
Bayesian Model Based Clustering Procedures

John W. Lau∗ and Peter J. Green†

Department of Mathematics, University of Bristol, Bristol, UK

January 7, 2007

Abstract

This paper establishes a general formulation for Bayesian model-based clustering, in which subset la-

bels are exchangeable, and items are also exchangeable, possibly up to covariate effects. The notational

framework is rich enough to encompass a variety of existing procedures, including some recently discussed

methodologies involving stochastic search or hierarchical clustering, but more importantly allows the formu-

lation of clustering procedures that are optimal with respect to a specified loss function. Our focus is on loss

functions based on pairwise coincidences, that is, whether pairs of items are clustered into the same subset

or not.

Optimisation of the posterior expected loss function can be formulated as a binary integer programming

problem, which can be readily solved by standard software when clustering a modest number of items, but

quickly becomes impractical as problem scale increases. To combat this, a new heuristic item-swapping

algorithm is introduced. This performs well in our numerical experiments, on both simulated and real data

examples. The paper includes a comparison of the statistical performance of the (approximate) optimal

clustering with earlier methods that are model-based but ad hoc in their detailed definition.

Some key words: Dirichlet process, Hierarchical clustering, Loss functions, Stochastic search.

1 Introduction

Clustering methods aim to separate a heterogeneous collection of items into homogeneous subsets, and are an
important tool in scientific investigations in many different domains. There is a particular focus of activity in
recent years, as biologists have become interested in clustering high-dimensional data generated by modern high-
throughput assay techniques: for example, in order to cluster genes on the basis of gene expression measurements
from microarrays. With the rapid growth in availability of computer power, Bayesian statisticians have become
able to implement principled computer-intensive inferential methods for clustering, based for example on mixture
models [see Fraley and Raftery (2002), Medvedovic and Sivaganesan (2002), Medvedovic et al. (2004), Yeung
et al. (2001), etc.].

In a Bayesian formulation of a clustering procedure, the partition of items into subsets becomes a parameter
of a probability model for the data, subject to prior assumptions, and inference about the clustering derives from
properties of the posterior distribution. There are the usual opportunities for simultaneous inference about the
partition and other parameters, characterising the cluster locations and spreads, for example, but our principal
focus in this paper is the partition itself. In contrast to most other unknowns in a Bayesian model, where the
posterior mean provides an often adequate default choice of point estimator, there is no simple natural choice for

∗School of Statistics and Actuarial Science, University of the Witwatersrand, Private Bag 3, 2050 WITS, Johannesburg, South
Africa; Email: john.w.lau@googlemail.com

†Department of Mathematics, University of Bristol, Bristol, BS8 1TW, United Kingdom; Email: P.J.Green@bristol.ac.uk; Tel.:
(+44) (0) 117 928 7967

1

an estimator of a partition. Unlike the case of classical approaches, such as hierarchical clustering and K-means
clustering procedures, Bayesian alternatives seem not to be fully developed.

Medvedovic and Sivaganesan (2002) and Medvedovic et al. (2004) generate a sample of partitions based on
the Dirichlet process kernel mixture model, use this to estimate a pairwise similarity matrix and finally em-
ploy classical procedures [see Gordon (1999)] to define a ‘best’ partition. Somewhat similarly, Dubey, Hwang,
et al (2004) use a Dirichlet process mixture model on 10-dimensional data derived from an analysis of protein
sequences; posterior probabilities of clustering are then input to a hierarchical clustering algorithm. Again start-
ing from a Dirichlet process kernel mixture model, but with some clever choices to expedite the computations,
Dahl (2006) selects a partition from a MCMC algorithm that minimizes the sum of squared deviations from
the pairwise probability matrix (of probabilities that a pair lie in the same cluster). The procedure searches for
a partition subject to minimizing this objective function. Recently, Ray and Mallick (2006) developed a semi-
parametric wavelet model with parameters distributed according to a Dirichlet process. They took a marginal
likelihood approach, proposed by Basu and Chib (2003), to choose a partition of the data. Other relevant work,
by Heard et al (2006) and by Heller and Gharamani (2005) will be discussed in Section 3.

