
Hardware and Software Support for Speculative Executionof Sequential Binaries on a Chip-Multiprocessor1Venkata Krishnan and Josep TorrellasDepartment of Computer ScienceUniversity of Illinois at Urbana-Champaign, IL 61801venkat,torrella@cs.uiuc.eduhttp://iacoma.cs.uiuc.eduAbstractChip-multiprocessors (CMP) are a promising approach for ex-ploiting the increasing transistor count on a chip. To allow se-quential applications to be executed on this architecture, cur-rent proposals incorporate hardware support to exploit spec-ulative parallelism. However, these proposals either requirere-compilation of the source program or use substantial hard-ware that tailors the architecture for speculative execution,thereby resulting in wasted resources when running parallelapplications.In this paper, we present a CMP architecture that has hard-ware and software support for speculative execution of se-quential binaries without the need for source re-compilation.The software support enables identi�cation of threads from se-quential binaries, while a modest amount of hardware allowsregister-level communication and enforces true inter-threadmemory dependences. We evaluate this architecture and showthat it is able to deliver high performance.1 IntroductionCurrent technology permits the integration of multiple pro-cessing units on a single chip. Unlike a conventional super-scalar design, this approach avoids resource centralization andlong interconnects, thereby enabling a faster processor clock.Moreover, it permits multiple control ows or threads in theapplication to be executed concurrently. Though this archi-tecture would be an ideal platform for the new generation ofmultithreaded applications, it may not be good for applica-tions that are either sequential or cannot be parallelized e�ec-tively. To alleviate this problem, additional hardware may beused that would enable speculative parallelism to be exploitedfrom such sequential applications. In this mode of execution,the threads do not need to be fully independent; they mayhave data dependences with each other.There have been two approaches for con�guring multipleprocessing units on a chip. In one approach, the architectureis fully geared towards exploiting speculative parallelism fromsequential applications. Typical examples are the Trace [9, 10]and Multiscalar [11] processors. Indeed, these processorscan handle sequential binaries without re-compilation of thesource. As such, these processors have hardware features that1This work was supported in part by the National Science Foun-dation under grants NSF Young Investigator Award MIP-9457436,ASC-9612099 and MIP-9619351, DARPA Contract DABT63-95-C-0097, NASA Contract NAG-1-613, and gifts from IBM and Intel.

allow communication both at the memory and the registerlevel. For instance, in the Trace processor, additional hard-ware in the form of a trace cache [8] assists in the identi�cationof threads at run-time, while inter-thread register communica-tion is performed with the help of a centralized global register�le. In the Multiscalar processor, threads are identi�ed stat-ically by a compiler. Register values are forwarded from oneprocessor to another with the aid of a ring structure, whilerecovery from mis-speculation is achieved by maintaining twocopies of the registers, along with a set of register masks, ineach processing unit [1]. Overall, both of these processors havesu�cient hardware support that tailors the architecture forspeculative execution, thereby enabling them to achieve highperformance on existing sequential binaries without the needfor re-compilation. A direct consequence of this, however,is that a large amount of hardware may remain un-utilizedwhen running a parallel application or a multiprogrammedworkload.The chip-multiprocessor (CMP) [6, 12, 13], on the otherhand, is generic enough and has minimal support for specu-lative execution. Current proposals support a restricted com-munication mechanism between processors, which can occuronly through memory. Such limited hardware may be su�-cient when programs are compiled using a compiler that isaware of the speculation hardware [12]. However, the needto re-compile the source is a handicap, especially when thesource is unavailable.In this paper, we present a CMP architecture that is able toleverage the large number of transistors that can be integratedon chip to speed up the execution of sequential binaries in avery cost-e�ective manner. We have designed a binary an-notation tool that extracts multiple threads from sequentialbinaries to execute on the CMP. We also use modest hard-ware support to execute speculatively the code generated bythe binary annotator. This hardware allows communicationboth through memory and registers, without the need for ad-ditional register sets. Overall, we propose an architecture thatadds little hardware to a generic CMP, while it is able to han-dle sequential binaries quite e�ectively.The paper is organized as follows: Section 2 describes oursoftware support for identifying threads in a sequential binary.Section 3 discusses the hardware support required for specu-lative execution; Section 4 describes the evaluation environ-ment; Section 5 performs the evaluation; and �nally, Section 6concludes the paper.2 Software Support: Binary An-notatorWe have developed a binary annotator that identi�es unitsof work for each thread and the register-level dependencesbetween these threads. Memory dependences across threadsare handled by the additional hardware described in Section 3.



