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Abstract

Chip-multiprocessors (CMP) are a promising approach for ex-
ploiting the increasing transistor count on a chip. To allow se-
quential applications to be executed on this architecture, cur-
rent proposals incorporate hardware support to exploit spec-
ulative parallelism. However, these proposals either require
re-compilation of the source program or use substantial hard-
ware that tailors the architecture for speculative execution,
thereby resulting in wasted resources when running parallel
applications.

In this paper, we present a CMP architecture that has hard-
ware and software support for speculative execution of se-
quential binaries without the need for source re-compilation.
The software support enables identification of threads from se-
quential binaries, while a modest amount of hardware allows
register-level communication and enforces true inter-thread
memory dependences. We evaluate this architecture and show
that it is able to deliver high performance.

1 Introduction

Current technology permits the integration of multiple pro-
cessing units on a single chip. Unlike a conventional super-
scalar design, this approach avoids resource centralization and
long interconnects, thereby enabling a faster processor clock.
Moreover, it permits multiple control flows or threads in the
application to be executed concurrently. Though this archi-
tecture would be an ideal platform for the new generation of
multithreaded applications, it may not be good for applica-
tions that are either sequential or cannot be parallelized effec-
tively. To alleviate this problem, additional hardware may be
used that would enable speculative parallelism to be exploited
from such sequential applications. In this mode of execution,
the threads do not need to be fully independent; they may
have data dependences with each other.

There have been two approaches for configuring multiple
processing units on a chip. In one approach, the architecture
is fully geared towards exploiting speculative parallelism from
sequential applications. Typical examples are the Trace [9, 10]
and Multiscalar [11] processors. Indeed, these processors
can handle sequential binaries without re-compilation of the
source. As such, these processors have hardware features that
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allow communication both at the memory and the register
level. For instance, in the Trace processor, additional hard-
ware in the form of a trace cache [8] assists in the identification
of threads at run-time, while inter-thread register communica-
tion is performed with the help of a centralized global register
file. In the Multiscalar processor, threads are identified stat-
ically by a compiler. Register values are forwarded from one
processor to another with the aid of a ring structure, while
recovery from mis-speculation is achieved by maintaining two
copies of the registers, along with a set of register masks, in
each processing unit [1]. Overall, both of these processors have
sufficient hardware support that tailors the architecture for
speculative execution, thereby enabling them to achieve high
performance on existing sequential binaries without the need
for re-compilation. A direct consequence of this, however,
is that a large amount of hardware may remain un-utilized
when running a parallel application or a multiprogrammed
workload.

The chip-multiprocessor (CMP) [6, 12, 13], on the other
hand, is generic enough and has minimal support for specu-
lative execution. Current proposals support a restricted com-
munication mechanism between processors, which can occur
only through memory. Such limited hardware may be suffi-
cient when programs are compiled using a compiler that is
aware of the speculation hardware [12]. However, the need
to re-compile the source is a handicap, especially when the
source is unavailable.

In this paper, we present a CMP architecture that is able to
leverage the large number of transistors that can be integrated
on chip to speed up the execution of sequential binaries in a
very cost-effective manner. We have designed a binary an-
notation tool that extracts multiple threads from sequential
binaries to execute on the CMP. We also use modest hard-
ware support to execute speculatively the code generated by
the binary annotator. This hardware allows communication
both through memory and registers, without the need for ad-
ditional register sets. Overall, we propose an architecture that
adds little hardware to a generic CMP, while it is able to han-
dle sequential binaries quite effectively.

The paper is organized as follows: Section 2 describes our
software support for identifying threads in a sequential binary.
Section 3 discusses the hardware support required for specu-
lative execution; Section 4 describes the evaluation environ-
ment; Section 5 performs the evaluation; and finally, Section 6
concludes the paper.

2 Software Support: Binary An-
notator

We have developed a binary annotator that identifies units
of work for each thread and the register-level dependences
between these threads. Memory dependences across threads
are handled by the additional hardware described in Section 3.



Currently, we limit the threads to inner loop iterations, where
the loop body may have recursive function calls. This will be
extended soon to cover other code sections.

First, we mark the entry and exit points of these loops.
During the course of execution, when a loop entry point is
reached, multiple threads are spawned to begin execution of
successive iterations speculatively. However, we follow se-
quential semantics for thread termination.

Threads can be squashed. For example, when the last itera-
tion of a loop completes, any iterations that were speculatively
spawned after the last one are squashed. Also, threads can
be restarted. For example, when a succeeding iteration loads
a memory location before a predecessor stores to the same
location, all iterations starting from the iteration that loaded
the wrong value are squashed and restarted.
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Figure 1: Binary annotation process.

