the problem, i.e., there
is no solution if all constraints are fulfilled. In that case, solving the problem
requires respecifying the problem so that the most important constraints are
fulfilled and other are compromised.

Consider, for example, the meal planner in the initial example. She must
satisfy the likes and dislikes of her guests, must keep the meal inexpensive, must
make the meal hearty, and must use tomatoes. In addition, she must make the
main and side dishes compatible with each other, must not repeat major ingre-
dients across dishes, must make the appetizer complement the rest of the meal,
etc. Many different meals would do this. For example, vegetarian lasagne would
work as a main dish if one tray were made with tofu instead of cheese. And any
number of side dishes and appetizers would complement it. Several other pasta
dishes would also suffice as main dishes, each with any number of side dishes
and appetizers to complement it. A combination of main dishes, one of which
would satisfy the meat-and-potatoes people, another the vegetarians, etc., and
complementary side dishes and appetizers would also work. With so many
options, where should the planner begin?

Suppose now that this meal planner remembers a meal she served to a large
group of people. It was easy to make in large quantities, inexpensive, hearty,
and used tomatoes. In that meal, she served antipasto, lasagne, a large green
salad, and garlic bread. Only this time, she has vegetarians coming for dinner
and one guest is allergic to milk products. The lasagne can be adapted to better
fit the new situation by taking out the meat. The antipasto can be adapted by
substituting tuna for the meat. This will satisfy all constraints except the one
specifying that one guest doesn't eat dairy products. The meal can be further
adapted such that in one tray of lasagne, tofu cheese substitute is used instead
of cheese. This adaptation of the old menu is now suitable for the new situation.

This is an example of an underconstrained problem. The constraints provide
guidelines but don't point the reasoner toward a particular answer. In addition,
the search space is huge, and while there are many answers that would suffice,
they are sparse enough within the search space that standard search methods
might spend a long time finding one. Furthermore, the problem is too big to
solve in one chunk, but the pieces of the problem interact with each other in
strong ways. Solving each of the smaller pieces of the problem in isolation and

8 J A N E T L . K O L O D N E R

putting it all back together again would almost always violate the interactions
between the parts.

For these kinds of problems, which I like to call hardly decomposable, cases
can provide the glue that holds a solution together. Rather than solving the
problems by decomposing them into parts, solving for each, and recomposing
the parts, as can be done with nearly-decomposable problems, a case suggests
an entire solution, and the pieces that don't fit the new situation are adapted.
While considerable adaptation might be necessary to make an old solution fit a
new situation, this methodology is almost always preferable to generating a
solution from scratch when there are many constraints and when solutions to
parts of problems cannot be easily recomposed. In fact, engineering and
architectural design is almost entirely a process of adapting an old solution to fit
a new situation or merging several old solutions to do the same.

Solving a problem by adapting an old solution allows the problem solver to
avoid dealing with many constraints, and keeps it from having to break the
problem into pieces needing recomposition. For example, the compatibility of
the main and side dishes is never considered while solving the problem since
the old case provides that. Nor are ease of preparation, expense, or heartiness
considered in generating a solution. The old case provides solutions to those
constraints also. The problem is never broken into parts that need to be recom-
posed. Rather, faulty components are corrected in place.

The other major role of cases in design, as for all problem solving tasks, is to
point out problems with proposed solutions. When the meal planner remembers
the meal where Anne didn't eat fish, it is warned of the potential that its
proposed solution will fail.

Several problem solvers have been built to do case-based design. JULIA
(Kolodner 1987, Hinrichs 1988, Hinrichs 1989) plans meals, and the examples
shown above are all among those JULIA has solved. CYCLOPS (Navinchandra
1988) uses case-based reasoning for landscape design. KRITIK (Goel 1989, Goel
and Chandrasekaran 1989) combines case-based with model-based reasoning
for design of small mechanical assemblies. It uses case-based reasoning to
propose solutions and uses the model to verify its proposed solutions, to point
out where adaptation is needed, and to suggest adaptations.

At least one design problem solver is being put to use in the real world.
CLAVIER (Barletta and Hennessy 1989) is being used at Lockheed to lay out
pieces made of composite materials in an oven to bake. The task is a apparently
a black art, i.e., there is no complete causal model of what works and why.
Pieces of different sizes need to be in particular parts of the oven, but the size
of some pieces and density of a layout might keep other pieces for heating
correctly. The person who was in charge of layout kept a card file of his
experiences, both those that worked and those that didn't. Based on those
experiences, CLAVIER can place pieces in appropriate parts of the oven and
avoid putting pieces in the wrong places. It works as well as the expert whose
experiences it uses, and is thus useful to Lockheed when the expert is unavail-
able. CLAVIER almost always uses several cases to do its design. One provides

CASE-BASED REASONING 9

an overall layout, which is adapted appropriately. The others are used to fill in
holes in the layout that adaptation rules by themselves cannot cover.

One can also look at mediation as a kind of design in which the problem
specification is overconstrained rather than underconstrained. In mediation, two
adversaries have conflicting goals. It is impossible to fulfill the entire set of goals
of either side. The role of the mediator is to derive a compromise solution that
partially achieves the goals of both adversaries as well as possible.

In solving overconstrained problems, the design specifications must be
respecified while solving the problem. When overconstrained problems are
solved by constraint methods, many different ways of relaxing constraints must
usually be attempted before settling on a set that work. When case-based
reasoning is used, a close solution to the constraint relaxation problem is
provided by the remembered case, and it is adapted. MEDIATOR (Simpson
1985, Kolodner and Simpson 1989), the earliest case-based problem solver,
solved simple resource disputes, e.g., two children wanting the same candy bar
or two faculty members wanting to use the copy machine at the same time.
PERSUADER (Sycara 1987) solved labor management disputes. In generating
solutions to new labor-management disputes, PERSUADER first applied parame-
ter adjustment strategies to the best old solution it remembered to make
relatively easy changes in an old contract, the kind that must be made all the
time, e.g., cost of riving adaptations. This resulted in a ballpark solution. It then
applied special purpose critics to evaluate the ballpark solution in order to
identify more specialized problems with an old contract, e.g., to recognize
whether or not the company could afford the contract. It then adapted the
ballpark solution appropriately either by using an adaptation strategy suggested
by another case, or by applying another specialized set of critics. Finally, it used
another special purpose set of critics to adapt the solution in order to com-
pensate for any changes that upset the equity of the old solution.

In almost all design problems, more than one case is necessary to solve the
problem. Design problems tend to be large, and while one case can be used to
solve some of it, it is usually not sufficient for solving the whole thing. In
general, some case provides a framework for a solution and other cases are
used to fill in missing details. In this way, decomposition and recomposition are
avoided, as are large constraint satisfaction and relaxation problems.

1.1.2. CBR for planning
Planning is the process of coming up with a sequence of steps or schedule for
achieving some state of the world. The state that must be achieved may be
designated in concrete terms, as in e.g., designating the end state for the Tower
of Hanoi problem (configure the game board such that disk 1 is on top of disk2
is on top of disk3 and all are on peg3) or describing the end result of making a
delivery (the box labeled 'Klein' should be on the Klein driveway). Or it can be
designated in terms of constraints that must be satisfied, as in e.g., scheduling
the gates at an airport (each flight should be assigned a gate, no two flights
should be at a gate at once, no on-time flight should have to wait for a gate).

10 JANET L. KOLODNER

In the first case, the end product of the planning process is a set of steps. In the
second, the end product is a schedule or state of the world, but a planning
process must be used to create it.

An early case-based planner was CHEF (Hammond 1989a). CHEF created
new recipes based on those it already knew about. For example, in creating a
recipe that combined beef and broccoli, it remembered its recipe for chicken
and snow peas and adapted that recipe appropriately. First, beef was substituted
for chicken and broccoli for snow peas. Then, the set of steps used to create
chicken and snow peas was fixed. Since beef has no bone, the deboning step
was deleted. Since broccoli takes longer to cook than snow peas, the time
designation was changed in the stepwhere the vegetable was cooked.

There are many problems that must be dealt with in planning. First is the
problem of protections. Good plans are sequenced, whenever possible, such
that late steps in the plan don't undo the results of earlier steps and so that
preconditions of late steps in the plan are not violated by the results of earlier
steps. (See Charniak and McDermott (1985) for an excellent explanation of
these problems.) This requires that the effects of plan steps be projected into
the future (the rest of the plan). Second is the problem of preconditions. A
planner must make sure that preconditions of any plan step are fulfilled before
scheduling that plata step. Thus, planning involves scheduling steps that achieve
preconditions in addition to scheduling major steps themselves. These two
problems together, when solved by traditional methods, require considerable
computational effort. As the number of plan steps increases, the computational
complexity of projecting effects and comparing preconditions increases expo-
nentially.

Case-based reasoning deals with these problems by providing plans that have
already been used and in which these problems have already been worked out.
The planner is required only to make relatively minor fixes in those plans rather
than having to plan from scratch. A recipe, for example, provides an ordering of
steps that plans for and protects preconditions of each of its steps.

