
TRELLIS AND TURBO CODING

by

Christian Schlegel and Lance Pérez
IEEE Press, 2002





Contents

7 Decoding Strategies 1
7.1 Background and Introduction . . . . . . . . . . . . . . . . . . 1
7.2 Tree Decoders . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
7.3 The Stack Algorithm . . . . . . . . . . . . . . . . . . . . . . . 6
7.4 The Fano Algorithm . . . . . . . . . . . . . . . . . . . . . . . 7
7.5 The M -Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 9
7.6 Maximum Likelihood Decoding . . . . . . . . . . . . . . . . . 21
7.7 A Posteriori Probability Symbol Decoding . . . . . . . . . . . 25
7.8 Log-APP, Max-Log-APP, and Approximations . . . . . . . . 32

7.8.1 The APP in the Logarithm Domain (Log-APP) . . . . 32
7.8.2 Max-Log-APP . . . . . . . . . . . . . . . . . . . . . . 34
7.8.3 Approximations . . . . . . . . . . . . . . . . . . . . . . 36

7.9 Random Coding Analysis of Sequential Decoding . . . . . . . 37
7.10 Some Final Remarks . . . . . . . . . . . . . . . . . . . . . . . 43

iii



iv CONTENTS



Chapter 7

Decoding Strategies

7.1 Background and Introduction

There a great variety of decoding algorithms for trellis, some heuristic, and
some derived from well-defined optimality criteria. Until very recently, the
main objective of a decoding algorithm was the successful identification of
the transmitted symbol sequence, accomplished by so called sequence de-
coders. These sequence decoders fall into two main groups: The tree de-
coders and the trellis decoders. Tree decoders explore the code tree, to
be defined below, and their most well-known representatives are the se-
quential algorithms and limited-size breadth first algorithms, such as the
M -algorithm. Trellis decoders make use of the more structured trellis of a
code, and its main algorithms is the maximum-likelihood Viterbi algorithm.

Recently, and in conjunction with the emergence of Turbo coding, symbol
probability algorithms have become prominent. They calculate the reliabil-
ity of individual transmitted or information symbols, rather than decoding
sequences. Symbol probability algorithms are essential for the iterative al-
gorithms used to decode large concatenated codes, such as Turbo codes, and
their importance will eclipse that of sequence decoders. Their most popu-
lar and widely used representative is the A posteriori Probability (APP)
algorithm, also known as the BCJR algorithm, or the forward-backward
algorithm. The APP algorithm works with the trellis of the code, and is
discussed in detail in Section ??.

Let us now set the stage for the discussion of these decoding algorithms.
In Chapters 2 and 3 we have discussed how a trellis encoder generates a se-
quence x(i) = (x(i)

−l, · · · , x
(i)
l ) of correlated complex symbols x

(i)
r for message

i, and how this sequence is modulated, using the pulse waveform p(t), into

1



2 CHAPTER 7. DECODING STRATEGIES

the (baseband) output signal

s(i)(t) =
l∑

r=−l
x(i)
r p(t− rT ). (7.1)

From Chapter 2 we also know the structure of the optimal decoder for
such a system. We have to build a matched filter for each possible signal
s(i)(t) and select the message which corresponds to the signal which produces
the largest sampled output value.

The matched filter for s(i)(t) is given by

s(i)(−t) =
l∑

r=−l
x(i)
r p(−t− rT ), (7.2)

and, if r(t) is the received signal, the sampled response of the matched filter
(7.2) to r(t) is given by (see also (2.21))

r · s(i) =
∫ ∞
−∞

r(t)s(i)(t)dt

=
l∑

r=−l
x(i)
r yr = x(i) · y, (7.3)

where yr =
∫∞
−∞ r(α)p(α − rT ) is the output of the filter matched to the

pulse p(t) sampled at time t = rT as discussed in Section 2.5 (equation
(2.24)), and y = (y−l, · · · , yl) is the vector of sampled signals yr.

If time-orthogonal pulses (e.g., Nyquist pulses) p(t) with unit energy
(
∫∞
−∞ p2(t)dt = 1) are used, the energy of the signal s(i)(t) is given by

|s(i)|2 =
∫ ∞
−∞

∫ ∞
−∞

s(i)(α)s(i)(β)dαdβ

=
l∑

r=−l
|x(i)
r |2, (7.4)

and, from (2.21), the maximum likelihood receiver will select the sequence
x(i) which maximizes

J (i) = 2
l∑

r=−l
Re
{

x(i)
r v∗r

}
−

l∑
r=−l
|x(i)
r |2. (7.5)

J (i) in equation (7.5) is called the metric of the sequence x(i), and this
metric is to be maximized over all allowable choices of x(i).



7.2. TREE DECODERS 3

7.2 Tree Decoders

From (7.5) we define the partial metric at time n as

J (i)
n = 2

n∑
r=−l

Re
{

x(i)
r v∗r

}
−

n∑
r=−l
|x(i)
r |2, (7.6)

which allows us to rewrite (7.5) in the recursive form

J (i)
n = J

(i)
n−1 + 2Re

{
x(i)
n v∗n

}
− |x(i)

n |2. (7.7)

Equation (7.7) implies a tree structure which can be used to evaluate the
metrics for all the allowable signal sequences as illustrated in Figure 7.1
below for the trellis code from Figure 3.1, Chapter 3. This tree has in
general,2k branches leaving each node, since there are 2k possible different
choices of the signal xn at time n. Each node is labeled with the hypothesized
partial sequence1 x̃(i) = (x(i)

−l, · · · , x
(i)
n ) which leads to it. The intermediate

metric J
(i)
n is also associated with each node. A tree decoder starts at time

n = −l at the single root node with J−l = 0, and extends through the tree
evaluating and storing (7.7) until time unit n = l, at which time the largest
accumulated metric identifies the most likely sequence x(i).

It becomes obvious that the size of this tree grows very quickly. In
fact, its final width is k2l+1, which is an outlandish number even for small
values of l, i.e., short encoded sequences. We therefore need to reduce the
complexity of decoding in some appropriate way, and this can be done by
performing only a partial search of the tree.

There are a number of different approaches to tree decoding and we will
discuss the more fundamental types in the subsequent sections. Before we
tackle these decoding algorithms, however, we wish to modify the metric
such that it can take into account the different lengths of paths, since we
will come up against the problem of comparing paths of different lengths.

Consider then the set XM of M partial sequences x̃(i) with lengths {ni},
and let nmax = max{n1, · · · , nM} be the maximum length among the M
partial sequences. The decoder must make its likelihood ranking of the
paths based on the partial received sequence ỹ of length nmax.

1We denote partial sequences by tildes to distinguish them from complete sequences or
codewords.



4 CHAPTER 7. DECODING STRATEGIES

(0)

(6,......,6)
(6,......,4)

(0,......,2)
(0,......,0)

(2)

(4)

(6)

()

(0,2)
(0,4)
(0,6)

(0,0)

(2,2)
(2,4)
(2,6)

(2,0)

(4,2)
(4,4)
(4,6)

(4,0)

(6,2)
(6,4)
(6,6)

(6,0)

epoch:

−l −l + 1 −l + 2 l

Figure 7.1: Code tree extending from time −l to time l for the code from
Figure 3.1, Chapter 3.

From (2.10) we know that an optimum receiver would choose the x̃(i)

which maximizes

P [x̃(i)|ỹ] = P [x̃(i)]

∏−l+ni+1
r=−l pn(yr − xr)

∏−l+nmax
r=−l+ni p(yr)

p(ỹ)
, (7.8)

where the second product reflects the fact that we have no hypotheses x
(i)
r

for r > ni, since x̃(i) extends only up to −l + ni. We therefore have to
use the a priori probabilities p(yr|x(i)

r ) = p(yr) for r > ni. Using p(ỹ) =∏−l+nmax
r=−l p(yr) equation (7.8) can be rewritten as

P [x̃(i)|ỹ] = P [x̃(i)]
−l+ni∏
r=−l

pn(yr − x
(i)
r )

p(yr)
, (7.9)

and we see that we need not be concerned with the tail samples not affected
by x̃i. Taking logarithms gives the “additive” metric

L(x̃(i), ỹ) =
−l+ni∑
r=−l

log
pn(yr − x

(i)
r )

p(yr)
− log

1
P [x̃(i)]

. (7.10)



7.2. TREE DECODERS 5

Since P [x̃(i)] = (2−k)ni is the a priori the probability of the partial sequence
x̃(i), assuming that all the inputs to the trellis encoder have equal probability,
(7.10) becomes

L(x̃(i), ỹ) = L(x̃(i), y) =
−l+ni∑
r=−l

[
log

pn(yr − x
(i)
r )

p(yr)
− k

]
, (7.11)

where we have extended ỹ → y since (7.11) ignores the tail samples yr; r > ni
anyhow. The metric (7.11) was introduced for decoding tree codes by Fano
[15] in 1963, and was analytically derived by Massey [29] in 1972.

Since equation (2.11) explicitly gives the conditional probability distri-
bution pn(yr−xr), the metric in (7.11) can be specialized for additive white
Gaussian noise channels to

L(x̃(i), y) =
−l+ni∑
r=−l

log
exp

(
−|x(i)

r − yr|2/N0

)
∑

x∈A p(x) exp (−|x− yr|2/N0)
− k


= −

−l+ni∑
r=−l

|x(i)
r − yr|2

N0
− cr(yr), (7.12)

where cr(yr) = log
(∑

x∈A p(x) exp
(
−|x− yr|2/N0

))
+ k is a term indepen-

dent of x
(i)
r which is subtracted from all the metrics at time r. Note that

cr can be positive or negative, which causes some of the problems with
sequential decoding, as we will see later.

It is worth noting here that if the paths examined are of the same length,
say n, they all contain the same cumulative constant −

∑−l+n
r=−l cr in their

metrics, which therefore may be discarded from all the metrics. This allows
us to simplify (7.12) to

L(x̃(i), y) ≡
−l+n∑
r=−l

2Re
{

x(i)
r v∗r

}
− |x(i)

r |2 = J (i)
n , (7.13)

by neglecting terms common to all the metrics. The metric (7.13) is equiva-
lent to the accumulated Euclidean distance between the the received partial
sequence ỹ and the hypothesized symbols on the i-th path to up to length
n. The restriction to path of equal length makes this metric much simpler
than the general metric (7.11) (and (7.12)) and finds application in the so
called breadth-first decoding algorithms which we will discuss in subsequent
sections.



6 CHAPTER 7. DECODING STRATEGIES

7.3 The Stack Algorithm

The stack algorithm is one of the many variants of what has become known
as sequential decoding of trellis codes. Sequential decoding was introduced
by Wozencraft [40] for convolutional codes and has subsequently experienced
many changes and additions. Sequential decoding describes any algorithm
for decoding trellis codes which successively explores the code tree by moving
to new nodes from an already explored node.

From the introductory discussion in the preceding section, one way of
sequential decoding becomes apparent. We start exploring the tree and store
the metric (7.11) (or (7.12)) for every node explored. At each stage now we
simply extend the node with the largest such metric. This, in essence, is
the stack algorithm first proposed by Zigangirov [45] and Jelinek [25]. This
basic algorithm is:

Step 1: Initialize an empty stack S of visited nodes and their metrics.
Deposit the empty partial sequence () at the top of the stack with its
metric L((), y) = 0.

Step 2: Extend the node corresponding to the top entry
{
x̃top, L(x̃top, y)

}
by forming L(x̃top, y) − |xr − yr|2/N0 − cr for all 2k extensions of
x̃top → (x̃top, xr) = x̃(i). Delete

{
x̃top, L(x̃top, y)

}
from the stack.

Step 3: Place the new entries
{

x̃(i), L(x̃(i), y)
}

from Step 2 into the stack
such that the stack remains ordered with the entry with the largest
metric at the top of the stack.