The steps involved in the annotation process are illustrated
in Figure 1. The approach that we use is similar to that of
Multiscalar [11] except that we operate on the binary instead
of the intermediate code. First, we identify inner loop iter-
ations and annotate their initiation and termination points.
Then, we need to identify the register level dependences be-
tween these threads. This involves identifying looplive reg-
isters, which are those that are live at loop entry/exits and
may also be redefined in the loop. We then identify the reach-
ing definitions at loop exits of all the looplive registers. From
these looplive reaching definitions, we identify safe definitions,
which are definitions that may occur but whose value would
never be overwritten later in the loop body. Similarly, we
identify the release points for the remaining definitions whose
value may be overwritten by another definition. Figure 2 il-
lustrates the safe definition and release points for a looplive

(unsafe)r3=..
(safe)r3=..

entry

entry

Figure 2: Safe definitions and release points.

register r3. These points are identified by first performing a
backward reaching definition analysis. This is followed by a
depth-first search, starting at the loop entry point, for each
and every looplive reaching definition. Finally, induction vari-
ables are identified and their updates are percolated closer
to the thread entry point provided the updating instructions
dominate the exit points of the loop. This reduces the waiting
time for the succeeding iteration before it can use the induc-
tion variable. Note that incorporating these annotations in a
binary is quite simple and requires only minor extensions to
the ISA. Additional instructions are needed only for identify-
ing thread entry, exit and register value release points.

3 Hardware Support

Application threads can communicate with each other
through registers or via memory. The former is important
in the context of parallelizing sequential binaries. Since com-
pilers perform good register allocation, register-level inter-
thread dependences are common. Since these dependences
can be found accurately in the binary code, we can enforce
them in hardware, thereby preventing unnecessary squashing
of threads. To enable flexible inter-thread register communi-
cation, we propose augmenting a conventional scoreboard to,
what we call, a Synchronizing Scoreboard (55) (Section 3.1).

In contrast, identifying memory dependences is difficult
at the binary level. Therefore, the hardware is fully re-
sponsible for identifying and enforcing memory dependences.
This hardware should separate speculative updates from non-
speculative ones and must allow speculative threads to acquire
data from the appropriate producer thread. It must also iden-
tify dependence violations that may occur when a speculative
thread prematurely accesses a memory location. This would
result in the squashing of the violating thread along with its
successors. The hardware that is required may be a central-
ized buffer along the lines of the ARB [2]. Alternatively, it
may involve a decentralized design, where each processor’s pri-
mary cache is used to store the speculative data, along with
enhancements to the cache coherence protocol to maintain
data consistency. We use the latter approach for our hard-
ware. There has been work done concurrently with ours, such
as the Speculative Versioning Cache (SVC) [3], which makes
use of a snoopy-bus to maintain data consistency among dif-
ferent processors. Our work differs from SVC in that we use
a decentralized approach similar to a directory-based proto-
col. We call our approach the Memory Disambiguation Table
(MDT) (Section 3.2). In the following, we present the SS and
the MDT in turn. All our discussion assumes a 4-processor

CMP.

For our hardware to work, each thread maintains its status
in the form of a bit-mask (called ThreadMask) in a special
register. The status of a thread can be any of the four values
shown in Table 1. Inside a loop, the non-speculative thread
is the one executing the current iteration. Speculative suc-
cessors 1, 2, and 3 are the ones executing the first, second,
and third speculative iteration respectively. Clearly, as exe-
cution progresses and threads complete, the non-speculative
ThreadMask will move from one thread to its immediate suc-
cessor and so on. Threads commit in order.

Thread Status ThreadMask
Non-Speculative 0001
Speculative Successor 1 0011
Speculative Successor 2 0111
Speculative Successor 3 1111

Table 1: Status masks maintained by each thread.



3.1 Synchronizing Scoreboard

The synchronizing scoreboard is used by threads to synchro-
nize and communicate register values. It is a per-processor
conventional scoreboard augmented with additional bits. In
addition, to allow register values to be communicated, we use
a simple broadcast bus. This bus, which we call the SS Bus,
has a limited bandwidth of 1 word/cycle, a low latency of up
to 3 cycles, and one read and one write port for each processor.
The overall hardware setup is shown in Figure 3.
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Figure 3: Hardware support for register communica-
tion.