Case-based reasoning also suggests solutions to more complex planning
problems. (See Marks, Hammond, and Converse (1989) for a nice explanation
of these problems.) For example, in the real world, the number of goals compet-
ing for achievement at any time is quite high, and new ones are formed in the
normal course of activity. If we try to achieve each one independently of the
others, then planning and execution time are at least the sum of achieving each
one, and probably more because of interactions. If a planner can notice the
possibility of achieving several goals simultaneously or in conjunction with each
other, this complexity can be cut significantly. Case-based reasoning provides a
method for doing this. Previously-used plans are saved and indexed by the
conjunction of goals they achieve. If the conjunct of goals is repeated, the old
plan that achieves them together can be recalled and repeated.

Another set of complexities that crop up in planning come from dealing with
the relationship between planning and execution in a realistic way. While the
traditional view of planning, as suggested above, was that a planner would
create a plan (sequence of steps) to be executed later, the newer view of

C A S E - B A S E D R E A S O N I N G l l

planning says that planning and execution must be combined, That is, we cannot
expect a well-thought-out sequence of steps to work when executed in the real
world. There are several reasons for this. First, it is unrealistic to think that all
knowledge needed to plan well is known at the start of planning -- we often find
things out as we go along, and some things we never know for sure. Second, the
world is unpredictable. Unexpected interruptions crop up (e.g., a fire alarm
rings in the middle of doing some task). Agents who were unknown at the time
of planning change things in an unexpected way (e.g., someone buys all the nails
of a particular kind that you needed for your plan and they are unavailable).
And we can't predict the actions of known agents all the time (e.g., someone
else in the family got hungry for chocolate and ate the chocolate chips you were
planning to use in your baking). In general, conditions in the world can change
between coming up with a plan and carrying it out.

This requires that our planners be able to put off at least some planning until
execution time when more is known and that they be able to do execution-time
repairs on already-derived plans that cannot be carried out. In addition, if the
planner can anticipate execution-time problems, fewer repairs will have to be
done at execution time.

Case-based reasoners are addressing many of these issues. PLEXUS (Alterman
1988), a program that knows how to ride a subway, is able to do execution-time
repairs by adapting and substituting semantically-similar steps for those that
have failed. For example, when riding the New York subway, having ridden
BART in the past, PLEXUS expects to find a machine to buy a ticket from. When
it doesn't see one, it finds another plan that would achieve the same purpose as
buying a ticket from a machine. It does this by finding an appropriate sibling or
close cousin of the violated plan step in its semantic network. It attempts to
substitute another ticket-buying plan it knows about, buying tickets from a
cashier (as is done to get into the movies). It adapts that plan by substituting
token for ticket, since it is a token that is necessary in the New York subway.

CHEF (Hammond 1989a) addresses the problem of anticipating problems
before execution time by learning from its problematic experiences. When
problems happen at execution time, CHEF attempts to explain them and then to
figure out how they could be repaired. It stores its hypothesized repair in
memory, and indexes the case by features that are likely to predict that the
problem will recur, Before it begins plan derivation, it looks for failure situa-
tions and uses any it finds to anticipate the problems they point out. Later, it
uses the repaired failure situations to suggest a plan that will avoid the problem
it has anticipated. Once, for example, CHEF created a strawberry souffle by
modifying a receipt for a vanilla souffle. When it made the strawberry souffle,
the souffle did not rise. It explained the failure to rise as an imbalance in the
amount of leavening and liquid with too much liquid. Since one way to get rid
of extra liquid is to pour it off, it hypothesized that had it poured off the extra
liquid created when the strawberries were pulped, the souffle would have risen.
It indexed the whole case as a souffle with fruit. The next time it attempted to
make a souffle with fruit, it remembered this case before attempting planning,
warning it of the potential for an imbalance between liquid and leavening.

12 JANET L. KOLODNER

During planning, the repaired strawberry souffle recipt suggested pouring off
the liquid created by pulping the fruit.

Other case-based planners address other of these problems. TRUCKER (Ham-
mond 19891a) is an errand running program that keeps track of its pending
goals and is able to take advantage of opportunities that arise that allow it to
achieve goals earlier than expected. MEDIC (Turner 1989) is a diagnosis pro-
gram. It is able to reuse previous plans for diagnosis but is flexible enough in its
reuse to be able to follow up on unexpected turns of events. Thus, if it is
tracking down a pulmonary complaint and the patient offers information about
a heart condition that it had not known about previously, MEDIC analyzes which
i s more important to follow up. If it turns out the heart problem is more
important, MEDIC will interrupt its current diagnosis plan and move to the
more appropriate one, and will return to the original one if appropriate later.
EXPEDITOR plans the events in the life of a single parent who must deal with
kids and work. It caches its experiences achieving multiple goals by interleaving
them. While it is slow in its initial planning, it gains competence over time as it
is able to reuse its plans. Finally, the CSI BATTLE PLANNER (Goodman 1989)
shows how cases can be used to criticize and repair plans before they are
executed.

1.1.3. CBR for diagnosis
In diagnosis, a problem solver is given a set of symptoms and asked to explain
them~ When there are a small number of possible explanations, one can view
diagnosis as a classification problem. When the set of explanations cannot be
enumerated easily, we can view diagnosis as the problem of creating an explana-
tion. A case-based diagnostician can use cases to suggest explanations for
symptoms and to warn of explanations that have been found to be inappro-
priate in the past. The following example is from an early case-based reasoning
project called SHRINK (Kolodner and Kolodner 1987), designed to be a psy-
chiatric diagnostician.

A psychiatrist sees a patient who exhibits clear signs of Major Depression. The patient also
reports, among other things, that she recently had a stomach problem that doctors could find
no organic cause for. While random complaints are not usually given a great deal of attention
in psychiatry, this time the doctor is reminded of a previous case in which he diagnosed a
patient for Major Depression who also complained of a set of physical problems that could
not be explained organically: Only later did he realize that he should also have taken those
complaints into account; he then made the diagnosis of Somatization Disorder with Secondary
Major Depression. Because he is reminded of the previous case, the psychiatrist hypothesizes
that this patient too might have Somatization Disorder with Depression secondary to that and
follows up that hypothesis with the appropriate diagnostic investigation.

Here the doctor uses the diagnosis from the previous case to generate a hy-
pothesis about the diagnosis in the new case. This hypothesis provides the
doctor with a reasoning shortcut and also allows him to avoid the mistake made
previously. In addition, the hypothesis from the previous case causes him to
focus his attention on aspects of the case that he would not have considered

C A S E - B A S E D R E A S O N I N G 13

otherwise: the unexplainable physical symptoms associated with Somatization
Disorder.

Of course, one cannot expect a previous diagnosis to apply intact to the new
case. Just as in planning and design, it is often necessary to adapt an old
diagnosis to fit a new situation. CASEY (Koton 1988) was able to diagnosis heart
problems by adapting the diagnoses of previous heart patients to new patients.

For example, when CASEY was trying to diagnose a patient Newman, it was
reminded of another patient David. While both shared many symptoms, there
were also differences between them. Newman, for example, had calcified heart
valves and syncope on exertion, while David did not. CASEY adapted the
diagnosis for David to account for these differences. Newman's aortic valve
calcification was inserted as a additional evidence for aortic valve disease, his
syncope was inserted as additional evidence for limited cardiac output, and
mitral valve disease was added to the diagnosis.

CASEY is a relatively simple program built on top of an existing model-based
diagnostic program. When a new case is similar to one it has seen previously, it
is several orders of magnitude more efficient at generating a diagnosis than is
the model-based program (Koton 1988). And, because its adaptations are based
on a valid causal model, its diagnoses are as accurate as those made from
scratch based on the same causal model.

Cases are also useful in diagnosis in pointing the way out of previously-
experienced reasoning quagmires. While this normally happens as a side effect
of SHRINK's and CASEY's reasoning, PROTOS (Bariess 1989) is designed to
ensure that this happens in an efficient way. PROTOS diagnoses hearing dis-
orders. In this domain, many of the diagnoses manifest themselves in similar
ways, and only subtle differences differentiate them. A novice is not aware of
the subtle differences: experts are. PROTOS begins as a novice, and when it
makes mistakes, a 'teacher" explains its mistakes to it. As a result, PROTOS learns
these subtle differences. As it does, it leaves difference pointers in its memory
that allow it to move easily from the obvious diagnosis to the correct one. In
one problem it worked on. for example PROTOS thought that its new case was
an instance of cochlear-age. When it examined the most prototypical case of
cochlear-age, however, it was not a very good match. However, it there was a
difference link labeled notch-at-4k connecting that case to another case whose
diagnosis was cochlear-age-and-noise. Since the new case had the feature notch-
at-4k, it followed that link, found a case very similar to its new one, and was
able to make a valid diagnosis first time around.

Generating a diagnosis from scratch is a time-consuming task. In almost all
diagnostic domains, however, there is sufficient regularity for a case-based
approach to diagnosis generation to provide efficiency. Of course, the diagnos-
tician cannot assume that a case-based suggestion is the answer. The case-based
suggestion must be validated. Often, however, validation is much easier than
generation. In those kinds of domains, case-based reasoning can provide big
wins.