Choosing a partition can be considered as a model choice problem, for which the usual Bayesian tools are
marginal likelihoods and Bayes factors. Both of these essentially involve considering posterior probabilities
under a uniform prior. This might be questioned on three grounds: the arbitrariness of taking a uniform prior,
the fact that peaks of posterior probability in a high-dimensional problem can be isolated and unrepresentative,
and the problem that posterior probabilities of individual partitions are difficult to compute reliably from Monte
Carlo samples.

A loss function approach avoids these criticisms, and delivers an objective procedure. Binder (1978, 1981)
has discussed loss functions for Bayesian clustering, although many of his choices are not appropriate for our
setting, as we wish to respect exchangeability a priori in the labelling of clusters and of items. We therefore
concentrate on loss functions defined on pairwise coincidences. We penalise pairs of items that are assigned to
different clusters when they should be in the same one, and vice versa; the total loss is obtained by summing
over all pairs. The resulting posterior expected loss is a simple linear function of posterior marginal coincidence
probabilities (that is, for each pair the posterior probability they are clustered together), which are readily
estimated from a Markov chain Monte Carlo (MCMC) simulation from the posterior. See also Rue (1995) for
an important discussion of loss functions for high-dimensional Bayesian models with inference computed by
MCMC, although his detailed proposals do not seem relevant to our context.

Section 2 introduces the Bayesian partition model under a general random measure prior. The prior and
likelihood parts of the partition model are discussed separately. Section 3 discusses two existing approaches
to computing a point estimate of a partition. A naive stochastic search approach and a Hierarchical Bayesian
procedure are discussed and numerical comparisons are made.

We show in Section 4 that optimisation of this expected loss is a binary integer programming problem.
Standard techniques are far too slow for practical use for large numbers n of items (say of the order of 1000),
since the size of the integer program grows rapidly (the numbers of constraints as n3, and of variables as n2),
and so approximations are required.

Our methods are illustrated on both simulated and real data sets. The simulated data are generated from
bivariate normal mixtures with from one to four components. The real data used are the Galaxy data from
Roeder (1990), and gene expression data from a leukaemia study reported in Golub et al. (1999).

2 Bayesian Clustering Models

A partition p separates n items with observed responses y = {y1, . . . ,yn} into subsets. Such a partition
is represented as

{
C1, . . . , Cn(p)

}
where Cj denotes the jth subset or cluster, for j = 1, . . . , n (p). Each Cj

2

contains indices of the items in that cluster, and the positive integer n (p) denotes the number of clusters, which
depends of course on the partition. There is a positive number ej of items in each cluster j. Given the partition
p of items, a model for the data is defined as

π (y |p) =
n(p)∏
j=1

m ({yi, i ∈ Cj}) =
n(p)∏
j=1

m(yCj), (1)

say, where m(yCj) is the joint distribution of the responses for items in cluster Cj . We preserve exchangeability
across cluster labels and item indexing by requiring this function not to depend on j, and, typically, to be an
exchangeable function of its arguments {yi, i ∈ Cj}. Both these kinds of exchangeability follow usual practice in
clustering problems. Naturally, the demands of specific contexts may demand variations in these assumptions;
for example, in separate work we are adapting our models and criteria to gene expression profile clustering,
allowing a ‘background’ cluster not exchangeable with the others.

Since we also wish to perform clustering in the presence of covariate information {xi, i = 1, 2, . . . , n} on
the items, we allow m(yCj) to depend tacitly on {xi, i ∈ Cj}, and exchangeability over items then relates to
permuting (yi,xi) pairs jointly. Typically, we suppose

m
(
yCj

)
=
∫
U

∏
i∈Cj

k (yi | uj)G0 (duj) or
∫
U

∏
i∈Cj

k (yi | uj ;xi)G0 (duj) (2)

and k (yi |uj) is a density for yis with parameters/latent variables uj and G0 is a distribution function of uj on
the space U .