Each SS has one entry per register. Figure 3 shows the
different fields for one entry. The fields are grouped into local
and global. The latter are replicated and kept coherent across
the several SS. The global fields include the Sync (S) and the
StartSync (F) fields. Each of these fields has one bit for each
of the processors on chip. Table 2 shows an example of the

global fields of a SS.

RegID | StartSync Sync
FoFi FoFy | 505152853

0

1 0100 0100

15 1010 1000

16 0000 0000

Table 2: Example of the global fields of a SS.

For a given register, the S; bit means that the thread run-
ning on processor ¢ has not made the register available to
successor threads yet. When a thread starts on processor %, it
sets the S; bit for all the looplive registers that it may create.
The S; bit for a register is cleared when the thread performs
a safe definition for that register or executes the release in-
struction for that register (Section 2). When this occurs, the
thread also writes the register value on the SS bus, thereby
allowing other processors to update their values if needed. At
that point, the register is safe to use by successor threads.

The F bit is set to the initial value of the corresponding S
bit when the thread is initiated. This is done with dedicated
hardware that, when a thread starts on processor %, initializes
the F; and the S; bits for all the registers (to 0 or 1) in the SS
of all processors. From then on, the F bit remains unchanged
throughout the execution of the thread.

Each processor has an additional Valid (V) bit for each
register, as in a conventional scoreboard. This per-processor
private bit tells whether the processor has a valid copy of the
register. When a speculatively parallel section of the code is
reached, the processors that were idle in the preceding serial
section start with their V bits equal to zero. The V bit for a
register is set when the register value is generated by the local
thread or is communicated from another processor.

Within the same parallel section, a processor can reuse
registers across threads. When a processor initiates a new
thread, namely speculative successor 3, it sets its V bits as
: V=V — UFyreq. This effectively invalidates any registers
that are written by any of the three predecessor threads, while
allowing other registers to remain valid. We now look at how
registers are communicated between processors.

3.1.1 Register Communication

Register communication between threads can be producer-
initiated or consumer-initiated. The producer-initiated ap-
proach has already been outlined. When a thread clears the
S bit for a register, it writes the register on the SS bus. At
that point, each of the successor threads checks its own V bit
and the F bits of the threads between the producer and it-
self. If all these bits are zero, the successor thread loads the
register and sets its V bit to 1.

It is possible, however, that the consumer thread is not
running when the producer thread generates the register. We
could allow the values to be stored, by using a buffered com-
munication mechanism, rather than using a simple broadcast
bus. However, this would require further hardware support in
the form of duplicate register sets in each processor to enable
recovery from squashes [1]. Alternatively, a global register set
may be maintained to store the values [9], but at the cost of
maintaining a centralized structure. In our approach, we add
minimal hardware to support the consumer-initiated form of
communication. Specifically, the SS has simple logic that al-
lows a consumer thread to identify the correct producer and
get the register value. The logic works as follows. The con-
sumer thread first checks its V bit. If it is set, the register is
locally available. Otherwise, the F bit of the immediately pre-
ceding thread is checked. If it is set, the predecessor thread
is the producer. If the predecessor’s S bit is set, it means
that the register has not been produced yet and the consumer
blocks. Otherwise, the consumer gets the register value from
the predecessor. However, if the thread immediately preced-
ing the consumer has F equal to zero, that thread cannot be
the producer. In that case, the bit checks are repeated on
the next previous thread. This process is repeated until the
non-speculative thread is reached. For example, assume that
thread 0 is the non-speculative thread, that threads 1, 2, and
3 are speculative threads, and that thread 3 tries to read a
register. In that case, the register will be available to thread
3if:

Va + 82 (Fz2 + S1(F1 + 50)) (1)
This check incurs a delay of an AND-OR logic, with the

number of inputs to the gate dependent on the number of
supported threads. Suppose now, instead, that thread 1 is
the non-speculative thread, that threads 2, 3, and 0 are spec-
ulative threads, and that the access came from thread 0. In
that case, the register will be available to thread 0 using a
similar equation:

Vo + §3(F3 +§2(Fz +§1)) (2)

The accesses to these bits are always masked out with the
ThreadMask of Table 1. In examples (1) and (2), the SS
access has been performed by speculative successor 3. There-
fore, according to Table 1, we have used mask 1111, thereby
enabling all bits and computing the whole expression (1) or
(2). Consider a scenario like in (2), where thread 1 is non-
speculative, except that the access is performed by thread 3.
In that example, thread 3 is speculative successor thread 2.
Consequently, it uses ThreadMask 0111 from Table 1. This
means that it is examining only 2 predecessors of thread 3.
The resulting formula will be:

Va +§2(Fz +§1)



Overall, the complete logic involved in determining whether
a register is available or not is shown in Figure 4. If the
register is available, the reader thread can get the value from
the closest predecessor thread whose S bit is clear but F bit
is set. If all the bits are clear, the non-speculative thread
can provide the value. The transfer of value is initiated by
the consumer thread putting a request on the SS bus to read
the register from the appropriate thread. The request and
reply messages can take 1-3 cycles each, depending on the
producer-consumer distance, plus the contention for the SS
bus. The latency and bandwidth requirements of the bus to
achieve optimal performance is one topic of our evaluations in
Section 5.

ThreadMask |

‘Register# ‘Valid Start&m% Sync

Register
Available?

Figure 4: Logic to check register availability. This
implements the function in equations (1) and (2).

Finally, the private X bit is used to avoid the undesirable
state where all copies of the register become invalid. This
could have occurred when there is a delay in the consumer
thread requesting the value. More details may be found in [4].
Overall, the extra overhead per register is 3n bits, where n
is the number of processors on chip. This is indeed a modest
amount of storage overhead when compared to replicating the
register sets in each processor [11] or using a centralized global
register file [9].

3.2 Memory Disambiguation

Unlike register dependences, we do not identify memory de-
pendences in the binary annotation phase and, therefore, as-
sign the full responsibility to hardware. Each processor in
the CMP has a private L1 cache. The L2 cache is shared.
During speculative execution, speculative threads are in a re-
stricted write-back mode in that they cannot update the L2
cache. When a dirty line needs replacement, the thread stalls.
Unlike the speculative threads, the non-speculative thread is
allowed to update the L2 cache, since its store operations are
safe. When a speculative thread acquires non-speculative sta-
tus, dirty lines are allowed to be displaced from the L1 cache.
Note that the non-speculative thread cannot be committed
and a new thread initiated on the processor, if there are any
dirty lines present in the processor’s L1-cache. Thus, allowing
the non-speculative thread to work in a write-through mode
reduces the number of dirty lines that may have to be flushed
towards the end of the thread’s execution.

Identifying memory dependence violations is achieved with
the help of a memory disambiguation table (MDT). The MDT
is analogous to a directory in a conventional shared-memory
multiprocessor. Depending on its size, the MDT may be in-
corporated into the L2 cache or may be located on-chip. The
MDT is examined later in this section.

To enable speculative execution, each private L1-cache line
is augmented to have the following bits:

[ Flush | Invalid | Dirty | SafeWrite | SafeRead |

Table 3: Ll-cache line bits.

The Invalid (I) and Dirty (D) bit are used as in a conven-
tional cache. Each processor, when performing a load or store
operation, may have to inform the MDT, which tracks mem-
ory dependence violations. The Safe Write (SW) and SafeR-
ead (SR) bits allow the processor to perform most of the load
and store operations without informing the MDT, while the
Flush (F) bit allows cache lines in a processor to remain valid
across multiple thread initiations.

The Safe Write (SW) bit, if set, permits a thread to per-
form writes to cached dirty data without informing the MDT.
When a thread performs a store to a line for the first time,
it sets both the D as well as the SW bit, and also sends a
message to the MDT. Subsequent stores to a dirty data can
be done without any messages to the MDT, provided the SW
bit is set. The SW bit is cleared when a new thread is ini-
tiated on that processor. It is also cleared when a successor
thread reads that same location. The read by a successor is
forwarded to the processor by the MDT. Thus, if the thread
stores again to the same dirty location but the SW bit is not
set, it signifies that a successor thread has loaded this location
prematurely. The processor sets the SW bit and also sends
a message to the MDT. This enables the MDT to determine
that a speculative thread has performed a load prematurely.

The SafeRead (SR) bit, if set, allows the thread to perform
load operations from the cache without informing the MDT.
This bit is set when the thread reads the location for the
first time. In addition, the MDT is notified about the load.
Future loads from the same location can be performed without
informing the MDT as long as the SR bit is set. The SR bit
is cleared when a new thread is initiated on that processor.
This bit is used only when the thread is speculative, since
loads performed by non-speculative threads are safe.