Step 4: If the top entry of the stack is a path to one of the terminal nodes
at depth l, stop and select xtop as the transmitted symbol sequence.
Otherwise, go to Step 2.

There are some practical problems associated with the stack algorithm.
Firstly, the number of computations which the algorithms performs is very
dependent on the quality of the channel. If we have a very noisy channel,
the received sample value yr will be very unreliable and a large number of
possible paths will have similar metrics. These paths all have to be stored in
the stack and explored further. This causes a computational speed problem,
since the incoming symbols have to be stored in a buffer while the algorithm
performs the decoding operation. This buffer is now likely to overflow if
the channel is very noisy and the decoder will have to declare a decoding
failure. This phenomenon is explored further in Section 6.6. In practice,



7.4. THE FANO ALGORITHM 7

the transmitted data will be framed and the decoder will declare a frame
erasure if it experiences input buffer overflow.

A second problem with the stack algorithm is the increasing complexity
of Step 2, i.e., of reordering the stack. This sorting operation depends on
the size of the stack, which, again, for very noisy channels becomes large.
This problem is addressed in all practical applications by ignoring small
differences in the metric and collecting all stack entries with metrics within
a specified “quantization interval” in the same bucket. Bucket j contains all
stack entries with metrics

j∆ ≤ L(x̃(i), r) ≤ (j + 1)∆, (7.14)

where ∆ is a variable quantization parameter. Incoming paths are now
sorted only into the correct bucket, avoiding the sorting complexity of the
large stack. The depositing and removal of the paths from the buckets can
occur on a “last in, first out” basis.

There are a number of variations of this basic theme. If ∆ is a fixed value,
the number of buckets can also grow to be large, and the sorting problem,
originally avoided, reappears. An alternative is to let the buckets vary in
size, rather than in metric range. In that way, the critical dependence on
the stack size can be avoided.

An associated problem with the stack is that of stack overflow. This is
less severe and the remedy is simply to drop the last path in the stack from
future consideration. The probability of actually loosing the correct path is
very small, a much smaller problem than that of a frame erasure. A large
number of variants of this algorithm are feasible and have been explored in
the literature. Further discussion of the details of implementation of these
algorithms are found in [20, 2, 3].

7.4 The Fano Algorithm

Unlike the stack algorithm, the Fano algorithm is a depth-first tree search
procedure in its purest form. Introduced by Fano [15] in 1963, this algorithm
stores only one path, and thus, essentially, requires no storage. Its drawback
is a certain loss in speed compared to the stack algorithm for higher rates
[21], but for moderate rates the Fano algorithm decodes faster than the stack
algorithm [22]. It seems that the Fano algorithm is the preferred choice for
practical implementations of sequential decoding algorithms.

Since the Fano algorithm only stores one path, it must allow for back-
tracking. Also, there can be no jumping between non-connected nodes, i.e.,



8 CHAPTER 7. DECODING STRATEGIES

the algorithm only moves between adjacent nodes which are connected in
the code tree. The algorithm starts at the initial node and moves in the
tree by proceeding from one node to a successor node with a suitably large
metric. If no such node can be found, the algorithm backtracks and looks
for other branches leading off from previously visited nodes. The metrics
of all these adjacent nodes can be computed by adding or subtracting the
metric of the connecting branch and no costly storing of metrics is required.
If a node is visited more than once, its metric is recomputed. This is part
of the computation/storage tradeoff of sequential decoding.

The algorithm proceeds along a chosen path as long as the metric con-
tinues to increase. It does that by continually tightening a metric threshold
to the current node metric as it visits nodes for the first time. If new nodes
along the path have a metric smaller than the threshold, the algorithm backs
up and looks at other node extensions. If no other extensions with a metric
above the threshold can be found, the value of the threshold is decreased
and the forward search is resumed. In this fashion each node visited in
the forward direction more than once is reached with a progressively lower
threshold each time. This prevents the algorithm from getting caught in an
infinite loop. Eventually this procedure reaches a terminal node at the end
of the tree and a decoded symbol sequence can be output.

Figure 7.2 depicts an example of the search behavior of the Fano algo-
rithm. Assume that there are two competing paths, where the solid path is
the most likely sequence and the dashed path is a competitor. The verti-
cal height of the nodes in Figure 7.2 is used to illustrate the values of the
metrics for each node. Also assume that the paths shown are those with
the best metrics, i.e., all other branches leading off from the nodes lead to
nodes with smaller metrics. Initially, the algorithm will proceed to node A,
at which time it will start to backtrack since the metric of node D is smaller
than that of node A. After exploring alternatives and successively lowering
the threshold to t1, and then to t2, it will reach node O again and proceed
along the dashed path to node B and node C. Now it will start to backtrack
again, lowering its threshold to t3 and then to t4. It will now again explore
the solid path beyond node D to node E, since the lower threshold will al-
low that. From there on the path metrics pick up again and the algorithm
proceeds along the solid path. If the threshold decrement ∆ had been twice
as large, the algorithm would have moved back to node O faster, but would
also have been able to move beyond the metric dip at node F, and would
have chosen the erroneous path.

It becomes obvious that at some point the metric threshold t will have
to be lowered to the lowest metric value which the maximum likelihood



7.5. THE M -ALGORITHM 9

O

A
B

D

C

E

tCt1
t3 t2
t4

tA

F∆

Figure 7.2: Illustration of the operation of the Fano algorithm when choosing
between two competing paths.

path assumes, and, consequently, a large decrement ∆ allows the decoder
to achieve this low threshold faster. Conversely, if the decrement ∆ is too
large, t may drop to a value which allows several erroneous path to be
potentially decoded before the maximum metric path. The optimal value
of the metric threshold is best determined by experience and simulations.
Figure 7.3 shows the flowchart of the Fano algorithm.

7.5 The M-Algorithm

This section deals with a purely breadth-first algorithm. The M -algorithm is
a synchronous algorithm which moves from time unit to time unit. It keeps
M candidate paths at each iteration and deletes all others from further
consideration. At each time unit the algorithm extends all M currently held
nodes to form 2kM new nodes, from among which those M with the best
metrics are retained. Due to the breadth-first nature of the algorithm, the
metric in (7.13) can be used. The algorithm is very simple:

Step 1: Initialize an empty list L of candidate paths and their metrics.
Deposit the zero-length path () with its metric L((), y) = 0 in the list.
Set n = −l.

Step 2: Extend 2k partial paths x̃(i) → (x̃(i), x
(i)
r ) from each of the at most

M paths x̃(i) in the list. Delete the entries in the original list.

Step 3: Find the at most M partial paths with the best metrics among
the extensions2 and save them in the list L. Delete the rest of the

2Note that from two or more extensions leading to the same state (see Section 6.5)
all but the one with the best metric may be discarded. This will improve performance
slightly by eliminating some paths which cannot be the ML path.



10 CHAPTER 7. DECODING STRATEGIES

Look forward
to best node

new metric
Jn+1 >=  t

move forward
n = n+1

end of
search tree

n=l
STOP

first
visit

tighten
threshold

t=Jn

look
back

old metric
Jn-1 >=  t

loosen
threshold

t=t-∆

move back
n=n-1

from 
worst node

Look forward
to next best node

START:
J0=0;J-1=-infinity
threshold t = 0;n=0

Yes

No 

Yes

No

No

Yes

Yes

No

Yes

No

Figure 7.3: Flowchart of the Fano algorithm. The initialization of J−1 = −∞
has the effect that the algorithm can lower the threshold for the first step,
if necessary.

extensions. Set n = n + 1.

Step 4: If at the end of the tree, i.e., n = l, release the output symbols
corresponding to the path with the best metric in the list L, otherwise
go to Step 2.

The M -algorithm appeared in the literature for the first time in a paper
by Jelinek Anderson [26], where it was applied to source coding. At the
time, there were no real algorithms for sequential source coding other than
this, so it was viewed as miraculous. In the early 1980s, applications of



7.5. THE M -ALGORITHM 11

the algorithm to channel coding began to appear. The research book by
Anderson and Mohan on algorithmic source and channel coding [3] and
reference [1] collect a lot of this material, and are the most comprehensive
sources on the subject.

This algorithm is straightforward to implement and its popularity is
partly due to the simple metric as compared to sequential decoding. The
decoding problem with the M -Algorithm is the loss of the correct path from
the list of candidates, after which the algorithm might spend a long time
resynchronizing. This problem is usually addressed by framing the data.
With each new frame resynchronization is achieved. The computational load
of the M -algorithm is independent of the size of the code; it is proportional
to M . Unlike depth-first algorithms, it is also independent of the quality of
the channel, since M paths are retained irrespective of the channel quality.

A variant of the M -algorithm is the so-called T -algorithm. It differs from
the M -algorithm only in Step 3, where instead of a fixed number M , all path
with metrics L(x̃(i), y) ≥ λt − T are retained, where λt is the metric of the
best path and T is some arbitrary threshold. The T -algorithm is therefore in
a sense a hybrid between the M -algorithm and a stack-type algorithm. Its
performance depends on T , but is very similar to that of the M -algorithm,
and we will not discuss it further.

In Chapter 3 we have discussed that the performance of trellis codes
using a maximum-likelihood detector was governed by the distance spec-
trum of the code, where the minimum free Euclidean distance dfree played
a particularly important role. Since the M -algorithm is a suboptimum de-
coding algorithm, its performance is additionally affected by other criteria.
The major criterion is the probability that the correct path is not among
the M retained candidates at time n. If this happens, we loose the correct
path and it usually takes a long time to resynchronize. We will see that the
probability of correct path loss has no direct connection with the distance
spectrum of a code.

Since the complexity of the M -algorithm is largely independent of the
code size and constraint length, one usually chooses very long constraint-
length codes to assure that dfree is appropriately large. If this is the case,
the correct path loss becomes the dominant error event of the decoder.

Let us then take a closer look at the probability of losing the correct
path at time n. To that end we assume that at time n− 1 the correct path
was among the M retained candidates as illustrated in Figure 7.4. Each
of these M nodes is extended into 2k nodes at time n, of which M are to
be retained. There are then a total of

(
M2k

M

)
ways of choosing the new M



12 CHAPTER 7. DECODING STRATEGIES

retained paths at time n.
Let us denote the correct partial path by x̃(c). The optimal strategy of

the decoder will then be to retain that particular set of M candidates which
maximizes the probability of containing x̃(c). Let Cp be one of the

(
M2k

M

)
possible sets of M candidates at time n. We wish to maximize

max
p

Pr
{

x̃(c) ∈ Cp|ỹ
}

. (7.15)

Since all the partial paths x̃(pj) ∈ Cp, j = 1, · · · , M are distinct, the events
{x̃(c) = x̃(pj)} are all mutually exclusive for different j, i.e., the correct path
can be at most only one of the M different candidates x̃(pj). Equation (7.15)
can therefore be evaluated as

max
p

Pr
{

x̃(c) ∈ Cp|ỹ
}

= max
p

M∑
j=1

Pr
{

x̃(c) = x̃
(pj)
j |ỹ

}
. (7.16)

From (7.8), (7.10) and (7.13) we know that

Pr
{

x̃(c) = x̃(pj)|ỹ
}
∝ exp

(
−
−l+n∑
r=−l

(
2Re

{
x

(pj)
r v∗r

}
− |x(pj)

r |2
))

, (7.17)

where the proportionality constant is independent of x̃(pj). The maximiza-
tion in (7.15) now becomes equivalent to (considering only the exponent
from above)

max
p

Pr
{

x̃(c) ∈ Cp|ỹ
}
≡ max

p

M∑
j=1

−l+n∑
r=−l

(
2Re

{
x

(pj)
r v∗r

}
− |x(pj)

r |2
)

= max
p

J
(pj)
n , (7.18)

i.e., we simply collect the M paths with the best partial metrics J
(pj)
n at time

n. This argument was derived by Aulin [4]. Earlier we showed that the total
metric can be broken up into the recursive form of (7.7), but now we have
shown that if the detector is constrained to considering only a maximum of
M path at each stage, retaining those M paths x̃(pj) with maximum partial
metrics is the optimal strategy.

