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Abstract—The booming industry of location-based services has
accumulated a huge collection of users’ location trajectories of
driving, cycling, hiking, etc. In this work, we investigate the
problem of discovering the Most Popular Route (MPR) between
two locations by observing the traveling behaviors of many
previous users. This new query is beneficial to travelers who are
asking directions or planning a trip in an unfamiliar city/area,
as historical traveling experiences can reveal how people usually
choose routes between locations.

To achieve this goal, we firstly develop a Coherence Expanding
algorithm to retrieve a transfer network from raw trajectories,
for indicating all the possible movements between locations. After
that, the Absorbing Markov Chain model is applied to derive
a reasonable transfer probability for each transfer node in the
network, which is subsequently used as the popularity indicator
in the search phase. Finally, we propose a Maximum Probability
Product algorithm to discover the MPR from a transfer network
based on the popularity indicators in a breadth-first manner,
and we illustrate the results and performance of the algorithm
by extensive experiments.

I. INTRODUCTION

The ubiquitousness of mobile devices has given rise to a
new spectrum of location-based services, which are becoming
increasingly popular nowadays. On Google maps, we can
easily enjoy the convenience of location-based services such as
asking directions, planning driving routes, finding restaurants,
etc. In this work, we study the problem of planning a travel-
ing route by considering other people’s historical trajectories
(traces) that are generated by GPS-enabled devices. Such a
collection of trajectories give hints on how people usually
travel between locations, and our aim is to discover the most
popular route from one given location to another.

This is totally different from existing route planning meth-
ods that consider the shortest or fastest path. The most popular
route is essentially a statistical result derived from the actual
traveling routes conducted by other people in the past, and it
is not necessarily to be the shortest path. This route planning
service is useful especially for users who are traveling to
unfamiliar areas. For example, tourists who travel in a national
park are probably to follow a route from the entrance to the
exit that covers most of the spots of interest, other than to drive
along the shortest path that may miss many attractions. A truck
delivery service may tend to use higher quality roads, while
the shortest path may contain segments that are not sustainable
for heavy vehicles. Thus, the shortest path is not always the
most preferable route and we attempt to discover the popular
route from historical trajectories. Notice that it does not mean
the popular route is always better than the shortest path. What

we can show is that in many cases the popular route is quite
different from the shortest one. Additionally, for different route
planning scenarios, different datasets of trajectories should
be considered, e.g., for a tour planning, it is better to adopt
the trajectories of previous tourists rather than local people’s
driving trajectories.

Given the start and destination locations, one can simply
check all existing routes connecting the two locations and
count the number of trajectories through each of the routes.
Then the route with the highest support is supposed to be
the most popular one. For instance in Figure 1(a), there are
2 trajectories (traj 2&3) go through route 1 from location A
to B, while only one trajectory (traj 1) is on route 2, so we
would say route 1 is more preferable. However, this is not
always the case, as normally we are not able to find such
well-divided groups of trajectories and take each group as a
route. As exemplified in Figure 1(b), we got 4 trajectories (traj
1-4) connecting location A and B. All the trajectories intersect
and ‘twist’ with each other, and there could be many possible
routes (e.g., A-C-F-B, A-C-F-E-B, etc.). Here, a route can
be a combination of different trajectory segments. Therefore,
in this case, a specific and reasonable popularity function is
necessary to measure how popular a route is. Notice that
the term ‘popular’ is subjective. Different people might have
different ideas of defining popularity, and we intend to propose
a reasonable one and address the problem of how to discover
the optimal route combining trajectory segments. The result
should reveal the common traveling behaviors in the dataset
that is used. In the case that there is no trajectory connecting A
and B directly (see Figure 1(c)), the suggestion of a combined
route would be even more helpful to users.
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Route planning/prediction by driving patterns [1], [2], [3],
[4] is more or less similar to our work in analyzing users’
traveling behaviors, but they mainly focus on mining the
sequential patterns of objects’ trajectories. The sequential pat-
terns may help in suggesting a drive turn at some intersection
in a general case, but they are not sufficient and accurate
to discover a popular route to some specified destination.
For example, we postulate that A-C-D in Figure 1(c) is a
sequence of locations with high support (i.e. many trajectories
go through A-C-D), thus we say A-C-D is a driving pattern.
However, people who drive following A-C-D might go to any
location else rather than our destination B. It is possible that
people usually go to B through A-C-E-F, even though the
support of A-C-E-F is not that high. Therefore, the pattern
A-C-D is not accurate to reflect users’ behaviors with respect
to the destination B, and we have to define new indicators
to summarize the users’ behaviors with the presence of a
specified destination.

As mentioned above, simply counting the number of tra-
jectories is not enough to discover the popular route between
two locations, due to the large number of possible routes and
the difficulty in combining trajectory segments. Our basic idea
is to construct a transfer network from raw trajectories as an
intermediate result to capture the moving behaviors between
locations and to facilitate the search of the popular route.
Each node in a transfer network is considered as a ‘significant
location’. We derive the probability of transferring from every
‘significant location’ to the destination based on the historical
trajectories, and the transfer probability is used as an indicator
of popularity. Subsequently, the popularity of a route to the
destination is defined as the product of transfer probabilities
of all ‘significant locations’ on the route. Thus we focus on
using trajectories to create a general view of traffic which can
be used in a wide range of applications, rather than focusing
on common traffic which are of quite limited application only.

To achieve the goal, we propose to tackle a few problems as
stated below. (1) Firstly, we need to retrieve a transfer network
from a trajectory database to summarize users’ movements.
For example in Figure 1(b), the transfer network is comprised
of a set of nodes A to G, which are intersections where people
branch off, or the end points of trajectories. We define these
nodes as transfer nodes which are the ‘significant locations’.
For any two nodes, if there is any contiguous trajectory
connecting them without any other nodes in-between, then
there is a transfer edge between them. So we need to discover
all the transfer nodes and transfer edges as a pre-processing
procedure. Here a Coherence Expanding algorithm that con-
siders directional information is developed for mining the
transfer network. (2) The indicators of popularity for transfer
nodes and routes need to be established. Here we can no
longer use the count number of trajectories as a measurement.
The information of the given destination should be considered
as well. We use the Absorbing Markov Chain [5] method
to deduce the transfer probability for each transfer node.
By doing so, we provide a reasonable way to measure the
popularity of a route towards the destination, and importantly

the transfer probability of each transfer node supplies a criteria
for the search of the most popular route. (3) Finally, combining
transfer edges to form the optimal route with respect to the
popularity function is the target we expect to achieve. Based
on the transfer network as well as the transfer probabilities,
we propose a Maximum Probability Product algorithm for the
search of popular routes and briefly prove the accuracy. The
algorithm shares the same spirit with the Dijkstra’s algorithm
[6], and the result route is a path consists of a series of transfer
nodes that maximizes the product of transfer probabilities.

As a summary, the essence of the route planning approach
in this paper is to ‘learn’ from history, and suggest a route
by mining the most popular path from a trajectory database
which is modeled as a transfer network. We mainly make the
following contributions:

∙ We present a new route planning approach that gives
another option for users other than existing shortest path
based methods.

∙ We develop an algorithm to establish the transfer network
model of a collection of historical trajectories, and utilize
the Absorbing Markov Chain model to derive the transfer
probability for transfer nodes.

∙ We propose a reasonable popularity function as well as
the search algorithm for discovering the most popular
route over a transfer network.

∙ We demonstrate the results by extensive experiments.
The remainder of the paper is organized as follows. In

section II, the related work is discussed. The mining algorithm
for establishing a transfer network is introduced in section III,
and we derive the transfer probabilities in section IV. The
search algorithm for discovering the most popular route is
studied in V. Finally we examine the approach in VI and draw
a conclusion in section VII. A partial list of the notations used
in this paper are summarized in Table I.

II. RELATED WORK

The search of popular routes in light of past movements
is highly relevant to trajectory processing/querying issues,
including pattern mining [7], [2], [1], [8], trajectory clustering
[9], [10], hot route discovery [11], [12], trajectory prediction
[3], [4], [13], etc. However, none of them addresses the
problem of discovering the most popular route/path from one
given location to another. Our work is mainly regarding route
planning issues, while the vast majority of existing work is
dealing with a general mining/prediction problem.

