
** This work was partially supported by the German Research Foundation (DFG) within the Collaborative
Research Centre \On-The-Fly Computing" (SFB 901)

Automated Service Discovery and Composition
for On-the-Fly SOAs**

Technical Report

tr-ri-13-333

Zille Huma1, Christian Gerth1, Gregor Engels1, and Oliver Juwig2

1 Database and Information Systems Group, Department of Computer Science

University of Paderborn
Zukunftsmeile 1

33102 Paderborn, Germany

{zille.huma,gerth,engels}@upb.de

2 HRS-Hotel Reservation Service, Germany

 Oliver.Juwig@hrs.de

Version 1.0

Paderborn July 1, 2013

Abstract. The true essence of service-oriented computing is the real-
ization of software development based on services that are composed
to service-oriented architectures (SOA). In recent years, the number of
available software services steadily increased, favored by the rise of cloud
computing with its attached delivery models like Software-as-a-Service
(SaaS). To fully leverage the opportunities provided by these services for
developing highly flexible and aligned SOA, integration of new services
as well as the substitution of existing services must be simplified. As
a consequence, approaches for automated and accurate service discov-
ery and composition are needed. In this paper, we propose an automatic
service composition approach as an extension to our earlier work on auto-
matic service discovery. To ensure accurate results, it matches the service
request and available offers based on their structural as well as behav-
ioral aspects. Afterwards, possible service compositions are determined
by composing the service protocols through a composition strategy based
on labeled transition systems.

1 Introduction

Service 1 Service 2 Service n…

Service Market

Service
Request

find publishService
Offer

interact
Service
Requestor

Service
Provider

Fig. 1. An Overview of Service Publishing
and Discovery

Service-oriented computing (SOC)
has emerged as a promising trend to
enable the vision of large-scale, het-
erogeneous and flexible software sys-
tems at enterprise level. This vision is
realized through the notion of service-
oriented architecture (SOA) with ser-
vices as its basic building blocks. In
this context, a SOA developer acts as
a service requestor, who wants to dis-
cover and compose services available
on service markets based on his/her
service request. As a counterpart, services are developed and published on ser-
vice markets by service providers in terms of service offers. This scenario is
sketched in Figure 1.

With the advent of cloud computing and its attached delivery models, a
steady increase in the number of available services can be observed. This grow-
ing plethora of available services provides enormous opportunities for the devel-
opment of future SOAs towards software systems that are highly flexible and
can be aligned more easily to meet constantly changing requirements. Such On-
The-Fly SOAs could, e.g., maintain their quality autonomously by substituting
disused services with improved ones or their functionality could be extended
on-demand by integrating new services. To make this vision come true, accurate
and automated service discovery and composition mechanisms are needed that
have to face several challenges.

First of all, to enable an efficient and precise identification, services must be
described in a suitable way by a service specification that comprises structural
as well as behavioral aspects of requested and offered services.

Secondly, service discovery mechanisms must deal with the existing multi-
faceted heterogeneity of the involved service partners. For example, most likely
service requestors and providers will work using their own independent ontolo-
gies. Thus, service requests and offers may be structurally different but at the
same time semantically similar. This semantic similarity must be identified. Ad-
ditionally, service partners may use different languages/notations to specify their
service descriptions and these linguistic differences have to be resolved to match
these descriptions. Moreover, based on their independent domain knowledge, ser-
vice partners may specify service requests/offers at different granularity levels
leading to complex n:m correspondences between requested and offered opera-
tions. As a consequence, an elaborate mechanism for automatic service discovery
and composition has to consider structural as well as behavioral aspects of service
partners while overcoming their multifaceted heterogeneity. For this purpose, we
proposed an automatic service discovery mechanism for RSDL-based service de-
scriptions [9]. An application scenario for our proposed approach came from our
industrial partners Hotel Reservation Service (HRS)1. In this scenario, potential
new hotel services shall be automatically discovered and connected to provide
end users with booking facilities for these hotels.

In this paper, we extend our approach by a service composition mechanism,
which enables the composition of multiple services each offering various opera-
tions in order to fulfill a service request. Thereby, we address in particular the
challenge that in a realistic scenario, a service request typically cannot be sat-
isfied by a single service offer. Our proposed mechanism ensures precise service
composition results as it comprehensively covers different elements in service
offers and requests, such as operation signatures, operation semantics (pre- and
post-conditions), and service protocols to discover and compose potential service
offers that satisfy a request.

The remainder of the paper is structured as follows: In Section 2, we introduce
our Rich Service Description Language (RSDL), which provides comprehensive
notations for service request and offer specification. In Sections 3 and 4, we
describe our elaborate approach to service discovery and service composition in
detail. Section 5 briefly introduces our tool support. In Section 6, we discuss
related work and finally, we conclude the paper and give an outlook on future
work in Section 7.