The probability of correct path loss, denoted by Pr(CPL), can now be
addressed. Follow the methodology of Aulin [4], we need to evaluate the
probability that the correct path x̃(c) is not among the M candidate paths.



7.5. THE M -ALGORITHM 13

correct 
path loss

time: -l
-l+1

-l+2
-l+3

. . . . . . . n-1

n

n+1

Figure 7.4: Extension of 2kM = 2 · 4 paths from the list of the best M =
4 paths. The solid paths are those retained by the algorithm, the path
indicated by the heavy line corresponds to the correct transmitted sequence.

This will happen if M paths x̃(pj) 6= x̃(c) have a partial metric J
(pj)
n ≥ J

(c)
n ,

or equivalently if all the M metric differences

δ(j,c)
n = J (c)

n − J
(pj)
n =

−l+n∑
r=−l

(
|x(pj)
r |2 − |x(c)

r |2 − 2Re
{

x
(pj)
r − x(c)

r

}
v∗r
)

(7.19)

are smaller than or equal to zero. That is,

Pr(CPL|Cp) = Pr{δn ≤ 0}; x̃(pj) ∈ Cp, (7.20)

where δn =
(
δ

(1,c)
n , · · · , δ(M,c)

n

)
is the vector of metric differences at time n

between the correct path and the set of paths in a given set Cp, which does



14 CHAPTER 7. DECODING STRATEGIES

not contain x̃(c). Pr(CPL|Cp) depends on the correct path x(c), and, strictly
speaking has to be averaged over all correct paths. We shall be satisfied
with the correct path which produces the largest P(CPL|Cp).

In Appendix 6.A we show that the probability of loosing the correct path
decreases exponentially with the signal-to-noise ratio, and is overbounded
by

Pr(CPL|Cp) ≤ Q

√ d2
l

2N0

 . (7.21)

The parameter d2
l depends on Cp and is known as the Vector Euclidean

distance [4] of the path x̃(c) with respect to the M error paths x̃(pi) ∈ Cp. It
is important to note here that (7.21) is an upper bound of the probability
that M specific error paths have a metric larger than x̃(c). Finding d2

l

involves a combinatorial search (see Appendix 6.A).
Equation (7.21) demonstrates that the probability of correct path loss is

an exponential error integral, and can thus be compared to the probability of
the maximum likelihood decoder (equations (5.8) and (5.9)). The problem
is finding the minimal d2

l among all sets Cp, denoted by min(d2
l ). This is a

rather complicated combinatorial problem, since essentially all combinations
of M candidates for each correct path at each time n have to be analyzed
from the growing set of possibilities. Aulin [4] has studied this problem and
gives several rejection rules which alleviate the complexity of finding d2

l , but
the problem remains complex and is in need of further study.

Note that d2
l is a non-decreasing function of M , the decoder complexity,

and one way of selecting M is to choose it such that

min(d2
l ) ≥ d2

free. (7.22)

This choice should guarantee that the performance of the M -algorithm is
approximately equal to the performance of maximum-likelihood decoding.
To see this, let Pe(M) be the probability of an error event (compare equation
(5.4)). Then

Pe(M) ≤ Pe (1− Pr(CPL)) + Pr(CPL)
≤ Pe + Pr(CPL), (7.23)

where Pe is of course the probability that a maximum-likelihood decoder
starts an error event (Chapter 5). For high values of the signal-to-noise
ratio, equation (7.23) can be approximated by

Pe(M) ≈ Ndfree
Q

(
dfree√
2N0

)
+ κQ

(
min(dl)√

2N0

)
, (7.24)



7.5. THE M -ALGORITHM 15

where κ is some constant, which, however, is difficult to determine in the
general case. Now, if (7.22) holds, the suboptimality does not exponentially
dominate the error performance for high signal-to-noise ratios.

Aulin [4] has analyzed this situation for 8-PSK trellis codes and found
that, in general, M ≈

√
S will fulfill condition (7.22), where S is the number

of states in the code trellis.

M=
  16 M=8

M=4

M=2

1 2 3 4 5 6 7 8 9

1

10-1

10-2

10-3

10-4

10-5

10-6

M=6

M=3ML
decoding

S
ym

bo
l E

rr
or

 P
ro

ba
bi

lit
y

Eb/N0 [dB]

Figure 7.5: Simulation results for the 64-state optimal distance 8-PSK trellis
codes decoded with the M -algorithm, using M = 2, 3, 4, 5, 6, 8 and 16. The
performance of maximum likelihood decoding is also included in the figure
(Source [4]).

Figure 7.5 shows the simulated performance of the M -algorithm versus
M for the 64-state trellis code from Table 3.1 with d2

free = 6.34. M =
8 meets (7.22) according to [4], but from Figure 7.5 it is apparent that



16 CHAPTER 7. DECODING STRATEGIES

the performance is still about 1.5dB poorer than ML-decoding. This is
attributable to the resynchronization problems and the fact that we are
operating at rather low values of the signal-to-noise ratio, where neither
d2

free nor min(d2
l ) are necessarily dominating the error performance.

| | | | | | | |

M
-A

lgorithm
; M

=16

M
-A

lgorithm
; M

=64

0 1 2 3 4 5 6 7

1

10-1

10-2

10-3

10-4

10-5

10-6

M-Algorithm; M=4 M
=64 M

=16

P
at

h 
L

os
s/

Bi
t 

E
rr

or
 P

ro
ba

bil
it

y

Eb/N0 [dB]

Figure 7.6: Simulation results for the 2048-state, rate R = 1/2 convolutional
code using the M -algorithm, for M = 4, 16, and M = 64. The dashed curves
are the path loss probability and the solid curves are BER’s.

Figures 7.6 and 7.7 show the empirical probability of correct path loss
P(CPL) and the BER for two convolutional codes and various values of M .
Figure 7.6 shows simulation results for the 2048-state convolutional code,
ν = 11, from Table 4.1. The bit error rate and the probability of losing the
correct path converge to the same asymptotic behavior, indicating that the
probability of correct path loss and not recovery errors is the dominant error
mechanism for very large values of the signal-to-noise ratio.



7.5. THE M -ALGORITHM 17

Figure 7.7 shows simulation results for the ν = 15 large constraint-length
code for the same values of M . For this length code, path loss will be the
dominant error scenario. We note that both codes have a very similar error
performance, demonstrating that the code complexity has little influence.

| | | | | | | |

M
-A

lgorithm
; M

=16

M
-A

lgorithm
; M

=64

M-Algorithm; M=4

M
=64

1

10-1

10-2

10-3

10-4

10-5

10-6

0 1 2 3 4 5 6 7

P
at

h 
L

os
s/

Bi
t 

E
rr

or
 P

ro
ba

bil
it

y

M
=16

Eb/N0 [dB]

Figure 7.7: Same simulation results for the ν = 15, R = 1/2 convolutional
code.

Once the correct path is lost, the algorithm may spend a relatively long
time before it finds it again, i.e., before the correct path is again one of the
M retained paths. Correct path recovery is a very complex problem an no
complete analytical results have been found to date. There are only a few
theoretical approaches to the recovery problem, such as [5]. This difficulty
suggests that insight into the operation of the decoder during a recovery has
to be gained through simulation studies.



18 CHAPTER 7. DECODING STRATEGIES

Figure 7.8 shows the simulated average number of steps taken for the
algorithm to recover the correct path. The simulations were done for the
2048-state, ν = 11 code, whose error performance is shown in Figure 7.6.
Each instance of the simulation was performed such that the algorithm was
initiated and run until the correct path was lost, then the number of steps
until recovery were counted [27].

| | | | | | | |

105

104

103

100

10

1
0 1 2 3 4 5 6 7

A
ve

ra
ge

 n
um

be
r 

of
 s

te
ps

 u
nt

il 
re

co
ve

ry

M=64

M=2

M=16

M=8

M=4

Eb/N0 [dB]

Figure 7.8: Average number of steps until recovery of the correct path for
the code from Figure 7.6 (Source [27]).

Figure 7.9 shows the average number of steps until recovery for the rate
1/2, ν = 11 systematic convolutional code with generator polynomials g(0) =
4000, g(1) = 7153. This code has a free Hamming distance of only dfree = 9,
but its recovery performance is much superior to that of the non-systematic
code. In fact, the average number of steps until recovery is independent
of the signal-to-noise ratio, while it increases approximately linearly with
Eb/N0 for the non-systematic code. This rapid recovery results in superior
error performance of the systematic code compared to the non-systematic



7.5. THE M -ALGORITHM 19

code, shown in Figure 7.10, even though its free distance is significantly
smaller. What is true, however, and can be seen clearly in Figure 7.10, is
that for very large values of Eb/N0 the “stronger” code will win out due to
its larger free distance.

| | | | | | | |

105

104

103

100

10

1
0 1 2 3 4 5 6 7

A
ve

ra
ge

 n
um

be
r 

of
 s

te
ps

 u
nt

il 
re

co
ve

ry

M=64

M=2

M=16

M=8
M=4

Eb/N0 [dB]

Figure 7.9: Average number of steps until recovery of the correct path for
the systematic convolutional code with ν = 11 (Source [27]).

The observation that systematic convolutional codes outperform non-
systematic codes for error rates Pb

>≈10−6 has also been made by Osthoff et.
al. [30]. The reason for this difference lies in the return barrier phenomenon,
which can be explained with the aid of Figure 7.11. In order for the algorithm
to recapture the correct path after a correct path loss, one of the M retained
paths must correspond to a trellis state with a connection to the correct state
at the next time interval. In Figure 7.11 we assume that the all-zero sequence
is the correct sequence, and hence the all-zero state is the correct state for
all time intervals. This assumption is made without loss of generality for
convolutional codes due to their linearity. For a feed-forward realization of



20 CHAPTER 7. DECODING STRATEGIES

a rate 1/2 code, the only state which connects to the all-zero state is the
state (0, · · · , 0, 1), denoted by sm in the figure. In the case of a systematic
code with g

(1)
0 = g

(1)
ν = 1 (see Chapter 4) the two possible branch signals

are (01) and (10) as indicated in Figure 7.11.

| | | | | | | |
0 1 2 3 4 5 6 7

1

10-1

10-2

10-3

10-4

10-5

10-6

M
=

64

M
=16

P
at

h 
Lo

ss
/B

it 
E

rr
or

 P
ro

ba
bi

lit
y

M
=

16

M
=64

Eb/N0 [dB]

Figure 7.10: Simulation results for the superior 2048-state systematic code
using the M -algorithm. The dashed curves are the error performance of the
same constraint length non-systematic code from Figure 7.6 (Source [27]).

For a non-systematic, maximum free distance code on the other hand, the
two branch signals are (11) and (00), respectively. Since the correct branch
signal is (00), the probability that the metric of sf (for failed) exceeds the
metric of sc equals 1/2 for the systematic code, since both branch signals
are equidistant from the correct branch signal. For the non-systematic code
on the other hand, this probability equals Q(

√
Es/N0). This explains the

dependence of the path recovery on Eb/N0 for non-systematic codes, as well



7.6. MAXIMUM LIKELIHOOD DECODING 21

as why systematic codes recapture the correct path faster with a recovery
behavior which is independent of Eb/N0.

0...000

1...000

0...001
(10)

(01)
0...000

(00)
correct path

sm

sc

sf

0...000

1...0000...001

(11)

0...000
(00)

correct path

sm

sc

sf
(00)

return barrier

systematic codes non-systematic codes

Figure 7.11: Heuristic explanation of the return barrier phenomenon in the
M -algorithm.