The discovery of hot routes in [11] and [12] are the
most similar ones to our work in identifying routes that are
frequently visited by users. In [12], Li et al. propose a density-
based algorithm FlowScan to extract hot routes according to
the definition of ‘traffic density-reachable’. It is essentially a
trajectory clustering algorithm based on traffic density, which
shares the same idea with [9] and [10] that cluster trajectories
by line segment density. An on-line algorithm is also devel-
oped by Sacharidis et al. in [11] for searching and maintaining
hot motion paths that are traveled by at least a certain number
of moving objects. Yet, these two work are tailored for mining



paths that are frequently visited from the whole map, while
our work is designed to search the frequently visited path for
a query with a start location and a destination.

Mining trajectory patterns [7], [2], [1], [8] could potentially
help in finding a popular route. Giannotti et al. study in [2]
the problem of mining T-pattern, which is a sequence of
temporally annotated points, and the target to find out all T-
patterns whose support is not less than a support threshold.
A T-pattern can naturally be seen as a driving pattern that
indicates a popular movement through a sequence of points.
Hence, if the given start and end locations are just right on
the sequence, we may suggest the sequence to the user as a
recommended route. However, not every pair of start and end
locations are able to match with an existing pattern, so this
approach does not work for the planning of a route between
two arbitrary locations. Besides, region of interest (ROI) is
used for approximating a trajectory as a sequence of symbols,
which is not accurate enough in showing detailed directions
for route planning purpose. Similarly in [1] and [8], existing
sequential pattern mining algorithms are adopted to explore
frequent path segments or sequences of points. In [7], mining
periodic movements through regions is investigated as well.

In the pre-processing phase of our solution, a coherence
expanding algorithm is developed for retrieving all road in-
tersections from raw trajectories, and subsequently the whole
transfer network. The rationale of this algorithm is similar
to the density-based clustering algorithm DBSCAN in [14],
which expands a cluster from a seed point. However, we
use a different connectivity function and different settings for
capturing the specific features of road intersections, compared
with merely the density of points used in DBSCAN. In [15],
Cao et al. also propose an approach to retrieve a road network
from trajectories. However, their method is mainly designed
for identifying edges while road intersections are not elegantly
clarified. The work in [16] is particularly designed for discov-
ering road intersections, but they require an underlying road
map available in advance for training a classifier, while in our
algorithm, the trajectories may be un-constraint and the road
map availability is not assumed.

Other related work includes path planning by considering
traffic uncertainty [17], searching similar trajectories [18],
[19], [20], [21], [22], shortest path [6], [23], shortest path
on time-dependent networks [24], finding the fastest path by
speed patterns [25], etc. Nevertheless, all the work above is
not able to address the problem of capturing and deriving the
popularity of a route between two given locations.

III. MINING TRANSFER NETWORK

In order to systematically analyze the users’ traveling behav-
iors through GPS trajectories, first of all we establish a transfer
network from raw trajectories. The transfer network is in
effect a directional graph 𝐺(𝑁,𝐸) indicating the movements
between locations. Here 𝑁 is a set of transfer nodes, which
can be an intersection of trajectories or just the end locations
of a trajectory. An intersection is physically a small region that
trajectories from/to different directions come across, and these

TABLE I
A LIST OF NOTATIONS

Notation Explanation
𝑐𝑜ℎ(𝑝, 𝑞) The coherence between point 𝑝 and 𝑞
𝛿 The scaling factor
𝜃 The angle of difference between two mov-

ing directions
𝛼, 𝛽 The tuning parameters
𝜏, 𝜑 The coherence and the group size thresholds
𝑝⊖ 𝑞 𝑝 is directly coherence-connected with 𝑞
𝑝⊘ 𝑞 𝑝 is coherence-connected with 𝑞
𝑃𝑟(𝑛𝑖 → 𝑛𝑗) The turning probability of moving from 𝑛𝑖

to 𝑛𝑗

𝑃𝑟𝑑(𝑛𝑖 → 𝑛𝑗) The turning probability of moving from 𝑛𝑖

to 𝑛𝑗 w.r.t. a destination 𝑑
𝑝𝑡𝑛𝑖,𝑛𝑗

The probability of first arrival at 𝑛𝑗 , starting
from 𝑛𝑖, in exactly 𝑡 steps

𝑃𝑟𝑡(𝑛𝑖 → 𝑑) The transfer probability of going from 𝑛𝑖

to 𝑑 within 𝑡 steps
𝑉 The column vector of transfer probabilities

for all nodes
𝑅 A route
𝜌(𝑅) The popularity of route 𝑅

locations are supposed to be ‘significant’ in our model since
they are the positions where people can make a turn. 𝐸 is a
collection of transfer edges connecting transfer nodes. We say
there exists an edge 𝑒 from node 𝐴 to 𝐵 if there is at least one
contiguous trajectory from 𝐴 to 𝐵 without any other transfer
nodes in-between. Besides, for trajectories that move in the
same direction between two adjacent nodes, we group them
into the same edge. Consequently, we transform trajectories
into a routable directional network. As illustrated in Figure 2,
we aim to acquire the network (refer to Figure 2(b)) from a
set of raw trajectories as plotted in Figure 2(a). In Figure 2(b),
a dot represents a transfer node and a line indicates a transfer
edge. Notice that if there is a road map available, we can find
out the transfer network by map-matching [26] trajectories,
but here we attempt to make this work compatible with both
constraint and un-constraint trajectories. Typically, traces of
hiking, boating, walking, and many out-door activities are not
constrained by a road network, and most maps that people
think of as free actually have legal or technical restrictions on
their use [27], [28], which hold back people from using them
in creating new applications.

(a) Distribution of Trajectory Points (b) Transfer Network

Fig. 2. Mining Transfer Network (trajectory end points not shown)



The problem arising here is how to detect the intersections
of trajectories if there is no map available. Firstly, let’s repre-
sent a GPS trajectory by a series of points {𝑝1, 𝑝2, ⋅ ⋅ ⋅ , 𝑝𝑛},
where 𝑝𝑖 indicates a recorded position (𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒, 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒),
and the moving direction of 𝑝𝑖 is −−−−→𝑝𝑖𝑝𝑖+1. We have the
following observations upon trajectory intersections:

1) Within an intersection region, the density of trajectory
points is normally higher, in comparison with the density
of points on an incoming/outgoing road edge, because
it is the place where trajectories join together or drivers
slow down to make a turn. If we consider an intersection
as a group of points, then the size of the group should
be greater than some threshold.

2) A number of trajectories change moving direction at an
intersection, as some people make turns. The moving
directions of trajectory points from/to different road
edges are likely to be orthogonal (i.e., angle of difference
tends to 𝜋/2). Within a small distance, points whose
moving directions differ by 0 or 𝜋 (i.e., in the same
or opposite direction) are probably on the same road,
while points with direction difference > 0 and < 𝜋
are possibly moving to different road branches of an
intersection. The closer the angle of difference tends to
𝜋/2, the higher possibility that an intersection exists.

Thus the intuition is that we can find intersections by
mining groups (clusters) of points that satisfy both density
and direction conditions. However, for point density, it can
differ greatly at different intersections since there may be
tens of thousands of points recorded at a hot intersection
while only a few points at an un-popular one. Therefore, we
merely set group size threshold as a post-filtering parameter
and the mining algorithm mainly distinguishes intersections
by the moving direction information. Before describing our
algorithm, we firstly list some definitions.

Definition 1: Coherence. Given two trajectory points 𝑝 and
𝑞, the coherence 𝑐𝑜ℎ between them is defined as:

𝑐𝑜ℎ(𝑝, 𝑞) = exp(−
(
𝑑𝑖𝑠𝑡(𝑝, 𝑞)

𝛿

)𝛼

) ⋅ ∣ sin 𝜃∣𝛽 (1)

Here 𝑑𝑖𝑠𝑡(𝑝, 𝑞) is the Euclidean distance between 𝑝 and
𝑞. 𝛿 is a scaling factor. 𝜃 is the angle of difference between
𝑝 and 𝑞’s moving directions, which ranges from 0 to 𝜋. 𝛼
and 𝛽 are tuning parameters, and we will discuss setting
𝛼, 𝛽 in the experiment section. In Equation 1, the part
exp(−(𝑑𝑖𝑠𝑡(𝑝,𝑞)𝛿 )𝛼) scores the coherence by distance, and it
decreases exponentially as 𝑑𝑖𝑠𝑡(𝑝, 𝑞) goes up. sin 𝜃, on the
other hand, specifies that only points with 𝜃 → 𝜋/2 can
retain a strong coherence. Obviously, points on an transfer
edge have a low coherence as they move in a similar direction
(sin 𝜃 → 0), and only points that are close to each other at an
intersection and towards different directions will have a strong
coherence.