The Flush (F) bit is used to flush stale locations, before
a new thread is initiated in the processor. When a thread
stores to a location, any lines with the same address have to
be invalidated in all its successors. As for the predecessors, in-
formation needs to be maintained to denote that the location
will become stale after the current thread completes. The F
bit identifies those private L1-cache lines that need to be in-
validated after the current thread completes. When a thread
is initiated on a processor, the new value of the Invalid bit
will be: Inew = Iota + F. The F bit is cleared after this op-
eration. As explained later, this is done with the aid of the
MDT that keeps track of the loads and stores issued by each
thread for the cached locations.

Maintaining these bits on a cache-line level sometimes re-
sults in false sharing and, consequently, leads to unwanted
squashing of threads. So, we maintain information at a word
level, except the Dirty bit, which is maintained at the line
level. More details of the protocol may be found in [4].

3.2.1 Memory Disambiguation Table (MDT)

The disambiguating mechanism is performed with the help of
the MDT. The MDT maintains entries on a cache line basis.
As with the cache lines, we maintain the information on a
word basis. For each word, there is a Load (L) and a Store (S)
bit for each processor. The load and store bits are maintained
only for speculative threads. Consequently, when a thread
acquires non-speculative status, all its L and S bits are cleared.
The bits are also cleared after a thread is squashed, but before
a new thread is initiated on the processor. Table 4 shows a

MDT for a 4-processor CMP.

The MDT may be incorporated into the L2 cache. Thus,
the MDT would be similar to a directory that keeps track
of sharers in a conventional shared-memory multiprocessor.
Later, in our evaluations, we show that the size of the MDT



that is required is quite small. Consequently, it may be even
configured on-chip. But first, we explain how the MDT works
when it receives a load or store message from a processor.

Valid | Address | Load Bits (Word 0) | Store Bits (Word 0)
Bit Tag LO L1 Lz L3 50 51 Sz 53

1 0x1234 0010 0100

0 0x0000

1 0x4321 0011 0100

Table 4: Memory Disambiguation Table (MDT).

Load Operation

A non-speculative thread need not perform any special ac-
tion and its loads proceed normally. A speculative thread,
however, may perform unsafe loads and has to access the ta-
ble to find an entry that matches the load’s address. If an
entry is not found, a new one is created and the L bit corre-
sponding to the thread is set. However, if an entry is already
present, it is possible that a predecessor thread has specu-
latively updated the location. Therefore, the store bits are
checked to determine the id of any thread that has updated
the location. The ThreadMask is used to possibly mask out
some of these bits depending on the speculative status of the
thread issuing the load. For example, if thread 2 is the 2nd
speculative successor and it issues the load, then only bits
S05152 are examined.

The closest predecessor (including the thread itself) whose
S bit is set, gives the id of the thread whose L1-cache has to
be read. In the above table, when thread 2 reads the first
word corresponding to the address tag 0x1234, the request is
forwarded by the MDT to processor 1 so that its L1-cache can
supply data for the word. The remainder of the line is supplied
from the L2-cache, which is merged with the forwarded data
by the receiving processor. The forwarded request to thread
1 also clears the SW bit in its cache line. As explained in the
next section, if thread 1 performs a store to the same line,
it sends a message to the MDT informing it about the store
operation, which would then squash thread 2. Finally, if no
S bits of any predecessor threads are set, the load proceeds
in the conventional manner to the L2-cache, and finally to
memory.

For a given thread, only the first unsafe load request to the
address reaches the MDT. Subsequent loads to the same ad-
dress or a load to the address to which the thread has already
performed a store do not reach the MDT.

Store Operation

Unlike loads, stores can result in the squashing of threads
when a successor speculative thread prematurely loaded a
value for an address. Successor, therefore, rather than pre-
decessor threads are tested on a store operation. As in the
load operation, we check the MDT for an entry correspond-
ing to the address being updated. This is done by both non-
speculative and speculative threads. If the entry is not found,
speculative threads create a new entry with their § bit set.

If an entry is present, however, a check must be made for
incorrect loads that may have been performed by one of the
thread’s successors. Both the L and S bits must be accessed.
We again use the ThreadMask bits to select the right bits.
However, we now use the complement of these bits as a mask.
This is because the complement gives us the successorthreads.
For example, assume that thread 0 is the non-speculative
thread and is performing a store. The complement of its
ThreadMask from Table 1 is 1110. The check-on-store logic
is:

Ly + S1(L2 + S2L3)

This logic determines whether any successor has performed

an unsafe load without any intervening thread performing a
store. Clearly, if an intervening thread has performed a store,
there would be a false (output) dependence that must be ig-
nored. For example, the last row of Table 4 shows that thread
1 wrote to location 0x4321 and then threads 2 and 3 read from
it. If non-speculative thread 0 now writes to 0x4321, there is
no action to be taken because there is only an output depen-
dence on the location between threads 0 and 1.