Currently, we limit the threads to inner loop iterations, wherethe loop body may have recursive function calls. This will beextended soon to cover other code sections.First, we mark the entry and exit points of these loops.During the course of execution, when a loop entry point isreached, multiple threads are spawned to begin execution ofsuccessive iterations speculatively. However, we follow se-quential semantics for thread termination.Threads can be squashed. For example, when the last itera-tion of a loop completes, any iterations that were speculativelyspawned after the last one are squashed. Also, threads canbe restarted. For example, when a succeeding iteration loadsa memory location before a predecessor stores to the samelocation, all iterations starting from the iteration that loadedthe wrong value are squashed and restarted.
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Figure 2: Safe de�nitions and release points.

register r3. These points are identi�ed by �rst performing abackward reaching de�nition analysis. This is followed by adepth-�rst search, starting at the loop entry point, for eachand every looplive reaching de�nition. Finally, induction vari-ables are identi�ed and their updates are percolated closerto the thread entry point provided the updating instructionsdominate the exit points of the loop. This reduces the waitingtime for the succeeding iteration before it can use the induc-tion variable. Note that incorporating these annotations in abinary is quite simple and requires only minor extensions tothe ISA. Additional instructions are needed only for identify-ing thread entry, exit and register value release points.3 Hardware SupportApplication threads can communicate with each otherthrough registers or via memory. The former is importantin the context of parallelizing sequential binaries. Since com-pilers perform good register allocation, register-level inter-thread dependences are common. Since these dependencescan be found accurately in the binary code, we can enforcethem in hardware, thereby preventing unnecessary squashingof threads. To enable exible inter-thread register communi-cation, we propose augmenting a conventional scoreboard to,what we call, a Synchronizing Scoreboard (SS) (Section 3.1).In contrast, identifying memory dependences is di�cultat the binary level. Therefore, the hardware is fully re-sponsible for identifying and enforcing memory dependences.This hardware should separate speculative updates from non-speculative ones and must allow speculative threads to acquiredata from the appropriate producer thread. It must also iden-tify dependence violations that may occur when a speculativethread prematurely accesses a memory location. This wouldresult in the squashing of the violating thread along with itssuccessors. The hardware that is required may be a central-ized bu�er along the lines of the ARB [2]. Alternatively, itmay involve a decentralized design, where each processor's pri-mary cache is used to store the speculative data, along withenhancements to the cache coherence protocol to maintaindata consistency. We use the latter approach for our hard-ware. There has been work done concurrently with ours, suchas the Speculative Versioning Cache (SVC) [3], which makesuse of a snoopy-bus to maintain data consistency among dif-ferent processors. Our work di�ers from SVC in that we usea decentralized approach similar to a directory-based proto-col. We call our approach the Memory Disambiguation Table(MDT) (Section 3.2). In the following, we present the SS andthe MDT in turn. All our discussion assumes a 4-processorCMP.For our hardware to work, each thread maintains its statusin the form of a bit-mask (called ThreadMask) in a specialregister. The status of a thread can be any of the four valuesshown in Table 1. Inside a loop, the non-speculative threadis the one executing the current iteration. Speculative suc-cessors 1, 2, and 3 are the ones executing the �rst, second,and third speculative iteration respectively. Clearly, as exe-cution progresses and threads complete, the non-speculativeThreadMask will move from one thread to its immediate suc-cessor and so on. Threads commit in order.Thread Status ThreadMaskNon-Speculative 0001Speculative Successor 1 0011Speculative Successor 2 0111Speculative Successor 3 1111Table 1: Status masks maintained by each thread.



