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ABSTRACT

In this work, we focus on the ergodic sum rate in the downlink of
a single-cell large-scale multi-user MIMO system in which the base
station employs N antennas to communicate with K single-antenna
user equipments. A regularized zero-forcing (RZF) scheme is used
for precoding under the assumption that each link forms a homoge-
neous spatially correlated MIMO Rician fading channel. The anal-
ysis is conducted assuming N and K grow large with a non trivial
ratio and perfect channel state information is available at the base
station. Recent results from random matrix theory and large system
analysis are used to compute an asymptotic expression of the signal-
to-interference-plus-noise ratio as a function of the system parame-
ters, the spatial correlation matrix and the Rician factor. Numerical
results are used to evaluate the performance gap in the finite system
regime under different operating conditions.

1. INTRODUCTION

Large-scale multiple-input multiple-output (MIMO) systems (also
known as massive MIMO systems) are considered as one of the
most promising technology for next generation wireless communica-
tion systems [1–3] because of their considerable spatial multiplexing
gains. The use of large-scale MIMO systems is beneficial not only
in terms of communication performances (such as better coverage
and efficient radio resource utilization) but also in terms of energy-
saving. In this complex system model, a number of practical factors
such as correlation effects and line-of-sight (LOS) components need
to be included, which occur due to the space limitation of user equip-
ments (UEs) and the densification of the antenna arrays resulting in
a visible propagation path from the UEs, respectively. For typical
systems of hundreds of antennas and tens of UEs, even computer
simulations become challenging, which makes performance analy-
sis of large-scale MIMO systems an important and a new subject of
research.

In this work, we consider the downlink of a single-cell large-
scale MIMO system in which the base station (BS), equipped with N
antennas, makes use of regularized zero-forcing (RZF) precoding to
communicate withK single-antenna UEs. In particular, we are inter-
ested in evaluating the ergodic sum rate of the system when a power
constraint is imposed at the BS. The analysis is conducted assuming
that N and K grow large with a non trivial ratio under the assump-
tion that perfect channel state information is available at the BS.
Differently from most of the existing literature [4–8], we consider
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a spatially correlated MIMO Rician fading model, which is more
general and accurate to capture the fading variations when there is a
LOS component. Compared to the Rayleigh fading channel, a Rician
model makes the asymptotic analysis of large-scale MIMO systems
much more involved. To overcome this issue, recent results from
random matrix theory and large system analysis [8–10] are used to
compute an asymptotic expression of the signal-to-interference-plus-
noise ratio (SINR), which is eventually used to approximate the er-
godic sum rate of the system. As shall be seen, the results are found
to depend only on the system parameters, the spatial correlation ma-
trix and the Rician factor. As a notable outcome of this work, the
above analysis provides an analytical framework that can be used
to evaluate the performance of the network under different settings
without resorting to heavy Monte Carlo simulations and to eventu-
ally get insights on how the different parameters affect the perfor-
mance.

The main literature related to this work is represented by [4, 7,
11–13]. Tools from random matrix theory are used in [4] to compute
the ergodic sum rate in a single-cell setting with Rayleigh fading
and different precoding schemes while the multicell case is analyzed
in [7]. In [11], the authors investigate a LOS-based conjugate beam-
forming transmission scheme and derive some expressions of the sta-
tistical SINR under the assumption that N grows large and K main-
tain fixed. In [12], the authors study the fluctuations of the mutual
information in a small cell network of a Rician fading channel under
the form of a central limit theorem and provide explicit expression
of the asymptotic variance. In [13], a deterministic equivalent of the
ergodic sum rate and an algorithm for evaluating the capacity achiev-
ing input covariance matrices for the uplink of a large-scale MIMO
are proposed for spatially correlated MIMO channel with LOS com-
ponents. The analysis of the uplink rate with both zero-forcing and
maximum ratio combining receivers is performed in [14].

The following notation is used throughout this work. The super-
script H stands for the conjugate transpose operation. The operators
Tr(X) and ∥X∥ denote trace and spectral norm of matrix X, re-
spectively. The N ×N identity matrix is denoted by IN . A random
variable x is a standard complex Gaussian variable if ∼ CN (0, 1).