Equation (2), which guarantees the required exchangeability properties, may be viewed either as a formal
representation [de Finetti (1930, 1974), Hewitt and Savage (1955) and Diaconis and Freedman (1984, 1987)], or
as an ingredient in the specification of a Bayesian hierarchical model, in which clusters are assigned character-
ising parameters uj , i.i.d. from distribution G0, and item responses within clusters drawn independently from
distribution k (yi | uj) or k (yi | uj ;xi).

In the full Bayesian formulation, a prior probability would be assigned to each partition p, leading to a
posterior of the form

π (p | y) ∝ φ (p) = π (p)
n(p)∏
j=1

m
(
yCj

)
(3)

[References include Hartigan(1990), Barry and Hartigan (1992), and Quintana and Iglesias (2003), who regard
this as a product partition model (PPM). See also Brunner and Lo (1999) and Lo (2005)]

Of key importance to practical inference in this model setting is the question whether m(yCj) is explicitly
known or not. When it is, MCMC procedures are greatly simplified, since cluster-specific parameters uj can be
integrated out, and the posterior distribution of p alone (or possibly p together with a few hyperparameters)
can be the target of an MCMC sampler. For the remainder of this paper, we will suppose that m(yCj) is
explicitly available: in the context of (2) this amounts to assuming that G0 is conjugate for the density k(yi | ·).

2.1 The prior part of the clustering model

In the absence of real prior information about the items, we will assign positive prior probability to every
possible partition. In the interests of computational convenience, we might be attracted to prior models for
which posterior simulation methods are fully developed, and this leads us to models based on random probability
measures. The Ferguson (1973) Dirichlet process [see also Antoniak (1974)] is a popular choice, suggested by Lo
(1984). Recently, Ishwaran and James (2001, 2003a, 2003b) employ stick breaking random probability measures,
including the Kingman–Pitman–Yor Poisson–Dirichlet process, as a prior for the kernel mixture model. Another
familiar example is the finite mixture model with κ components, and a symmetric Dirichlet distribution with

3

parameters (δ, δ, . . . , δ) on the component weights; this yields an explicit prior on the partition when the weights
are integrated out. For these models, the corresponding π (p)s are

Random Probability Measures Parameters π (p) ∝
Dirichlet process θ > 0 θn(p)

n(p)∏
j=1

Γ (ej)

Finite mixture model, Dirichlet weights κ,δ > 0
κ!

(κ− n (p))!

n(p)∏
j=1

Γ(δ + ej)
Γ(δ)

Poisson–Dirichlet process θ > −α, 0 ≤ α < 1
n(p)∏
j=1

[
(θ + α (j − 1))

Γ (ej − α)
Γ (1 − α)

]
James (2002, 2005) and Lijoi et al. (2005) consider more general construction of kernel mixtures based on
certain classes of random probability measures. For more random probability measures, we refer to Kingman
(1975, 1993), Pitman (1995, 1996, 2003) as well as Pitman and Yor (1997).

In fact, however, in the conjugate setting, posterior simulation is equally straightforward for much wider
classes of prior, and all that is needed for implementation is the availability of the ratio of prior probabilities
π(p′)/π(p) when p′ is obtained from p by re-assigning a single item. Thus, given prior information, we are free
to assign prior probabilities π (p) to suit the situation; the procedures discussed in this paper will still work for
most choices.

2.2 The data part of the clustering model

We discuss two kinds of model (2). One of them follows standard Bayesian modelling lines, taking the density
k of (2) to be normal with unknown mean and unknown variance/precision, and G0 as the (Normal–Gamma)
parameter prior. Then m

(
yCj

)
will be a t-density. For the other kind of model, we directly assign m

(
yCj

)
to be an exchangeable density of yCj . This can be a convenient way to proceed, and also allows us to make
connections with the classical theory of clustering.