Definition 2: Directly Coherence-Connected. Given a co-
herence threshold 𝜏 , a point 𝑝 is directly coherence-connected
with another point 𝑞 w.r.t. 𝜏 if and only if 𝑐𝑜ℎ(𝑝, 𝑞) ≥ 𝜏 , and
we denote this relation by 𝑝⊖ 𝑞.

It is straightforward that the relation of Directly Coherence-
Connected is symmetric for any pair of points, since
𝑐𝑜ℎ(𝑝, 𝑞) = 𝑐𝑜ℎ(𝑞, 𝑝). However, it is not transitive, which
means (𝑝⊖ 𝑞 ∧ 𝑞 ⊖ 𝑟) does not imply 𝑝⊖ 𝑟.

Definition 3: Coherence-Connected. A point 𝑝 is
coherence-connected with a point 𝑞 w.r.t. 𝜏 if there is a chain
of points 𝑝1, 𝑝2, ⋅ ⋅ ⋅ , 𝑝𝑛, 𝑝1 = 𝑝, 𝑝𝑛 = 𝑞, such that 𝑝𝑖 ⊖ 𝑝𝑖+1.
We denote this relation by 𝑝⊘ 𝑞.
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Fig. 3. Coherence-Connected

Considering the example in Figure 3, the coherence between
𝑝1 and 𝑝2 on 𝑡𝑟𝑎𝑗 1 is very low as the 𝜃 between their moving
directions is about 0, thus they are not directly coherence-
connected. However, 𝑞2 on 𝑡𝑟𝑎𝑗 2 (in a very different direc-
tion) is directly coherence-connected with both 𝑝1 and 𝑝2,
(i.e., 𝑝1⊖ 𝑞2 & 𝑞2⊖ 𝑝2), thus 𝑝1⊘ 𝑝2. Obviously, Coherence-
Connected is a symmetric and transitive relation. We have
𝑝 ⊘ 𝑞 → 𝑞 ⊘ 𝑝, and 𝑝 ⊘ 𝑞 ∧ 𝑞 ⊘ 𝑟 → 𝑝 ⊘ 𝑟. Importantly, by
using the coherence-connected relation, we are able to define
a cluster as a set of coherence-connected trajectory points.
The rationale is similar to that of the DBSCAN clustering
[14]. Such a cluster contains a group of points sticked together
by coherence, which typically appears only at an intersection
(road cross or turning corner) where direction changes can
happen. Note that GPS errors may also cause direction changes
and that is why we clean the dataset first before clustering.

Definition 4: Cluster. Assume 𝑂 is the complete set of
trajectory points. Given the coherence threshold 𝜏 and the
cluster size threshold 𝜑, a cluster 𝐶 w.r.t. 𝜏 and 𝜑 is a subset
of 𝑂 satisfying the following conditions:

1) If a point 𝑝 ∈ 𝐶 and 𝑝 is coherence-connected with 𝑞
w.r.t. 𝜏 , then 𝑞 ∈ 𝐶. (Maximality)

2) For any pair of 𝑝, 𝑞 ∈ 𝐶 (𝑝 ∕= 𝑞), 𝑝 and 𝑞 are coherence-
connected w.r.t. 𝜏 . (Connectivity)

3) The size of 𝐶 ≥ 𝜑.
This definition looks similar to the density-connected cluster

[14], but here we apply a different connectivity function for
clustering intersections other than finding groups of dense
points. Any two points 𝑝, 𝑞 in a cluster 𝐶 are coherence-
connected, which means there are always a series of points
𝑝1, 𝑝2, ⋅ ⋅ ⋅ , 𝑝𝑛, (𝑝1 = 𝑝, 𝑝𝑛 = 𝑞), such that 𝑝𝑖 and 𝑝𝑖+1

are directly coherence-connected. Therefore, we are able to
explore from any 𝑝 to any 𝑞 through the Directly Coherence-
Connected relation. Intuitively, given a point 𝑝 in 𝐶 as a seed
of the cluster, we can discover the cluster by expanding from
𝑝 outwards through exploring surrounding points that are di-
rectly coherent-connected with the seed. The new found points
are then used as seeds for finding more directly coherent-
connected points. This is also the basic idea of our Coherence
Expanding algorithm.

Lemma 1: Let 𝑝, 𝑞 ∈ 𝑂 be any two points that are
coherence-connected, 𝐶1 = {𝑜∣𝑜 ∈ 𝑂 ∧ 𝑜 ⊘ 𝑝}, and 𝐶2 =
{𝑜∣𝑜 ∈ 𝑂 ∧ 𝑜⊘ 𝑞}, then we have 𝐶1 = 𝐶2.



Proof: For any point 𝑜 ∈ 𝐶1, we have 𝑜⊘𝑝. Since ⊘ is a
transitive relation and 𝑝⊘𝑞, it is clear that for any 𝑜 ∈ 𝐶1, we
also have 𝑜⊘𝑞. Consequently, all points in 𝐶1 are included in
𝐶2 according to the definition of 𝐶2, (i.e. 𝐶1 ⊆ 𝐶2). Similarly
we can prove that 𝐶2 ⊆ 𝐶1. Therefore, we have 𝐶1 = 𝐶2.

Lemma 1 tells that the expanding results of any two
coherence-connected points are exactly the same. For finding
a cluster, we can arbitrarily choose any point of the cluster as
a seed and expand for the whole set of points of the cluster.
This also means that a cluster is uniquely determined by any
of it’s points.

Lemma 2: Let 𝑝 ∈ 𝑂 be any point of a cluster 𝐶. We have
𝐶 = {𝑜∣𝑜 ∈ 𝑂 ∧ 𝑜⊘ 𝑝}.

Lemma 2 is a straightforward conclusion according to
Lemma 1 and Definition 4. Based on Lemma 2, we develop the
Coherence Expanding algorithm for clustering intersections.

Algorithm 1: Coherence Expanding
input : A set of trajectory points 𝑃 ; Threshold 𝜏, 𝜑;
output: clusters[]
for each point 𝑝 ∈ 𝑃 do1

if p.classified=false then2

𝑝.classified ← true;3

cluster = expand(𝑝);4

if cluster.size ≥ 𝜑 then5

clusters.add(cluster);6

return clusters;7

In Algorithm 1, we simply check each trajectory point in 𝑃
sequentially. If it has not been classified to any cluster yet, we
try to expand it by using the Directly Coherence-Connected
relation at line 4. After that if the size of the returned set
of points exceeds or is equal to the threshold 𝜑, then the set
is stored as a valid cluster. By doing so, eventually all valid
clusters will be found, since once we start checking any point
of a cluster, all the other points of the cluster will be retrieved
in the expanding procedure. For those points not belonging to
any valid cluster, we just skip them.

Algorithm 2: expand(𝑝)
input : A point 𝑝
output: A set of points 𝑟𝑒𝑠𝑢𝑙𝑡
Queue seeds ← new Queue();1

seeds.add(𝑝);2

𝑟𝑒𝑠𝑢𝑙𝑡.add(𝑝);3

while seeds ∕= 𝑛𝑢𝑙𝑙 do4

𝑠𝑒𝑒𝑑 ← seeds.pop();5

points ← rangeQuery(𝑠𝑒𝑒𝑑, 𝑟𝑎𝑑𝑖𝑢𝑠);6

for i=0 ; i < points.size ; i++ do7

𝑝𝑡 ← points.get(𝑖);8

if 𝑝𝑡.classified=false ∧ 𝑐𝑜ℎ(𝑠𝑒𝑒𝑑, 𝑝𝑡) ≥ 𝜏 then9

seeds.add(𝑝𝑡);10

𝑟𝑒𝑠𝑢𝑙𝑡.add(𝑝𝑡);11

return 𝑟𝑒𝑠𝑢𝑙𝑡;12

In the expanding procedure as shown in Algorithm 2, we
maintain a queue of seeds, which contains only the given point
𝑝 initially (line 1-2). Then we go to the 𝑤ℎ𝑖𝑙𝑒 loop to check
each of the seeds and search for more surrounding points as
seeds by a range query centered at 𝑠𝑒𝑒𝑑 with a given 𝑟𝑎𝑑𝑖𝑢𝑠
at line 6. Here, the range query is conducted over an R-tree
[29] index of all trajectory points. After that, we examine each
of the points that fall in range. If a point 𝑝𝑡 is not classified
yet and is directly coherence-connected with the 𝑠𝑒𝑒𝑑 from
which 𝑝𝑡 is discovered by the range query (line 9), we add it
to the queue as a new seed and append it to the result set (line
10-11). In such a way, we expand the result set from 𝑝 until no
more directly coherence-connected points can be found, and
return the set as a final complete cluster (intersection).