The M -algorithm impresses with its simplicity. Unfortunately, a theo-
retical understanding of the algorithm is not related to this simplicity at all,
and it seems that much more work in this area is needed before a coherent
theory is available. This lack of a theoretical basis for the algorithm is,
however, no barrier to its implementation. Early work on the application of
the M -algorithm to convolutional codes, apart from Anderson [1, 2, 3, 30],
was presented by Zigangirov and Kolesnik [46], while Simmons and Wittke
[36], Aulin [6], and Balachandran [8], among others, have applied the M -
algorithm to continuous-phase modulation. General trellis codes have not
yet seen much action from the M -algorithm. An notable exception is [32].

It is generally felt that the M -algorithm is not a viable candidate algo-
rithm for decoding binary convolutional codes, in particular with the emer-
gence of Turbo codes and iterative decoding, however, it seems to work
very well with non-binary modulations such as CPM, coded modulation,
and code-division multiple access, where it may have a place in practical
implementations.

7.6 Maximum Likelihood Decoding

The difficulty in decoding trellis codes arises from the exponential size of
the growing decoding tree. In this section we will show that this tree can
be reduced by merging nodes, such that the tree only grows to a maximum
size of 2S nodes, where S is the number of encoder states. This merging



22 CHAPTER 7. DECODING STRATEGIES

leads diverging paths together again and we obtain a structure resembling
a trellis, as discussed for encoders in Section 3.

In order to see how this happens, let J
(i)
n−1 and J

(j)
n−1 be the metrics of two

nodes corresponding to the partial sequences x̃(i) and x̃(j) of length n − 1,
respectively. Let the encoder states which correspond to x̃(i) and x̃(j) at time
n − 1 be s

(i)
n−1 and s

(j)
n−1; s

(i)
n−1 6= s

(j)
n−1, and assume that the next extension

of x̃(i) → (x̃(i), x
(i)
n ) and x̃(j) → (x̃(j), x

(j)
n ) is such that s

(i)
n = s

(j)
n , i.e., the

encoder states at time n are identical. See also Figure 7.12 below.

sn-1

sn-1

sn

sn

(i)

(i)

(j)
(j)eliminate 

X

xn
(i)

xn
(j)

xn+1  = xn+1
(i) (j)

xn+1  = xn+1
(i) (j)

Figure 7.12: Merging nodes.

Now we propose to merge the two nodes (x̃(i), x
(i)
n ) and (x̃(j), x

(j)
n ) into

one node, which we now call a (decoder) state. We retain the partial se-
quence which has the larger metric Jn at time n and discard the partial
sequence with the smaller metric. Ties are broken arbitrarily. We are now
ready to prove the following

Theorem 7.1 (Theorem of Non-Optimality) The procedure of merging nodes
which correspond to identical encoder states, and discarding the path with the
smaller metric never eliminates the maximum-likelihood path.

Theorem 7.1 is sometimes referred to as the theorem of non-optimality
and allows us to construct a maximum-likelihood decoder whose complexity
is significantly smaller than that of an all-out exhaustive tree search.

Proof: The metric at time n + k for path i can be written as

J
(i)
n+k = J (i)

n +
k∑

h=1

β
(i)
n+h (7.25)

for every future time index n+k; 0 < k ≤ l−n, where β
(i)
n = 2Re

{
x

(i)
n v∗n

}
−

|x(i)
n |2 is the metric increment, now also called the branch metric, at time



7.6. MAXIMUM LIKELIHOOD DECODING 23

n. Now, if the nodes of path i and j correspond to the same encoder
state at time n, there exists for every possible extension of the i-th path
(x(i)
n+1, · · · , x

(i)
n+k) a corresponding identical extension (x(j)

n+1, · · · , x
(j)
n+k) of

the j-th path. Let us then assume without loss of generality that the i-th
path accumulates the largest metric at time l, i.e., J

(i)
l ≥ J

(j)
l , Therefore

J (i)
n +

n−l∑
h=1

β
(i)
n+h ≥ J (j)

n +
n−l∑
h=1

β
(j)
n+h, (7.26)

and
∑n−l

h=1 β
(i)
n+h is the maximum metric sum for the extensions from node

(x̃(i), x
(i)
n ). (Otherwise another path would have a higher final metric). But

since the extensions for both paths are identical,
∑n−l

h=1 β
(i)
n+h =

∑n−l
h=1 β

(j)
n+h

and J
(i)
n ≥ J

(j)
n . Path j can therefore never accumulate a larger metric than

path i and we may discard it with impunity at time n. Q.E.D.

The tree now folds back on itself and forms a trellis with exactly S states
(See also Figure 3.2), and there are 2k paths merging in a single state at each
step. Note then that there are now at most S retained partial sequences x̃(i),
called the survivors. The most convenient labeling convention is that each
state is labeled by the corresponding encoder state, plus the survivor which
leads to it. This trellis is an exact replica of the encoder trellis discussed
in Chapter 3 and the task of the decoder is to retrace the path the encoder
traced through this trellis. Theorem 7.1 guarantees that this procedure
is optimal. This method was introduced by Viterbi in 1967 [38, 31] in
the context of analyzing convolutional codes, and has since become widely
known as the Viterbi Algorithm [17]:

Step 1: Initialize the S states of the decoder with a metric J
(i)
−l = −∞ and

survivors x̃(i) = {}. Initialize the starting state of the encoder, usually
state i = 0, with the metric J

(0)
−l = 0. Let n = −l.

Step 2: Calculate the branch metric

βn = 2Re {xnv∗n} − |xn|2 (7.27)

for each state s
(i)
n and each extension x

(i)
n .

Step 3: Follow all trellis transitions s
(i)
n → s

(i)
n+1 determined by the encoder

FSM and, from the 2k merging paths, retain the survivor x̃(i) for which
J

(i)
n+1 is maximized.



24 CHAPTER 7. DECODING STRATEGIES

Step 4: If n < l, let n = n + 1 and go to Step 2.

Step 5: Output the survivor x(i) which maximizes J
(i)
l as the maximum-

likelihood estimate of the transmitted sequence.

Steps 2 and 3 are the central operations of the Viterbi algorithm and are
referred to as the Add-Compare-Select (ACS) step. That is, branch met-
rics are added to state metrics, comparisons are made among all incoming
branches, and the largest-metric path is selected.

The Viterbi algorithm and the M -algorithm are both breadth-first searches
and share some similarities. In fact, one often introduces the concept of
mergers also in the M -algorithm in order to avoid carrying along suboptimal
paths. In fact, the M -algorithm can be operated in the trellis rather than
in the tree. The Viterbi algorithm has enjoyed tremendous popularity, not
only in decoding trellis codes, but also in symbol sequence estimation over
channels affected by intersymbol interference [33, 18], multi-user optimal
detectors [37], and speech recognition. Whenever the underlying generating
process can be modeled as a finite-state machine, the Viterbi algorithm finds
application.

A rather large body of literature deals with the Viterbi decoder, and
there are a number of good books dealing with the subject (e.g., [20, 33, 9,
39]). One of the more important results is that it can be shown that one does
not have to wait until the entire sequence is decoded before starting to output
the estimated symbols x

(i)
n , or the corresponding data. The probability that

the symbols in all survivors x̃(i) are identical for m < n − nt, where n
is the current active decoding time and nt, called the truncation length
or decision depth, (Section 3.2 and equation (4.16)) is very close to unity
for nt ≈ 5ν. This has been shown to be true for rate 1/2 convolutional
codes (page 182 [11]), but the argument can easily be extended to general
trellis codes. We may therefore modify the algorithm to obtain a fixed-delay
decoder by modifying Step 4 and 5 of the above Viterbi algorithm as follows:

Step 4: If n ≥ nt output x
(i)
n−nt from the survivor x̃(i) with the largest

metric J
(i)
n as the estimated symbol at time n − nt. If n < l − 1, let

n = n + 1 and go to Step 2.

Step 5: Output the remaining estimated symbols x
(i)
n ; l−nt < n ≤ l from

the survivor x(i) which maximizes J
(i)
l .

We recognize that we may now let l → ∞, i.e., the complexity of our
decoder is no longer determined by the length of the sequence, and it may



7.7. A POSTERIORI PROBABILITY SYMBOL DECODING 25

be operated in a continuous fashion. The simulation results in Chapter 5
were obtained with a Viterbi decoder according to the modified algorithm.

Let us spend some thoughts on the complexity of the Viterbi algorithm.
Denote by E the total number of branches in the trellis, i.e., for a linear-
trellis there are S2k branches per time epoch. The complexity requirements
of the Viterbi algorithm can then be captured by the following [28]

Theorem 7.2 The Viterbi algorithm requires a complexity which is linear
in the number of edges E, i.e., it performs O(E) arithmetic operations (mul-
tiplications, additions and comparisons).

Proof: Step 2 in the Viterbi algorithm requires the calculation of βn, which
needs two multiplies and an addition, as well as the addition J

(i)
n + βn

for each branch. Some of the values βn may be identical, the number of
arithmetic operations is therefore larger than E additions and less than 2E
multiplications and additions.

If we denote the number of branches entering state s by ρ(s), step 3
requires

∑
states s(ρ(s) − 1) ≤ E/2l comparisons per time epoch. ρ(s) = 2k

in our case, and the total number of comparisons is therefore less than E,
and larger than E − 2lS.

There are then together O(E) arithmetic operations required. Q.E.D.

7.7 A Posteriori Probability Symbol Decoding

The purpose of the a posteriori probability (APP) algorithm is to compute
a posteriori probabilities on either the information bits or the encoded sym-
bols. These probabilities are mainly important in the iterative decoding
algorithms for turbo codes discussed later in this book. Maximizing the a
posteriori probabilities by themselves leads to only minor improvements in
terms of bit error rates compared to the Viterbi algorithm. The algorithm
was originally invented by Bahl, Cocke, Jelinek, and Raviv [7] in 1972 and
was used to maximize the probability of each symbol being correct, referred
to as the maximum a posteriori probability (MAP) algorithm. As men-
tioned, this algorithm was not widely used since it provided no significant
improvement over maximum-likelihood decoding, and was significantly more
complex.

With the invention of Turbo codes in 1993, however, the situation turned,
and the APP became the major representative of the so-called soft-in soft-
out (SISO) algorithms for providing probability information on the symbols



26 CHAPTER 7. DECODING STRATEGIES

of a trellis code. These probabilities are required for iterative decoding
schemes and concatenated coding schemes with soft decision decoding of
the inner code, such as iterative decoding of turbo codes, which is discussed
in Chapter 8.

Due to its importance we will first give a functional description of the
algorithm before deriving the formulas in detail. Figure 7.13 shows the
example trellis of a short terminated trellis code with seven sections. The
transmitted signal is x = [x0, · · · , x6], and the information symbols are
u = [u0, · · · , u4, u5 = 0, u6 = 0], i.e., there are two tail bits that drive the
encoder back into the zero-state.

u0, x0 u1, x1 u2, x2 u3, x3 u4, x4 0, x5 0, x6

Figure 7.13: Example trellis of a short terminated trellis code.

The ultimate purpose of the algorithm is the calculation of a posteriori
probabilities, such as Pr[ur|y], or Pr[xr|y], where y is the received sequence
observed at the output of a channel, whose input is the transmitted sequence
x. However, conceptually, it is more immediate to calculate the probability
that the encoder traversed a specific transition in the trellis, i.e., Pr[sr =
i, sr+1 = j|y], where sr is the state at epoch r, and sr+1 is the state at
epoch r + 1. The algorithm computes this probability as the product of
three terms:

Pr[sr = i, sr+1 = j|y] =
1

Pr(y)
Pr[sr = i, sr+1 = j, y]

=
1

Pr(y)
αr−1(i)γr(j, i)βr(j). (7.28)

The α-values are internal variables of the algorithm and are computed by
the forward recursion

αr−1(i) =
∑

states l

αr−2(l)γr−1(i, l). (7.29)



7.7. A POSTERIORI PROBABILITY SYMBOL DECODING 27

This forward recursion evaluates α-values at time r − 1 from previously
calculated α-values at time r−2, and the sum is over all states l at time r−2
that connect with state i at time r−1. The forward recursion is illustrated in
Figure 7.14. The α values are initiated as α(0) = 1, α(1) = α(2) = α(3) = 0.
This automatically enforces the boundary condition that the encoder starts
in state 0.

u0, x0 u1, x1 u2, x2 u3, x3 u4, x4 0, x5 0, x6

i

j

Figure 7.14: Illustration of the forward recursion of the APP algorithm.