2 Rich Service Description Language

To realize our vision of a comprehensive service specification, we proposed a
UML-based rich service description language (RSDL) [10]. Our RSDL provides
notations to describe the structure and the behavior of service requests and offers
using the following artifacts:

– Structural description: We specify operation signatures of a service re-
quest/offer using the Web Service Description Language (WSDL) [23].

1 http://www.hrs.com

– Behavioral description comprises two aspects:
1. Operation semantics, i.e., pre- and post-conditions for individual oper-

ations are specified using UML-based visual contracts (VC) [13]. A VC
describes the system state before and after the invocation of an opera-
tion in terms of UML object diagrams that are typed over the ontologies
of the service partners.

2. A service protocol specifies required/allowed operation invocation se-
quences using UML sequence diagrams and UML statechart diagrams
for requestors and providers, respectively.

(a) HRS Service Request
‐findRoom(…)
‐viewDetails(…)
‐bookRoom(…)

k P t()

(A)

(b) HotelX Service Offer
‐searchRoom(…)
‐makeRoomReservation(…)
‐arrangeEvent(…)
bookHotelForEvent()

(A)
‐notifyPerEmail(…)
‐validateCredentials(…)
‐cancelBookingProcess(…)

‐makePayment(…)

(B)

VC: findRoom()

: ProfileType : BasicPropertyInfoType : ProfileType

‐bookHotelForEvent(…)

(B)

VC: searchRoom()

: Client
: Accomodation

: RoomPackage

: Client

…
(B)

: RoomStayType …
() g

: Unit: Facility : Price

s1

(C) HRS Service
findRoom()

viewDetails()

(C)

Zustand3

Zustand1

Ready

searchRoom()

cancelBookingProcess()

s1.1 s1.2

s1.3

validateCredentials()

makeRoomReservation()

s1.4
notifyPerEmail()

bookRoom()

makePayment() Zustand4

Zustand2

s2arrangeEvent()
cancelBookingProcess()

s5

s2.1 s2.2
validateCredentials()

bookHotelForEvent()

notifyPerEmail()s2.3 s2.4notifyPerEmail()

Fig. 2. (a) RSDL-based Service Request of HRS and (b) RSDL-based Service Offer of
HotelX

Figure 2(a) shows a RSDL-based service request of HRS consisting of (A): op-
eration signatures, i.e., findRoom(), viewDetails(), bookRoom(), makePayment(),
(B): VCs of these operations typed over the underlying Open Travel Alliance
(OTA)2-based ontology of HRS, and (C): a requestor protocol as UML sequence
diagram. In the context of a service protocol, we assume that a service requestor
is interested to specify a single invocation sequence of the operations invoked
on the offered services. We argue that UML sequence diagrams are a suitable
choice for this purpose.

Similarly, Figure 2(b) shows a RSDL-based service offer of the hotel service
HotelX. The specification consists of (A): operation signatures searchRoom(),
makeRoomReservation(), ... , (B): VCs typed over the HarmoNET3-based on-
tology of HotelX, and (C): a provider protocol as UML statechart diagram. In
case of a service offer, multiple invocation sequences of provided operations shall
be possible, which we specify using a UML statechart diagram.

2 http://www.opentravel.org
3 http://www.harmonet.org

We have certain assumptions for service protocols of service partners. Firstly,
the requestor protocol comprises a single invocation sequence without any loops.
Similarly, the provider protocols also does not contain any loops. Additionally,
the provider protocol must have a final state representing the particular point
where the service provider expects an invocation sequence to end.

Based on rich service request and offers, an automated service discovery
and composition can be achieved. In the next section, we describe our service
discovery and composition mechanism for such RSDL-based service requests and
offers.

3 Automated Service Discovery

In the following, we describe an automated mechanism for service discovery and
composition. In this section, an overview of our approach and a description of
the service discovery is given. In Section 4, we then address the composition of
services.

3.1 Overview of the Proposed Approach

Figure 3 gives an overview of the proposed multi-step approach. It is initiated,
when a requestor accesses the service market to discover and compose potential
offers to satisfy his/her request. In the request normalization phase (Step 1 &
2), the request is normalized to make it comparable to the available service of-
fers. For this purpose, the requestor’s local ontology is manually mapped to a
global ontology agreed upon by all service partners. Similarly, a service provider
manually maps his/her local ontology to this global ontology while publishing
a service on the service market. Such a global ontology is a necessity to enable
automatic service discovery and we assume that it is a part of the service market
and is maintained by the market provider. Ontology mapping is an extensively-
researched complex problem, which is not the focus of our work and we rely on
existing work for this purpose. In Step 2, the operation semantics described in
terms of visual contracts (VC) in the service request are automatically normal-
ized to a public representation using the local-global ontology mappings. Here
it is important to mention that the first three steps are part of our earlier work
and the details of these steps along with examples are provided in [9].