3.1 Synchronizing ScoreboardThe synchronizing scoreboard is used by threads to synchro-nize and communicate register values. It is a per-processorconventional scoreboard augmented with additional bits. Inaddition, to allow register values to be communicated, we usea simple broadcast bus. This bus, which we call the SS Bus,has a limited bandwidth of 1 word/cycle, a low latency of upto 3 cycles, and one read and one write port for each processor.The overall hardware setup is shown in Figure 3.
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Within the same parallel section, a processor can reuseregisters across threads. When a processor initiates a newthread, namely speculative successor 3, it sets its V bits as: V = V � [Fpred. This e�ectively invalidates any registersthat are written by any of the three predecessor threads, whileallowing other registers to remain valid. We now look at howregisters are communicated between processors.3.1.1 Register CommunicationRegister communication between threads can be producer-initiated or consumer-initiated. The producer-initiated ap-proach has already been outlined. When a thread clears theS bit for a register, it writes the register on the SS bus. Atthat point, each of the successor threads checks its own V bitand the F bits of the threads between the producer and it-self. If all these bits are zero, the successor thread loads theregister and sets its V bit to 1.It is possible, however, that the consumer thread is notrunning when the producer thread generates the register. Wecould allow the values to be stored, by using a bu�ered com-munication mechanism, rather than using a simple broadcastbus. However, this would require further hardware support inthe form of duplicate register sets in each processor to enablerecovery from squashes [1]. Alternatively, a global register setmay be maintained to store the values [9], but at the cost ofmaintaining a centralized structure. In our approach, we addminimal hardware to support the consumer-initiated form ofcommunication. Speci�cally, the SS has simple logic that al-lows a consumer thread to identify the correct producer andget the register value. The logic works as follows. The con-sumer thread �rst checks its V bit. If it is set, the register islocally available. Otherwise, the F bit of the immediately pre-ceding thread is checked. If it is set, the predecessor threadis the producer. If the predecessor's S bit is set, it meansthat the register has not been produced yet and the consumerblocks. Otherwise, the consumer gets the register value fromthe predecessor. However, if the thread immediately preced-ing the consumer has F equal to zero, that thread cannot bethe producer. In that case, the bit checks are repeated onthe next previous thread. This process is repeated until thenon-speculative thread is reached. For example, assume thatthread 0 is the non-speculative thread, that threads 1, 2, and3 are speculative threads, and that thread 3 tries to read aregister. In that case, the register will be available to thread3 if: V3 + S2(F2 + S1(F1 + S0)) (1)This check incurs a delay of an AND-OR logic, with thenumber of inputs to the gate dependent on the number ofsupported threads. Suppose now, instead, that thread 1 isthe non-speculative thread, that threads 2, 3, and 0 are spec-ulative threads, and that the access came from thread 0. Inthat case, the register will be available to thread 0 using asimilar equation:V0 + S3(F3 + S2(F2 + S1)) (2)The accesses to these bits are always masked out with theThreadMask of Table 1. In examples (1) and (2), the SSaccess has been performed by speculative successor 3. There-fore, according to Table 1, we have used mask 1111, therebyenabling all bits and computing the whole expression (1) or(2). Consider a scenario like in (2), where thread 1 is non-speculative, except that the access is performed by thread 3.In that example, thread 3 is speculative successor thread 2.Consequently, it uses ThreadMask 0111 from Table 1. Thismeans that it is examining only 2 predecessors of thread 3.The resulting formula will be:V3 + S2(F2 + S1)



Overall, the complete logic involved in determining whethera register is available or not is shown in Figure 4. If theregister is available, the reader thread can get the value fromthe closest predecessor thread whose S bit is clear but F bitis set. If all the bits are clear, the non-speculative threadcan provide the value. The transfer of value is initiated bythe consumer thread putting a request on the SS bus to readthe register from the appropriate thread. The request andreply messages can take 1-3 cycles each, depending on theproducer-consumer distance, plus the contention for the SSbus. The latency and bandwidth requirements of the bus toachieve optimal performance is one topic of our evaluations inSection 5.