The β-values are calculated by an analogous procedure, called the back-
ward recursion

βr(j) =
∑

states k

βr+1(k)γr+1(k, j), (7.30)

and initialized as β(0) = 1, β(1) = β(2) = β(3) = 0 to enforce the terminat-
ing condition of the trellis code. The sum is over all states k at time r + 1
to which state j at time r connects. The backward recursion is illustrated
in Figure 7.15.

u0, x0 u1, x1 u2, x2 u3, x3 u4, x4 0, x5 0, x6

i

j

Figure 7.15: Illustration of the forward recursion of the APP algorithm.



28 CHAPTER 7. DECODING STRATEGIES

The γ values are conditional transition probabilities, and are the inputs
to the algorithm. γr(j, i) is the joint probability that the state at time r +1
is sr+1 = j, and that yr is received, it is are calculated as

γr(j, i) = Pr(sr+1 = j, yr|sr = i) = Pr[sr+1 = j|sr = i]Pr(yr|xr). (7.31)

The first term, Prp[sr+1 = j|sr = i] is the a priori transition probability, and
is related to the probability of ur. In fact, in our example, the top transition
is associated with ur = 1 and the bottom transition with ur = 0. This factor,
can and will be used to account for a priori probability information on the
bits ur. In the sequel we will abbreviate this transition probability by

pij = Pr(sr+1 = j|sr = i) = Pr(ur). (7.32)

The second term, Pr(yr|xr), is simply the conditional channel transition
probability, given that symbol xr is transmitted. Note that xr is the symbol
associated with the transition from state i→ j.

The a posteriori symbol probabilities Pr[ur|y] can now be calculated
from the a posteriori transition probabilities (7.28) by summing over all
transitions corresponding to ur = 1, and, separately, by summing over all
transitions corresponding to ur = 0, to obtain

p[ur = 1|y]=
1

Pr(y)

∑
solid

Pr[sr = i, sr+1 = j, y] (7.33)

p[ur = 0|y]=
1

Pr(y)

∑
dashed

Pr[sr = i, sr+1 = j, y]. (7.34)

The solid transition correspond to ur = 1, and the
dashed transitions correspond to ur = 0 as illustrated
on the left.

A formal algorithm description is given at the end of this section, but
first we present a rigorous derivation of the APP algorithm. This derivation
was first given by Bahl et. al. [7].

In the general case we will have need for the probability

qij(x) = Pr(τ(ur, sr) = x|sr = i, sr+1 = j), (7.35)

that is, is the a priori probability that the output xr at time r assumes the
value x on the transition from state i to state j. This probability is typically



7.7. A POSTERIORI PROBABILITY SYMBOL DECODING 29

a deterministic function of i and j, unless there are parallel transitions, in
which case xr is determined by the uncoded information bits (see Section
3.4).

Before we proceed with the derivation, let us define the internal variables
α and β by their probabilistic meaning. These are

αr(j) = Pr(sr+1 = j, ỹ), (7.36)

the joint probability of the partial sequence ỹ = (y−l, · · · , yr) up to and
including time epoch r and state sr+1 = j; and

βr(j) = Pr((yr+1, · · · , yl)|sr+1 = j), (7.37)

the conditional probability of the remainder of the received sequence y given
that the state at time r + 1 is j.

With the above we now calculate

Pr(sr+1 = j, y) = Pr(sr+1 = j, ỹ, (yr+1, · · · , yl))
= Pr(sr+1 = j, ỹ)Pr((yr+1, · · · , yl)|sr+1 = j, ỹ)
= αr(j)βr(j), (7.38)

where we have used the fact that Pr((yr+1, · · · , yl)|sr+1 = j, ỹ) =
Pr((yr+1, · · · , yl)|sr+1 = j), i.e., if sr+1 = j is known, events after time r
are independent of the history ỹ up to sr+1.

In the same way we calculate via Bayes’ expansion

Pr(sr = i, sr+1 = j, y) = Pr(sr = i, sr+1 = j, (y−l, · · · , yr−1), yr, (yr+1, · · · , yl))
= Pr(sr = i, (y−l, · · · , yr−1))Pr(sr+1 = j, yr|sr = i)

×Pr((yr+1, · · · , yl)|sr+1 = j)
= αr−1(i)γr(j, i)βr(j). (7.39)

Now, again applying Bayes’ rule and
∑

b p(a, b) = p(a), we obtain

αr(j) =
∑

states i

Pr(sr = i, sr+1 = j, ỹ)

=
∑

states i

Pr(sr = i, (y−l, · · · , yr−1))Pr(sr+1 = j, yr|sr = i)

=
∑

states i

αr−1(i)γr(j, i). (7.40)

For a trellis code started in the zero state at time r = −l we have the starting
conditions

α−l−1(0) = 1, α−l−1(j) = 0; j 6= 0. (7.41)



30 CHAPTER 7. DECODING STRATEGIES

As above, we similarly develop an expression for βr(j), i.e.,

βr(j) =
∑

states i

Pr(sr+2 = i, (yr+1, · · · , yl)|sr+1 = j)

=
∑

states i

Pr(sr+2 = i, yr+1|sr+1 = j)Pr((yr+2, · · · , yl)|sr+2 = i)

=
∑

states i

βr+1(i)γr+1(i, j). (7.42)

The boundary condition for βr(j) is

βl(0) = 1, βl(j) = 0; j 6= 0, (7.43)

for a trellis code which is terminated in the zero state.
Furthermore, the general form of the γ values is given by

γr(j, i) =
∑
xr

Pr(sr+1 = j|sr = i)Pr(xr|sr = i, sr+1 = j)Pr(yr|xr)

=
∑
xr

pijqij(xr)pn(yr − xr), (7.44)

where we have used the conditional density function of the AWGN channel
from (2.11), i.e., Pr(yr|xr) = pn(yr − xr). The calculation of γr(j, i) is
not very complex and can most easily be implemented by a table lookup
procedure.

Equations (7.40) and (7.42) are iterative and we can now compute the a
posteriori state and transition probabilities via the following algorithm:

Step 1: Initialize α−l−1(0) = 1, α−l−1(j) = 0 for all non-zero states (j 6= 0)
of the encoder FSM, and βl(0) = 1, βl(j) = 0, j 6= 0. Let r = −l.

Step 2: For all states j calculate γr(j, i) and αr(j) via (7.44) and (7.40).

Step 3: If r < l, let r = r + 1 and go to Step 2, else r = l − 1 and go to
Step 4.

Step 4: Calculate βr(j) using (7.42). Calculate Pr(sr+1 = j, y) from
(7.38), and Pr(sr = i, sr+1 = j; y) from (7.28).

Step 5: If r > −l, let r = r − 1 and go to Step 4.

Step 6: Terminate the algorithm and output all the values Pr(sr+1 = j, y)
and Pr(sr = i, sr+1 = j, y).



7.7. A POSTERIORI PROBABILITY SYMBOL DECODING 31

Contrary to the maximum likelihood algorithm, the APP algorithms
needs to go through the trellis twice, once in the forward direction, and
once in the reverse direction. What is worse, all the values αr(j) must be
stored from the first pass through the trellis. For a rate k/n convolutional
code, for example, this requires 2kν2l storage locations since there are 2kν

states for each of which we need to store a different value αr(j) at each time
epoch r. The storage requirement grows exponentially in the constraint
length ν and linearly in the block length 2l.

The a posteriori state and transition probabilities produced by this algo-
rithm can now be used to calculate a posteriori information bit probabilities,
i.e., the probability that the information k-tuple ur = u, where u can vary
over all possible binary k-tuples. Starting from the transition probabilities
Pr(sr = i, sr+1 = j|y) we simply sum over all transitions i → j which are
caused by ur = u. Denoting these transitions by A(u), we obtain

Pr(ur = u) =
∑

(i,j)∈A(u)

Pr(sr = i, sr+1 = j|y). (7.45)

As mentioned above, another most interesting product of the APP de-
coder is the a posteriori probability of the transmitted output symbol xr.
Arguing analogously as above, and letting B(x) be the set of transitions on
which the output signal x can occur, we obtain

Pr(xr = x) =
∑

(i,j)∈B(x)

Pr(x|yr)Pr(sr = i, sr+1 = j|y)

=
∑

(i,j)∈B(x)

pn(yr − xr)
p(yr)

qij(x)Pr(sr = i, sr+1 = j|y),(7.46)

where the a priori probability of yr can be calculated via

p(yr) =
∑
x′

((i,j)∈B(x))

p(yr|x′)qij(x′), (7.47)

and the sum extends over all transitions i→ j.
Equation (7.46) can be much simplified if there is only one output symbol

on the transition i → j as in the introductory discussion. In that case the
transition automatically determines the output symbol, and

Pr(xr = x) =
∑

(i,j)∈B(x)

Pr(sr = i, sr+1 = j|y). (7.48)



32 CHAPTER 7. DECODING STRATEGIES

One problem we have to address is that of numerical stability. The α
and β vales in (7.40) and (7.42) decay rapidly and will underflow in any
fixed precision implementation. We therefore normalize both values at each
epoch, i.e.,

αr(i)→
αr(i)∑
s αr(s)

; βr(i)→
βr(i)∑
s βr(s)

(7.49)

This normalization has no effect on our final results such as (7.46), since
these are similarly normalized. In fact, this normalization allows us to ignore
the division by p(yr) in (7.46), and division by Pr(y) in (7.28), (7.33), and
(7.34).

7.8 Log-APP, Max-Log-APP, and Approximations

7.8.1 The APP in the Logarithm Domain (Log-APP)

While the APP algorithm is concise and consists only of multiplications and
additions, current direct digital hardware implementations of the algorithm
lead to complex circuits due to many real number multiplications involved
in the algorithm. In order to avoid these multiplications, we transform the
algorithm into the logarithm-domain. This results in the so-called log-APP
algorithm.

First we transform the forward recursion (7.29), (7.40) into the logarithm-
domain using the definitions

Ar(i) = log(αr(i)); Γr(i, l) = log(γr(i, l)) (7.50)

to obtain the log-domain forward recursion

Ar−1(i) = log

( ∑
states l

exp
(

Ar−2(l) + Γr−1(i, l)
))

(7.51)

Likewise the backward recursion can be transformed into the logarithm-
domain using the analogous definition Br(j) = log(βr(j), and we obtain

Br(j) = log

( ∑
states k

exp
(

Br+1(l) + Γr+1(k, j)
))

(7.52)

The product in (7.28) and (7.39) now turns into the simple sum

αr−1(i)γr(j, i)βr(j)→ Ar−1(i) + Γr(j, i) + Br(j) (7.53)



7.8. LOG-APP, MAX-LOG-APP, AND APPROXIMATIONS 33

Unfortunately, equations (7.51) and (7.52) contain log() and exp() func-
tions, which seem even more complex than the original multiplications. This
is true, however, in most cases of current practical interest, the APP al-
gorithm is used to decode binary codes, i.e., there are only two branches
involved at each state, and therefore only sums of two terms in (7.51) and
(7.52). The logarithm of such a binary sum can be expanded as

log(exp(a) + exp(b)) = log
(

exp
(

max(a, b)
)(

1 + exp(−|a− b|)
))

= max(a, b) + log
((

1 + exp(−|a− b|)
))

It seems that little is gained from these manipulations, but the second term
is now the only complex operation left, and there are a number of ways to
approach this. The first, and most complex but precise method is to store
the function

log
((

1 + exp(−x)
))

; x = |a− b|, (7.54)

in a ROM look-up table. Given an example quantization of 4bits, this is a
16 × 16 value look-up table, which is very manageable. Figure 7.8.1 shows
the signal flow of this binary log-domain operation on the example of a node
operation in the forward recursion.