If the check-on-store logic evaluates to true, however, the
closest successor whose L bit is set and all its successor threads
are squashed and restarted. In all cases, a message to set the
flush (F) bit for the address is sent to all predecessors that
have their S or the L bit set. This would result in their corre-
sponding cache lines to remain valid only during the course of
execution of their current task. Also, an invalidation message
is sent to all successors up to (but not including) one whose
S bit is set. This is necessary as a successor thread may use
a old value from a valid cache line when the thread was initi-
ated. Contrast this to a conventional SMP, where cache lines
in all processors are invalidated on a write.

Table Overflow

It is possible that the MDT may run out of entries. The
thread needing to insert a new entry must necessarily be a
speculative thread. If no free entries are available, the thread
stalls until one becomes available. Since the non-speculative
thread can continue to perform load and store operations, its
execution will not be affected. An entry becomes available
when all its L and S bits are zero. Recall that when a thread
acquires non-speculative status, it clears its L and § bits, as
they are safe from this point onwards. It is at this point that
a MDT entry may become available.

3.2.2 What Happens When a New Thread Is
Started or Threads Are Squashed?

At the point of thread initiation, all the words whose F bits
are set are invalidated. The F, SW and SR bits are cleared.
As for the MDT, the corresponding L and S bits are also
cleared for this new thread. No special action is taken when
threads are squashed, as new threads will be initiated on those
processors and all the actions described above will be per-
formed. The only issue is that there may be cache lines that
may remain valid and whose value was forwarded from an-
other thread. If that thread was squashed, we need to in-
validate the lines that were forwarded. For simplicity, we do
not record what thread is the source of what forwarded line.
We simply identify all the forwarded data with a Forward
(FD) bit. This bit is set when the MDT informs the pro-
cessor performing a load that the data being forwarded from
another processor’s L1-cache. Thus, for squashed threads, not
only the F bit but also the FD bit is used for deciding the
invalidity of the cache line: Inew = Iota + F + FD.

Overall, the additional overhead added to each cache line is
modest. The coherence protocol is similar to a conventional
directory-based scheme with sub-blocks. Finally, having a
separate dependence-tracking module (MDT) leaves room for
further improvements, such as memory dependence predic-
tion [5], thereby disallowing premature loads from occurring.

4 Evaluation Environment

For our representative CMP, we consider a chip with four
4-issue dynamic superscalar processors (4x4-issue). This
CMP, with hardware support for speculation, is compared to
conventional 12-issue and 16-issue dynamic superscalar pro-
cessors. We assume an aggressive dynamic superscalar core



for the CMP and the 12-issue/16-issue processors. The core
is modeled on the lines of the R10K. It can fetch and retire
up to n instructions each cycle. It has a large fully associative
instruction window along with integer and floating-point reg-
isters for renaming. The actual numbers are shown in Table 5.
A 2K-entry direct-mapped 2-level branch prediction table al-
lows multiple branch predictions to be performed even when
there are pending unresolved branches. All instructions take
1 cycle to complete, except: integer multiply and divide take
2 and 8 cycles respectively; floating-point multiply takes 2
cycles, while divide takes 4 (single precision) and 7 (double
precision) cycles. The 4-, 12- and 16-issue processors can have
up to 16, 24 and 32 outstanding memory accesses, of which
half can be loads. The default parameters for the MDT and
SS bus are shown in Table 6. We will vary them later.

Issue Number of Entries in Number of
Width || Functional Units | Instruction | Renaming Registers
(int/Id-st/fp) Window (int/fp)
7] 1/2/2 84 84/64
12 12/6/6 200 200/200
16 16/8/8 256 256/256

Table 5: Characteristics of the dynamic processor core.

[ Parameter

MDT entries

MDT associativity

L1 to MDT latency (Cycles)
MDT banks

SS bus bandwidth (Words)
SS bus latency (Cycles)

| Value [|
16K

== W N 0

Table 6: Characteristics of the MDT and SS bus.

Finally, we model the memory sub-system in great detail.
Caches are non-blocking with full load-bypassing enabled. We
assume a perfect I-cache for all our experiments and model
only the D-cache. Typically, each processor in the CMP would
have a small private L1-cache and a shared L2-cache. This is
in contrast to the conventional superscalar that has a larger
Ll-cache. Since supporting a higher-issue processor with a
large L1 cache requires more banks and a complex intercon-
nect between the processor and the banks, we assume that
the latency of access to the Ll-cache to be 2 cycles for the
12/16-issue superscalars as opposed to 1 cycle for the CMP.
The characteristics of the memory hierarchies are shown in

Table 7.