Regarding the 𝑟𝑎𝑑𝑖𝑢𝑠 of the range query at line 6 in
Algorithm 2, if it is too small, we may miss some directly
coherence-connected points. If it is too large, extra effort is
needed to examine un-qualified points. Hence we set the radius
as the largest distance 𝑑𝑖𝑠𝑡 satisfying 𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒 ≥ 𝜏 . That is:

exp(−(𝑑𝑖𝑠𝑡
𝛿

)𝛼) ⋅ (sin 𝜃)𝛽 ≥ 𝜏

Let 𝜃 = 𝜋/2. By solving the inequation above, the maximal
value of 𝑑𝑖𝑠𝑡 is found out to be:

𝑑𝑖𝑠𝑡 = 𝛿 ⋅ 𝛼
√
− ln(𝜏)

For points with a larger distance than 𝑑𝑖𝑠𝑡 from a 𝑠𝑒𝑒𝑑, they
must have a coherence less than 𝜏 , and thus 𝑑𝑖𝑠𝑡 is a safe
distance to include all possible cluster points.

In practice, as GPS data is more or less dirty, we first
reduce outlier points that suddenly jump away by considering
physical limits on vehicle speed, before running the clustering
algorithm. Besides, linear interpolation is conducted for low
sampling-rate trajectories to reduce the possibility that they
are missed at some intersections that they do pass through.
Direction smoothing is also carried out to alleviate the effect of
position fluctuation caused by GPS inaccuracy. This cleaning
procedure is mainly based on common sense, and it is just for
providing a higher quality dataset.

After discovering all the clusters (intersections), we treat
each of them as a transfer node whose location is approximated
by the average coordinate, while transfer edges are constructed
by checking trajectories between nodes. As exemplified in
Figure 2, we group 292,394 trajectory points into a transfer
network with 424 nodes (end points of trajectories are not
shown here). The benefits of clustering are two-fold. Firstly
it summarizes movements by a network which is easier to
analyze, and secondly it significantly reduces the number
of nodes that need to be considered in the analyzing step.
The complexity of the Coherence Expanding algorithm is
obviously: number of points × cost of a range query.

IV. DERIVING TRANSFER PROBABILITY

Through the Coherence Expanding algorithm, we can re-
trieve a directional transfer network 𝐺(𝑁,𝐸) from raw trajec-
tories. In this section, we analyze the users’ traveling behaviors



on a network, and deduce the transfer probabilities of nodes
w.r.t. a given destination. The aim is to find out which transfer
node is more likely to lead a user to the destination, and this
probability will serve as a popularity indicator.

At a transfer node 𝑛𝑖, a simple way of observing users’
historical behaviors is to enumerate all adjacent edges that
start from 𝑛𝑖 and check how many people ever passed each
of them. The turning probability of moving from 𝑛𝑖 to an
outgoing edge 𝑒 = (𝑛𝑖, 𝑛𝑗) will then be:

𝑃𝑟(𝑛𝑖 → 𝑛𝑗) =
number of trajectories on (𝑛𝑖, 𝑛𝑗)

number of trajectories on all outgoing edges

However, this statistics of user behaviors is just for a general
circumstance without the consideration of destination. That is,
this statistics is purely about how people generally make turns
at 𝑛𝑖, and people might just go to any destination. Therefore,
when asking about the turning probability at a node w.r.t. a
given destination, we should further consider if the historical
trajectories that the node contains are (approximately) heading
the destination or not to define a more reasonable probability
function. We modify the previous equation and define the
turning probability w.r.t. a destination 𝑑 as follows:

𝑃𝑟𝑑(𝑛𝑖 → 𝑛𝑗) =

∑
𝑡𝑟𝑎𝑗∈(𝑛𝑖,𝑛𝑗)

𝑓𝑢𝑛𝑐(𝑡𝑟𝑎𝑗, 𝑑)∑
𝑡𝑟𝑎𝑗∈all outgoing edges 𝑓𝑢𝑛𝑐(𝑡𝑟𝑎𝑗, 𝑑)

(2)

The only difference here is that we use a function
𝑓𝑢𝑛𝑐(𝑡𝑟𝑎𝑗, 𝑑) to score how likely a trajectory 𝑡𝑟𝑎𝑗 might
suggest a correct route to 𝑑. We have confidence that a
trajectory approximately heading the destination will probably
give a correct hint on how to take the next edge to go. We
estimate this likelihood by:

𝑓𝑢𝑛𝑐(𝑡𝑟𝑎𝑗, 𝑑) = exp (−𝑑𝑖𝑠𝑡𝑠(𝑡𝑟𝑎𝑗, 𝑑))
where 𝑑𝑖𝑠𝑡𝑠(𝑡𝑟𝑎𝑗, 𝑑) is the shortest Euclidean/network dis-
tance between 𝑑 and the front part of 𝑡𝑟𝑎𝑗 that starts from
𝑛𝑖. Apparently, if the front part of 𝑡𝑟𝑎𝑗 passes through 𝑑
exactly, the distance is 0 and thus the likelihood is 1. The larger
distance 𝑡𝑟𝑎𝑗 deviates from 𝑑, the lower likelihood it will
be assigned. Consequently, outgoing edges with trajectories
close to the destination are associated with higher turning
probability, compared with those edges that keep away from
𝑑. Therefore, in Equation 2, we provide a simple way to define
the probability indicating how users made turns at a transfer
node for the purpose of going to a given destination, by
considering both the number of trajectories and their distances
to the destination, which addresses the problems discussed in
Figure 1(a) and 1(c) in the introduction section.

Furthermore, we can consider a travel on such a transfer
network based on the turning probability as a Random Walk
[30] on a directed graph with the transition probability from
node 𝑛𝑖 to 𝑛𝑗 equals to 𝑃𝑟𝑑(𝑛𝑖 → 𝑛𝑗). If we conduct such
a random walk on a transfer network following the turning
probability, we will probably reach the destination as we
always tend to select an edge that is most likely to lead to
the destination. However, one question is that:

If we conduct such a random walk, what is the exact
probability that, starting from a node 𝑛𝑖, we will eventually
reach the destination 𝑑 within 𝑡 steps?

We call this probability the transfer probability which takes
𝑡 following transfers into account. In this way, we further
consider all possible connecting edges within 𝑡 steps after
leaving 𝑛𝑖, which solves the problem raised in Figure 1(b).
Apparently, the larger transfer probability a node 𝑛𝑖 holds,
the higher confidence we have that 𝑛𝑖 will lead us to the
destination. Denote by 𝑁𝑡 the node that we arrive at after
𝑡 transfers, and by 𝑝𝑡𝑛𝑖,𝑛𝑗

the probability that, starting at node
𝑛𝑖, we first arrive at node 𝑛𝑗 in exactly 𝑡 steps. We have:

𝑝𝑡𝑛𝑖,𝑛𝑗
= 𝑃𝑟(𝑁𝑡 = 𝑛𝑗 and, for 1 ≤ 𝑙 < 𝑡,𝑁𝑙 ∕= 𝑛𝑗 ∣𝑁0 = 𝑛𝑖)

(3)
In Equation 3, 𝑝𝑡𝑛𝑖,𝑛𝑗

is defined as the probability
that, starting from 𝑁0 = 𝑛𝑖, all the intermediate nodes
𝑁1, 𝑁2, ⋅ ⋅ ⋅ , 𝑁𝑡−1 are not 𝑛𝑗 , and we arrive at 𝑛𝑗 at exactly
the 𝑡𝑡ℎ step. The transfer probability 𝑃𝑟𝑡(𝑛𝑖 → 𝑑) of going
from any 𝑛𝑖 to destination 𝑑 within 𝑡 steps is in fact the sum
of probability that we first arrive at 𝑑 in 1, 2, ⋅ ⋅ ⋅ , 𝑡 step.
Consequently, we have:

𝑃𝑟𝑡(𝑛𝑖 → 𝑑) =

𝑡∑
𝑗=1

𝑝𝑗𝑛𝑖,𝑑
(4)

The idea is that the transfer probability 𝑃𝑟𝑡(𝑛𝑖 → 𝑑) can
be used as an indicator to reflect how popular a transfer node
𝑛𝑖 is, w.r.t. the given destination 𝑑. The intuition is that a
higher transfer probability implies more historical trajectories
(and also more following trajectories) head for the destination.
As exemplified in Figure 4 (a sub-graph of Figure 2(b)), we
draw transfer nodes by rectangles with the size in proportional
to their transfer probabilities. The destination is shown as a
circle. Here, we set 𝑡 = 20, and it can be seen that more
people travel to the destination through those transfer nodes
in the left part (i.e. bigger rectangles). Regarding choosing a
proper 𝑡, it is discussed later in this section.