Global

Step 1: Match
Local and Global

Ontologies

Global
Ontology

Step 2: Normalize
Visual Contracts

Step 3:Match Operations
based on normalized

Visual Contracts

Step 4: Match and Compose
Protocols based on
Operation MappingsOntologies Visual Contracts p pp g

Local
Ontology

Service
Request

+

Service CompositionRequest NormalizationService Requestor Operation Matching

Fig. 3. Overview of the Automated Service Discovery and Composition

Based on a normalized service request, a multi-step service matching is car-
ried out to identify and compose offered service(s). In the operation matching
phase (Step 3), a subset of service offers is selected through matching of opera-
tions in service request and available service offers on the basis of their normalized
VCs. Finally, in the service composition phase (Step 4), the protocols in service
request and selected service offers are matched and composed to determine pos-
sible service compositions. In the next subsection, we will give an overview of
operation matching phase, which is important for a better understanding of ser-
vice composition phase.

3.2 Operation Matching

We have proposed a set of operation matching algorithms for RSDL-based ser-
vice requests and offers, which are explained in detail in [9]. These algorithms
compute 1 : 1, 1 : n, n : 1 and (partially) n : m mappings between operations in
available service offers and operations in service requests4. Operation matching
determines whether the requested behavior is fulfilled by the offered behavior
based on the visual contracts (VC). The result is a set of mappings between re-
quested operations in a service request and offered operations of available service
offers, which is defined as follows:

Definition 1 (Operation Mappings) For a service request r, the set of oper-
ation mappings OpMapr is given by OpMapr = {(mr,mo)} where mr = opri →
... → oprn is a sequence of requested operations in r that can be invoked on
the requested service protocol in the given order. This sequence is mapped to
mo = opoj → ... → opom, i.e., a sequence of one or more offered operations in a
service offer o, which can be invoked on the offered service protocol in the given
order.

As an example, the operation mappings obtained by matching the service
request of HRS and the service offer of HotelX (introduced in Figure 2) and
two further service offers of HotelY and PayOnline are shown in Figure 4. One
mapping contained in OpMaphrs is the n : 1 operation mapping (findRoom()→
viewDetails(), searchRoom()) that maps the sequence of requested operations
to an offered operation of HotelX. Based on the operation mappings, we compose
the operations of the service offers to satisfy the service request in the next
section.
4 Automated Service Composition

In Step 4 of our approach (see Fig. 3), the protocol of the service request and
the protocols of the service offers that contain mapped operations are compared.
Based on this comparison, the operations contained in the service offers are
composed on the basis of the computed operation mappings to determine valid

4 Please note that before operations in service offers and requests are matched, suitable
service offers may be preselected based on a domain-specific categorization provided
by the service market. However, this preselection is out of scope in our approach.

Requestor
HRS

HotelX PayOnlineHotelY
Providers

findRoom()
viewDetails

searchRoom()
(n:1)

bookRoom() validateCredentials()

getAvailableRoom()
(n:1)

reserve()

‐

‐

signIn() payDues()

bookRoom() makeRoomReservation()
notifyPerEmail()

(1:n)

reserve()
(1:1)

makePayment()
signIn() payDues()

generateReceipt() signOut()
(1:n)

‐ ‐

Fig. 4. Operation Mappings between the HRS Request and three available Service
Offers

service compositions satisfying the request. In other words, we evaluate whether
the matched operations of the offered service can be invoked in the desired order
resulting in valid service compositions. To achieve this goal, service composition
phase consists of multiple tasks:

(i) Translation of the protocols in service request and offer to a common se-
mantic domain in terms of Labeled Transition System (LTS).

(ii) Composition of the LTS of requested service protocols and the LTSs of
offered service protocols based on the operation mappings.

(iii) Analysis of the composed LTS to determine valid service compositions.

In the following sections, we discuss each of these tasks in detail.

4.1 Protocol Translation to LTS

RSDL service requests and offers contain linguistic heterogeneity by using two
different notations to specify service protocols, i.e., UML sequence diagrams and
UML statecharts, respectively. To enable automated consistency checks and de-
termine valid service compositions, we translate these two notations to a common
semantic domain. For that purpose, we first determine the behavior of these two
notations in our approach by specifying their semantics formally.

There are already several semantic specification approaches [8, 4, 12] that aim
at translating UML artifacts to a semantic domain, such as, labeled transition
system (LTS), Petri net, CSP process, etc. In our approach, we use Dynamic
Meta Modeling (DMM) [8] for specifying the behavior of the service protocol
formally and unambiguously and to enable the compute of a LTS for a given
service protocol. We argue that DMM is most suitable for our approach because
it is particularly targeted at languages that have an abstract syntax defined in
terms of a metamodel, such as the UML. Apart from that, DMM is intuitively
understandable due to its visual, object-oriented syntax.