[ Parameter I CMP |  Superscalar |
[L1 / L2] size (Kbytes) [4x16 / 1024] [64 ] 1024]
[L1 / L2] line size (Bytes) [32 / 64] [32 / 64]

[L1 / L2] associativity [2-way / 4-way] | [2-way / 4-way]
3 7

L1 banks

L1 latency (Cycles) 1 2
L2 latency (Cycles) 6 6
Memory latency (Cycles) 26 26

Table 7: Characteristics of the memory hierarchy. La-
tencies refer to round trips.

Simulation Approach

Our simulation environment is built on a modified
MINT [14] execution-driven simulation environment. MINT
captures both application and library code execution and gen-
erates events by instrumenting binaries. Our back-end simu-
lator is extremely detailed and performs a cycle-accurate sim-
ulation of the architectures and hardware support for specu-
lation described.

Finally, we use MIPS binaries for 5 integer (compress, li,
ijpeg, mpeg and egntott) and 5 floating-point (swim, tom-

catv, hydro2d, suZcor and mgrid) applications. All are from
the SPEC95 suite except egntott, which is from SPEC92 and
mpeg, which is a multimedia application used for image decod-
ing. We use the train set as input for the SPEC95 applications
and the ref input for egntott.

5 Evaluation

We compare our 4x4-issue CMP to the aggressive super-
scalars in Section 5.1, and then evaluate the requirements im-
posed by the speculation hardware in Sections 5.2 and 5.3.

5.1 CMP vs Superscalars

To put the comparison in the proper perspective, we consider
two issues whose complexity dictates any processor design,
namely areg and timing. We first consider the area complex-
ity. Typically, the instruction window to enable dynamic is-
sue requires a large die area that increases quadratically with
issue width. In fact, the PA-8000, which is a 4-issue super-
scalar, devotes 20% of the die area solely for the instruction
window. In addition, increasing the issue width requires an
increase in the number of ports on the register file. This may
be achieved by replicating the register file as in the Alpha
21264. Finally, the number of data bypass paths between the
functional units and the register file increases quadratically
with issue width. Overall, support for dynamic issue leads
to a near-quadratic increase in die space and, typically, con-
sumes up to 30-40% of the total die area. As a result, the
area required by a 4x4-issue CMP would only be slightly
larger than that of a 12-issue superscalar, while being much
less than that of a 16-issue superscalar. This is why we con-
sider the above two superscalars in our comparisons to CMP.
Note that the CMP requires extra hardware for speculation
support. However, the overhead for register communication
is quite modest. Only the 16K-entry MDT is likely to occupy
a substantial chip area. While the MDT can be moved off-
chip at the cost of an increased access latency, we will show in
Section 5.3 that the space requirements imposed by the MDT
are in fact small enough that it can be placed on-chip without
a significant impact on the die area.

We now consider the timing complexity. Palacharla and
Jouppi [7] have argued that the register bypass network will
dominate the cycle time of future high-issue processors. In
fact, they have shown that an 8-issue processor would have
almost twice the cycle time of a 4-issue processor with 0.18y
technology. Based on their observations, the 4x4-issue CMP
would have a tremendous cycle time advantage over the 12-
issue and 16-issue dynamic superscalars.

Figure 5 shows the IPC for the ten applications on the
CMP and superscalars. Note that, because we look at IPC,
this data does not take into consideration any disparity in
cycle time among the different architectures. Figure 6 breaks
down the number of instructions issued based on which of
the 4 processors in the CMP issued them. Note that an even
distribution of work among the different processors implies
that our binary annotator is able to identify a large amount
of speculative parallelism in the application.

To understand the two charts, we examine the floating-
point applications first. From Figure 6, we see that they have
much speculative parallelism. This is because these appli-
cations are fully loop-based, with most of them having few
or no loop-carried dependences. Consequently, the CMP is
able to exploit the parallelism in these applications to a much
greater degree than the conventional superscalars. Each pro-
cessor in the CMP executes an iteration and, most of the
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Figure 5: Comparing the IPC for the applications under the 4x4-issue CMP and a 12-
issue and 16-issue conventional superscalar. No cycle time differences are considered.

time, can independently issue instructions without being af-
fected by dependences with other threads. This is not the
case in the conventional superscalars, where the centralized
instruction window is often clogged by instructions that are
either data dependent on long-latency floating-point opera-
tions or are waiting on a cache miss. Overall, as shown in
Figure 5, the IPC of the 4x4-issue CMP is 1.8 times that of
the superscalars.