Fig. 4. Distribution of Transfer Probability

In order to model the Random Walk and to compute the
transfer probability (i.e. 𝑃𝑟𝑡(𝑛𝑖 → 𝑑) in Equation 4) for all
nodes in a transfer network, we adopt the Absorbing Markov
Chain model [5], which is a special type of Markov Chains
with at least one absorbing state. A state (node) 𝑛𝑖 of a Markov
chain is called absorbing if it’s impossible to leave it, which
means the transition probability from 𝑛𝑖 to 𝑛𝑖 (itself) is always



1, while those non-absorbing states are called transient states.
In our directional transfer network, the destination node 𝑑 is
treated as an absorbing state, since whenever we arrive, we just
stay there and we don’t consider a route to 𝑑 that passes the
destination more than once. Additionally, those end points of
trajectories without any outgoing edges are also considered as
absorbing states since one can not move from them to another
node in a directional network. All other transfer nodes are
considered as transient states. The transition matrix 𝑃 for 𝑚
transfer nodes can be represented by:

𝑃 =

𝑛1 𝑛2 ⋅ ⋅ ⋅ 𝑛𝑚

𝑛1 𝑃 (1, 1) 𝑃 (1, 2) ⋅ ⋅ ⋅ 𝑃 (1,𝑚)
𝑛2 𝑃 (2, 1) 𝑃 (2, 2) ⋅ ⋅ ⋅ 𝑃 (2,𝑚)
...

...
...

. . .
...

𝑛𝑚 𝑃 (𝑚, 1) 𝑃 (𝑚, 2) ⋅ ⋅ ⋅ 𝑃 (𝑚,𝑚)

where the entry 𝑃 (𝑖, 𝑗) denotes the transition probability of
moving from node 𝑛𝑖 to 𝑛𝑗 as defined in Equation 5.

𝑃 (𝑖, 𝑗) =

{
1 if 𝑛𝑖 is an absorbing state & 𝑖 = 𝑗
𝑃𝑟𝑑(𝑛𝑖 → 𝑛𝑗) if 𝑛𝑖 is a transient state & 𝑖 ∕= 𝑗
0 otherwise

(5)
For absorbing states, they transfer to themselves with prob-
ability 1, while transient states make transitions to adjacent
nodes according to the turning probability determined by
Equation 2. The purpose of adopting the Absorbing Markov
Chain model to represent a transfer network is for figuring
out the probability of the first arrival to 𝑑 (i.e., 𝑝𝑡𝑛𝑖,𝑑

), and
consequently 𝑃𝑟𝑡(𝑛𝑖 → 𝑑).

Assume there are totally 𝑥 absorbing states, and 𝑦 transient
states (𝑥+ 𝑦 = 𝑚). We group absorbing states into ABS and
transient states into TR, then the transition matrix 𝑃 can be
re-organized in the following canonical form [5]:

𝑃 =
TR ABS

TR Q S
ABS 0 I

(6)

I is a 𝑥− 𝑏𝑦−𝑥 identity matrix, 0 is a 𝑥− 𝑏𝑦−𝑦 zero matrix,
𝑄 is a 𝑦 − 𝑏𝑦 − 𝑦 matrix indicating the transition probability
between transient states, and 𝑆 is a 𝑦−𝑏𝑦−𝑥 matrix indicating
the transition probability from transient states to absorbing
states. To acquire the transition probability from node 𝑛𝑖 to
𝑛𝑗 in exactly 𝑡 steps, we take the 𝑡𝑡ℎ power of 𝑃 and we get:

𝑃 𝑡 =
TR ABS

TR Q𝑡 ∗
ABS 0 I

(7)

where 𝑄𝑡 is the 𝑡𝑡ℎ power of 𝑄, and ∗ is a 𝑦− 𝑏𝑦− 𝑥 matrix
written in terms of 𝑄 and 𝑆. From the Markov Chain theory,
we know that the (𝑖, 𝑗)𝑡ℎ entry 𝑃 𝑡(𝑖, 𝑗) of the matrix 𝑃 𝑡 is the
probability of being at the state 𝑛𝑗 after 𝑡 steps, starting from
𝑛𝑖. Nevertheless, 𝑃 𝑡(𝑖, 𝑗) is not equal to the 𝑝𝑡𝑛𝑖,𝑛𝑗

defined
in Equation 3, as 𝑝𝑡𝑛𝑖,𝑛𝑗

has to be the probability of the
first arrival while 𝑃 𝑡(𝑖, 𝑗) does not guarantee this condition.
However, we don’t need to know 𝑝𝑡𝑛𝑖,𝑛𝑗

for all 𝑛𝑗 , but just

𝑝𝑡𝑛𝑖,𝑑
for the destination 𝑑 that is an absorbing state. This

makes the problem simpler, and we have the following lemma.
Lemma 3: A route that first visits the destination in exactly

(𝑡 > 0) steps (transfers), must start from a transient state, and
the state at 𝑡 = 1, 2, ⋅ ⋅ ⋅ , 𝑡− 1 step is also a transient state.

Proof: If we start from or visit any absorbing state other
than the destination before arriving at the destination node,
we are not able to get to the destination as an absorbing state
always transfers to itself. Therefore, the lemma is proved.

Since the 1𝑠𝑡 to (𝑡 − 1)𝑡ℎ states of a route are transient, a
route must transfer between transient states for 𝑡−1 times and
finally jump from a transient state to the destination at the 𝑡𝑡ℎ

step. For the first (𝑡− 1)-step transfer, it’s probability can be
acquired from 𝑄𝑡−1, while the probability of moving from a
transient state to the destination is given in 𝑆. Consequently,
the 𝑝𝑡𝑛𝑖,𝑑

for a given 𝑛𝑖 can be computed in the following way:

𝑝𝑡𝑛𝑖,𝑑 =
∑

𝑛𝑘∈TR

(
𝑃 𝑡−1(𝑖, 𝑘) ⋅ 𝑃 (𝑘, 𝑑)

)
(8)

where 𝑃 𝑡−1(𝑖, 𝑘) is the probability of transferring from 𝑛𝑖 to
another transient state 𝑛𝑘 in exactly 𝑡 − 1 steps, and 𝑃 (𝑘, 𝑑)
is the probability of transferring from 𝑛𝑘 to the destination 𝑑
in one step. Apparently, 𝑃 𝑡−1(𝑖, 𝑘) is an entry of 𝑄𝑡−1 in the
upper-left block of the matrix 𝑃 𝑡−1 (refer to the canonical
form in Equation 7), and 𝑃 (𝑘, 𝑑) is an entry of 𝑆 in the
upper-right block of the matrix 𝑃 in Equation 6. Therefore,
by combining Equation 4 and 8, the transfer probability of a
given node 𝑛𝑖 w.r.t. 𝑑 and 𝑡 is determined by:

𝑃𝑟𝑡(𝑛𝑖 → 𝑑) =
∑𝑡

𝑗=1 𝑝
𝑗
𝑛𝑖,𝑑

=
∑𝑡

𝑗=1

∑
𝑛𝑘∈TR

(
𝑃 𝑗−1(𝑖, 𝑘) ⋅ 𝑃 (𝑘, 𝑑)

)
(9)

Note that when 𝑗 = 1, it goes from a transient state 𝑛𝑘 to
𝑑 directly in one step and we set 𝑃 0(𝑖, 𝑘) = 1. To compute
the transfer probability for each transfer node that belongs to
transient states, we may conduct the computation by matrix
multiplications. Assume 𝑛1, 𝑛2, ⋅ ⋅ ⋅ , 𝑛𝑙 are the transient nodes
in TR. We suppose to derive the column vector:

𝑉 =
[
𝑃𝑟𝑡(𝑛1 → 𝑑), 𝑃 𝑟𝑡(𝑛2 → 𝑑), ⋅ ⋅ ⋅ , 𝑃 𝑟𝑡(𝑛𝑙 → 𝑑)

]𝑇
for a given destination 𝑑 and parameter 𝑡. Now we have 𝑄 and
𝑆 from Equation 6, and 𝑑 is included in ABS. Let’s denote
by 𝐷 the column vector corresponding to node 𝑑 in the sub-
matrix 𝑆 (i.e., 𝐷 = 𝑆[∗, 𝑑]). The result 𝑉 is calculated by:

𝑉 = 𝐷 +𝑄 ⋅𝐷 +𝑄2 ⋅𝐷 + ⋅ ⋅ ⋅+𝑄𝑡−1 ⋅𝐷 (10)

An example result of 𝑉 has been shown in Figure 4
where we show the transfer probability of transfer nodes by
rectangles in different sizes. Since each node can potentially
be the destination, we pre-compute the vector 𝑉 for each
transfer node assuming it as the destination, and record all 𝑉
for the purpose of searching the most popular route. Totally, it
consumes 𝑂(𝑚2) space for storing the pre-computed vectors,
if there are 𝑚 transfer nodes. The computation involves 𝑡− 1
matrix multiplications of 𝑄 that causes 𝑂(𝑡×𝑚3) complexity



in CPU time. Algorithm 3 lists the procedures for deriving the
transfer probabilities for a transfer network 𝐺(𝑁,𝐸).