14 J A N E T L. K O L O D N E R

1.1.4. CBR for explanation
Explaining anomalies is prevalent in all of our problem solving and under-
standing activities as people. If we read in the paper about a plane crash, we try
to explain why it happened. If we fall at something we are doing, we try to
explain what went wrong so we won't repeat it. If we hear of someone doing
something unexpected, we try to explain it. Explanation has been called the
credit assignment problem and the blame assignment problem, depending on
whether one is explaining a success or a failure. In general, it is the problem of
zeroing in on or identifying what was responsible for something that happened.
It is a problem that the AI world has been grappling with for some time.

A case-based approach to explanation (Schank, 1986) says that one can
explain a phenomenon by remembering a similar phenomenon, borrowing its
explanation, and adapting it to fit. The SWALE (Kass and Leake 1988) program
does just that. When it hears that Swale, a racehorse in the prime of its life, died
in its stall, it remembers several similar situations, each of which allows it to de-
rive an explanation for the Swale case. When it remembers Jim Fixx dying of a
heart attack after a run, it considers whether Swale had just been out for a run
and if he had a heart condition that his owners had been unaware of. When it
remembers Jams Joplin, it considers whether Swale was taking illicit drugs.
Some explanations it can derive in this way are more plausible than others and
some require more adaptation than others. For example, in considering the
Janis Joplin explanation, it must also come up with someone who wanted Swale
to have the drugs (Joplin wanted them herself, but a horse can't) and a reason
why that person would want Swale to have the drugs. This requires quite a bit
more inference than an explanation based on the Jim Fixx experience.

Thus, case-based explanation requires a retrieval mechanism that can retrieve
similar cases, an adaptation mechanism that must be quite creative, and a
validation mechanism that can decide if a proposed explanation has any merit.

1.2 Interpretive CBR

Interpretive case-based reasoning is a process of evaluating situations or solu-
tions in the context of previous experience. It takes a situation or solution as
input, and its output is a classification of the situation, an argument supporting
the classification or solution, and/or justifications supporting the argument or
solution. It is useful for situation classification, evaluation of a solution, argu-
mentation, justification of a solution, interpretation, or plan, and projection of
effects of a decision or plan.

Supreme Court justices use interpretive case-based reasoning when they
make their decisions. They interpret a new case in light of previous cases. Is this
case like the old one? How is it the same? How is it different? Suppose we
interpret it in some way, what are its implications. Lawyers use interpretive
case-based reasoning when they use cases to justify arguments.

People on the street use interpretive case-based reasoning every day. The
child who says, 'But you let sister do it', is using a case to justify his/her argu-
ment. Managers making strategic decisions base their reasoning on what's been

C A S E - B A S E D R E A S O N I N G 15

true in the past. And we often use interpretive case-based reasoning to evaluate
the pros and cons of a problem solution. An arbitrator, for example, who has
just come up with a salary for a football player, might look at other players with
similar salaries to judge if this new salary is consistent with other salary deci-
sions. A battle planner might look at battles where strategies similar to the one
he has just chosen were used to project the effects of his chosen strategy.

Interpretive case-based reasoning is most useful for evaluation when there
are no computational methods available to evaluate a solution or position.
Often, in these situations, there are so many unknowns that even if computa-
tional methods were available, the knowledge necessary to run them would
usually be absent. A reasoner who uses cases to help evaluate and justify
decisions or interpretations is making up for his lack of knowledge by assuming
that the world is consistent.

We briefly discuss three tasks where interpretive case-based reasoning is
useful: justification, interpretation, and projection. In justification, one shows
cause or proof of the tightness of an argument, position, or solution. In inter-
pretation, one tries to place a new situation in context. Projection means
predicting the effects of a solution. All of these tasks share the common thread
of argumentation. Some cases will support one interpretation or effect. Others
will support a different one. The reasoner must compare and contrast the cases
to each other to finally come up with a solution.

1.2.1. Justification and adversarial reasoning
Adversarial reasoning means making persuasive arguments to convince others
that we or our positions are fight. Lawyers argue adversarially on a day to day
basis. So do the rest of us as we try to convince others of our position on some
issue. We also argue adversarily with ourselves when trying to convince our-
selves of the quality or utility of some solution we have just derived. In making a
persuasive argument, we must state a position and support it, sometimes with
hard facts and sometimes with valid inferences. But often the only way to justify
a position is by citing relevant previous experiences or cases.

The American legal system is a case-based system. There are many rules, but
each has terms that are underspecified and many contradict each other. The
definitive way of interpreting laws is to argue based on cases. Law thus provides
a good domain for the study of adversarial reasoning and case-based justifica-
tion. Much of the work in this area is in the legal domain (Rissland 1983, Bain
1986, Ashley 1987, 1988, Branting 1989,).

HYPO (Ashley, 1988, Rissland and Ashley 1987) is the earliest and most
sophisticated of the case-based legal reasoners. HYPO's methods for creating an
argument and justifying a solution or position has several steps. First, the new
situation is analyzed for relevant factors. Based on these factors, similar cases
are retrieved. They are positioned with respect to the new situation. Some
support it and some are against it. The most on-point cases of both sets are
selected. The most on-point case supporting the new situation is used to create
an argument for the proposed solution. Those in the non-support set are used
to pose counter-arguments. Cases in the support set are then used to counter

16 J A N E T L. K O L O D N E R

the counter-arguments. The result of this is a set of three-ply arguments in
support of the solution, each of which is justified with cases. An important side
effect of creating such arguments is that potential problem areas get highlighted.

Consider, for example, a non-disclosure case that HYPO argued, 1 John Smith
had developed a structural analysis program called N1ESA while an employee of
SDRC. He had generated the idea for the program and had been completely re-
sponsible for its development. When joining SDRC, he had signed an Employee
Confidential Information Agreement in which he agreed not to divulge or use
any confidential information. Upon leaving SDRC, he went to work for EMRC
as VP for engineering. Eleven months later, EMRC began marketing a structural
analysis program called NIESA, Smith had used his development notes from
SDRC's NIESA program in developing the new program. SDRC had disclosed
parts of the NIESA code to some fifty customers. Now, SDRC is suing John Smith
for violations of the non-disclosure agreement.

HYPO is arguing for the defendant (SDRC). It uses the factors present in this
case to pose a set of questions that must be answered: Did disclosure of NIESA
code to 50 customers annul John Smith's non-disclosure agreement? Did the
fact that Smith was the sole developer annul the non-disclosure agreement?
Several cases are recalled, and an argument is made based on Midland-Ross v.
Sunbeam that, since the plaintiff disclosed its product information to outsiders,
the defendant should win a claim for trade secrets misappropriation. However,
a counter-argument can be created based on differences between the two cases.
In the Midland-Ross case, there was disclosure to many more outsiders, and the
defendant received something of value for entering into the agreement. This
point can be supported by Data General v. Digital Computer, where the
plaintiff won, even though it had disclosed to more outsiders than in the
Midland-Ross case. However, a rebuttal is made based on that case. In that case
the defendant won because the disclosures were restricted. In this case, dis-
closure was to the sole developer of the new product.

We see similar argumentation and justification in day-to-day argumentation.
For example,: we would expect an almost-thirteen year old who is told by his
parents that he cannot to go see a midnight showing of Little Shop of Horrors to
use all the cases at his disposal to plead his case. If his friend, who is already 13,
is allowed to see it, he will cite that case in his favor. If his sister has been
allowed to go at midnight to see it, he will cite that. And as his parents give their
arguments, he will use other cases to counter those.

In general, cases are useful in constructing arguments and justifying positions
when there are no concrete principles or only a few of them, if principles are
inconsistent, or if their meanings are not well-specified.

1.2.2. Classification and interpretation
Is swordfish a fish Anne will eat or isn't it? This is the interpretive question the
reasoner in the example at the beginning of this chapter must face. In general,
interpretation in the context of case-based reasoning means deciding whether a
concept fits some open-ended or fuzzy-bordered classification. The classifica-
tion might be derived on the fly (e.g., types of fish Anne will eat) or it might be

CASE-BASED REASONING 17

well-known but not well-defined in terms of necessary, and sufficient conditions.
Many of the classifications we assume are defined are classifications of the
open-ended variety. For example, we assume that a vehicle means a thing with
wheels used for transportation, but when a sign says ~No vehicles in the park', it
is probably not referring to a wheelchair or a baby stroller, both of which fit our
simple definition. Making such distinctions is much of what lawyers are asked to
do everyday. Similarly, when a physician must determine if someone is schizo-
phrenic or an audiologist must determine if someone has a particular hearing
disorder, the recognition process is fraught with ambiguity. There are many
ways schizophrenia can show itself, and necessary and sufficient conditions
don't say how to deal with the borderline cases. And, as we see in the swordfish
example, we are called on to do interpretive reasoning quite often as we do our
everyday common-sense tasks.

One way a case-based classifier works is to ask whether the new concept is
enough like another one known to have the target classification. PROTOS
(Bareiss, 1989), which diagnoses hearing disorders, works like this? Rather
than classifying new cases using necessary and sufficient conditions, PROTOS
does classification by trying to find the closest matching case in its case base to
the new situation. It classifies the new situation by that case's classification. To
do this, PROTOS keeps track of how prototypical each of its cases is and what
differentiates cases within one classification from each other. It first chooses a
most likely classification, then chooses a most likely matching case in that class.
Based on differences between the case it is attempting to match and the new
situation, it eventually zeros in on a case that matches its new one well.