A formal definition of a LTS representing a service protocol is as follows:

Definition 2 (Requested/Offered LTS) An LTS ltsdesc representing the
service protocol in a request/offer desc is a 5-tuple (S, s0, SF , OP, δ) where:

(i) S is the set of states, where s0 ∈ S represents the initial state and SF ⊆ S
represents the set of final states.

(ii) OP is the set of requested/offered operations.

(iii) δ ⊆ S ×OP × S is the transition relation and is deterministic.

In this paper, we will use the notation desc.S, desc.s0, desc.SF , desc.OP , and
desc.δ to refer to the the elements of ltsdesc.

PayOnline ProtocolHotelY Protocol

Ready
getAvailableRoom()

s1
s1

D ()Ready s1

reserve() Ready s1.1signIn() s1.2
payDues()

generateReceipt()signUp()
signIn()

s1 4

sendEmail()

s2 s1.3

signOut()
s2

3

s1.4

s3

Fig. 5. Service Protocols for Payment and Hotel Service

The protocols of the service request and service offers of our running examples
are shown in Figure 2 and Figure 5. The corresponding LTSs for these protocols
computed using DMM are shown in Figure 6.

HotelX (LTS) HotelY (LTS)HRS (LTS) PayOnline(LTS)

Requestor Providers

HotelX (LTShotelX) HotelY (LTShotelY)HRS (LTShrs) PayOnline(LTSpayOnline)

s1 s2 s3
fr vd

s1

s2 s5

sr ae
s1

si su

si

s4

br

mp

s1 s2 s3
gar res2

s3 s6

vc vc

cb

cb cb

cb

s3 s2

s4

pd

si

so

s5

s8

bh

ne

s4

mr

s7

ne

cb cb
s5

so

gr

so

sose

s6
so

s8
s7

fr findRoom()

vd viewDetails()

br bookRoom()

sr searchRoom()

ae arrangeEvent()

cb cancelBookingProcess()

si signIn()

su signUp()

pd payDues()

gar getAvailableRoom()

re reserve()

br bookRoom()

mp makePayment()

cb cancelBookingProcess()

mr makeRoomReservation()

bh bookHotelForEvent()

ne notifyPerEmail()

pd payDues()

gr generateReceipt()

se sendEmail()

so signOut()

vc validateCredentials()

Fig. 6. LTSs for the Service Partners in our Running Example

In the next section, we identify possible service compositions by comparing
the LTS of the service protocols.

4.2 LTS Composition

In this section, we present our LTS composition algorithm and explain it in the
context of our running example. In order to automatically detect possible service
compositions that satisfy a service request, we compose the LTSs of a service
request and service offers by overlapping them on the basis of the operation
mappings determined earlier.

Listing 1: Algorithm to compose and analyze LTSs of the service partners
to find valid service compositions

Input: LTS of Service Request ltsr
Input: Set of LTSs of selected offers{ltso1 , ..., ltsok}
Input: Set of operation mappings OpMapr for r
Output: Set of possible service compositions Resultcomp OR Failure

Notification

findServiceCompositions(ltsr, {ltso1 , ..., ltsok}, OpMapr)
define scomp:(r.s0, o1.s0, ..., ok.so); // ¬

add scomp as initial state to the composed LTS ltscomp;

while ltscomp.hasMoreStates() do //

scur=ltscomp.nextState(), where scur:(r.sc, o1.sc, ...ok.sc) ;

while scur.hasInvocableMappings() do // ®

map=scur.nextInvocableMapping(), where map : (mr,mo) AND
o ∈ {o1, ..., ok}; // ¯

add star:(r.st, o1.st, ...ok.st) to ltscomp, where r.sc
mr−−→ r.st AND

o.sc
mo−−→ o.st; // °

add tcomp to ltscomp, where tcomp=scur
mr‖mo−−−−−→ star; // ±

end

end

if ltscomp.hasCompleteTraces() then // ²
Resultcomp= ltscomp.completeTraces() return Resultcomp

end
else return Failure Notification

end

An algorithm for LTS composition is given in Listing 1. It takes as input
the LTS of a service request and the LTSs of offered services. Additionally, it
takes the prior computed operation mappings between requested and provided
operations as input. As output, it returns a set of possible service compositions.
If there is no possible service composition, a failure is notified and the requestor
is provided with suggestions to restructure his/her request based on identified
partial compositions.

Construction of the composed LTS: The algorithm in Listing 1 works as
follows:

1. A composed state scomp, which is a composition of the initial states of all
the participating LTSs is created and added to the composed LTS ltscomp.
It is represented with a vector of the participating states. Figure 7 shows a
partially composed ltscomp for our running example with cs1 as its initial
state.