2. SYSTEM AND CHANNEL MODEL

We consider the downlink of a network in which K UEs are served
by a single BS equipped with N ≥ K antennas. The signal yk
received by UE k takes the form [4]

yk = hH
k x+ nk ∀k ∈ {1, . . . ,K} (1)



where hk ∈ C
N is the random channel from the BS to user k, x ∈

C
N is the transmit vector, and nk ∼ CN (0, σ2) accounts for thermal

noise. The transmit vector x is obtained as a linear combination of
the independent user symbols {sk} and can be written as

x =
K
∑

k=1

√
pkgksk (2)

where pk ≥ 0 and gk ∈ C
N are the signal power and precoding

vector of UE k, respectively. For analytic tractability, we assume that
the BS is able to acquire perfect channel state information from the
uplink pilots. The RZF scheme is used as precoding technology [4].
Therefore, the precoding matrix G = [g1 . . .gK ] ∈ C

N×n takes
the form

G = ξ
(

HH
H + λIN

)−1
H (3)

where λ > 0 is the so-called regularization parameter and ξ is
chosen so as to satisfy the average total power constraint given by
Tr
(

PGHG
)

= PT where PT > 0 denotes the total available trans-
mit power and P = diag{p1, . . . , pK}. Therefore, it follows that

ξ2 =
PT

Tr
(

PHH (HHH + λIN )−2
H
) . (4)

Under the assumption of Gaussian signaling, i.e., sk ∼ CN (0, 1)
and single user detection with perfect channel state information at
the receiver, the SINR γk of user k takes the form

γk =
pk|hH

k gk|2
∑K

i=1,i̸=k pi|hH
k gi|2 + σ2

. (5)

The rate rk of UE k is given by

rk = log2

(

1 + γk
)

(6)

whereas the ergodic same rate is defined as

rE =
K
∑

k=1

E
[

log2

(

1 + γk
)]

(7)

where the expectation is taken over the random channels hk. The
channel matrix H = [h1 . . .hK ] ∈ C

N×K represents the Rician
channel matrix modeling fast fading with a deterministic line of sight
path, which is modelled as

H =

√

1
1 + ρ

Θ
1/2 1√

N
W +

√

ρ
1 + ρ

A (8)

where A = [a1, . . . , aK ] ∈ C
N×K is a deterministic matrix and

W ∈ C
N×K accounts for the random fast fading component, which

is composed of independent and identically distributed (i.i.d.) circu-
larly symmetric complex Gaussian random variables with zero-mean
and unit variance. The scalar ρ ≥ 0 is the Rician factor1 denoting the
power ratio between A and W whereas the matrix Θ1/2 is obtained
from the Cholesky decomposition of Θ ∈ C

K×N , which accounts
for the channel correlation matrix at the BS antennas. As seen, in
this work we consider an homogeneous system with common UE
channel correlation matrix [4, 15, 16]. This makes the problem ana-
lytically more tractable. Although possible, the extension to the case
in which UEs have different channel correlation matrices is math-
ematically more involved and would require many technical details
that could not be properly addressed for space limitations. For this
reason, all this is left for the extended version, which includes also
the multicell setting [17].

1Note that ρ = 0 corresponds to a Rayleigh fading channel model while
ρ → ∞ corresponds to the non-fading channel model.

3. MAIN RESULT

We exploit the statistical distribution for the channel H and the large
dimensions of N and K to compute the deterministic approximation
of γk, which will be eventually used to find an approximation of the
ergodic sum rate. In doing so, we assume the following grow rate of
system dimensions:

Assumption 1. The dimensions N and K grow to infinity at the
same pace, that is:

1 ≤ lim inf N/K ≤ lim supN/K < ∞. (9)

The above assumption will be referred to as N,K → ∞ in the
sequel. For technical reasons, the following reasonable assumptions
are also imposed on the system settings [4, 9, 10].

Assumption 2. As N,K → ∞, the correlation matrix Θ has uni-
formly bounded spectral norm on N , i.e.,

sup ||Θ1/2|| < ∞ inf
1
N

Tr (Θ) > 0 (10)

Also, as N,K → ∞

sup ||A|| < ∞ (11)

which implies that the Euclidean norm of the columns ak are uni-
formly bounded in N,K.

Assumption 3. The maximum transmit power pmax = maxi pi is
of order O (1/K). Moreover, we denote by pi = pi/K with pi
uniformly bounded in K for α > 0.