Normal–Gamma set up. Motivated by application to clustering gene expression profiles, we discuss a
regression type model that expresses a vector response in terms of a linear combination of known covariates.
We take yi as a vector, written as yi = [yi1 · · · yiS]′ for i = 1, . . . , n. Given the covariates xs = [xs1 · · ·xsK]′

and that i lies in the cluster j, the parameters/latent variables are βj = [βj1 · · ·βjK]′ and τj . The regression
part of the model can be written as

yi =


yi1
...
yiS

 =
K∑
k=1

βjk


x1k

...
xSk

+


εi1
...
εiS

 = [x1 · · ·xS]′ βj + εi (4)

where εi ∼ N
(
0S×1, τ

−1
j IS×S

)
, where 0S×1 is the S-dimensional zero vector and IS×S is the S × S identity

matrix. The covariates [x1 · · ·xS]′ are fixed and observed, and may as usual include dummy covariates for
factor levels. It could be an identity matrix (when K = S). From (4), yi follows a multivariate Normal
density with mean βj and variance τ−1

j IS×S . Writing uj =
(
βj , τj

)
, the kernel is represented as k

(
yi
∣∣βj , τj),

a multivariate normal density, N
(
[x1 · · ·xS]′ βj , τ

−1
j IS×S

)
. To complete the normal set up, given τj , βj follows

the K-dimensional multivariate normal with mean m0 and variance (τjt0)
−1, and τj follows the univariate

Gamma with shape a0 and scale b0. We denote the joint distribution G0(dβj , dτj) as a joint Gamma–Normal

4

distribution, Gamma–Normal (a0, b0,m0, t0). Based on the set up, we have

m
(
yCj

)
=

Γ
(

2a0 + ejS

2

)
Γ
(

2a0

2

)
∣∣∣∣ b0a0

(
XCjt

−1
0 X′

Cj
+ IejS×ejS

)∣∣∣∣−1/2

(2a0π)ejS/2
(5)

×
(

1 +
1

2a0

(
yCj − XCjm0

)′(b0
a0

(
XCjt

−1
0 X′

Cj
+ IejS×ejS

))−1 (
yCj − XCjm0

))−(2a0+ejS)/2

where yCj =
[
y′
i1 · · ·y′

iej

]′
and XCj = [[x1 · · ·xS] · · · [x1 · · ·xS]]′ for Cj =

{
i1, . . . , iej

}
. Note that yCj is a ejS

vector and XCj is a ejS ×K matrix. Moreover, m
(
yCj

)
is a multivariate t density with mean XCjm0, scale

b0
a0

(
XCjt

−1
0 X′

Cj
+ IejS×ejS

)
and degrees of freedom 2a0.

Directly assigned marginals approach. Alternatively, we can directly assignm
(
yCj

)
to be some exchange-

able (symmetric) function, that is non-negative and integrable. One interesting construction is

m
(
yCj

)
= e−ψ(yCj) (6)

where the function ψ is non-negative and exchangeable. A popular choice of function ψ is

ψ
(
yCj

)
= wj ×

∑
i∈Cj

(
yi − ȳCj

)′ (
yi − ȳCj

)
(7)

where
ȳCj =

1
ej

∑
i∈Cj

yi

Usually, we would like to choose wj = 1 and the ψ is related to the sum of squared errors within each cluster.
This gives a stochastic version of the Ward (1963) clustering model. Moreover, wj = ej gives us an interesting
case, that is

ψ
(
yCj

)
= ej ×

∑
i∈Cj

(
yi − ȳCj

)′ (
yi − ȳCj

)
=

∑
i1<i2,i1,i2∈Cj

di1,i2 (8)

where
di1,i2 = (yi1 − yi2)

′ (yi1 − yi2)

These models focus on the sum of the pairwise distances of all pairs in each cluster. See also Banfield and
Raftery (1993) for some existing models. For an analogue of (5), we could take

ψ
(
yCj

)
=
∑
i∈Cj

(
yi − [x1 · · ·xS]′ β̂Cj

)′ (
yi − [x1 · · ·xS]′ β̂Cj

)
(9)

where
β̂Cj

=
(
X′
Cj

XCj

)−1

X′
Cj

yCj (10)

This is an extension from the random sample case (7) to the regression case. It is also minus twice the exponent
of a normal density which is a limiting case of (5), in which we take b0 = a0, t0 = 0,m0 = 0 and 2a0 → ∞.
Note that (10) is valid for any size of cluster if and only if S ≥ K; otherwise estimators other than least squares
could be used.