When no case matches well enough, it is sometimes necessary to consider
hypothetical situations. Much of the work on this type of interpretation comes
from the study of legal reasoning. Suppose, for example, that a lawyer must
argue that his client was not guilty of violating a nondisclosure agreement
because the only one he disclosed to was not technically competent to copy it.
There may be several cases that justify this argument. To test it, one might
create hypothetical cases that go beyond the real cases in testing boundaries.
One might propose a situation where the person disclosed to was not technical
but was president of a company with technical personnel. Another hypothetical
might be one in which the person disclosed to was not technical, but his wife,
who he disclosed to, was. Interpretation based on hypothetical cases helps in
fine-tuning an argument for or against a particular interpretation.

This is what HYPO (Rissland 1986, Ashley 1987) does. HYPO is the earliest
and most sophisticated of the interpretive case-based reasoners. HYPO uses
hypotheticals for a variety of tasks necessary for good interpretation: to redefine
old situations in terms of new dimensions, to create new standard cases when a
necessary one doesn't exist, to explore and test the limits of reasonableness of a
concept, to refocus a case by excluding some issues, to tease out hidden
assumptions, and to organize or cluster cases. HYPO creates hypotheticals by
making 'copies' of a current situation that are stronger or weaker than the real
situation for one side or the other. This work is guided by a set of modification
heuristics that propose useful directions for hypothetical case creation based on

18 J A N E T L. K O L O D N E R

current reasoning needs. HYPO's strategies for argumentation guide selection of
modification heuristics. For example, to counter a counterexample, one might
propose variations on a new situation that make it more like the counterexample.

When a concept is being created on the fly, interpretation requires an
additional ~tep: derivation of a set of defining features for a category. For
example, to decide if Anne will eat swordfish, one must first attempt to charac-
terize what makes a fish Anne will eat acceptable. Otherwise, the basis for
comparing swordfish to other fish she will eat cannot be known. Mahi-mahi, a
fish she has eaten, is meat-like. Trout, which she won't eat, looks like fish. These
are the dimensions we need to use in determining if swordfish is in the category.
It is easy for us to determine what those dimensions are, but getting a computer
to do it automatically is a challenge equivalent to the credit assignment problem.

1.2.3. Projecting effects
Projection, the process of predicting the effects of a decision or plan, is an
important part of the evaluative component of any planning or decision making
scheme. When everything about a situation is known, projection is merely a
process of running known inferences forward from a solution to see where it
leads. More often, however, in real-world problems, everything is not known
and effects cannot be predicted with accuracy based on any simple set of
inference rules.

Consider, for example, a battlefield commander who must derive a strategy
for an upcoming battle. Doctrine provides a set of rules for doing battle, and
they can be used to create a first approximation of a battle plan. But doctrine
gives rules for situations in general, not for particular situations in which the
troops are tired, the strategies of the enemy commander are well-known, it's
been raining for a week, or the mountains are shaped in a way that allows a trap
to be laid. In battlefield planning, as in many other situations, the little details of
a situation are important to the worthiness of a plan. There are many details
that could be attended to, and only some are important. And, as in other
adversarial situations, it is impossible to know everything about the other side,
predict all of their strategies, or predict all of their reactions or counterplans.
Yet a good plan must be created, and it must be evaluated based on projected
effects.

Cases provide a way to projecting effects based on what has been true in the
past. Cases with similar plans that were failures can point to potential plan
problems. If a previous plan similar to the currently proposed one failed
because the troops were too tired, for example, the commander is warned to
evaluate whether his troops are too tired, and if so, knows to fix his strategy to
take that into account. He might change the plan so that tiredness will not be a
factor, give his troops a rest, or get fresh troops in for the battle. Cases with
similar plans that were successes give credence to the current plan. In addition,
when parts of a plan are targeted for evaluation, cases can help with that. The
effects of using a particular kind of trap, for example, can be evaluated by
recalling another case where a similar trap was used.

Automated use of cases for projection has not been a focus of case-based

C A S E - B A S E D R E A S O N I N G 19

reasoning research, but aid to a person doing projection is being addressed.
c s r s BATTLE PLANNER (Goodman, 1989) is a case-retrieval system whose
interface is set up to allow a person to use cases to project effects. A student
commander can propose a solution plan to the system. The BATTLE PLANNER
retrieves the best-matching cases that use a similar plan and divides them into
successful and failure situations. The person can examine the cases, use them to
fix his plan, and then attempt a similar evaluation of the repaired plan. Or, the
person can use the system to do a sensitivity analysis. By manipulating the
details of his situation and looking at the changes in numbers of wins and losses
(in effect, asking a series of 'what-if' questions), he can determine which factors
of the current situation are the crucial ones to repair.

Projection is one of the most important bottlenecks facing the planning
community today. A real-world planner must be able to project effects of plan
steps to interleave tasks with each other, to plan late steps in a plan before
earlier ones are executed, and to set up contingencies. Case-based reasoning has
much to contribute to solving this problem, but effort so far has gone into
helping a person use cases to do projection, and little effort has gone into
automating the projection process to date.

1.2.4. lnterpretive case-based reasoning and problem solving
Much work on interpretation has centered on the law domain and has looked at
justifying an argument for or against some interpretation of the law. One should
not walk away from this discussion, however, with the impression that case-
based interpretation is merely for interpretive problems. On the contrary, it has
much usefulness as part of the evaluative or critical component of problem
solving and decision making whenever strong causal models are missing.
Though there has been tittle work in the area, the processes involved in inter-
pretative case-based reasoning have the potential to play several important roles
for a problem solver. First, if the framework for a solution is known, or if
constraints governing it are known, these methods could be used to choose
cases that would provide such a solution. Second, argument creation and
justification result in knowledge of what features are the important ones to
focus on. Knowing where to focus is important in problem solving also. Third, a
side effect of HYPO's methods is that it can point out which features, if they
were present, would yield a better solution. It does this by keeping track of
near-miss dimensions and creation of hypothetical cases. A problem solver
could use such information to inform its adaptation processes. Finally, interpre-
tive methods can be used to predict the usefulness, quality, or results of a
solution.

2, CBR AND LEARNING

Case-based reasoning is a methodology for both reasoning and learning. A case-
based reasoner learns in two ways. First, it can become a more efficient reasoner
by remembering old solutions and adapting them rather than having to derive

20 J A N E T L. K O L O D N E R

answers from scratch each time. If a case was adapted in a novel way, if it was
solved using some novel method, or if it was solved by combining the solutions
to several cases, then when it is recalled during later reasoning, the steps
required to solve it won't need to be repeated for the new problem. Second, a
case-based reason becomes more competent over time, deriving better answers
than it could with less experience. One of case-based reasoning's fort6s is in
helping a reasoner to anticipate and thus avoid mistakes it has made in the past.
This is possible because it catches problem situations, indexing them by features
that predict its old mistakes. Remembering such cases during later reasoning
provides a warning to the reasoner of problems that might come up, and the
reasoner can work to avoid them.

Within AI, when one talks of learning, it usually means the learning of gener-
alizations, either through inductive or explanation-based means. While the
memory of a case-based reasoner notices similarities between cases and can
therefore notice when generalizations should be formed, inductive formation of
generalizations is responsible for only some of the learning in a case-based
reasoner. Case-based reasoning achieves much of its learning in two other ways:
through the accumulation of new cases and through the assignment of indexes.
New cases give the reasoner more familiar contexts for solving problems or
evaluating situations. A reasoner whose cases cover more of the domain will be
a better reasoner than one whose cases cover less of the domain. One whose
cases cover failure as well as successful instances will be better than one whose
cases cover only successful situations. New indexes allow a reasoner to fine tune
its recall apparatus so that it remembers cases at more appropriate times.

That is not to say that generalization is not important. Indeed, the cases a
case-based reasoner encounters give it direction in the creation of appropriate
generalizations, i.e., those that can be useful to its task. How can that work?
When several cases are indexed the same way and all predict the same solution
or all can be classified the same way, the reasoner knows that a useful gener-
alization can be formed. In addition, the combination of indexes and predicted
solution or classification also give the reasoner guidance in choosing the level of
abstraction of its generalizations. Some case-based reasoners use only cases,
others use a combination of cases and generalized cases. Even when a case-
based reasoner does not use generalizations to reason, they are useful in helping
the reasoner organize its cases. And, one can think of the generalization process
as a way of evolving useful rules from cases that a rule-based reasoner could
use. Rules could be used when they matched cases exactly, while cases would be
used when rules were not immediately applicable.

3. PROCESSES AND ISSUES

The traditional view of reasoning in both artificial intelligence and cognitive
psychology has been that the reasoner is handed a problem, and by composing
and instantiating abstract operators, he is able to solve it. As the examples have

C A S E - B A S E D R E A S O N I N G 21

shown, the case-based reasoning paradigm takes a different approach. Rather
than viewing reasoning as primarily a composition process, we view it as a
process of remembering one or a small set of concrete instances or cases and
basing decisions on comparisons between the new situation and the old in-
stance.

As we have seen, cases are used in two very different ways during reasoning.
They provide ballpark solutions that are adapted to fit a new situation, and they
provide concrete evidence for or against some solution that drives a criticism or
evaluation procedure. Case-based reasoning is thus a process of ' remember a
case and adapt its solution' or ' remember a case and evaluate the new one based
on its outcome'.