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ThreadMaskFigure 4: Logic to check register availability. Thisimplements the function in equations (1) and (2).Finally, the private X bit is used to avoid the undesirablestate where all copies of the register become invalid. Thiscould have occurred when there is a delay in the consumerthread requesting the value. More details may be found in [4].Overall, the extra overhead per register is 3n bits, where nis the number of processors on chip. This is indeed a modestamount of storage overhead when compared to replicating theregister sets in each processor [11] or using a centralized globalregister �le [9].3.2 Memory DisambiguationUnlike register dependences, we do not identify memory de-pendences in the binary annotation phase and, therefore, as-sign the full responsibility to hardware. Each processor inthe CMP has a private L1 cache. The L2 cache is shared.During speculative execution, speculative threads are in a re-stricted write-back mode in that they cannot update the L2cache. When a dirty line needs replacement, the thread stalls.Unlike the speculative threads, the non-speculative thread isallowed to update the L2 cache, since its store operations aresafe. When a speculative thread acquires non-speculative sta-tus, dirty lines are allowed to be displaced from the L1 cache.Note that the non-speculative thread cannot be committedand a new thread initiated on the processor, if there are anydirty lines present in the processor's L1-cache. Thus, allowingthe non-speculative thread to work in a write-through modereduces the number of dirty lines that may have to be ushedtowards the end of the thread's execution.Identifying memory dependence violations is achieved withthe help of a memory disambiguation table (MDT). The MDTis analogous to a directory in a conventional shared-memorymultiprocessor. Depending on its size, the MDT may be in-corporated into the L2 cache or may be located on-chip. TheMDT is examined later in this section.To enable speculative execution, each private L1-cache lineis augmented to have the following bits:Flush Invalid Dirty SafeWrite SafeReadTable 3: L1-cache line bits.

The Invalid (I) and Dirty (D) bit are used as in a conven-tional cache. Each processor, when performing a load or storeoperation, may have to inform the MDT, which tracks mem-ory dependence violations. The SafeWrite (SW) and SafeR-ead (SR) bits allow the processor to perform most of the loadand store operations without informing the MDT, while theFlush (F) bit allows cache lines in a processor to remain validacross multiple thread initiations.The SafeWrite (SW) bit, if set, permits a thread to per-form writes to cached dirty data without informing the MDT.When a thread performs a store to a line for the �rst time,it sets both the D as well as the SW bit, and also sends amessage to the MDT. Subsequent stores to a dirty data canbe done without any messages to the MDT, provided the SWbit is set. The SW bit is cleared when a new thread is ini-tiated on that processor. It is also cleared when a successorthread reads that same location. The read by a successor isforwarded to the processor by the MDT. Thus, if the threadstores again to the same dirty location but the SW bit is notset, it signi�es that a successor thread has loaded this locationprematurely. The processor sets the SW bit and also sendsa message to the MDT. This enables the MDT to determinethat a speculative thread has performed a load prematurely.The SafeRead (SR) bit, if set, allows the thread to performload operations from the cache without informing the MDT.This bit is set when the thread reads the location for the�rst time. In addition, the MDT is noti�ed about the load.Future loads from the same location can be performed withoutinforming the MDT as long as the SR bit is set. The SR bitis cleared when a new thread is initiated on that processor.This bit is used only when the thread is speculative, sinceloads performed by non-speculative threads are safe.The Flush (F) bit is used to ush stale locations, beforea new thread is initiated in the processor. When a threadstores to a location, any lines with the same address have tobe invalidated in all its successors. As for the predecessors, in-formation needs to be maintained to denote that the locationwill become stale after the current thread completes. The Fbit identi�es those private L1-cache lines that need to be in-validated after the current thread completes. When a threadis initiated on a processor, the new value of the Invalid bitwill be: Inew = Iold + F . The F bit is cleared after this op-eration. As explained later, this is done with the aid of theMDT that keeps track of the loads and stores issued by eachthread for the cached locations.Maintaining these bits on a cache-line level sometimes re-sults in false sharing and, consequently, leads to