The integer applications behave differently. According to
Figure 6, the amount of speculative parallelism extracted by
the binary annotator is much lower. In fact, in compress and
l7, most of the time there is only one active processor. Com-
press, for example, spends most of the time inside a big loop
with a small inner-loop and an otherwise complicated con-
trol flow. Since we exploit inner loop parallelism only, there
is little to be exploited. In this environment, the ability of
the dynamic superscalars to exploit ILP in the serial sections
gives them an advantage. As a result, Figure 5 shows that
they have around 25% higher IPCs for these two applications.

Our approach of exploiting parallelism in binaries without
re-compilation limits the performance of the CMP in these
applications. Indeed, it has been shown that there is a large
scope for improvement even for such inherently sequential ap-
plications, when the source code is recompiled with appropri-
ate speculation support [12]. For the remaining three applica-
tions (ijpeg, mpeg and egntott) which have relatively smaller
sequential sections, the CMP has a comparable or a higher
IPC than the conventional superscalars.

We stress that we have made our comparisons solely based
on the IPC values, without taking cycle time into considera-
tion. Even assuming a modest 25% shorter cycle time for the
CMP, it would perform much better than the superscalars.
Overall, therefore, we see that the CMP with speculation
support delivers high performance even without the need for
source re-compilation.

5.2 Evaluating the SS Bus

In this section, we look at the bandwidth requirements as
well as the latency effects of the SS bus. Figure 7 shows the
execution time of the applications when the bus bandwidth is
increased from 1 to 3 registers/cycle. The execution time is
normalized to that for a bandwidth of 1 register/cycle. From
the figure, we can see that there is little performance gain
with higher bandwidth. Figure 8 looks at the effect of higher
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Figure 6: Fraction of instructions
issued by each of the four processors

in the CMP.

bus latencies. The execution time is normalized to that for
a latency is 3 cycles. As shown in the figure, changing the
latency has only a very modest effect on performance, with
a maximum change of only 4% when the latency varies from
3 to 1 cycle. From the above two results we can, therefore,
conclude that our register communication mechanism does not
place a great demand on hardware resources.
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Figure 7: Effect of the SS bus bandwidth.
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Figure 8: Effect of the SS bus latency.

5.3 Evaluating the MDT

Since a 16K-entry MDT would occupy a substantial amount
of die area, it would have to be moved off-chip and located
alongside the L2 cache. This, in fact, would have little im-
pact on performance. To see why, we simulate this scenario
by increasing the L1 to MDT latency while correspondingly



reducing the MDT to L2 latency. Figure 9 shows how the ex-
ecution time is affected when the L1 to MDT latency changes
from 1 to 5 cycles. Here, the execution time is normalized to
that for a latency of 5 cycles. We can see that there is little
change in performance for all the applications.

Unfortunately, configuring the 16K-entry MDT off-chip
would increase the pin-requirements of the chip. Conse-
quently, we would like to see a reduction in the MDT size
so that it can be configured on chip. Figure 10 studies the ef-
fect on performance when the number of MDT entries varies
from just 8 to 16K. Surprisingly, the performance saturates
with a small 64-entry MDT for most applications. swim is
the only exception, where the working set is large enough to
require a 1K-entry MDT. Overall, with such minimal space
requirement for most applications, the MDT disambiguation
hardware can be easily configured on chip.
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Figure 9: Effect of the L1 to MDT latency.
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Figure 10: Effect of the MDT size.

6 Conclusions

The chip-multiprocessor (CMP) approach is a promising
design for exploiting the ever-increasing on-chip transistor
count. It is an ideal platform to run the new generation of
multithreaded applications as well as multiprogrammed work-
loads. Moreover, it can also handle sequential workloads when
hardware support for speculation is provided. However, cur-
rent proposals either require re-compilation of the sequential
application or devote a large amount of hardware to specula-
tive execution, thereby wasting resources when running par-
allel applications. In this paper, we have presented a CMP
architecture that is generic enough and has modest hardware
support to execute sequential binaries in a most cost-effective
manner. We have discussed how we extract threads out of

sequential binaries and presented speculative hardware sup-
port that enables communication both through registers and
memory. Our evaluation shows that this architecture deliv-
ers high performance for sequential binaries with very modest
hardware requirements.
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