2. Next, the while-loop traverses over the states of the composed LTS ltscomp

and constructs it further until there are no more states to be traversed.
3. For every state scur that is currently traversed, the invocable operation

mappings from OpMapr are determined. An operation mapping is invo-
cable in a composed state s, if its comprising operation sequences can
be directly invoked in s. For cs1 in Figure 7, there are two invocable
mappings in OpMaphrs. One Mapping is (hrs.findRoom() → hrs.view-
Details() , hotelX.searchRoom()), which is invocable in cs1 because hrs.-
findRoom()→ hrs.viewDetails() can be invoked from hrs.s1 and hotelX.-
searchRoom() can be invoked from hotelX.s1. The other invocable map-
ping for cs1 is (hrs.findRoom()→ hrs.viewDetails() , hotelY.getAvailable-
Room()).

4. For every invocable operation mapping map of scur, ltscomp is further con-
structed by composing the parts of the participating LTSs that overlap on
the basis of map. For example, for one of the invocable mapping for cs1,
the overlapping parts of LTShrs and LTShotelX are shown in the right-hand
side of Figure 7.

5. For every map, a new composed state star is created and added to ltscomp.
star is a composition of the states that overlap through the invocation of op-
eration sequences in map. Figure 7 shows the newly created composed state
cs5, where LTShrs and LTShotelX are in hrs.s3 and hotelX.s2, respectively
after the invocation of the operation sequences in map under consideration.

6. Similarly, a composed transition tcomp is added between scur and star, which
represents the parallel invocation of the overlapping transitions. For example,
the composed transition between cs1 and cs5 in Figure 7 represents the
parallel invocation of hrs.findRoom() → hrs.viewDetails() and hotelX.-
searchRoom()in LTShrs and LTShotelX , respectively.

7. Analogously, the composed states cs2 and cs5 are traversed and as a result,
ltscomp is further constructed. It is completely constructed if there are no
more states to be traversed. After the complete construction, ltscomp is ana-
lyzed to determine any possible service compositions, which will be discussed
in detail in next subsection.

A salient feature of the proposed algorithm is its selective composition strat-
egy where the LTS composition is moderated through the LTS of the requested
service protocol. That means, only those parts of the LTSs of offered service
protocols are considered that overlap with the LTS of requested protocol and
hence are relevant for the requestor based on the identified operation mappings.
As a result of selective composition, the composed LTS is smaller in size and
easier to analyze as compared to a conventionally composed LTS. For example, a
conventional LTS composition mechanism may include some other transitions in

rangeEvent()

cs1
(hrs.s1,

hotelY.s1,
hotelX.s1,

O li 1)

hotelX.arrange

payOnline.signIn() LTShrs LTShotelX

Overlapping Parts

payOnline.s1)

hrs.findRoom() hrs.viewDetails()
||

hotelY.getAvailableRoom()

hrs.findRoom() hrs.viewDetails()
||

hotelX.searchRoom()

s1 s2 s3
fr vd s1

s2

sr

fr findRoom()
hR ()

cs2
(hrs.s3,

hotelY.s2,
hotelX.s1,

O li 1)

cs5
(hrs.s3,

hotelY.s1,
hotelX.s2,

payOnline s1)

vd viewDetails() sr searchRoom()

payOnline.s1) payOnline.s1)

Fig. 7. Composed LTS after the first Iteration

the composed LTS, e.g., from cs1 , some other possible transitions are hotelX.-
arrangeEvent(), payOnline.signIn(), etc. However, in our selective composi-
tion strategy, these transitions are not relevant for the requestor since they are
not part of any invocable operation mappings from the composed state under
consideration and hence are not included to ltscomp.

cs1
(hrs.s1,

hotelY.s1,
hotelX.s1,

payOnline.s1)

cs2
(hrs.s3,

hotelY.s2,
hotelX.s1,

payOnline.s1)

cs5
(hrs.s3,

hotelY.s1,
hotelX.s2,

payOnline.s1)

cs3
(hrs.s4,

hotelY.s3,
hotelX.s1,

payOnline.s1)

cs4
(hrs.s5,

hotelY.s3,
hotelX.s1,

payOnline.s7)

cs6
(hrs.s4,

hotelY.s1,
hotelX.s8,

payOnline.s1)

cs7
(hrs.s5,

hotelY.s1,
hotelX.s8,

payOnline.s7)

hrs.findRoom() hrs.viewDetails()
||

hotelY.getAvailableRoom()

hrs.findRoom() hrs.viewDetails()
||

hotelX.searchRoom()

hrs.bookRoom()
||

hotelY.reserve()

hrs.bookRoom()
||

hotelX.validateCredentials()
hotelX.makeRoomReservation()

hotelX.notifyPerEmail()

hrs.makePayment()
||

payOnline.signIn()
payOnline.payDues()

payOnline.generateReceipt()
payOnline.signOut()

hrs.makePayment()
||

payOnline.signIn()
payOnline.payDues()

payOnline.generateReceipt()
payOnline.signOut()