unwantedsquashing of threads. So, we maintain information at a wordlevel, except the Dirty bit, which is maintained at the linelevel. More details of the protocol may be found in [4].3.2.1 Memory Disambiguation Table (MDT)The disambiguating mechanism is performed with the help ofthe MDT. The MDT maintains entries on a cache line basis.As with the cache lines, we maintain the information on aword basis. For each word, there is a Load (L) and a Store (S)bit for each processor. The load and store bits are maintainedonly for speculative threads. Consequently, when a threadacquires non-speculative status, all its L and S bits are cleared.The bits are also cleared after a thread is squashed, but beforea new thread is initiated on the processor. Table 4 shows aMDT for a 4-processor CMP.The MDT may be incorporated into the L2 cache. Thus,the MDT would be similar to a directory that keeps trackof sharers in a conventional shared-memory multiprocessor.Later, in our evaluations, we show that the size of the MDT



that is required is quite small. Consequently, it may be evencon�gured on-chip. But �rst, we explain how the MDT workswhen it receives a load or store message from a processor.Valid Address Load Bits (Word 0) Store Bits (Word 0)Bit Tag L0L1L2L3 S0S1S2S31 0x1234 0 0 1 0 0 1 0 00 0x0000...1 0x4321 0 0 1 1 0 1 0 0Table 4: Memory Disambiguation Table (MDT).Load OperationA non-speculative thread need not perform any special ac-tion and its loads proceed normally. A speculative thread,however, may perform unsafe loads and has to access the ta-ble to �nd an entry that matches the load's address. If anentry is not found, a new one is created and the L bit corre-sponding to the thread is set. However, if an entry is alreadypresent, it is possible that a predecessor thread has specu-latively updated the location. Therefore, the store bits arechecked to determine the id of any thread that has updatedthe location. The ThreadMask is used to possibly mask outsome of these bits depending on the speculative status of thethread issuing the load. For example, if thread 2 is the 2ndspeculative successor and it issues the load, then only bitsS0S1S2 are examined.The closest predecessor (including the thread itself) whoseS bit is set, gives the id of the thread whose L1-cache has tobe read. In the above table, when thread 2 reads the �rstword corresponding to the address tag 0x1234, the request isforwarded by the MDT to processor 1 so that its L1-cache cansupply data for the word. The remainder of the line is suppliedfrom the L2-cache, which is merged with the forwarded databy the receiving processor. The forwarded request to thread1 also clears the SW bit in its cache line. As explained in thenext section, if thread 1 performs a store to the same line,it sends a message to the MDT informing it about the storeoperation, which would then squash thread 2. Finally, if noS bits of any predecessor threads are set, the load proceedsin the conventional manner to the L2-cache, and �nally tomemory.For a given thread, only the �rst unsafe load request to theaddress reaches the MDT. Subsequent loads to the same ad-dress or a load to the address to which the thread has alreadyperformed a store do not reach the MDT.Store OperationUnlike loads, stores can result in the squashing of threadswhen a successor speculative thread prematurely loaded avalue for an address. Successor, therefore, rather than pre-decessor threads are tested on a store operation. As in theload operation, we check the MDT for an entry correspond-ing to the address being updated. This is done by both non-speculative and speculative threads. If the entry is not found,speculative threads create a new entry with their S bit set.If an entry is present, however, a check must be made forincorrect loads that may have been performed by one of thethread's successors. Both the L and S bits must be accessed.We again use the ThreadMask bits to select the right bits.However, we now use the complement of these bits as a mask.This is because the complement gives us the successor threads.For example, assume that thread 0 is the non-speculativethread and is performing a store. The complement of itsThreadMask from Table 1 is 1110. The check-on-store logicis: L1 + S1(L2 + S2L3)This logic determines whether any successor has performed