Algorithm 3: Deriving Transfer Probability

input : A transfer network 𝐺(𝑁,𝐸)
output: A vector 𝑉 for each node ∈ 𝑁
for each transfer node 𝑛𝑖 ∈ 𝑁 do1

set 𝑛𝑖 as the destination;2

construct the transition matrix 𝑃 by Equation 5;3

re-organize 𝑃 in a canonical form;4

acquire 𝑄, 𝑆 from 𝑃 ;5

derive 𝑉 by Equation 10;6

store 𝑉 ;7

Choosing a proper 𝑡 is also important in the derivation
of transfer probabilities. It specifies the maximum step we
take into account, and the length of the longest route that
we consider. For a route whose length is excessively large,
it does not make any sense as people would not take such a
route to travel. On the other hand, if 𝑡 is small, for example,
even smaller than the step number of the shortest route to
the destination, then we fail to discover a route for the user
because there is no route that can reach the destination within
𝑡 steps (i.e., transfer probability = 0). Considering the two
factors, we set 𝑡 as the diameter of the transfer network in
our experiments, which guarantees at least one route can be
found between any two nodes and also avoids considering
those excessively long routes.

If a user starts from a trajectory end point that belongs to
absorbing states, then no route exists in the directional net-
work. An alternative solution is to extend the transfer network
to an un-directional one with minor additional changes.

V. SEARCHING THE MOST POPULAR ROUTE

Through mining transfer network and the derivation of
transfer probabilities, we acquire a directional transfer network
𝐺(𝑁,𝐸) with a set of transfer probability vectors (𝑉 ) indi-
cating how possible a transfer node would lead one to his/her
destination 𝑑. We take the transfer probability of a transfer
node 𝑛𝑖 w.r.t. 𝑑 as the popularity indicator:

𝑛𝑖.𝑝𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑦(𝑑) = 𝑃𝑟𝑡(𝑛𝑖 → 𝑑)

If 𝑛𝑖 = 𝑑, we assume 𝑛𝑖.𝑝𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑦(𝑑) = 1, and if 𝑛𝑖 is a
trajectory end point that belongs to absorbing states, we set
𝑛𝑖.𝑝𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑦(𝑑) = 0. Each transfer node 𝑛𝑖 maintains 𝑚 in-
dicators: 𝑛𝑖.𝑝𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑦(𝑛1), ⋅ ⋅ ⋅ , 𝑛𝑖.𝑝𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑦(𝑛𝑚), for all
𝑚 nodes in the transfer network which are potential destina-
tions. An indicator conveys the popularity that people take the
transfer node for going to the corresponding destination. In the
following we study how to discover the most popular route in
light of the node popularity indicators. Firstly, we have some
definitions:

Definition 5: Route. A route 𝑅 is defined as a consecu-
tive sequence of transfer nodes 𝑛1 → 𝑛2 → ⋅ ⋅ ⋅𝑛𝑖, where
(𝑛𝑗 , 𝑛𝑗+1), (1 ≤ 𝑗 < 𝑖), is an existed transfer edge.

Definition 6: Route Popularity. The popularity 𝜌(𝑅) of a
route 𝑅 = 𝑛1 → 𝑛2 → ⋅ ⋅ ⋅𝑛𝑖 w.r.t. a given destination 𝑑,
is defined as the product of the popularity indicator of each
transfer node w.r.t. 𝑑.

𝜌(𝑅) =

𝑖∏
𝑗=1

𝑛𝑗 .𝑝𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑦(𝑑) (11)

Notice that when talking about the popularity of a route, a
destination must be specified, and 𝜌(𝑅) is just a relative value
reflecting the popularity of 𝑅 w.r.t. going to 𝑑. 𝜌(𝑅) is not
the accurate value of the actual probability that people travel
through 𝑅. When a route is long, 𝜌(𝑅) may be very small.

Definition 7: The Most Popular Route (MPR). The MPR
from a start node 𝑠 to a destination node 𝑑 is the route 𝑅 =

𝑛1 → 𝑛2 → ⋅ ⋅ ⋅𝑛𝑖, (𝑛1 = 𝑠, 𝑛𝑖 = 𝑑), such that the value 𝜌(𝑅) is
maximized among all possible routes from 𝑠 to 𝑑.

Obviously, the number of possible routes between two nodes
can be very large in a transfer network, and the enumeration
of all combinations of transfer edges that constitute a route
can be computationally inefficient. However, we have the
following observation which enables us to develop a breadth-
first search algorithm that is similar to the Dijkstra’s shortest
path approach [6].

Lemma 4: If a route 𝑅 = 𝑛1 → 𝑛2 → ⋅ ⋅ ⋅ → 𝑛𝑖 is the
MPR from 𝑠 to 𝑑, (𝑠 = 𝑛1, 𝑑 = 𝑛𝑖), then for any sub-route
𝑆𝑅 = 𝑛𝑗 → 𝑛𝑗+1 → ⋅ ⋅ ⋅𝑛𝑘, (1 ≤ 𝑗 < 𝑘 ≤ 𝑖), the product 𝜌(𝑆𝑅)

of 𝑛𝑗 , 𝑛𝑗+1 ⋅ ⋅ ⋅ , 𝑛𝑘’s popularity indicators is also maximized
among all possible routes from 𝑛𝑗 to 𝑛𝑘.

Proof: Suppose on the contrary that the product 𝜌(𝑆𝑅) of
the sub-route 𝑆𝑅 = 𝑛𝑗 → 𝑛𝑗+1 → ⋅ ⋅ ⋅𝑛𝑘 is not maximized, then
there exists another route 𝑆𝑅

′
from 𝑛𝑗 to 𝑛𝑘 that produces a

larger product of popularity indicators, i.e., 𝜌(𝑆𝑅
′
) > 𝜌(𝑆𝑅).

Thus, we can construct a new route 𝑅∗ from 𝑛1 to 𝑛𝑖 through
𝑆𝑅

′
, (𝑅∗ = 𝑛1 → ⋅ ⋅ ⋅𝑛𝑗−1 → 𝑆𝑅

′ → 𝑛𝑘+1 ⋅ ⋅ ⋅ → 𝑛𝑖), such that
𝜌(𝑅∗) > 𝜌(𝑅), which contradicts with the assumption that 𝑅
is the MPR from 𝑛1 to 𝑛𝑖.