Finally, to binary codes the algorithm computes the log-likelihood ratio
(LLR) λ(ur) of the information bits ur using the a posteriori probabilities
(7.45) as

λ(ur) = log
(

Pr(ur = 1)
Pr(ur = 0)

)
= log


∑

(i,j)∈A(u=1)

αr−1(i)γr(j, i)βr(j)∑
(i,j)∈A(u=0)

αr−1(i)γr(j, i)βr(j)



λ(ur) = log


∑

(i,j)∈A(u=1)

exp(Ar−1(i) + Γr(j, i) + Br(j))∑
(i,j)∈A(u=0)

exp(Ar−1(i) + Γr(j, i) + Br(j))

 . (7.55)

The LLR is the quantity which is used in the iterative decoding algo-
rithms of binary turbo codes as discussed later in this book. The range of
the LLR is [−∞,∞], where a large value signifies a high probability that
ur = 1.



34 CHAPTER 7. DECODING STRATEGIES

+

+

+

+

-

Comparer

Max Min

Look-up

Table

Ar(i)

Ar−1(l′)Ar−1(l)

Γr−1(i, l) Γr−1(i, l′)

Figure 7.16: Signal flow diagram of the node calculation of the Log-APP
algorithm.

7.8.2 Max-Log-APP

A straight-forward way of reducing the complexity of the Log-APP is to
eliminate the ROM lookup table in Figure 7.8.1, [34]. This has the effect of
approximating the forward and backward recursions by

Ar−1(i) = log

( ∑
states l

exp
(

Ar−2(l) + Γr−1(i, l)
))

≈ max
states l

(
Ar−2(l) + Γr−1(i, l)

)
(7.56)

and

Br(j) = log

( ∑
states k

exp
(

Br+1(l) + Γr+1(k, j)
))

≈ max
states k

(
Br+1(l) + Γr+1(k, j)

)
(7.57)

It is very interesting to note that (7.56) is nothing else than our familiar
Viterbi algorithm for maximum-likelihood sequence decoding. Furthermore,



7.8. LOG-APP, MAX-LOG-APP, AND APPROXIMATIONS 35

equation (7.57) is also a Viterbi algorithm, but operated in the reverse di-
rection.

Analogously, the final LLR calculation in (7.55) is approximated by

λ(ur) ≈ max
(i,j)∈A(u=1)

(
Ar−1(i) + Γr(j, i) + Br(j)

)
− max

(i,j)∈A(u=1)

(
Ar−1(i) + Γr(j, i) + Br(j)

)
.

(7.58)

The big advantage of the Log-Max-APP algorithm is that is only uses
additions and maximization operations to approximate the LLR of ur. This
computational savings is paid for by an approximate 0.5dB loss when these
decoders are used to decode Turbo codes.

Further insight into the relationship between the Log-APP and its ap-
proximation can be gained by considering the expressing the LLR of ur in
its basic form, i.e.,

λ(ur) = log


∑

x;(ur=1)

exp

(
−
|y − x|2

N0

)
∑

x;(ur=1)

exp

(
−
|y − x|2

N0

)
 , (7.59)

where the sum in the numerator extends over all coded sequences x which
correspond to information bit ur = 1, and the denominator sum extends
over all x corresponding to ur = 0.

It is quite straightforward to see that the MAX-Log-APP retains only
the path in each sum which has the best metrics, and therefore the MAX-
Log-APP calculates an approximation to the true LLR, given by

λ(ur) ≈ min
x;(ur=0)

|y − x|2
N0

− min
x;(ur=1)

|y − x|2
N0

, (7.60)

i.e., the metric difference between the nearest path to y with ur = 0 and the
nearest path with ur = 1. For constant energy signals this simplifies to

λ(ur) ≈
(x(1)
r − x

(0)
r ) · y

N0/2
, (7.61)

where x
(1)
r = arg minx;(ur=1) |y − x|2, and x

(0)
r = arg minx;(ur=0) |y − x|2.



36 CHAPTER 7. DECODING STRATEGIES

7.8.3 Approximations

For high-speed turbo decoding applications requiring up to ten iterations,
evaluation of equation (7.54) may be too complex, yet one is not readily
willing to accept the half a dB loss entailed by using the Max-Log-APP. A
very effective way of approximating (7.54) is [23]

max(a, b) + log
((

1 + exp(−|a− b|)
))

≈ max(a, b) +

{
0 if |a− b| > T

C if |a− b| ≤ T .

(7.62)

This simple threshold approximation is called constant-Log-APP algorithm.
It is used in the UMTS turbo code [14], and leads to a degradation with
respect to the full Log-APP of only 0.03dB on this code [12], where the
optimal parameters for this code are determined to be C = 0.5 and T = 1.5.
This reduces the ROM look-up table of the Log-APP to a simple comparator
circuit.

APP decoders are mainly used in decoders for Turbo codes of various
sizes. It is therefore desirable to make the APP algorithm itself independent
of the block size of the overall code. While the forward recursion can be
performed in synchrony with the incoming data, the backward recursion
poses a problem, since the end of the block would need to be received before
it can be started. A solution lies performing a partial backward recursion,
starting some D symbol epochs in the future and using these values to
calculate the LLRs at epoch r. The basic notion of this sliding window
implementation is illustrated in Figure 7.17.

· · · ur−1, xr−1 ur, xr ur+1, xr+1 · · · βr+D(0)

βr+D(1)

βr+D(2)

βr+D(3)

Figure 7.17: Sliding window approximation to the APP algorithm.

The question now is how to initialize the values βr+D(j), and the most



7.9. RANDOM CODING ANALYSIS OF SEQUENTIAL DECODING 37

typical method is to give them all the same value; a uniform initialization.
Note that the exact values is irrelevant since the LLR eliminates constants.

Note that at first sight it seems that we have traded in a largely increased
computational load, since for each forward recursion step, D backward re-
cursion steps are needed to find the values of β at epoch r. However, it is
computationally much more efficient to operate this algorithm in a block
fashion. That is, for every D backward recursion steps, not only a single
forward step at r is executed, but a number R of forward steps. Typical
values are D = 2R, which leads to efficient shared memory implementations.

7.9 Random Coding Analysis of Sequential De-
coding

In Section 5.5 we presented random coding performance bounds for trellis
codes. In that section we implicitly assumed that we were using a maximum
likelihood decoder. Since sequential decoding is not a maximum likelihood
decoding method, the results in Section 5.5 do not apply.

The error analysis of sequential decoding is very difficult, and, again,
we find it easier to generate results for the ensemble of all trellis codes via
random coding arguments. The evaluation of the error probability is not the
main problem here, since, if properly dimensioned, both the stack and the
Fano algorithm will almost always find the same error path as the maximum
likelihood detector.

Xj Xj+2

Xj+1

Figure 7.18: Incorrect subsets explored by a sequential decoder. The solid
path is the correct one.



38 CHAPTER 7. DECODING STRATEGIES

The difference with sequential decoding is, in contrast to ML-decoding,
that its computational load is variable. And it is this computational load
which can cause problems as we will see. Figure 7.18 shows an example of
the search procedure of sequential decoding. The algorithm explores at each
node an entire set of incorrect partial paths before finally continuing. This
set at each node includes all the incorrect paths explored by the possibly
multiple visits to that node as for example in the Fano algorithm. The
sets X ′j denote the sets of incorrect signal sequences x̃′ diverging at node j,
which are searched by the algorithm. Further, denote the number of signal
sequences in X ′j by Cj . Note that Cj is also the number of computations that
need to be done at node j, since each new path requires one additional metric
calculation. This is the case because the algorithm explores two extensions
at each step for a binary code, both resulting in distinct extension paths
(Figure 7.18.

The problem becomes quite evident now, the number of computations at
each node is variable, and it is this distribution of the computations which
we want to examine. Again, let x̃ be the partial correct path through the
trellis and x̃′j be a partial incorrect path which diverges from x̃ at node j.
Furthermore, let Ln(x̃′) = L(x̃′, y) be the metric of the incorrect path at
node n, and let Lm(x̃) be the metric of the correct path at node m. A path
is searched further if and only if it is at the top of the stack, and hence, if
Ln(x̃′) < Lm(x̃), the incorrect path is not searched further until the metric
of x̃ falls below Ln(x̃′). If

min
m≥j

Lm(x̃) = λj > Ln(x̃′) (7.63)

the incorrect path x̃′ is never searched beyond node n.
We may now overbound the probability that the number of computations

at node j exceeds a given value Nc by

Pr(Cj ≥ Nc) ≤
∑
x

p(x)
∫
y
p(y|x)B

(∣∣e(p(y|x′) ≥ λj)
∣∣ ≥ Nc

)
dy, (7.64)

where e(p(y|x′) ≥ λj) is an error path in Xj whose metric exceeds λj and |? |
is the number of such error paths. B(?) is a boolean function which equals
1 if the expression is true and 0 otherwise. The function B(?) in (7.64) then
simply equals 1 if there are more than Nc error paths with metric larger
than λi and 0 otherwise.

We now proceed to overbound the indicator function analogously to
Chapter 5, by realizing that B(?) = 1 if at least Nc error paths have a



7.9. RANDOM CODING ANALYSIS OF SEQUENTIAL DECODING 39

metric such that

Ln(x̃′) ≥ λj , (7.65)

and, hence,  1
Nc

∑
x′∈X ′j

exp
(
α
(
Ln(x̃′)− λj

))ρ

≥ 1, (7.66)

where α and ρ are arbitrary positive constants. Note that we have extended
the sum in (7.66) over all error sequences as is customary in random coding
analysis. We may now use (7.66) to overbound the indicator function B(?)
and we obtain

Pr(Cj ≥ Nc) ≤ N−ρc
∑
x

p(x)
∫
y
p(y|x)

∑
x′∈X ′j

exp
(
α
(
Ln(x̃′)− λj)

))ρ

dy,

(7.67)

and, due to (7.63)

exp (−αρλi) ≤
∞∑
m=j

exp (−αρLm(x̃)) , (7.68)

and we have

Pr(Cj ≥ Nc) ≤ N−ρc
∑
x

p(x)
∫
y
p(y|x)

∑
x′∈X ′j

exp
(
αLn(x̃′)

)ρ

×
∞∑
m=j

exp (−αρLm(x̃)) dy. (7.69)

Analogously to Chapter 5, let c be the correct path and e be the incorrect
path which diverges from c at node j. Let E be the set of all incorrect paths,
and E ′j be the set of incorrect paths (not signal sequences) corresponding to
x′j . Again, x and x′ are, strictly taken, the signal sequences assigned to
the correct and incorrect path, respectively, and x̃, x̃′ are the associated
partial sequences. Let then Avg{Pr(Cj ≥ Nc)} be the ensemble average of



40 CHAPTER 7. DECODING STRATEGIES

Pr(Cj ≥ Nc) over all linear-trellis codes, i.e.,

Avg{Pr(Cj ≥ Nc)} ≤ N−ρc
∑
c

p(c)
∫
y
p(y|x)

∞∑
m=j

exp (−αρLm(x̃))

×

∑
e∈E ′j

exp (αLn(x̃′))

ρ

dy. (7.70)

Note, we have used Jensen’s inequality to pull the averaging into the second
sum, which restricts ρ to 0 ≤ ρ ≤ 1. Since we are using time-varying random
trellis codes, (7.70) becomes independent of the starting node j, which we
arbitrarily set to j = 0 now.