an unsafe load without any intervening thread performing astore. Clearly, if an intervening thread has performed a store,there would be a false (output) dependence that must be ig-nored. For example, the last row of Table 4 shows that thread1 wrote to location 0x4321 and then threads 2 and 3 read fromit. If non-speculative thread 0 now writes to 0x4321, there isno action to be taken because there is only an output depen-dence on the location between threads 0 and 1.If the check-on-store logic evaluates to true, however, theclosest successor whose L bit is set and all its successor threadsare squashed and restarted. In all cases, a message to set theush (F ) bit for the address is sent to all predecessors thathave their S or the L bit set. This would result in their corre-sponding cache lines to remain valid only during the course ofexecution of their current task. Also, an invalidation messageis sent to all successors up to (but not including) one whoseS bit is set. This is necessary as a successor thread may usea old value from a valid cache line when the thread was initi-ated. Contrast this to a conventional SMP, where cache linesin all processors are invalidated on a write.Table OverowIt is possible that the MDT may run out of entries. Thethread needing to insert a new entry must necessarily be aspeculative thread. If no free entries are available, the threadstalls until one becomes available. Since the non-speculativethread can continue to perform load and store operations, itsexecution will not be a�ected. An entry becomes availablewhen all its L and S bits are zero. Recall that when a threadacquires non-speculative status, it clears its L and S bits, asthey are safe from this point onwards. It is at this point thata MDT entry may become available.3.2.2 What Happens When a New Thread IsStarted or Threads Are Squashed?At the point of thread initiation, all the words whose F bitsare set are invalidated. The F , SW and SR bits are cleared.As for the MDT, the corresponding L and S bits are alsocleared for this new thread. No special action is taken whenthreads are squashed, as new threads will be initiated on thoseprocessors and all the actions described above will be per-formed. The only issue is that there may be cache lines thatmay remain valid and whose value was forwarded from an-other thread. If that thread was squashed, we need to in-validate the lines that were forwarded. For simplicity, we donot record what thread is the source of what forwarded line.We simply identify all the forwarded data with a Forward(FD) bit. This bit is set when the MDT informs the pro-cessor performing a load that the data being forwarded fromanother processor's L1-cache. Thus, for squashed threads, notonly the F bit but also the FD bit is used for deciding theinvalidity of the cache line: Inew = Iold + F + FD.Overall, the additional overhead added to each cache line ismodest. The coherence protocol is similar to a conventionaldirectory-based scheme with sub-blocks. Finally, having aseparate dependence-tracking module (MDT) leaves room forfurther improvements, such as memory dependence predic-tion [5], thereby disallowing premature loads from occurring.4 Evaluation EnvironmentFor our representative CMP, we consider a chip with four4-issue dynamic superscalar processors (4x4-issue). ThisCMP, with hardware support for speculation, is compared toconventional 12-issue and 16-issue dynamic superscalar pro-cessors. We assume an aggressive dynamic superscalar core



for the CMP and the 12-issue/16-issue processors. The coreis modeled on the lines of the R10K. It can fetch and retireup to n instructions each cycle. It has a large fully associativeinstruction window along with integer and oating-point reg-isters for renaming. The actual numbers are shown in Table 5.A 2K-entry direct-mapped 2-level branch prediction table al-lows multiple branch predictions to be performed even whenthere are pending unresolved branches. All instructions take1 cycle to complete, except: integer multiply and divide take2 and 8 cycles respectively; oating-point multiply takes 2cycles, while divide takes 4 (single precision) and 7 (doubleprecision) cycles. The 4-, 12- and 16-issue processors can haveup to 16, 24 and 32 outstanding memory accesses, of whichhalf can be loads. The default parameters for the MDT andSS bus are shown in Table 6. We will vary them later.Issue Number of Entries in Number ofWidth Functional Units Instruction Renaming Registers(int/ld-st/fp) Window (int/fp)4 4/2/2 64 64/6412 12/6/6 200 200/20016 16/8/8 256 256/256Table 5: Characteristics of the dynamic processor core.Parameter ValueMDT entries 16KMDT associativity 8L1 to MDT latency (Cycles) 2MDT banks 3SS bus bandwidth (Words) 1SS bus latency (Cycles) 1Table 6: Characteristics of the MDT and SS bus.Finally, we model the memory sub-system in great detail.Caches are non-blocking with full load-bypassing enabled. Weassume a perfect I-cache for all our experiments and modelonly the D-cache. Typically, each processor in the CMP wouldhave a small private L1-cache and a shared L2-cache. This isin contrast to the conventional superscalar that has a largerL1-cache. Since supporting a higher-issue processor with alarge L1 cache requires more banks and a complex intercon-nect between the processor and the banks, we assume thatthe latency of access to the L1-cache to be 2 cycles for the12/16-issue superscalars as opposed to 1 cycle