The two styles of case-based reasoning arise through emphasis on one or the
other of the two uses of cases. In problem solving situations, we tend to empha-
size the use of cases to propose solutions; in interpretive situations (e.g., law),
we tend to emphasize using cases for criticism and justification. As our exam-
ples above show, however, the two styles are not completely disjoint. We use
interpretive methodologies to criticize and justify a solution to a problem. And
one might need to answer questions (solve problems) in order to interpret a
situation.

The major processes shared by reasoners that do case-based reasoning are
case retrieval and case storage (also called memory update). In order to make
sure that poor solutions are not repeated along with the good ones, case-based
reasoners must also evaluate their solutions.

The two styles of case use, however, each require that different reasoning be
done once cases are retrieved. In problem solving CBR, a ballpark solution to
the new problem is proposed by extracting the solution from some retrieved
case. This is followed by adaptation, the process of fixing an old solution to fit a
new situation, and criticism, the process of evaluating the new solution before
trying it out. In interpretive CBR, a ballpark interpretation or desired result is
proposed, sometimes based on retrieved cases, sometimes imposed from the
outside (as when a lawyer's client requires a certain result). This is followed by
justification, the process of creating an argument for the proposed solution,
done by a process of comparing and contrasting the new situation to prior
cases, and criticism, the process of justifying the argument, done by generating
hypothetical situations and trying the argument out on those.

These steps are in some sense recursive. The criticize and adapt steps, for
example, often require new cases to be retrieved. There are also several loops in
the process. Criticism may lead to additional adaptation, so might evaluation.
And when reasoning is not progressing well using one case, the whole process
may need to be restarted from the top with a new case chosen. Figure 1
summarizes their relationship.

As we've shown in our examples, case-based reasoning is a natural reasoning
process in people, and it has the potential to alleviate many of the complexity
problems plaguing the AI endeavor. In order to build systems, however, there
are several issues that must be addressed, many of them the same ones we must

22 JANET L. KOLODNER

retrieve

propose ballpark solution

U
U

adapt
U

juiifY

U
criticize

eva'~uate

U
store

Fig. 1. The case-based reasoning cycle.

address to explain the reasoning people do. In the following sections, we give a
short overview of each step and discuss the issues that must be addressed to
explain it and make it work well on the computer.

3.1. Case Retr ieval

Remembering is the process of retrieving a case or set of cases from memory. In
general, it consists of two substeps:
• Recall previous eases. The goal of this step is to retrieve "good" cases that

can support reasoning that comes in the next steps. Good cases are those that
have the potential to make relevant predictions about the new case. Retrieval
is done by using features of the new case as indexes into the case base. Cases
labeled by subsets of those features or by features that can be derived from
those features are recalled.

• Select the best subset. This step selects the most promising case or cases to
reason with from those generated in step 1. The purpose of this step is to
winnow down the set of relevant cases to a few most-on-point candidates
worthy of intensive consideration. Sometimes it is a appropriate to choose
one best case, sometimes a small set is needed.
One problem here is that sometimes two cases need to be judged similar

even though they share few surface features. Football and chess strategies, for
example, have much in common though the concrete features of the games are
dissimilar. One is played on a board, the other on a field, one has pieces, the
other people, one has teams competing with each other, the other individuals.
What they have in common is more abstract features, shared by competitive
games. There are two sides in opposition, each wants to win, each wants the
other side to lose, both games involve planning and counterplanning, both
involve positions on a playing field, though it is an actual field with people for

C A S E - B A S E D R E A S O N I N G 23

football and a board with pieces for chess. Nevertheless, you might expect a
football expert who knows how to plan a fork to notice a potential fork situa-
tion in a chess game he is playing and to plan a set of moves based on that. One
way to deal with this problem is to use more than just the surface representation
of a case for comparison. Cases must also be compared at more abstract levels
of representation. The issue we must address is which of the abstract ways of
representing a case are the right ones to use for comparisons (Birnbaum and
Collins 1988, Collins 1987).

Another problem is that a new situation and a case might share some
derivable features while not sharing surface features. In predicting who will win
a battle, for example, the ratio of defender strength to attacker strength is
predictive but neither defender strength nor attacker strength by itself is. Cases
need to be judged similar based on the ratio (a derived feature) rather than the
individual values (surface features). Similarly in diagnosis. It is often the hy-
pothesized disorders or conditions (derived features) that need to be compared
in two cases to judge a current situation and previous case similar rather than
the symptoms the patients manifest (surface features). The issue here is to come
up with a way of generating derived features for cases in an efficient way. We
need guidance in generating derived features because some are expensive to
derive, and even if all were cheap, it would be expensive to generate all possible
derived features of a case.

And of course we need to derive fast retrieval algorithms for massive
libraries of cases (Kolodner 1984, 1988b).

These problems comprise what we have called the indexing problem.
Broadly, the indexing problem is the problem of retrieving applicable cases at
appropriate times (despite all the problems cited above). In general, it has been
addressed as a problem of assigning labels, called indexes, to cases that desig-
nate under what conditions each case can be used to make useful inferences.
These labels have been treated much like indexes in a book. Old cases are
indexed by those labels, one uses a new situation as a key into that index and
traverses appropriate indexing paths to find relevant cases. Researchers are
working on specifying what kinds of indexes are most useful, designating
vocabularies for indexes, creating algorithms and heuristics for automating
index choice, organizing cases based on those indexes, searching memory using
those indexes, and choosing the best of the retrieved cases. The tension between
using indexes to designate usefulness and direct search while at the same time
not allowing them to overly dominate what can be recalled is one of the most
important issues in case-based reasoning.

3.2. Proposing a Ballpark Solution

In this step, relevant portions of the cases selected during retrieval are extracted
to form a ballpark solution to the new case. In problem solving, this step
normally involves selecting the solution to the old problem, or some piece of it,
as a ballpark solution to the new one. In interpretation, this step involves
partitioning the retrieved cases according to the interpretations or solutions they

24 J A N E T L. K O L O D N E R

predict and, based on that, assigning an initial interpretation to the new prob-
lem. Alternatively, the initial interpretation might be given (as when a lawyer
needs to argue for his/her client). In that situation, there is no need for this step.

For example, a problem solver attempting to plan a meal focuses on the meal
plan of a re'called case and uses it as its ballpark solution. Or, if it is attempting
to derive some piece of a meal plan, it focuses on the analogous piece in the old
case. Thus, when JULIA is trying to design an easy-to-prepare and cheap meal
for 20 people, if it remembers a meal where antipasto salad, lasagne, broccoli,
and spumoni were served, that solution will be the ballpark solution after this
step. When it is trying to choose a main dish, if it is reminded of the same case,
lasagne (its main dish) will be its ballpark solution.

An interpretive program, in this step, decides which of the possible inter-
pretations to begin reasoning with. PROTOS, for example, in this step uses a
coarse evaluation function to distinguish which of the many possible interpreta-
tions proposed by the recalled cases is closest to its new case. HYPO, on the
other hand, has its desired result given to it. Thus, its work doesn't actually
begin until the next step.

There are several issues that arise in constructing a ballpark solution. First is
the question of how appropriate portions of an old case can be selected for
focus. An old case could be quite large, and it is important that the parts of it
with no relevance to the new situation don't get in the way. On the other hand,
it is possible that seemingly unrelated parts of an old case can provide guide-
lines. The best answer we have to this problem so far is twofold: First, the goals
of the reasoner determine where to focus in the old case. The reasoner focuses
attention on that part of the old case that was relevant to achieving the rea-
soner's current goal in the past. Thus, if the reasoner is trying to derive a
solution, focus is on the previous solution. If the reasoner is trying to derive a
particular part of a solution, focus is on that part of the solution in the previous
case. If the reasoner is trying to interpret a situation, its classification in the old
case is the focus. Second, the internal structure of the old case, especially the
dependencies between different parts of the case, tell the reasoner how to
expand focus in relevant ways. Thus, when the reasoner focuses on the solution
or classification in an old case, those features of the case that led to selection of
that solution or classification are also in focus.

Another issue has to do with how much work to do in this step before
passing control to adaptation or justification processes. Often there are rela-
tively easy and automatic, some would say c o m m o n - s e n s e , adaptations that can
be made in an old solution before it undergoes the scrutiny of harder adaptation
processes. For example, in labor mediation, adjustment of salary and other
benefits based on cost of living is an expected adjustment. Such adjustments
might also be made to old interpretations before creating arguments for them.
Especially in interpretive reasoning, easy adjustments in this step before harder
reasoning kicks in may be more advantageous than making adjustments after
arguments have been mounted. This way, argumentation is based on a more
realistic solution.

A third issue has to do with choice of an interpretation in interpretive

C A S E - B A S E D R E A S O N I N G 25

reasoning. In programs that have been written to date, either the interpretation
the program starts with is given or it is chosen doing a coarse evaluation of the
alternatives. If one can get to the 'right' answer no matter where one starts, then
choice of a first alternative is merely an efficiency issue. However, if all alterna-
tives are not connected in some way, initial choice of a first alternative might
impact accuracy. Thus, where to begin in doing interpretation is a real issue.