5

3 Clustering procedures

MCMC procedures deliver an approximation to the posterior of the partition p, but for many purposes a single
point estimate p̂ will be sought. In the following section, we consider optimal point estimates based on loss
functions, but using the posterior alone, perhaps the only reasonable estimate is the posterior mode, maximising
(3). Two main kinds of approach have been considered recently, and will be discussed in the section.

First, stochastic search methods simply run a MCMC sampler in equilibrium for the posterior distribution,
and record the p with highest posterior probability encountered during the run. For example, Brunner and Lo
(1999) do this for a Dirichlet process model, using the usual Gibbs sampler for the partition allocation variables
(the “weighted Chinese restaurant process” procedure). Recently, Nobile and Fearnside (2005) proposed an
allocation sampler which seems to be an efficient alternative sampler for such models, although their setting
is the finite mixture model with Multinomial–Dirichlet prior. Other than the sampler used here, stochastic
search may be performed using other MCMC samplers over the posterior distribution. Examples include the
samplers proposed by West et al. (1994) and Richardson and Green (1997) for mixture models. The chief
weakness of such stochastic search schemes is that, since the number of possible partitions (given by the Bell
number) is huge, it is impossible to visit all possible partitions to identify p̂. Moreover, it seems intractable to
produce proper summary statistics, say frequency counts, of the visited partitions as the set of visited partitions
may be very irregular. Yet, we may encounter a partition close to p̂ fortuitously. A more disciplined but
computationally-intensive MCMC-based approach to optimisation is simulated annealing (Kirkpatrick, et al,
1983), but we do not pursue this here.

Heard et al. (2006) and Heller and Ghahramani (2005) have both avoided MCMC sampling in approximating
the posterior mode in a Bayesian clustering model. Bayesian hierarchical clustering is a deterministic hierarchical
agglomerative model based procedure. Here we follow in detail Heard et al, who use finite mixture models over a
Multinomial–Dirichlet prior. The idea is simple: two clusters are combined iteratively to maximise the posterior
probability (3). A sequence of partitions is built up from n singleton clusters initially, terminating in a single
cluster. As the number of clusters n (p) decreases, the values of the posterior probability (3) first rises and then
falls again; the best partition over this sequence can then be discovered.

3.1 Stochastic search by posterior sampling of partitions

We briefly discuss the Gibbs sampler for allocation variables, also known as the weighted Chinese restaurant
process procedure. The objective is to sample p from the stationary distribution π (p |y) [see Escobar and West
(1995, 1998), Ishwaran and James (2001, 2003a, 2003b), Lo et al. (1996), MacEachern (1994), MacEachern
and Müller (1998, 2000), Neal (2000), West et al. (1994), etc.]. Here we simply introduce the procedures.
Given a partition p, one item, say k, is removed, leaving a partition of n − 1 items which we denote as
p−k =

{
C1,−k, . . . , Cn(p−k),−k

}
. The size of each cluster is ej,−k for j = 1, . . . , n (p−k) and the number of

clusters is n (p−k). The item will be assigned to a new cluster with probability proportional to

m
(
y{k}

)×


θ for the Dirichlet process
(κ− n(p−k))δ for the finite mixture model
θ + αn (p−k) for the Poisson–Dirichlet process
1 for the Uniform Prior

6

and the item will be assigned to the cluster j with probability proportional to

m
(
y{k}∪Cj,−k

)
m
(
yCj,−k

) ×


ej,−k for the Dirichlet process
ej,−k + δ for the finite mixture model
ej,−k − α for the Poisson–Dirichlet process
1 for the Uniform Prior

for j = 1, . . . , n (p−k). In general, the sampler can be described as follows. The item will be assigned to a new
cluster with probability proportional to

m
(
y{k}

)× π
(
C1,−k, . . . , Cn(p−k),−k, {k}

)
π
(
C1,−k, . . . , Cn(p−k),−k

)
and the item will be assigned to the cluster j with probability proportional to

m
(
y{k}∪Cj,−k

)
m
(
yCj,−k

) × π
(
C1,−k, . . . , Cj,−k ∪ {k} , . . . , Cn(p−k),−k

)
π
(
C1,−k, . . . , Cj,−k, . . . , Cn(p−k),−k

)
for j = 1, . . . , n (p−k).