for the CMP.The characteristics of the memory hierarchies are shown inTable 7.Parameter CMP Superscalar[L1 / L2] size (Kbytes) [4x16 / 1024] [64 / 1024][L1 / L2] line size (Bytes) [32 / 64] [32 / 64][L1 / L2] associativity [2-way / 4-way] [2-way / 4-way]L1 banks 3 7L1 latency (Cycles) 1 2L2 latency (Cycles) 6 6Memory latency (Cycles) 26 26Table 7: Characteristics of the memory hierarchy. La-tencies refer to round trips.Simulation ApproachOur simulation environment is built on a modi�edMINT [14] execution-driven simulation environment. MINTcaptures both application and library code execution and gen-erates events by instrumenting binaries. Our back-end simu-lator is extremely detailed and performs a cycle-accurate sim-ulation of the architectures and hardware support for specu-lation described.Finally, we use MIPS binaries for 5 integer (compress, li ,ijpeg, mpeg and eqntott) and 5 oating-point (swim, tom-

catv , hydro2d , su2cor and mgrid) applications. All are fromthe SPEC95 suite except eqntott , which is from SPEC92 andmpeg, which is a multimedia application used for image decod-ing. We use the train set as input for the SPEC95 applicationsand the ref input for eqntott .5 EvaluationWe compare our 4x4-issue CMP to the aggressive super-scalars in Section 5.1, and then evaluate the requirements im-posed by the speculation hardware in Sections 5.2 and 5.3.5.1 CMP vs SuperscalarsTo put the comparison in the proper perspective, we considertwo issues whose complexity dictates any processor design,namely area and timing. We �rst consider the area complex-ity. Typically, the instruction window to enable dynamic is-sue requires a large die area that increases quadratically withissue width. In fact, the PA-8000, which is a 4-issue super-scalar, devotes 20% of the die area solely for the instructionwindow. In addition, increasing the issue width requires anincrease in the number of ports on the register �le. This maybe achieved by replicating the register �le as in the Alpha21264. Finally, the number of data bypass paths between thefunctional units and the register �le increases quadraticallywith issue width. Overall, support for dynamic issue leadsto a near-quadratic increase in die space and, typically, con-sumes up to 30-40% of the total die area. As a result, thearea required by a 4x4-issue CMP would only be slightlylarger than that of a 12-issue superscalar, while being muchless than that of a 16-issue superscalar. This is why we con-sider the above two superscalars in our comparisons to CMP.Note that the CMP requires extra hardware for speculationsupport. However, the overhead for register communicationis quite modest. Only the 16K-entry MDT is likely to occupya substantial chip area. While the MDT can be moved o�-chip at the cost of an increased access latency, we will show inSection 5.3 that the space requirements imposed by the MDTare in fact small enough that it can be placed on-chip withouta signi�cant impact on the die area.We now consider the timing complexity. Palacharla andJouppi [7] have argued that the register bypass network willdominate the cycle time of future high-issue processors. Infact, they have shown that an 8-issue processor would havealmost twice the cycle time of a 4-issue processor with 0:18�technology. Based on their observations, the 4x4-issueCMPwould have a tremendous cycle time advantage over the 12-issue and 16-issue dynamic superscalars.Figure 5 shows the IPC for the ten applications on theCMP and superscalars. Note that, because we look at IPC,this data does not take into consideration any disparity incycle time among the di�erent architectures. Figure 6 breaksdown the number of instructions issued based on which ofthe 4 processors in the CMP issued them. Note that an evendistribution of work among the di�erent processors impliesthat our binary annotator is able to identify a large amountof speculative parallelism in the application.To understand the two charts, we examine the oating-point applications �rst. From Figure 6, we see that they havemuch speculative parallelism. This is because these appli-cations are fully loop-based, with most of them having fewor no loop-carried dependences. Consequently, the CMP isable to exploit the parallelism in these applications to a muchgreater degree than the conventional superscalars. Each pro-cessor in the CMP executes an iteration and, most of the
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Figure 5: Comparing the IPC for the applications under the 4x4-issue CMP and a 12-issue and 16-issue conventional superscalar. No cycle time di�erences are considered. T