3.3. Adaptation

In problem solving CBR, old solutions are used as inspiration for solving new
problems. Since new situations rarely match old ones exactly, however, old
solutions must be fixed to fit new situations. In this step, called adaptation, the
ballpark solution is adapted to fit the new situation. There are two major steps
involved in adaptation: figuring out what needs to be adapted and doing the
adaptation.

Issues in adaptation arise from both steps. We start by considering adapta-
tion itself. For any particular domain or task, we can come up with a set of
adaptation strategies or heuristics. We can implement those and create a
working system. This is rather ad hoc, however. One big question we must
address is whether there is a general set of adaptation strategies that we can
start with for any domain and that provide guidelines for defining specialized
adaptation strategies. Taking the meat out of a recipe to make it vegetarian is a
strategy specific to recipe adaptation, for example, but it is a specialization of a
more general strategy that we call delete secondary component. This strategy
states that a secondary component of an item can be deleted if it performs no
necessary function. For each type of adaptation strategy, we must also designate
the knowledge necessary for its application.

Also important in adaptation is methodologies for noticing inconsistences
between old solutions and new needs and, based on that, choosing what should
be adapted. Some of the bookkeeping methods developed elsewhere in AI (e.g.,
reason-maintenance, constraint propagation) are useful here, but are used in
much different ways than in their original formulations.

3.4. Justification and Criticism

In these steps, a solution or interpretation is justified, often before being tried
out in the world. When all knowledge necessary for evaluation is known, one
can think of this step as a validation step. However, in many situations, there
are too many unknowns to be able to validate a solution. We can criticize
solutions using all of the techniques of interpretive case-based reasoning. One
way is to compare and contrast the proposed solution to other similar solutions.
This requires a recursive call to memory processes in order to retrieve cases
with similar solutions. For example, if there is an already-known instance of a
similar situation failing, the reasoner must consider whether or not the new
situation is subject to the same problems. Alternatively, if there is an already-
known instance of a similar situation but the problem situations are very

26 J A N E T L. K O L O D N E R

different, the reasoner might consider whether the new situation was solved in a
fair way. For example, in contract negotiations, a mediator might come up with
a salary proposal and before proposing it look to see what other workers have
similar salaries and whether the proposed salary fits current precedents.

We might also propose hypothetical situations to test the robustness of a
solution. Yet another way to criticize a solution is to run a simulation (coarse or
high fidelity) and check the results.

Criticism may require retrieval of additional cases and may result in the need
for additional adaptation, this time called repair.

Major issues here include strategies for evaluation using cases, strategies for
retrieving cases to use in interpretation, evaluation, and justification; the genera-
tion of appropriate hypotheticals and strategies for using them; and the assign-
ment of blame or credit to old cases.

3.5 Evaluation

In this step, the results of reasoning are tried out in the real world. Feedback
about the real things that happened during or as a result of executing the
solution are obtained and analyzed. If results were as expected, further analysis
is not necessary in this step, but if they were different than expected, explana-
tion of the anomalous results is necessary. This requires figuring out what
caused the anomaly and what could have been done to prevent it. Explanation
can sometimes be done by case-based reasoning.

This step is one of the most important for a case-based reasoner. It gives it a
way of evaluating its decisions in the real world, allowing it to collect feedback
that enables it to learn. Feedback allows it to notice the consequences of its
reasoning. This in turn facilitates analysis of its reasoning and explanation of
things that didn't go exactly as planned. This analysis, in turn, allows a reasoner
both to anticipate and avoid mistakes it has been able to explain sufficiently and
to notice previously unforeseen opportunities that it might have a chance to
reuse.

Evaluation is the process of judging the goodness of a proposed solution.
Sometimes evaluation is done in the context of previous cases, sometimes it is
based on feedback from the world, sometimes it is based on a mental or real
simulation. Evaluation includes explaining differences (e.g., between what is
expected and what actually happens), justifying differences (e.g., between a
proposed solution and one used in the past), projecting outcomes, and compar-
ing and ranking of alternative possibilities. The result of evaluation can be
additional adaptation, or repair, of the proposed solution.

3.6. Memory Update

In this step, the new case is stored appropriately in the case memory for future
use. A case is comprised of the problem, its solution, plus any underlying facts
and supporting reasoning that the system knows how to make use of, and its
outcome. The most important process that happens at this time is choosing the

C A S E - B A S E D R E A S O N I N G 27

ways to 'index' the new case in memory. Indexes must be chosen such that the
new case can be recalled during later reasoning at times when it can be most
helpful. It should not be over-indexed, since we would not want it recalled
indiscriminately. This means that the reasoner must be able to anticipate the
importance of the case to later reasoning. Memory's indexing structure and
organization are also adjusted in this step.

This problem shares all of its issues with the first: we must choose appro-
priate indexes for the new case using the right vocabulary, and we must at the
same time make sure that all other items remain accessible as we add to the
case library's store.

4. APPLICABILITY OF CASE-BASED REASONING

4.1 Range of Applicability and Real- World Usefulnegs

We start by considering why a doctor, or anybody else trained in the practice of
making logical decisions, would make case-based inferences. After all, the
doctor is trained to use facts and knowledge, and case-based reasoning looks
like it is based on hearsay. The answer is simple. The doctor is trained to
recognize disorders in isolation and to recognize common combinations of
disorders, He also knows the etiology of disorders, i.e., how they progress. But
he cannot be trained to recognize every combination of disorders, and the
knowledge he has of disease processes is time consuming to use for generation
of plausible diagnoses. If he has used his knowledge of disease process to solve
a hard problem once, it makes sense to cache the solution in such a way that it
can be reused. That is, once he has learned to recognize a novel combination of
disorders, if he remembers that experience, he will be able to recognize it again,
just as he recognizes more common combinations, without the difficult reason-
ing necessary the first time. The logical medical judgment comes in later in
deciding whether or not the patient does indeed have the proposed set of
diseases.

Similarly, we can't expect a computer program to be seeded with all the
possible combinations of problems it might encounter. Nor can we expect it to
have efficient algorithms for generating plausible solutions from scratch all the
time. A model-based trouble shooting system, for example, might know very
well how something functions. That doesn't necessarily mean that it can gener-
ate solutions to problems easily, especially when more then fault could be
possible at any time. Similarly, while a causal model may be helpful in verifying
a design, it may not provide enough information to be able to generate designs
in underconstrained or overconstrained situations. Just as case-based reasoning
provides a way for people to generate solutions easily, it also provides a way for
a computer program to propose solutions efficiently when previous similar
situations have been encountered. This doesn't mean that causal reasoning is
without merit. On the contrary, it must play the role that the medical doctor's
logic plays after a solution is proposed. The causal-model-based system needs to

28 J A N E T L. K O L O D N E R

work along with the case-based system to identify changes that must be made in
an old solution, to ensure valid adaptations, and to verify proposed solutions.
Indeed, CASEY (Koton 1988) and KRITIK (Goel and Chandrasekaran 1989) do
just that, CASEY for the task of heart failure diagnosis and KRrrIK for design of
simple mechanical objects.

So case-based reasoning is useful to people and machines that know a lot
about a task and domain because it gives them a way of reusing hard reasoning
they've done in the past. It is equally useful, however, to those who know little
about a task or domain. Consider, for example, a person who has never done
any entertaining yet has to plan the meal specified in the introduction. His own
entertaining experience won't help him. But if he has been to dinner parties, he
has a place to start. If he remembered meals he'd been served under circum-
stances similar to those he has to deal with, he could use one of those to get
started. For example, if he could generate a list of large dinner parties he has
attended, he could, for each one, figure out whether it was easy to make and
inexpensive, and when he remembered one, adapt it to fit.

Case-based reasoning is also useful when knowledge is incomplete and/or
evidence is sparse. Logical systems have trouble dealing with either of these
situations because they want to base their answers on what is well-known and
sound. More traditional AI systems use certainty factors and other methods of
inexact reasoning to counter these problems, all of which require considerable
effort on the part of the computer and none of which seem intuitively very
plausible. Case-based reasoning provides another method for dealing with
incomplete knowledge. A case-based reasoner makes assumptions to fill in
incomplete or missing knowledge based on what his experience tells him, and
goes on from there. Solutions generated this way won't always be optimal, or
even right, but if the reasoner is careful about evaluating proposed answers, the
case-based methodology gives him a way to generate answers easily.

While the advantages of case-based reasoning are easily evident when an old
solution is fairly close to that needed in the new case, case-based reasoning also
can provide advantage even if the old solution is far from what is needed. There
are two possibilities. Those features of the remembered case that must be ruled
out in the new situation can be added to its description and a new case recalled,
or the recalled case can be used as a starting point for coming up with a new
solution. When there is considerable interaction between the parts of a solution,
then even if large amounts of adaptation are required to derive an acceptable
solution, it may still be easier than generating a solution from scratch. And the
case provides something concrete to base reasoning on. For many people, this is
a preferred reasoning style.

4.2. Advantages of CBR

Case-based reasoning provides many advantages for a reasoner.
• Case-based reasoning allows the reasoner to propose solutions to problems

quickly, avoiding the time necessary to derive those answers from scratch.
The doctor remembering an old diagnosis or treatment experiences this benefit.