Lemma 4 implies that the popularity of any sub-route of
the MPR is also maximized. This poses a clue that we can
construct the MPR between two nodes by conquering the
sub-problems of finding it’s sub-routes that also produce the
maximum 𝜌() value. Indicate by 𝑅(𝑛𝑖) the route from 𝑠 = 𝑛1

to another transfer node 𝑛𝑖 (𝑖 = 1, 2, ⋅ ⋅ ⋅ ,𝑚) that maximizes
the 𝜌() value w.r.t. the destination 𝑑. We sort the 𝑚 routes
𝑅(𝑛𝑖), (𝑖 = 1, 2, ⋅ ⋅ ⋅ ,𝑚), in the descending order of 𝜌() value,
as follows:

𝑅(𝑛𝑖1) ≻ 𝑅(𝑛𝑖2) ≻ 𝑅(𝑛𝑖3) ⋅ ⋅ ⋅ ≻ 𝑅(𝑛𝑖𝑚)

where 𝑛𝑖1 (𝑖1 = 1) is the start node 𝑠, and for any 1 ≤ 𝑘 <
𝑙 ≤ 𝑚 we have 𝜌(𝑅(𝑛𝑖𝑘)) ≥ 𝜌(𝑅(𝑛𝑖𝑙)). Apparently, if 𝑘 < 𝑙,
𝑅(𝑛𝑖𝑙) must not be a sub-route of 𝑅(𝑛𝑖𝑘) because a route’s
popularity must not be larger than it’s sub-route’s popularity.
Therefore, for discovering any route 𝑅(𝑛𝑖𝑙), we can firstly
conquer all 𝑅(𝑛𝑖𝑘), (𝑘 < 𝑙), as shown in the following:

𝜌(𝑅(𝑛𝑖𝑙)) =

max𝑘<𝑙∧(𝑛𝑖𝑘
,𝑛𝑖𝑙

) exists{𝜌(𝑅(𝑛𝑖𝑘 ))} × 𝑛𝑖𝑙 .𝑝𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑦(𝑑)
(12)



Here 𝑑 is the destination. Equation 12 means that a route
𝑅(𝑛𝑖𝑙) is comprised of the sub-route 𝑅(𝑛𝑖𝑘), (𝑘 < 𝑙 and
(𝑛𝑖𝑘 , 𝑛𝑖𝑙) is an existed transfer edge), that maximizes the
popularity 𝜌() value, plus the node 𝑛𝑖𝑙 itself. Consequently,
the idea is that we can search from the start node 𝑠 and expand
outwards in the descending order of the 𝜌() value. Once all
𝑅(𝑛𝑖𝑘) (𝑘 < 𝑙) are discovered, 𝑅(𝑛𝑖𝑙) can be extended from
one of them. This is similar to the Dijkstra’s shortest path
algorithm that constructs a shortest path tree from the start
node by expanding in a breadth-first way. Based on Equation
12, we propose the Maximum Probability Product Algorithm
for the discovery of MPR as demonstrated in Algorithm 4.

Algorithm 4: Maximum Probability Product
input : A transfer network 𝐺(𝑁,𝐸),

𝑁 = {𝑛1, 𝑛2, ⋅ ⋅ ⋅ , 𝑛𝑚};
Start node 𝑠; Destination node 𝑑

output: The most popular route MPR
For all 𝑛𝑖 ∈ 𝑁 , label 𝐿(𝑛𝑖)← 0;1

𝐿(𝑠)← 1;2

Priority Queue 𝑃𝑄 ← 𝑛𝑢𝑙𝑙;3

Scanned Nodes 𝑆𝑁 ← 𝑛𝑢𝑙𝑙;4

𝑃𝑄.enqueue(𝑠);5

while PQ ∕= 𝑛𝑢𝑙𝑙 do6

𝑢 ← 𝑃𝑄.extractMax();7

if 𝑢 = 𝑑 then8

return MPR;9

𝑆𝑁 .add(𝑢);10

for each 𝑣 ∈ 𝑢.adjacentNodes do11

if 𝐿(𝑣) < 𝐿(𝑢)× 𝑣.𝑝𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑦(𝑑) then12

𝐿(𝑣)← 𝐿(𝑢)× 𝑣.𝑝𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑦(𝑑);13

𝑣.predecessor ← 𝑢;14

𝑃𝑄.add(𝑣);15

In the Maximum Probability Product Algorithm, we record
the maximum 𝜌() value of the route from the start node 𝑠 to
node 𝑛𝑖 by a label 𝐿(𝑛𝑖) which is initialized to be 0 and only
𝐿(𝑠) is set to be 1 (line 1-2). A max priority queue 𝑃𝑄 is
utilized to determine the node with the maximum 𝜌() label
value from un-scanned nodes. At the beginning, all nodes are
un-scanned, so 𝑆𝑁 is null, and 𝑃𝑄 just contains the start
node 𝑠. Then in the while loop (from line 6), we extract the
node 𝑢 with the maximum label from 𝑃𝑄, and update the
labels of it’s adjacent nodes ((𝑢, 𝑣) is an existed transfer edge)
in line (11-15). If 𝐿(𝑣) < 𝐿(𝑢) × 𝑣.𝑝𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑦(𝑑), which
means that we find a more popular route to 𝑣 through node 𝑢,
then we update 𝑣’s label and take 𝑢 as 𝑣’s predecessor in the
route. Besides, all discovered nodes are added to the priority
queue for further examination. Once the destination 𝑑 is pop
out from the queue (line 8), the most popular route from 𝑠
to 𝑑 is discovered, and we can retrieve the whole route by
following the predecessor link of each node from 𝑑.

The complexity of Algorithm 4 is the same as that of the
Dijkstra’s algorithm, which is 𝑂(∣𝐸∣+∣𝑁 ∣ log ∣𝑁 ∣), where ∣𝐸∣
is the number of edges and ∣𝑁 ∣ is the number of nodes. The

proof of the correctness of the Algorithm is by an inductive-
hypothesis method that tries to prove that for any node 𝑛𝑖, the
final 𝐿(𝑛𝑖) label value is maximized among all possible cases,
which is similar to the proof of the Dijkstra’s algorithm [31].

In practice, if a user starts from a position on an transfer
edge other than from a transfer node exactly, we may find out
the MPRs from both end nodes of the edge to the destination
and take the one with larger 𝜌() value as the result. Moreover,
a future work may also take the length of an edge into
account to design another popularity function for the search,
and Algorithm 4 can still be used without any change. Notice
that, in a directional transfer network, a route to the destination
might not exist in some cases. It is straightforward to solve
the problem by extending to an un-directional network.

One may ask why we do not simply use the turning proba-
bility 𝑃𝑟𝑑(𝑛𝑖 → 𝑛𝑗) in Equation 2 as the popularity indicator
for each transfer edge, and then the popularity of a route can
be defined as the product of the turning probabilities of all
edges on it. By doing so, we achieve a similar definition of
route popularity as the one in Equation 11, and the Maximum
Probability Product algorithm can still be used in a similar
way. However, a problem with this alternative option is that
the search algorithm just considers the local information of the
current node other than 𝑡 steps further, which possibly causes
an incorrect result. We will demonstrate this alternative option
(denoted by ‘MPR-alternative’) as well in the experiments.

VI. EXPERIMENTS

In this section, we conduct experiments on a real trajectory
dataset1 that consists of 276 truck trajectories in the Athens
city. After interpolation, the dataset contains totally 292,394
trajectory points and the distance between any two consecutive
points is guaranteed to be no more than 100 meters. The
previous Figure 2(a) illustrates the distribution of the dataset
by plotting all trajectory points, which has already illustrated
the city’s road network. In our work, the size of a dataset is
much less critical than in many other performance-oriented
experiments, as long as the truck dataset can reveal enough
clues about how the truck traffic flows in the city. Certainly,
if a larger dataset is available, then more precise results can
be delivered, as a more complete description of the users’
movements benefits our algorithms.

The Coherence Expanding algorithm and the Maximum
Probability Product algorithm are implemented in Java and
examined on a windows platform with Intel Core 2 CPU
(2.13GHz) and 1.0GB Memory. The mining of transfer net-
work and the derivation of transfer probabilities are executed
off-line, so they are one-off pre-computation processes. The
transfer network is maintained by adjacency lists, and the
search of MPR is carried out in real time.