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Figure 6: Fraction of instructionsissued by each of the four processorsin the CMP.time, can independently issue instructions without being af-fected by dependences with other threads. This is not thecase in the conventional superscalars, where the centralizedinstruction window is often clogged by instructions that areeither data dependent on long-latency oating-point opera-tions or are waiting on a cache miss. Overall, as shown inFigure 5, the IPC of the 4x4-issue CMP is 1.8 times that ofthe superscalars.The integer applications behave di�erently. According toFigure 6, the amount of speculative parallelism extracted bythe binary annotator is much lower. In fact, in compress andli , most of the time there is only one active processor. Com-press, for example, spends most of the time inside a big loopwith a small inner-loop and an otherwise complicated con-trol ow. Since we exploit inner loop parallelism only, thereis little to be exploited. In this environment, the ability ofthe dynamic superscalars to exploit ILP in the serial sectionsgives them an advantage. As a result, Figure 5 shows thatthey have around 25% higher IPCs for these two applications.Our approach of exploiting parallelism in binaries withoutre-compilation limits the performance of the CMP in theseapplications. Indeed, it has been shown that there is a largescope for improvement even for such inherently sequential ap-plications, when the source code is recompiled with appropri-ate speculation support [12]. For the remaining three applica-tions (ijpeg, mpeg and eqntott) which have relatively smallersequential sections, the CMP has a comparable or a higherIPC than the conventional superscalars.We stress that we have made our comparisons solely basedon the IPC values, without taking cycle time into considera-tion. Even assuming a modest 25% shorter cycle time for theCMP, it would perform much better than the superscalars.Overall, therefore, we see that the CMP with speculationsupport delivers high performance even without the need forsource re-compilation.5.2 Evaluating the SS BusIn this section, we look at the bandwidth requirements aswell as the latency e�ects of the SS bus. Figure 7 shows theexecution time of the applications when the bus bandwidth isincreased from 1 to 3 registers/cycle. The execution time isnormalized to that for a bandwidth of 1 register/cycle. Fromthe �gure, we can see that there is little performance gainwith higher bandwidth. Figure 8 looks at the e�ect of higher

bus latencies. The execution time is normalized to that fora latency is 3 cycles. As shown in the �gure, changing thelatency has only a very modest e�ect on performance, witha maximum change of only 4% when the latency varies from3 to 1 cycle. From the above two results we can, therefore,conclude that our register communication mechanism does notplace a great demand on hardware resources.
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Figure 8: E�ect of the SS bus latency.5.3 Evaluating the MDTSince a 16K-entry MDT would occupy a substantial amountof die area, it would have to be moved o�-chip and locatedalongside the L2 cache. This, in fact, would have little im-pact on performance. To see why, we simulate this scenarioby increasing the L1 to MDT latency while correspondingly



reducing the MDT to L2 latency. Figure 9 shows how the ex-ecution time is a�ected when the L1 to MDT latency changesfrom 1 to 5 cycles. Here, the execution time is normalized tothat for a latency of 5 cycles. We can see that there is littlechange in performance for all the applications.Unfortunately, con�guring the 16K-entry MDT o�-chipwould increase the pin-requirements of the chip. Conse-quently, we would like to see a reduction in the MDT sizeso that it can be con�gured on chip. Figure 10 studies the ef-fect on performance when the number of MDT entries variesfrom just 8 to 16K. Surprisingly, the performance saturateswith a small 64-entry MDT for most applications. swim isthe only exception, where the working set is large enough torequire a 1K-entry MDT. Overall, with such minimal spacerequirement for most applications, the MDT disambiguationhardware can be easily con�gured on chip.
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Figure 10: E�ect of the MDT size.6 ConclusionsThe chip-multiprocessor (CMP) approach is a promisingdesign for exploiting the ever-increasing on-chip transistorcount. It is an ideal platform to run the new generation ofmultithreaded applications as well as multiprogrammed work-loads. Moreover, it can also handle sequential workloads whenhardware support for speculation is provided. However, cur-rent proposals either require re-compilation of the sequentialapplication or devote a large amount of hardware to specula-tive execution, thereby wasting resources when running par-allel applications. In this paper, we have presented a CMParchitecture that is generic enough and has modest hardwaresupport to execute sequential binaries in a most cost-e�ectivemanner. We have discussed how we extract threads out of
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