C A S E - B A S E D R E A S O N I N G 29

While the case-based reasoner has to evaluate proposed solutions like any
reasoner does, it gets a head start on solving problems because it can generate
proposals easily. There is considerable advantage in not having to redo time-
consuming computations and inferences. This advantage is helpful for almost all
reasoning tasks, including problem solving, planning, explanation, and diagnosis.
Indeed, evaluation of CASEY (Koton 1988) shows two orders of magnitude
speedup when a problem had been seen in the past.
• Case-based reasoning allows a reasoner to propose solutions in domains that

he/she/it doesn't understand completely.
Many domains are impossible to understand completely, often because much
depends on unpredictable human behavior, e.g., the economy. Others nobody
understands yet, e.g., how some medications and diseases operate. Other times,
we simply find ourselves in situations that we don't understand well, but in
which we must act anyway, e.g., choosing which graduate students to accept into
a program. Case-based reasoning allows us to make assumptions and predic-
tions based on what worked in the past without having a complete under-
standing.
• Case-based reasoning gives a reasoner a means of evaluating solutions when

no algorithmic method is available for evaluation.
Using cases to aid in evaluation is particularly helpful when there are many
unknowns, making any other kind of evaluation impossible or hard. Instead,
solutions are evaluated in the context of previous similar situations. Again, the
reasoner does his/her evaluation based on what worked in the past.
• Cases are particularly useful for use in interpreting open-ended and ill-

defined concepts.
As stated above, this is one use attorneys put cases to extensively. Bur it is also
important in everyday situations. In the example above, cases were used to
determine what was included in the concept 'fish Anne won't eat'. The perform-
ance of PROTOS (Bareiss 1989) in classifying hearing disorders when little
information is known shows that a case-based methodology for interpretation
can be more accurate that a generalization-based method when classifications
are ill-defined. PROTOS is significantly more capable and accurate than classifi-
cation systems based on more traditional classification methods.
• Remembering previous experiences is particularly useful in warning of the

potential for problems that have occurred in the past, alerting a reasoner to
take actions to avoid repeating past mistakes.

How can this work? Remembered experiences can be successful or failure
episodes, i.e., situations in which things did not turn out exactly as planned.
Consider again the reasoner trying to plan a meal. He/she can be helped
considerably, for example, if he/she remembers a meal that was supposed to be
easy-to-prepare and inexpensive and instead was hard to make because some of
the ingredients were hard to obtain in manufactured form and had to be made
from scratch. The reasoner is warned, by this case, to avoid those ingredients or
to make sure they are available before committing to a menu.
• Cases help a reasoner to focus its reasoning on important parts of a problem

by pointing out what features of a problem are the important ones.

30 JANET L. KOLODNER

What was important in previous situations will tend to be important in new
ones. Thus, if in a previous case, some set of features was implicated in a failure,
the reasoner focuses on those features to insure that the failure will not be
repeated. Similarly, if some features are implicated in a success, the reasoner
knows to focus on those features. Such focus plays a role in both problem
solving and interpretive case-based reasoning. In interpretive case-based reason-
ing, justifications and critiques are built based on those features that have
proven responsible for failures and successes in the past. An attorney, for
example focuses on those aspects of a new situation that mattered in previous
cases. In problem solving, a reasoner might attempt to adapt his solution so that
it includes more of what was responsible for previous successes and less of what
was responsible for failures.

4.3. Pi(alls

Of course, there are also pitfalls in using cases to reason. A case-based reasoner
might be tempted to use old cases blindly, relying on previous experience
without validating it in the new situation. A case-based reasoner might allow
cases to bias him/her/it too much in solving a new problem. And, often people,
especially novices, are not reminded of the most appropriate sets of cases when
they are reasoning (Holyoak 1985, Gentner 1989). People do find case-based
reasoning a natural way to reason, however. The endeavor of explaining the
proc.esses involved in case-based reasoning might help us to learn how to teach
people to reason better using cases. In addition, the case memory technology we
develop might allow us to build decision aiding systems that augment human
memory by providing the appropriate cases while still allowing the human to
reason in a natural and familiar way. And we can make sure our programs
avoid this type of behavior.

5. COGNITIVE MODEL OR METHODOLOGY FOR BUILDING EXPERT SYSTEMS?

In case-based reasoning a model of people, or is it a methodology for building
intelligent systems? We've been somewhat schizophrenic about this issue up to
now, sometimes referring to people doing case-based reasoning, sometimes
referring to machines that use the method to reason. Case-based reasoning is
both, and explorations in case-based reasoning have been of both the ways
people use cases to solve problems and the ways we can make machines use
them.

5.1. Case-Based Reasoning and People

There is much evidence that people do, in fact, use case-based reasoning in
their daily reasoning. Some of that evidence is hearsay -- we have observed it.
Other evidence is experimental. Ross (Ross 1986, Ross 1989), for example, has

C A S E - B A S E D R E A S O N I N G 31

shown that people learning a new skill often refer back to previous problems to
refresh their memories on how to do the task. Research conducted in our lab
shows that both novice and experienced car mechanics use their own experi-
ences and those of others to help them generate hypotheses about what is
wrong with a car, recognize problems (e.g., a testing instrument not working),
and remember how to test for different diagnoses (Lancaster and Kolodner
1988, Redmond 1989). Other research in our lab shows that physicians use
previous cases extensively to generate hypotheses about what is wrong with a
patient, to help them interpret test results, and to select therapies when several
are available and none are understood very well (Kolodner, unpublished). We
have also observed architects and caterers recalling, merging, and adapting old
design plans to create new ones.

The programs we build are an attempt to understand the processes involved
in reasoning in a case-based way. There are several important potential applica-
tions of an understanding of the way people solve problems in a natural way.
First, we might build decision aiding systems for people that can help them
retrieve cases better. Psychologists have found that people are comfortable
using cases to make decisions but don't always remember the right ones. The
computer could be used as a retrieval tool to augment people's memories.
Second, we might create teaching strategies and build teaching tools that teach
based on good examples. If people are comfortable using examples to solve
problems and know how to do it well, then one of our responsibilities as
teachers might be to teach them the right ones. Third, if we understand which
parts of this natural process are difficult to do well, we can teach people better
how to do case-based reasoning. One criticism of using cases to make decisions,
for example, is that it puts unsound bias into the reasoning system, because
people tend to assume an answer from a previous case is right without justifying
it in the new case. This tells us that we should be teaching people how to justify
case-based suggestions and that justification or evaluation is crucial to good
decision making. If we can isolate other problems people have in solving
problems in a case-based way, then we can similarly teach people to do those
things better.

5.2. Building a Case-Based Reasoner

As a method for building intelligent reasoning systems, case-based reasoning
has appeal because it seems relatively simple and natural. While it is hard to get
experts to tell you all the knowledge they use to solve problems, it is easy to get
them to recount their war stories. In fact, several people building expert systems
that know how to reason using cases have found it easier to build case-based
expert systems than traditional ones (Barletta and Hennessy 1989, Goodman
1989). A big problem in reasoning in expert domains is the high degree of
uncertainty and incompleteness of knowledge involved. Case-based reasoning
addresses those problems by having the reasoner rely on what has worked in
the past. Case-based systems also provide efficiency. While we find first-princi-

32 J A N E T L. K O L O D N E R

pies problem solving systems spending large amounts of time solving their
problems from scratch, case-based systems have been found to be several
orders of magnitude faster (Koton 1988).

There are several different kinds of case-based reasoning systems one might
build. At the two extremes are fully-automated systems and retrieval-only
systems. Fully automated systems are those that solve problems completely by
themselves and have some means of interacting with the world to receive
feedback on their decisions. Retrieval-only systems work interactively with a
person to solve a problem. They act to augment a person's memory, providing
cases for the person to consider that the person might not be aware of himself,
but the person will be responsible for hard decisions. Then there is the whole
range of systems in between, some requiring more on the part of the person
using the system, some requiring less.

There are also several purposes one might create a case-based reasoning
system to serve. We might want it to solve problems, to suggest concrete
answers to problems, to be suggestive without providing answers (i.e., to give
abstract advice), or to just act as a database that can retrieve partially-matching
cases. Much as has been the case with database systems, we can foresee case-
based systems interacting with a person or another program. Interacting with a
person, we can see an executive doing strategic planning asking for cases to help
in deriving or evaluating a solution. The CSI Battle Planner (Goodman 1989)
provides this type of capability now for battle planning. Or, we can imagine a
tutoring system that accesses a library of examples to use in teaching.

What is required for the simplest of systems is a library of cases that coarsely
cover the set of problems that come up in a domain. Both success stories and
failures must be included. And, the cases must be appropriately indexed. This
library, along with a friendly and useful interface, provides augmentation for
human memory. And automated processes can be built on top of it incre-
mentally.

NOTES

* This article is excerpted from Case-Based Reasoning by Janet Kolodner, to be published by
Morgan-Kaufmarm Publishers, Inc. in 1992.

** This work was partially funded by DARt'A under Contract No. F49620-88-C-0058 monitored
by AFOSR, by NSF under Grant No. IST-8608362, and by ARI under Contract No. MDA-
903-86-C-173. Address correspondence to the author at the College of Computing, Georgia
Institute of Technology, Atlanta, GA 30332-0280, email: jlk@cc.gatech.edu.