Fig. 8. Completely Composed LTS of our running Ex-
ample

Analysis of the com-
posed LTS: Our analy-
sis mechanism determines
all the complete traces,
which represent the pos-
sible service compositions
in the composed LTS. A
trace of ltscomp is com-
plete if it ends in a com-
posed state where the LTS
of requested service proto-
col is in its final state. In
our given example, cs1 →
cs2 → cs3 → cs4 and
cs1 → cs5 → cs6 → cs7
represent two possible ser-
vice compositions. Based
on these results, a service
requestor (e.g. HRS) may
decide for a particular com-
position based on quality
attributes of the provided
services, such as, costs, per-
formance, or reliability. Quality attributes are currently not considered in our
approach but can be easily added by extending our rich service specification
language.

The algorithm notifies a failure finding a valid service composition, if ltscomp

does not have any complete trace. In this case, the service requestor is provided

with feedback in terms of partially composed LTS and the particular points
where a composition failed. On the basis of this feedback, the requestor may
restructure his/her service request. For example, assuming that HRS request a
further operation paymentInfoPerEmail() (referred as ppe) that is invoked after
makePayment(). Figure 9(a) shows the LTS of HRS for this scenario. During
operation matching, paymentInfoPerEmail() may be mapped to the operation
sendEmail() of the PayOnline service (compare Fig. 6). Figure 9(b) shows the

(b) Extended Composed LTS(a) Extended LTS of HRS (LTShrs_ext)

s1 s2 s3
fr vd

cs3 cs6

s4

br
(hrs.s4,

hotelY.s3,
hotelX.s1,

payOnline.s1)

(hrs.s4,
hotelY.s1,
hotelX.s4,

payOnline.s1)

hrs.makePayment()
||

O ()

hrs.makePayment()
||

O ()

s5

mp

s6
ppe

cs4
(hrs.s3,

hotelY.s2,
h lX 1

cs7
(hrs.s4,

hotelY.s1,
h l

payOnline.signIn()
payOnline.payDues()

payOnline.generateReceipt()
payOnline.signOut()

payOnline.signIn()
payOnline.payDues()

payOnline.generateReceipt()
payOnline.signOut()

fr findRoom()
hotelX.s1,

payOnline.s1)
hotelX.s4,

payOnline.s1)

hrs.paymentInfoPerEmail()
||

payOnline.sendEmail()

hrs.paymentInfoPerEmail()
||

payOnline.sendEmail()

vd viewDetails()

br bookRoom()

mp makePayment()mp makePayment()

ppe paymentInfoPerEmail()

Fig. 9. Extended LTS of HRS and Composed LTS in the Failure Scenario

lower part of our previously computed composed LTS (cf. Fig. 8), which was
complete after the traversal of cs4 and cs7. However, in this slightly modi-
fied scenario, the composed LTS is no longer complete since also the operation
paymentInfoPerEmail() needs to be fulfilled. Considering the operation map-
ping (hrs.paymentInfoPerEmail(), payOnline.sendEmail()) the operation send-
Email() of the PayOnline service would be suitable but cannot be invoked in any
of the states cs4 or cs7. As a consequence, none of the traces in the composed
LTS is complete and hence there is no possible service composition satisfying
the HRS request.

At the end of this phase, a set of possible service compositions is achieved that
satisfy the service request or a failure notification with feedback for a requestor.
These service composition results can be used by the service requestor to define
a concrete service composition. To summarize, our service composition mecha-
nism further strengthens the vision of On-The-Fly SOAs through elaborate and
automatic matching and composition of service descriptions while resolving their
heterogeneity issues.

5 Tool Support

We have implemented a tool, called RSDL Workbench as a part of the service
computing platform developed at the Collaborative Research Center (CRC 901)

”‘On-The-Fly Computing”’5. It provides an editor for service partners to specify
their RSDL-based service descriptions. The operation semantics normalization
and operation matching is fully automated based on given local/global ontology
mappings.

Fig. 10. Screenshots for RSDL Workbench

The RSDL Workbench has been
realized as an Eclipse plugin and is
implemented using EMF, GMF, and
Henshin6. Figure 10 shows two screen-
shots of the service specification ed-
itor contained in the RSDL Work-
bench. Currently, we extend the work-
bench to also support the automated
service composition. In this context,
we integrate the existing DMM tool
support for the translation of service
protocols into LTSs. Furthermore, an
extensive evaluation of the effectiveness of the proposed approach through a
variety of case studies in the CRC environment is also in progress.

6 Related Work

For this section, our particular focus is on the workflow-based approaches for au-
tomatic service composition where a service composition is defined as a workflow
with multiple services interacting on the basis of control/data flow [20].

Automation of service composition process is an important concern of the
SOC research community [3] and is further complicated by the advent of com-
prehensive service description languages [16, 6]. Below, we discuss some of the
salient approaches [2, 11, 15, 1, 5, 21, 18, 7] on the basis of multiple factors, such
as, the matched elements of request/offers, heterogeneity resolution, etc. and
compare them with our approach.