A. Mining Transfer Network

Firstly, when mining a transfer network from trajectories,
the Coherence Expanding algorithm is sensitive to the coher-
ence generated between points, which is susceptible to the

1http://www.rtreeportal.org/



(a) 1𝑠𝑡 query, Shortest Path (b) 1𝑠𝑡 query, MPR (c) 1𝑠𝑡 query, MPR-alternative

(d) 2𝑛𝑑 query, Shortest Path (e) 2𝑛𝑑 query, MPR (f) 2𝑛𝑑 query, MPR-alternative

Fig. 6. Illustration of Example Queries (Start Node: 𝐴, End Node: 𝐵)

tuning parameters 𝛼 and 𝛽. In the experiments, the scaling
factor 𝛿 is set to be 200 meters, and we show in Figure 5(a)
and 5(b) how the coherence is affected by 𝛼 and 𝛽 respectively.
Let’s fix 𝜃 = 𝜋/2 in Equation 1, so the coherence 𝑐𝑜ℎ(𝑝, 𝑞) =

exp(−
(

𝑑𝑖𝑠𝑡(𝑝,𝑞)
𝛿

)𝛼

). From Figure 5(a) we can see that, with a
relatively larger 𝛼, the coherence drops more sharply when the
distance 𝑑𝑖𝑠𝑡(𝑝, 𝑞) exceeds some value, e.g., the coherence
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Fig. 5. Tuning Parameters

starts to drop drastically when 𝑑𝑖𝑠𝑡(𝑝, 𝑞) ≈ 100𝑚 and approxi-
mates 0 when the distance is larger than 200m. Therefore, only
points whose mutual distance is less than 100m are likely to
be considered within the same cluster (intersection). Similarly,
if we fix 𝑑𝑖𝑠𝑡(𝑝, 𝑞) = 0, then 𝑐𝑜ℎ(𝑝, 𝑞) = ∣ sin 𝜃∣𝛽 , and we
can see from Figure 5(b) that a relatively larger 𝛽 also makes
the curve of coherence steeper. Only points whose moving
directions differ by approximately 𝜋/2 can generate a strong
coherence. Considering that roads are not always orthogonal
at an intersection, we set 𝛽 = 2 and then a comparatively
strong coherence can still be generated even 𝜃 ≈ 𝜋/4.

Having 𝛿 = 200 meters, 𝛼 = 5 and 𝛽 = 2, we also configure

the coherence threshold 𝜏 = 0.5 and the cluster size threshold
𝜑 = 3. Note that these parameters are dependent on the dataset
we use, and a careful tuning process is required. By comparing
with a generated road map downloaded from OpenStreetMap
[27], 401 out of 424 transfer nodes are correctly clustered
by our algorithm, which produces a false rate = 0.054. From
Figure 2(b), it is easily seen that the retrieved transfer network
preserves the shapes and movements of the original trajectories
quite well. In the following, we demonstrate the cost of the
Coherence Expanding algorithm.

We divide the dataset into groups with different numbers of
trajectory points, and as shown in Figure 7, both the clustering
time and R-tree node access increase linearly as the number
of trajectory points goes up from 5 × 104 to about 3 × 105.
This pre-computation process consumes about 180 seconds
and involves around 2.3 × 107 node access for the complete
dataset. After clustering, we take all the intersections and
additionally the end points of trajectories as transfer nodes,
and then construct transfer edges by checking the trajectories
that go through each transfer node.
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Fig. 7. Performance of the Coherence Expanding Algorithm
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Fig. 8. The Shortest Path vs. The MPR

B. Deriving Transfer Probability

For figuring out the transfer probability and derive the vector
𝑉 (see Equation 10) for each of the transfer nodes, we first
of all calculate the transition probability w.r.t. each node by
Equation 5. Here we simply enumerate every trajectory that
goes through a transfer node and compute the probability by
Equation 2. Then we acquire the transition matrix 𝑃 for each
transfer node, and the calculation of vector 𝑉 in Equation 10
is conducted using Matlab off-line. After that, we attach the
transfer probabilities in 𝑉 as indicators to the corresponding
transfer nodes. The details of this part are skipped as the matrix
operations involved here are straightforward.

C. Illustration of the MPR

In the following, we illustrate the search results of our
Maximum Probability Product algorithm and compare the
results with the corresponding shortest paths using two ex-
ample queries, and study the average performance of the
algorithms. Additionally, we demonstrate the search results of
the alternative solution mentioned in subsection V, in which
the turning probability defined in Equation 2 is used as the
popularity indicator, and we show that this simple alternative
option may lead to not accurate enough results. Notice that the
‘goodness’ of a search result is hard to be measured by some
ground truth, and here we just present the results virtually
from which we can have an intuitive impression.

Let’s denote the search output of our algorithm by ‘MPR’,
the result of the alternative solution by ‘MPR-alternative’,
and the shortest path by ‘shortest path’. In the first example
query, the most popular route (Figure 6(b)) is almost the
same as the corresponding shortest path (Figure 6(a)), where
the destination is drawn as a rectangle. However, if we use
the alternative solution for finding a popular route, it leads
to a route that moves oppositely in the beginning and then
winds around to the destination as shown in Figure 6(c),
which is intuitively not a good choice for truck deliveries.
Consequently, we would say this alternative solution may fail
to find a globally popular route as it looks at the turning
probabilities of the immediately adjacent edges only, while
our algorithm further considers 𝑡 steps forward. Nevertheless,
in many other cases, the MPR and the MPR-alternative may
still be very similar, as we can see in Figure 6(e) and Figure
6(f) that are the results of the second example query.

Even though the MPR and the corresponding shortest path
are nearly the same in the first query, we can still find a lot
scenarios that the MPR is very different from the shortest
path since drivers may not always follow the shortest path
for truck deliveries. An example is in Figure 6(e) where
the MPR deviates to the left, while the shortest path goes
straight down to the destination in Figure 6(d). To explain
this phenomenon, we may have a look at how trajectories
connect to the destination exactly. Figure 9(a) depicts all the
trajectories that go to the destination 𝐵, and the summary of
the trajectory distribution is shown in Figure 9(b). There are
totally 14 trajectories go to the destination from the left part
while only 2 trajectories go straight down to the destination.
Therefore, more truck drivers prefer the route through the left
part and that is the reason why the MPR and also the MPR-
alternative are found out to follow a different way from the
shortest path. Furthermore, this example demonstrates that a
preferable MPR is not necessarily to be the shortest path.

B
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Fig. 9. Statistics of Trajectories

The difference between the MPR and the shortest path
(SP) also lies in the number of transfer nodes contained
by the route. As shown in Figure 8(a), for those shortest
paths that contain 4 or 6 transfer nodes, the corresponding
MPRs involve the same number of transfer nodes on average.
However, for longer shortest paths that contain more than
6 transfer nodes, the corresponding MPRs normally involve
fewer transfer nodes than the shortest paths do, which confirms
that truck drivers would like to make fewer transfers in
deliveries. In our dataset, the MPR contains 9 nodes on average
while the corresponding shortest path consists of 12 nodes on
average. Besides, a smaller number of transfer nodes produce a
larger product of transfer probabilities, which is another reason
that the MPR is with less transfer nodes.

In contrast, the total distance of the MPR is normally larger



than that of the corresponding shortest path as illustrated in
Figure 8(b). Compared to a shortest path that contains 12
nodes and with a length of 18km, the corresponding MPR
is about 1/4 longer on average, which implies the fact that
the shortest path is not always the most favorite one and
drivers may take a slightly longer route in order to use
higher quality roads, or to avoid traffic, or to maximize
delivery efficiency, etc. Importantly, the driver behaviors can
be partially discovered by searching the most popular routes.

D. The Efficiency of Searching the MPR

The efficiency of the Maximum Probability Product algo-
rithm is recorded in Figure 8(c) and 8(d) respectively, where
the performance is measured by query time and the number
of transfer nodes that are visited during the search. It is
interesting to observe that the search of the MPR requires
less time than the Dijkstra’s shortest path algorithm does.
In Figure 8(c), the query time consumed by the Maximum
Probability Product algorithm is approximately half of the
query time consumed by the shortest path algorithm. The
origin is the number of transfer nodes visited during the search.
Generally, while the Dijkstra’s shortest path algorithm expands
the network outwards from the start node in a circle shape, the
Maximum Probability Product algorithm is like a biased search
towards the destination which is similar to the A∗ algorithm
[23], because the transfer nodes on the way to the destination
probably maintain a higher transfer probability in comparison
with those nodes in a wrong direction. Therefore, the search
region of the Maximum Probability Product algorithm is much
smaller as we can confirm in Figure 10, where the visited
nodes of the search (𝐴 → 𝐵) are marked by circle dots.
For the MPR-alternative, it has a performance in-between the
Maximum Probability Product and the Dijkastra’s algorithms.

(a) The MPR (b) The Shortest Path

Fig. 10. The Search Regions of the MPR and the Shortest Path

VII. CONCLUSIONS

In this paper, we study the problem of discovering the most
popular route between any two given locations, by considering
previous users’ traveling trajectories. We propose a Coherence
Expanding algorithm for mining a transfer network from
trajectories and develop a reasonable popularity indicator for
measuring the popularity of transfer nodes w.r.t. a designated
destination. Based on the popularity indicator, the Maximum
Probability Product algorithm is presented for searching the
most popular route. In our experiments, we demonstrate the
most popular routes discovered by our algorithm, with com-
parison to the corresponding shortest paths. Although there is

no ground truth for verification, we virtually and quantitatively
examine the search results and the algorithm performance.
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