Let us now introduce the fundamental equations that are needed
to express a deterministic equivalent of γk. The following set of
equations:

δ =
1
N

Tr
Θ

1 + ρ

(

λ

(

IN +
δ̃

1 + ρ
Θ

)

+
ρ

1 + ρ
AAH

1 + δ

)−1

(12)

δ̃ =
1
N

Tr

(

λ (1 + δ) IK+
ρ

1 + ρ
A

H

(

IN +
δ̃

1 + ρ
Θ

)−1

A

)−1

(13)

admits a unique positive solution [9, 10]. The matrices R[k] and
R[i,k] are given by:

R[k] =

(

λ

(

IN +
δ̃

1 + ρ
Θ

)

+
ρ

1 + ρ

A[k]A
H
[k]

1 + δ

)−1

(14)

R[i,k] =

(

λ

(

IN +
δ̃

1 + ρ
Θ

)

+
ρ

1 + ρ

A[i,k]A
H
[i,k]

1 + δ

)−1

. (15)

We also define

uk = δ +
ρ

1 + ρ
a
H
k R[k]ak (16)

ui,k = δ +
ρ

1 + ρ
a
H
i R[i,k]ai (17)

and

ςi,k=
1
N
Tr

(

Θ

1 + ρ
R[i,k]

(

1
N

Θ

1 + ρ
+

ρ
1 + ρ

aia
H
i

)

R[i,k]

)

. (18)

The following theorem summarizes the main result of this work.



Theorem 1. Let Assumptions 1 – 3 hold true. Then, we have that
γk − γk → 0 almost surely with

γk =
pkt

2
k

sk + ψ σ2

PT

(19)

where

tk =
uk

1 + uk
(20)

sk =
K
∑

i=1,i̸=k

pi
ςi,k +

∣

∣

∣

ρ
1+ρa

H
k R[i,k]ai

∣

∣

∣

2

(1 + uk)
2 (1 + ui,k)

2 (21)

ψ =
K
∑

i=1

pi
u′
i

(1 + ui)
2 (22)

with u′
i = − dui

dλ .

Proof. The proof is very much involved and relies on results in ran-
dom matrix theory [9] as well as some recent ones on the determin-
istic equivalent of bilinear forms [10, Theorem 1]. Due to the space
limitations, it is omitted. A complete proof will be provided in the
extended version, which is currently under preparation [17]. Details
will be provided upon request.

Let us now consider the two extreme cases of the channel model
in (8), namely, the Rayleigh fading channel and the LOS channel.
If a Rayleigh fading channel model is considered (i.e., ρ = 0), the
following results are obtained, which coincide with those in [4].

Corollary 1. Let Assumptions 1 – 3 hold true. If a Rayleigh fading

model is considered, then γk − γ(0)
k → 0 almost surely

γ(0)
k =

pkt
2

sk + ψ σ2

PT

(23)

where

t =
δ

1 + δ
(24)

sk =
1
N2

Tr(ΘRΘR)

∑K
i=1,i̸=k pi

(

1 + 1
N Tr (ΘR)

)4 (25)

ψ =
1
N Tr

(

ΘR2
)

1− K
N

1

N
Tr(ΘRΘR)

(

1+ 1

N
Tr(ΘR)

)

2

∑K
i=1 pi

(

1 + 1
N Tr (ΘR)

)2 (26)

where δ is the unique positive solution of δ = 1/NTr (ΘR) with
R = (λIN + K

N
Θ

1+δ )
−1.

Proof. From Theorem 1, it follows that if ρ = 0 then

uk = ui,k = δ =
1
N

Tr (ΘR) (27)

since δ̃ = K/(Nλ (1 + δ)). Moreover, we have that u′
i = −δ′ =

−dδ/dλ = −1/NTr (ΘR′) with

R
′ =

dR
dλ

= −R
2 +

K
N

RΘR

(1 + δ)2
δ′. (28)

Solving δ′ = 1/NTr (ΘR′) with respect to δ′ yields the desired
result.

If a LOS environment is considered (i.e., ρ→ ∞), then we have
that:

Corollary 2. Let Assumptions 1 – 3 hold true. If a LOS environment

is considered, then γk − γ(∞)
k → 0 almost surely

γ(∞)
k =

pkt
2
k

sk + ψ σ2

PT

(29)

where

tk =
aH
k R[k]ak

1 + aH
k R[k]ak

(30)

sk =
K
∑

i=1,i̸=k

pi

∣

∣aH
k R[i,k]ai

∣

∣

2

(

1 + aH
k R[k]ak

)2 (
1 + aH

i R[i,k]ai

)2 (31)

ψ =
K
∑

i=1

pi
aH
i R2

[i]ai
(

1 + aH
i R[i]ai

)2 (32)

where δ is the unique positive solution of δ = 1/NTr (ΘR) with

R = (λIN + AA
H

1+δ )−1

R[k] =
(

λIN +A[k]A
H
[k]

)−1
(33)

R[i,k] =
(

λIN +A[i,k]A
H
[i,k]

)−1
. (34)

Proof. From Theorem 1, it follows that if ρ → ∞ then δ → 0
since δ̃ is upper bounded by 1/NTr(λIK + AHA)−1. Moreover,
we have that ςi,k → 0 whereas R[k] and R[i,k] reduce to (33) and

(34). Also, u′
i = aH

i R2
[i]ai since u′

i = −dui/dλ = −aH
i R′

[i]ai

with R′
[i] = dR[i]/dλ = −R2

[i].