Concerning matched elements in service request and offer, some [2, 11, 15]
examine operation signatures and operation semantics with the assumption that
the requested/offered service consist of a single operation and hence, do not con-
sider service protocols. [2] also matches quality attributes of request and offer
but the calculation of a service’s QoS value is not clearly defined. Similar to our
approach, [15] specifies the behavior of the requested/offered services in terms of
visual contracts. However, our approach additionally considers service protocols
and comes with a detailed heterogeneity resolution mechanism. Other approaches
[1, 5, 21, 17, 18] consider service protocols while matching as well. For instance,
METEOR-S [1, 19] enables service discovery by matching of WSDL-S-based [14]
service descriptions considering operation semantics and QoS values of services.
Additionally, service composition is enabled by considering requested service pro-
tocol defined in a BPEL-like notation. however, offered services are assumed to

5 http://sfb901.uni-paderborn.de
6 http://www.eclipse.org/modeling/emft/henshin/

have single operation, hence offered service protocols are not considered. [5, 21,
17, 18] propose service composition mechanisms for service descriptions specified
in de facto languages, such as, OWL-S[16] and UML. These mechanisms dis-
cover and compose services offers based on the operation signatures and service
protocols but do not consider operation semantics. In this context, [5] considers
offered service protocols only. [21, 18] additionally analyze the quality attributes
for matching service descriptions. Our protocol matching mechanism can be
compared to [18, 21], where [18] comes up with an LTS-composition mechanism
based on operation signature matching. [21] considers the protocols specified
using different languages and translates them to a common semantic domain
before checking their conformance.

In this context, [22] comes up with a comprehensive service composition
mechanism for OWL-S based service descriptions, where matching is based on
operation signatures, operation semantics as well as service protocols. However,
it has certain shortcomings in terms of heterogeneity resolution features, which
we will discuss shortly.

Concerning the resolution of the multifaceted heterogeneity of service part-
ners, existing approaches follow different strategies. Some approaches [2, 1, 7]
realizes the need for ontological heterogeneity resolution and come up with mech-
anism for this purpose. For instance, [1] provides semantic annotation for WSDL
elements, which can support an ontological heterogeneity resolution mechanism,
whereas [7] comes up with an elaborate mediator-based mechanism for this
purpose. [21] provides a solution for linguistic heterogeneity by using abstract
state machines as the common semantic domain. Other service composition ap-
proaches either tend to ignore the fact that the service request and offers can be
heterogeneous in a realistic scenario [15, 22] or they [11, 5, 18] assume the exis-
tence of such a mechanism that can overcome these difference. These approaches
define their composition mechanisms for normalized request/offers and therefore
avoid major complexities of the problem at hand.

From this discussion, it becomes evident that there is a need for approaches
that: 1) match and compose the service description by comprehensively matching
the structural and behavioral aspects of service descriptions 2) provide multi-
faceted heterogeneity resolution mechanism for the service partners in realistic
scenarios. We claim that our approach fulfills these requirements and hence is a
promising approach for On-The-Fly SOAs.

7 Conclusion and Future Work

To enable the vision of On-The-Fly SOAs, we propose an automated composition
mechanism based on our earlier work on rich service descriptions and automatic
service discovery [9, 10]. Our proposed mechanism ensures accurate service dis-
covery results as it relies on comprehensive matching of the service request and
offers based on their structural as well as behavioral features. Additionally, it
comes up with a service protocol composition mechanism that determines pos-
sible service compositions. We have implemented the RSDL Workbench as a

part of the service computing platform being developed at the Collaborative
Research Center 901 ”On-The-Fly Computing“ and evaluated our approach on
a real-world case study of our industrial partner HRS.

In future, we aim to evaluate our approach more extensively through further
case studies. We also intend to consider service protocols with additional com-
plexity, such as, loops, multiple regions, etc. We also aim to further strengthen
our heterogeneity resolution mechanism with features, such as, complex map-
pings between ontologies, etc.

References

1. Aggarwal, R., Verma, K., Miller, J.A., Milnor, W.: Constraint Driven Web Ser-
vice Composition in METEOR-S. In: IEEE International Conference on Services
Computing (SCC’04). pp. 23–30. IEEE Computer Society (2004)

2. Bartalos, P., Bieliková, M.: QoS Aware Semantic Web Service Composition Ap-
proach Considering Pre/Postconditions. In: Proceedings of IEEE International
Conference on Web Services (ICWS’10). pp. 345–352. IEEE Computer Society,
Los Alamitos, CA, USA (2010)

3. Bartalos, P., Bieliková, M.: Automatic Dynamic Web Service Composition: A Sur-
vey and Problem Formalization. Computing and Informatics 30(4), 793–827 (2011)