Observe there are at most 2kn paths e of length n in E ′j = E ′. Using this
and the inequality3

(∑
ai

)ρ
≤
∑

aρi ; ai ≥ 0; 0 ≤ ρ ≤ 1, (7.71)

we obtain4

Avg{Pr(C0 ≥ Nc)} ≤ N−ρc
∑
c

p(c)
∫
y
p(y|x)

∞∑
m=0

exp (−αρLm(x̃))

×
∞∑
n=0

2knρ
(
exp (αLn(x̃′))

)ρ
dy (7.72)

= N−ρc
∑
c

p(c)
∞∑
m=0

∞∑
n=0

2knρ

×
∫
y
p(y|x) exp (−αρLm(x̃))

(
exp (αLn(x̃′))

)ρ
dy. (7.73)

3This inequality is easily shown, i.e.,∑
aρi

(
∑
ai)

ρ =
∑(

ai∑
ai

)ρ
≥
∑(

ai∑
ai

)
= 1,

where the inequality resulted from the fact that each term in the sum is ≤ 1 and ρ ≤ 1.
4Note that it is here that we need the time-varying assumption of the codes (compare

also Section 5.5 and Figure 5.9).



7.9. RANDOM CODING ANALYSIS OF SEQUENTIAL DECODING 41

Now we substitute the metrics (see (7.11))

Lm(x̃) =
m∑
r=0

log
(

p(yr|xr)
p(yr)

)
− k, (7.74)

Ln(x̃′) =
n∑
r=0

log
(

p(yr|x′r)
p(yr)

)
− k, (7.75)

into the expression (7.73) and use α = 1
1+ρ . This let’s us rewrite the expo-

nentials in (7.73) as

2knρ
∫
y
p(y|x) exp (−αρLm(x̃))

(
exp (αLn(x̃′))

)ρ
=2−(m−n)Ec(ρ)−m(Ece(ρ)−kρ) if m ≥ n

2−(n−m)(Ee(ρ)−kρ)−n(Ece(ρ)−kρ) if n ≥ m.

(7.76)

The exponents used above are given by

2−Ec(ρ) =
∫
v

∑
x

q(x)p(v|x)
(

p(v|x)
p(v)

2−k
)− ρ

1+ρ

= 2k
ρ

1+ρ

∫
v

∑
x

q(x)p(v|x)
1

1+ρ p(v)
ρ

1+ρ

≤ 2k
ρ

1+ρ

∫
v

(∑
x

q(x)p(v|x)
1

1+ρ

)1+ρ
 1

1+ρ

= 2k
ρ

1+ρ
− 1

1+ρ
E0(ρ,q) = fc, (7.77)

where we have used Hölder’s inequality above (see Chapter 5, page 157) with
βi =

∑
x q(x)p(v|x)

1
1+ρ , γi = p(v)

ρ
1+ρ , and λ = 1

1+ρ , and, “magically” there
appears the error exponent from Chapter 5, equation (5.51)! Analogously,



42 CHAPTER 7. DECODING STRATEGIES

we also find

2−(Ee(ρ)−kρ) = 2kρ
∫
v
p(v)

(∑
x′

q(x′)
(

p(v|x′)
p(v)

2−k
) 1

1+ρ

)ρ

= 2k
ρ2

1+ρ

∫
v
p(v)

1
1+ρ

(∑
x′

q(x′)p(v|x′)
1

1+ρ

)ρ

≤ 2k
ρ2

1+ρ

∫
v

(∑
x′

q(x′)p(v|x′)
1

1+ρ

)1+ρ


ρ
1+ρ

= 2k
ρ2

1+ρ
− ρ

1+ρ
E0(ρ,q) = fe, (7.78)

where λ = ρ
1+ρ . Finally we obtain

2−(Ece(ρ)−kρ) = 2kρ
∫
v

∑
x

q(x)p(v|x)

(∑
x′

q(x′)
(

p(v|x′)
p(v|x)

) 1
1+ρ

)ρ

= 2kρ
∫
v

∑
x

q(x)p(v|x)
1

1+ρ

(∑
x′

q(x′)p(v|x′)
1

1+ρ

)ρ
= 2kρ−E0(ρ,q). (7.79)

Note now that, since 1 = ρ
1+ρ + 1

1+ρ , we have

2kρ−E0(ρ,q) = 2k
ρ2

1+ρ
− ρ

1+ρ
E0(ρ,q)2k

ρ
1+ρ
− 1

1+ρ
E0(ρ,q) = fefc (7.80)

where the two factors fe and fc are defined in (7.77) and (7.78).
With this we can rewrite (7.73) as

Avg{Pr(C0 ≥ Nc)} ≤ N−ρc
∑
c

p(c)
∞∑
m=0

∞∑
n=0

fne fmc . (7.81)

The double infinite sum in (7.81) converges if fe, fc < 1 and, hence from
(7.80), if ρk < E0(ρ, q) and we obtain

Avg{Pr(C0 ≥ Nc)} ≤ N−ρc
1

(1− fe) (1− fc)
. (7.82)

Similarly, it can be shown [39] that there exists a lower bound on the
number of computations, given by

Avg{Pr(Cj ≥ Nc)} ≥ N−ρc (1− o(Nc)) (7.83)



7.10. SOME FINAL REMARKS 43

Together, (7.82) and (7.83) characterize the computational behavior of
sequential decoding. It is interesting to note that if ρ ≤ 1, the expectation
of (7.82) and (7.83), i.e., the expected number of computations becomes
unbounded, since

∞∑
Nc=1

N−ρc (7.84)

diverges for ρ ≤ 1 or k ≥ R0. Information theory therefore tells us that we
cannot beat the capacity limit by using very powerful codes and resorting
to sequential decoding, since, what happens is that as soon as the code rate
reaches R0, the expected number of computations per node tends to infinity.
In effect our decoder fails through buffer overflow. This is why R0 is often
also referred to as the computational cutoff-rate.

Further credence to R0 is given by the observation that rates R = R0 at
bit error probabilities of Pb = 10−5−10−6 can be achieved with trellis codes.
This observation was made by Wang and Costello [41], who constructed
random trellis codes for 8-PSK and 16-QAM constellations which achieve
R0 with constraint lengths of 15 and 16, i.e., very realizable codes.

7.10 Some Final Remarks

As we have seen there are two broad classes of decoders, the depth-first and
the breadth-first algorithms. Many attempts have been made at comparing
the respective properties of these two basic approaches, for example [32],
or, for convolutional codes, [39] is an excellent and inexhaustible source of
information. Many of the random coding arguments in [39] for convolutional
codes can be extended to trellis codes with little effort.

Where are we standing then? Sequential decoding has been popular in
particular for relatively slow transmission speeds, since the buffer sizes can
then be dimensioned such that buffer overflow is controllable. Sequential
decoding, however, suffers from two major drawbacks. Firstly, it is a “se-
quential” algorithm, i.e., modern pipelining and parallelizing is very difficult
if not impossible to accomplish. Secondly, the metric used in sequential de-
coding contains the “bias” term accounting for the different paths lengths.
This makes sequential decoding very channel dependent. Furthermore, this
bias term may be prohibitively complex to calculate for other than straight
channel coding applications (see e.g., [42]).

Breadth-first search algorithms, in particular the optimal Viterbi algo-
rithm and the popular M -algorithm, do not suffer from the metric “bias”



44 CHAPTER 7. DECODING STRATEGIES

term. These structures can also be parallelized much more readily which
makes them good candidates for VLSI implementations. They are therefore
very popular for high-speed transmission systems. The Viterbi algorithm
can be implemented with a separate metric calculator for each state. More
on the implementation aspects of parallel Viterbi decoder structures can
be found in [11, 16, 13]. The Viterbi decoder has proven so successful in
applications that it is the algorithm of choice for most applications of code
decoding at present.

The M -algorithm can also be implemented exploiting inherent paral-
lelism of the algorithm, and [35] discusses an interesting implementation
which avoids the sorting of the paths associated with the basic algorithm.
The M -algorithm has also been successfully applied to multi-user detection,
a problem which can also be stated as a trellis (tree) search [43], and to the
decoding of block codes.

In all likelihood the importance of all these decoding algorithms, with
the likely exception of the Viterbi algorithm, will fade compared to that of
the APP decoder in its different forms. The impact of iterative decoding
of large error control codes (see chapters 9-11 on Turbo coding and related
topics) has been so revolutionary as to push other strategies into obscurity.

Appendix 6.A

In this appendix we calculate the Vector Euclidean distance for a specific
set Cp of retained paths. Noting that δn from (7.20) is a vector of Gaus-
sian random variables (see also Section 2.6), we can easily write down its
probability density function [44], viz.

p(δn) =
1

(2π)M/2|R|1/2 exp
(
−1

2
(
µ− δn

)T R−1
(
µ− δn

))
, (7.85)

where µ is the vector of mean values given by µi = d2
i , and R is the co-

variance matrix of the Gaussian random variables δn whose entries rij =

E
[
(δ(i,c)
n − µi)(δ

(j,c)
n − µj)

]
can be evaluated as

rij =


2N0

(
d2
i + d2

j − d2
ij

)
if i 6= j

4N0d
2
i if i = j

(7.86)

and where

d2
ij =

∣∣∣x̃(pi) − x̃(pj)
∣∣∣2 and d2

i =
∣∣∣x̃(pi) − x̃(c)

∣∣∣ . (7.87)



7.10. SOME FINAL REMARKS 45

The vector µ of mean values is given by µi = d2
i .

Now the probability of losing the correct path at time n can be calculated
by

Pr(CPL|Cp) =
∫
δn≤0

p(δn)dδn. (7.88)

Equation (7.88) is difficult to evaluate due to the correlation of the entries
in δn, but one thing we know is that the area δn ≤ 0 of integration is
convex. This allows us to place a hyperplane through the point closest to
the center of the probability density function, µ, and overbound (7.88) by
the probability that the noise carries the point µ across this hyperplane.
This results in a simple one-dimensional integral, whose value is given by
(compare also (2.14))

Pr(CPL|Cp) ≤ Q

√ d2
l

2N0

 , (7.21)

where d2
l , the Vector Euclidean distance, is given by

d2
l = 2N0 min

y≤0

(
µ− y

)T R−1
(
µ− y

)
, (7.89)

and y is simply a dummy variable of minimization.

The problem of calculating (7.21) has now been transformed into the
geometric problem of finding the point on the surface of the convex poly-
tope y ≤ 0 which is closest to µ using the distance measure of (7.89). This
situation is illustrated in Figure 7.19 for a 2-dimensional scenario. The
minimization in (7.89) is a constrained minimization of a quadratic form.
Obviously, some of the constraints y ≤ 0 will be met with equality. These
constraints are called the active constraints, i.e., if y = (y(a), y(p))T is the
partitioning of y into active and passive components, y(a) = 0. This mini-
mum is the point y

0
in Figure 7.19. The right hand side of Figure 7.19 also

shows the geometric configuration when the decorrelating linear transfor-
mation δ′n =

√
R(−1)δn is applied. The vector Euclidean distance (7.89) is

invariant to such a transformation, but E
[
(δ′(i,c)n − µ′i)(δ

′(j,c)
n − µ′j)

]
= δij ,

i.e., the decorrelated metric differences are independent with unit variance
each. Naturally we may work in either space. Since the random variables
δ′n are independent, equal-variance Gaussian, we know from basic commu-
nication theory (Chapter 2, [44]), that the probability that µ′ is carried into



46 CHAPTER 7. DECODING STRATEGIES

y
2

y
1

y
0

µ

y′
0

y′
1

y′
2

µ′

Integration Area Overbound

Integration Area

Overbound

Figure 7.19: Illustration of the concept of the vector Euclidean distance with
M = 2. The distance between y

0
and µ is d2

l . The right hand side shows
the space after decorrelation, and d2

l equals the standard Euclidean distance
between y′

0
and µ′.

the shaded region of integration can be overbounded by integrating over the
halfplane not containing µ′, as illustrated in the figure. This leads to (7.21).