1 Thanks to Kevin Ashley for the example.
2 Example due to Kevin Ashley (Ashley, 1989).
3 In a previous section, we presented PROTO as a problem solving system. Here we present it as

an interpretive system. PROTOS' task, diagnosis, includes aspects of both uses of cases. It inter-
prets open-ended concepts (classifications) using a case-based classification algorithm, and it
uses an indexing scheme based on differences to avoid previously-made diagnostic mistakes.

C A S E - B A S E D R E A S O N I N G 33

REFERENCES

Alterman, R. (1988). Adaptive planning. Cognitive Science 12,393--422.
Ashley, K. D. (1987). Distinguishing -- a reasoner's wedge. Proceedings of the 1987 Conference of

the Cognitive Science Society. Lawrence Erlbaum Assoc., Hillsdale, N J, pp. 737--747.
Ashley, K. D. (1988). Modelling Legal Argument: Reasoning with Cases and Hypotheticals Ph.D.

Dissertation, COINS Technical Report No. 88--01, Department of Computer and Information
Science, University of Massachusetts, Amherst.

Bain, W. (1986). Case-Based Reasoning." A Computer Model of Subjective Assessment. Ph.D.
Thesis, Dept of Computer Science, Yale University, New Haven, CT.

Bareiss, E. R. (1989). Exemplar-Based Knowledge Acquisition: A Unified Approach to Concept
Representation, Classification, and Learning. Academic Press, Boston, MA.

Badetta, R. and Hennessy, D. (1989). Case adaptation in autoclave layout design. In Hammond,
K. (Ed.), Proceedings: Case-Based Reasoning Workshop (DARPA), H Morgan-Kanfmann,
Pensacola Beach, FL.

Birnbaum, Lawrence and Collins, Gregg (1988). The transfer of experience across planning
domains through the acquisition of abstract strategies. In Kolodner, J. L. (Ed.), Proceedings:
Case-Based Reasoning Workshop (DARPA). Morgan-Kaufmann Publishers, Inc., San Mateo,
CA.

Branting, L. K. (1989). Integrating generalizations with exemplar-based reasoning. Proceedings of
the Eleventh Annual Conference of the Cognitive Science Society, Ann Arbor.

Charniak, E. and McDermott, D. (1985). Introduction to Artificial Intelligence. Addison-Wesley,
Reading, MA.

Collins, G. (1987). Plan Creation: Using Strategies as Blueprints. Ph. D. Thesis. Department of
Computer Science, Yale University, New Haven, CT.

Gentner, D. (1989). Finding the needle: Accessing and reasoning from prior cases. In Hammond,
K. (Ed.), Proceedings: Case-Based Reasoning Workshop (DARPA), II, Morgan-Kaufmann,
Pensacola Beach, FL.

Goel, A. (1989). Integration of Case-Based Reasoning and Model-Based Reasoning for Adaptive
Design Problem Solving. Ph.D. Thesis. Department of Computer and Information Science. The
Ohio State University.

Goel, A. and Chandrasekaran, B. (1989). Use of device models in adaptation of design cases. In
Hammond, K. (Ed.), Proceedings: Case-Based Reasoning Workshop (DARPA) II, Morgan-
Kaufmann, Pensacola Beach, FL.

Goodman, M. (1989). CBR in battle planning. In Hammond, K. (Ed.), Proceedings: Case-Based
Reasoning Workshop (DARPA), I1, Morgan-Kaufmann, Pensacola Beach, FL.

Hammond, K. J. (1989a). Case-Based Planning: Viewing Planning as a Memory Task. Academic
Press, Boston, MA.

Hammond, K. (1989b). Opportunistic memory. Proceedings of IJCAI-89, Detroit.
Hammond, K. (1989c). Proceedings: Second Case-Based Reasoning Workshop (DARPA), H

Morgan Kanfmann Publishers, Inc., San Mateo, CA.
Hinrichs, Thomas R., (1988). Towards an architecture for open world problem solving. In

Kolodner, J. (Ed.), Proceedings: Case-Based Reasoning Workshop (DARPA). Morgan-Kanf-
mann Publishers, Inc., San Mateo, CA.

Hinrichs, T. R. (1989). Strategies for adaptation and recovery in a design problem solver. In
Hammond, K. (Ed.), Proceedings: Case-Based Reasoning Workshop (DARPA), II, Morgan-
Kaufmann, Pensacola Beach, FL.

Holyoak, K. J. (1985). The pragmatics of analogical transfer. In Bower, G. (Ed.), The Psychology
of Learning and Motivation Academic Press, New York, NY.

Kass, Alex M. and Leake, David B. (1988). Case-based reasoning applied to constructing
explanations. In Kolodner, J. (Ed.), Proceedings: Case-Based Reasoning Workshop (DARPA).
Morgan-Kaufmann Publishers, Inc., San Mateo, CA.

Kolodner, J. L. (1984). Retrieval and Organizational Strategies in Conceptual Memory." A Com-
puter Model. Lawrence Erlbaum Associates, Inc., Hillsdale, NJ.

34 JANET L. K O L O D N E R

Kolodner, J. L. (1987). Capitalizing on failure through case-based inference. Proceedings of the
Ninth Annual Conference of the Cognitive Science Society.

Kolodner, J. L. (1988a). Proceedings: Case-Based Reasoning Workshop (DARPA). Morgan
Kaufmmnn Publishers, Inc., San Mateo, CA.

Kolodner, Janet L. (1988b). Retrieving events from a case memory: a parallel implementation.
In Kolodner, J. (Ed.), Proceedings: Case-Based Reasoning Workshop (DARPA). Morgan-
Kanfmann Publishers, Inc., San Mateo, CA.

Kolodner, J. L. and Kolodner, R. M. (1987). Using experience in clinical problem solving. IEEE
Transactions on Systems, Man, and Cybernetics 17(3), 420--431.

Kolodner, J. L. and Simpson, R. L. (1989). The MEDIATOR: analysis of an early case-based
problem solver. Cognitive Science 13(4), 507--549.

Koton, P. (1988). Using Experience in Learning and Problem Solving. Ph.D. Thesis. Computer
Science. M1T.

Lancaster, J. S. and Kolodner, J. L. (1988). Varieties of learning from problem solving experience.
Proceedings of the Tenth Annual Conference of the Cognitive Science Society.

Marks, Mitchell, Hammond, Kristian A., and Converse, Tim, (1988). Planning in an open world:
a pluralistic approach. In Kolodner, J. (Ed.), Proceedings: Case-Based Reasoning Workshop
(DARPA). Morgan-Kaufmann Publishers, Inc., San Mateo, CA.

Navinchandra, D. (1988). Case-based reasoning in CYCLOPS, a design problem solver. In
Koloclner, J. (Ed.), Proceedings: Case-Based Reasoning Workshop (DARPA). Morgan-Kauf-
mann Publishers, Inc., San Mateo, CA.

Redmond, M. (1989). Combining explanation types for learning by understanding instructional
examples. Proceedings of the Eleventh Annual Conference of the Cognitive Science Society,
Ann Arbor.

Riesbeck, C. K. and Schank, R. S. (1989). Inside Case-Based Reasoning. Lawrence Erlbaum
Assoc., Inc., Hillsdale, NJ.

Rissland, E. L. (1983). Examples in legal reasoning: legal hypotheticals. Proceedings oflJCAI-83,
Karlsruhe, West Germany.

Rissland, E. L. (1986). Learning how to argue: using hypotheticals. In Kolodner, J. L. and
Riesbeck, C. K. (Eds.), Experience, Memory, and Reasoning. Lawrence Erlbaum Ass., Inc.,
Hillsdale, NJ.

Rissland, E. and Ashley, K. (1987). HYPO: A case-based reasoning system. Proceedings oflJCAI-
8Z Milan, Italy.

Ross, B. H. (1986). Remindings in learning: objects and tools. In Vosniadou, S. and Ortony, A.
(Eds.), Similarity and Analogical Reasoning, Cambridge University Press, New York, NY.

Ross, B. H. (1989). some psychological results on case-based reasoning. In Hammond, K. (Ed.),
Proceedings: Case-Based Reasoning Workshop (DARPA, II), Morgan-Kaufmann, Pensacola
Beach, FL.

Schank, R. (1986). Explanation Patterns. Lawrence Erlbaum Associates, Inc., Hillsdale, NJ.
Simpson, R. L. (1985). A Computer Model of Case-Based Reasoning in Problem Solving: An

Investigation in the Domain of Dispute Mediation. Ph.D. Thesis. Technical Report No. GIT-
ICS-85/18. School of Information and Computer Science, Georgia Institute of Technology,
Atlanta, GA.

Sycara, E. P. (1987). Resolving Adversarial Conflicts: An Approach to Integrating Case-Based and
Analytic Methods. Ph.D. Thesis. Technical Report No. GIT-ICS-87/26, School of Information
and Computer Science, Georgia Institute of Technology, Atlanta, GA.

Turner, R. M. (1989). A Schema-Based Model of Adaptive Problem Solving. Ph.D. Thesis.
Technical Report No. GIT-ICS-89/42. School of Information and Computer Science. Georgia
Institute of Technology, Atlanta, GA.