We are ultimately interested in the individual rates {rk} and the
ergodic sum rate rE . Since the logarithm is a continuous function,
by applying the continuous mapping theorem, from the almost sure
convergence results of Theorem 1 it follows that rk−rk → 0 almost
surely with [4]

rk = log2
(

1 + γk

)

. (35)

An approximation of rE is obtained as follows [4]

rE =
K
∑

k=1

log2
(

1 + γk

)

(36)

such that 1
K (rE − rE) → 0 holds true almost surely.

4. NUMERICAL RESULTS

Monte-Carlo simulations are now used to validate the above asymp-
totic analysis for a network with finite size. We consider a cell of
radius R = 500 m. The transmission bandwidth is W = 10 MHz
and the total noise power Wσ2 is −104 dBm. To allow for repro-
ducibility of our results2, we assume that the UEs are positioned
at a distance of x = 2/3R meters and use the standard correlation

model [Θ]i,j =
√
βν|i−j| where β is the path loss function obtained

as β = 2Lx̄(1 + xκ/x̄κ)−1. The parameter κ > 2 is the path loss

2To enable simple testing of other parameter values, the
code is also available for download at the following address
https://github.com/lucasanguinetti/downlink-Rician-MISO-systems.
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Fig. 1. Sum rate vs. N when N/K = 2 and the Rician factor ρ is
0, 1/2 and 1.
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Fig. 2. Sum rate vs. N when K = 8 and the Rician factor ρ is 0, 1
and 5.

exponent, x̄ > 0 is some cut-off parameter and Lx̄ is a constant that
regulates the attenuation at distance x̄. Unless otherwise specified,
we assume ν = 0.9, κ = 3.5, Lx̄ = −86.5 dB and x̄ = 25 m.
The results are obtained for 1000 different channel realizations. We
assume that a uniform linear array (ULA) is adopted at the BS, the
(n, k)th entry of A is given by

[A]n,k = e−i(n−1)(2π ∆

λ
) sin θk (37)

where ∆ is the transmit antenna spacing, λ is the wavelength, and
θk is the arrival angle of the kth UE. Moreover, we set ∆ = λ/2,
which means that there is no correlation between receive antennas.
The transmit power PT is fixed to 10 Watt with pk = PT /K for
k = 1, . . . ,K and the regularization parameter λ is computed as
λ = σ2/(βPT ).

Fig. 1 illustrates rE and rE when N grows large and N/K = 2
for different values of the Rician factor K. As seen, the approxi-
mation matches very well with Monte Carlo simulations in all the
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Fig. 3. Sum rate vs. N when N/K = 2 and ρ = 1 for different
values of the correlation factor among BS antennas.

investigated scenarios. As expected, increasing the Rician factor re-
duces the system performance because of the reduced spatial diver-
sity of the channel. When the LOS component has the same power
of the Rayleigh counterpart, i.e. ρ = 1, the network performance
improves marginally as N,K grow. In Fig. 2, a classical massive
MIMO setting is considered in which N grows large and K is kept
fixed to 8. As before, the approximation is very accurate and sub-
stantial improvements are observed as N increases also for a Rician
factor of 5. The impact of the correlation matrix is analyzed in Fig.
3 under the same operating conditions of Fig. 1 for ρ = 1. As ex-
pected, reducing the correlation factor largely improves the system
performance as it increases the spatial multiplexing capabilities of
the channel model.

5. CONCLUSION

In this work, we analyzed the ergodic sum rate in the downlink of
a single-cell large-scale MIMO system operating over a Rician fad-
ing channel. A regularized zero-forcing precoding scheme under
the assumption of perfect channel state information. Recent results
from large-scale random matrix theory allowed us to give concise
approximations of the SINRs. Such approximations turned out to
depend only on the long-term channel statistics, the Rician factor
and the deterministic component. Numerical results indicated that
these approximations are very accurate. Applied to practical net-
works, such results may lead to important insights on how the dif-
ferent parameters affect the performance and allow to simulate the
network behavior without the need of extensive Monte Carlo sim-
ulations. More details and insights on these aspects will be given
in the extended version where a more general multi cell setting will
be also investigated under the assumption of different spatial corre-
lation matrices and imperfect channel state information due to pilot
contamination [17].
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