We now have to minimize

d2
l = 2N0 min

y(p)≤0

((
µ(p)

µ(a)

)
−
(

y(p)

0

))T(
R(pp) R(pa)

R(ap) R(aa)

)−1((
µ(p)

µ(a)

)
−
(

y(p)

0

))
,

(7.90)

where we have partitioned µ and R analogously to y. After some elementary
operations we obtain

y(p) = µ(p) +
(
X(pp)

)−1
X(pa)µ(a) ≤ 0, (7.91)

and

d2
l = 2N0µ

(a)T
(
X(aa)

)−1
µ(a), (7.92)



7.10. SOME FINAL REMARKS 47

where5

X(pp) =
[
R(pp) −R(pa)

(
R(aa)

)−1
R(ap)

]−1

X(aa) =
(
R(aa)

)−1 [
I + R(ap)X(pp)R(pa)

]
X(pa) = −X(pp)R(pa)

(
R(aa)

)−1
. (7.93)

We are now presented with the problem of finding the active components
in order to evaluate (7.92). This is a combinatorial problem, i.e., we must
test all 2M−1 =

∑M
i=1

(
M
i

)
possible combinations of active components from

the M entries in y for compatibility with (7.91). This gives us the following
procedure:

Step 1: Select all 2M−1 combinations of active components and set y(a) =
0 for each.

Step 2: For each combination for which y(p) ≤ 0, store the resulting d2
l

from (7.92) in a list.

Step 3: Select the smallest entry from the list in Step 2 as d2
l .

As an example, consider again Figure 7.19. The 22−1 = 3 combinations
correspond to the points y

0
, y

1
and y

2
. The point y

1
does not qualify, since

it violates (7.91). The minimum is chosen between y
0

and y
2
. This pro-

cess might be easier to visualize in the decorrelated space y′, where all the
distances are ordinary Euclidean distances, and the minimization becomes
obvious.

One additional complication needs to be addressed at this point. The
correlation matrix R may be singular. This happens when one or more en-
tries in y are linearly dependent on the other entries. In the context of the

5These equations can readily be derived from the partitioned matrix inversion lemma:(
A B
C D

)−1

=

(
E F
G H

)
,

where

E =
(
A−BD−1C

)−1
;F = −EBD−1;G = −D−1CE.

and

H = D−1 +D−1CEBD−1.



48 CHAPTER 7. DECODING STRATEGIES

restriction y ≤ 0, we have redundant conditions. The problem, again, is that
of finding the redundant entries which can be dropped from consideration.
Fortunately, our combinatorial search helps us here. Since we are exam-
ining all combinations of possible active components, we may simply drop
any dependent combinations which produce a singular R(aa) from further
consideration without affecting d2

l .



Bibliography

[1] J.B. Anderson, ”Limited search trellis decoding of convolutional codes,”
IEEE Trans. Inform. Theory, vol. IT-35,, September 1989.

[2] J.B. Anderson and S. Mohan, “Sequential coding algorithms: A survey
and cost analysis,” IEEE Trans. Commun., vol. COM-32, No. 2, pp.
169–176, February 1984.

[3] J.B. Anderson and S. Mohan, Source and Channel Coding: An Algo-
rithmic Approach, Kluwer Academic Publishers, Boston, Mass., 1991.

[4] T. Aulin, “Breadth First Maximum Likelihood Sequence Detection,”
IEEE Trans. Commun., vol. COM-47, No. 2, pp. 208–216, February
1999.

[5] T. Aulin, “Recovery Properties of the SA(B) Algorithm”, Technical
Report No. 105, Chalmers University of Technology, Sweden, February
1991.

[6] T. Aulin, “Study of a new trellis decoding algorithm and its appli-
cations”, Final Report, ESTEC Contract 6039/84/NL/DG, European
Space Agency, Noordwijk, The Netherlands, December 1985.

[7] L.R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of
linear codes for minimizing symbol error rate,” IEEE Trans. Inform.
Theory, vol. IT-20,, pp. 284–287, March 1974.

[8] K. Balachandran, “Design and performance of constant envelope and
non-constant envelope digital phase modulation schemes”, Ph.D. thesis,
ECSE Dept. Renselear Polytechnic Institute, Troy, NY, February 1992.

[9] R.E. Blahut, Principles and Practice of Information Theory, Addison-
Wesley, Reading, Massachusetts, 1987.

[10] P.R. Chevillat and D.J. Costello, Jr., “A multiple stack algorithm for
erasurefree decoding of convolutional codes,” IEEE Trans. Commun.,
vol. COM-25, pp. 1460–1470, December 1977.

49



50 BIBLIOGRAPHY

[11] G.C. Clark and J.B. Cain, Error-correction coding for digital commu-
nications, Plenum Press, New York, 1983.

[12] B. Classen, K. Blankenship, and V. Desai, “turbo decoding with the
constant-log-MAP algorithm,” Proc. Second Int. Symp. Turbo Codes
and Related Appl., (Brest, France), pp. 467–470, September 2000.

[13] O.M. Collins, “The subtleties and intricacies of building a constraint
length 15 convolutional decoder,” IEEE Trans. Commun., vol. COM-
40, pp. 1810–1819, December 1992.

[14] European Telecommunications Standards Institute, “Universal mobile
telecommunications system (UMTS): Multiplexing and channel coding
(FDD),” 3GPP TS 125.212 version 3.4.0, pp. 14–20, September 23,
2000.

[15] R.M. Fano, “A heuristic discussion of probabilistic decoding,” IEEE
Trans. Inform. Theory, vol. IT-9, pp. 64–74, April 1963.

[16] G. Feygin and P.G. Gulak, “Architectural tradeoffs for survivor se-
quence memory management in Viterbi decoders,” IEEE Trans. Com-
mun., vol. COM-41, pp. 425–429, March 1993.

[17] G.D. Forney, Jr. “The Viterbi algorithm,” Proc. IEEE, vol. 61, pp.
268–278, 1973.

[18] G.D. Forney, “Maximum-likelihood sequence estimation of digital se-
quences in the presence of intersymbol interference,” IEEE Trans. In-
form. Theory, vol. IT-18, pp. 363-378, May 1972.

[19] G.J. Foschini, “A reduced state variant of maximum likelihood sequence
detection attaining optimum performance for high signal-to-noise ra-
tios,” IEEE Trans. Inform. Theory, vol. IT-23,, pp. 605–609, September
1977.

[20] S. Lin and D.J. Costello, Jr., Error Control Coding, Prentice-Hall, En-
glewood Cliffs, 1983.

[21] J.M. Geist, “An empirical comparison of two sequential decoding algo-
rithms,” IEEE Trans. Commun., vol. COM-19, pp. 415–419, August
1971.

[22] J.M. Geist, “Some properties of sequential decoding algorithms,” IEEE
Trans. Inform. Theory, vol. IT-19, pp. 519–526, July 1973.

[23] W.J. Gross and P.G. Gulak, “Simplified map algorithm suitable for
implementation of turbo decoders,” Electron. Lett., vol. 34, pp. 1577–
1578, Aug. 6, 1998.



BIBLIOGRAPHY 51

[24] D. Haccoun and M.J. Ferguson, “Generalized stack algorithms for de-
coding convolutional codes,” IEEE Trans. Inform. Theory, vol. IT-21,,
pp. 638–651, November 1975.

[25] F. Jelinek, “A fast sequential decoding algorithm using a stack,” IBM
J. Res. Dev., Vol. 13, pp. 675–685, November 1969.

[26] F. Jelinek and A.B. Anderson, “Instrumentable tree encoding of in-
formation sources” IEEE Trans. Inform. Theory, vol. IT-17, January
1971.

[27] L. Ma, “Suboptimal decoding strategies”, MSEE thesis, University of
Texas at San Antonio, May 1996.

[28] R.J. McEliece, “On the BCJR trellis for linear block codes,” IEEE
Trans. Inform. Theory, vol. IT-42, No. 4, pp. 1072–1092, July 1996.

[29] J.L. Massey, “Variable-length codes and the Fano metric,” IEEE Trans.
Inform. Theory, vol. IT-18, pp. 196–198, January 1972.

[30] H. Osthoff, J.B. Anderson, R. Johannesson, and C-F. Lin, “Systematic
feed-forward convolutional encoders are better than other encoders with
an M -algorithm decoder”, IEEE Trans. Inform. Theory, vol. IT-44, No.
2, pp. 831–838, March 1998.

[31] J.K. Omura, “On the Viterbi decoding algorithm,” IEEE Trans. In-
form. Theory, vol. IT-15, pp. 177–179, January 1969.

[32] G.J. Pottie and D.P. Taylor, “A comparison of reduced complexity de-
coding algorithms for trellis codes,” IEEE J. Select. Areas Commun.,
vol. SAC-7, No. 9, pp. 1369–1380, December 1989.

[33] J.G. Proakis, Digital Communications, McGraw-Hill, Inc., 1989.

[34] P. Robertson, P. Höher, and E. Villebrun, “Optimal and sub-optimal
maximum a posteriori algorithms suitable for turbo decoding,” Euro-
pean Trans. on Telecommun., vol. 8,, pp. 119–125, March/April 1997.

[35] S.J. Simmons, “A nonsorting VLSI structure for implementing the
(M,L) Algorithm,” IEEE J. Select. Areas Commun., vol. SAC-6, pp.
538–546, April, 1988.

[36] S.J. Simmons and P. Wittke, “Low complexity decoders for constant
envelope digital modulation”, Conf. Rec., GlobeCom, Miami, Florida,
pp. E7.7.1 – E7.7.5, November 1982.

[37] S. Verdú, “Minimum probability of error for asynchronous Gaussian
multiple-access channels,” IEEE Trans. Inform. Theory, vol. IT-32, pp.
85-96, Jan. 1986.



52 BIBLIOGRAPHY

[38] A.J. Viterbi, “Error bounds for convolutional codes and an asymptoti-
cally optimum decoding algorithm,” IEEE Trans. Inform. Theory, vol.
IT-13, pp. 260–269, April 1969.

[39] A.J. Viterbi and J.K. Omura, Principles of Digital Communication and
Coding, McGraw-Hill Inc. 1979.

[40] J.M. Wozencraft and B. Reiffen, Sequential Decoding, M.I.T. Press,
Cambridge, Mass., 1961.

[41] F.-Q. Wang and D.J. Costello, Jr., “Probabilistic construction of large
constraint length trellis codes for sequential decoding,” IEEE Trans.
Commun., vol. COM-43,, No. 9, pp. 2439–2448, Sept. 1995.

[42] L. Wei, L.K. Rasmussen, and R. Wyrwas, “Near optimum tree-search
detection schemes for bit-synchronous CDMA systems over Gaussian
and two-path rayleigh fading channels,” IEEE Trans. Commun., vol.
COM-45, No. 6, pp. 691–700, June 1997.

[43] L. Wei and C. Schlegel, “Synchronous DS-SSMA with improved decor-
relating decision-feedback multiuser detection,” IEEE Trans. Veh.
Technol., vol. VT-43,, No. 3, August 1994.

[44] J.M. Wozencraft and I.M. Jacobs, Principles of Communiation Engi-
neering, Wiley, New York, 1965.

[45] K.Sh. Zigangirov, “Some sequential decoding procedures,” Prob. Ped-
erachi Inform., Vol. 2, pp. 13–25, 1966.

[46] K.S. Zigangirov and V.D. Kolesnik, “List decoding of trellis codes”,
Problems of Control and Information Theory, No. 6, 1980.