4. Bernardi, S., Donatelli, S., Merseguer, J.: From UML Sequence Diagrams and
Statecharts to analysable Petri Net Models. In: Proceedings of the 3rd International
Workshop on Software and Performance. pp. 35–45. ACM, NY, USA (2002)

5. Brogi, A., Corfini, S., Popescu, R.: Semantics-based Composition-oriented Discov-
ery of Web Services. ACM Trans. Internet Technol. 8(4), 19:1–19:39 (2008)

6. ESSI WSMO Working Group: Web Service Modelling Ontology.
http://www.wsmo.org/

7. Haller, A., Cimpian, E., Mocan, A., Oren, E., Bussler, C.: WSMX - A Semantic
Service-Oriented Architecture. In: IEEE International Conference on Web Services
(ICWS’05). pp. 321–328. IEEE Computer Society (2005)

8. Hausmann, J.H.: Dynamic Meta Modeling: A Semantics Description Technique for
Visual Modeling Languages. Ph.D. thesis, University of Paderborn (2005)

9. Huma, Z., Gerth, C., Engels, G., Juwig, O.: Towards an Automatic Service Discov-
ery for UML-based Rich Service Descriptions. In: Proceedings of the 15th Interna-
tional Conference on Model Driven Engineering Languages and Systems (MOD-
ELS’12). LNCS, vol. 7590, pp. 709–725. Springer-Verlag, Berlin, Heidelberg (2012)

10. Huma, Z., Gerth, C., Engels, G., Juwig, O.: UML-based Rich Service Descrip-
tion and Discovery in Heterogeneous Domains. In: Proceedings of the Forum at
the CAiSE’12 Conference on Advanced Information Systems Engineering. CEUR
Workshop Proceedings, vol. 855, pp. 90–97. CEUR-WS.org (2012)

11. Kona, S., Bansal, A., Blake, M.B., Gupta, G.: Generalized Semantics-Based Service
Composition. In: IEEE International Conference on Web Services (ICWS’08). pp.
219–227. IEEE Computer Society, Washington, DC, USA (2008)

12. Küster, J.M., Stehr, J.: Towards Explicit Behavioral Consistency Concepts in the
UML. In: Proceedings of the 2nd International Workshop on Scenarios and State
Machines: Models, Algorithms and Tools. Portland, USA (2003)

13. Lohmann, M.: Kontraktbasierte Modellierung, Implementierung und Suche von
Komponenten in serviceorientierten Architekturen. Ph.D. thesis, University of
Paderborn (2006)

14. LSDIS Lab: Web Service Semantics. http://lsdis.cs.uga.edu/projects/WSDL-
S/wsdl-s.pdf

15. Naeem, M., Heckel, R., Orejas, F., Hermann, F.: Incremental Service Composition
based on Partial Matching of Visual Contracts. In: Proceedings of Fundamental
Approaches to Softw. Eng. (FASE’10). LNCS, vol. 6013, pp. 123–138. Springer
(2010)

16. OWL-S Coalition: OWL-based Web Service Ontology.
http://www.ai.sri.com/daml/services/owl-s/1.2/ (2006)

17. Pathak, J., Basu, S., Honavar, V.: Modeling Web Service Composition using Sym-
bolic Transition Systems. In: Proceedings of AAAI Workshop on AI-Driven Tech-
nologies for Service-Oriented Computing. AAAI Press, California, USA (2006)

18. Pathak, J., Basu, S., Honavar, V.: Modeling Web Services by Iterative Reformu-
lation of Functional and Non-functional Requirements. In: Proceedings of the 4th
International Conference on Service-Oriented Computing (ICSOC’06). LNCS, vol.
4294, pp. 314–326. Springer-Verlag, Berlin, Heidelberg (2006)

19. Patil, A.A., Oundhakar, S.A., Sheth, A.P., Verma, K.: Meteor-s Web Service Anno-
tation Framework. In: Proceedings of the 13th International Conference on World
Wide Web (WWW’04). pp. 553–562. ACM, New York, NY, USA (2004)

20. Rao, J., Su, X.: A Survey of Automated Web Service Composition Methods. In:
Proceedings of the First International Conference on Semantic Web Services and
Web Process Composition (SWSWPC’04). vol. 3387, pp. 43–54. Springer-Verlag,
Berlin, Heidelberg (2004)

21. Spanoudaki, G., Zisman, A.: Discovering Services during Service-Based System
Design Using UML. IEEE Trans. on Softw. Eng. 36(3), 371–389 (2010)

22. Vaculin, R., Neruda, R., Sycara, K.: The process mediation framework for semantic
web services. Int. J. Agent-Oriented Softw. Eng. 3(1), 27–58 (Feb 2009)

23. W3C: Web Service Description Language(WSDL).
http://www.w3.org/TR/wsdl20/ (2007)