As an alternative to the weighted Chinese restaurant process procedure, Nobile and Fearnside (2005) pro-
pose a series of procedures to sample from a partition model generated by a finite mixture models with a
Multinomial–Dirichlet prior in order to enhance the mixing of the sampler. Inspired by the reversible jump
sampling idea, it is an efficient Metropolis–Hastings sampler for re-allocating items among partitions. Here we
mention two related moves. The Absorption/Merge Move proposes combining two randomly chosen clusters into
one; the Ejection/Split Move is the reverse move. If the two clusters concerned are Cj1 and Cj2 , the acceptance
probabilities for these moves are min{1, R} and min{1, R−1}, where in general,

R =
m
(
yCj1∪Cj2

)
m
(
yCj1

)
m
(
yCj2

) π (C1, . . . , Cj1 ∪Cj2 , . . . , Cn(p)

)
π
(
C1, . . . , Cn(p)

)
Other moves are available by systematically transferring items between partition subsets.

3.2 Bayesian hierarchical clustering procedures

We will use our model (3) to present the idea of the deterministic hierarchical agglomerative model based
clustering procedure of Heard et al. (2006), which can generally be computed very cheaply compared to methods
requiring Monte Carlo sampling over partitions. There are some interesting features that only appear in partition
models generated by the class of random probability measures, e.g, the Dirichlet process and Poisson–Dirichlet
process. We initiate the procedure with all singleton clusters, and step-by-step, combine pairs of clusters until
all items are clustered together.

The iterative step is at each stage to combine the two clusters Cj1 and Cj2 that maximise

m
(
yCj1∪Cj2

)
m
(
yCj1

)
m
(
yCj2

) × η (ej1 , ej2)

7

where

η (ej1 , ej2) =



Γ (ej1 + ej2)
Γ (ej1) Γ (ej2)

for the Dirichlet process

Γ (ej1 + ej2 + δ)
Γ (ej1 + δ) Γ (ej2 + δ)

for the finite mixture model

Γ (ej1 + ej2 − α)
Γ (ej1 − α) Γ (ej2 − α)

for the Poisson–Dirichlet process

1 for the Uniform Prior

This choice of clusters to combine maximises the posterior quantity (3) among all partitions that can be
obtained from the present one by merging a pair of clusters. Suppose we move p =

{
C1, . . . , Cn(p)

}
to

p∗ =
{
C∗

1 , . . . , C
∗
n(p∗)

}
where ej for j = 1, . . . , n (p) and e∗j for j = 1, . . . , n (p∗) are the size of clusters

respectively. Then, from (3), we find:

φ (p∗) = φ (p) ×
(

1
ξ
η (ej1 , ej2)

m
(
yCj1∪Cj2

)
m
(
yCj1

)
m
(
yCj2

))

where

ξ =



θ for the Dirichlet process
(κ− (n (p) − 1)) δ

Γ(δ + 1)
for the finite mixture model

θ + α (n (p) − 1)
Γ(1 − α)

for the Poisson–Dirichlet process

1 for the Uniform Prior

In practice, Heard et al. (2006) construct a sequence of partitions from the all-singletons partition to a single
cluster partition, and then determine the best partition by comparisons though (3). Note that the maximizing
process does not depend on the quantity ξ.

We now consider particular cases of this procedure for specific directly assigned choices of m(yCj). If we
choose m

(
yCj

)
in (2), to be given by (6) and (7), and tailor-make π (p) ∝ θn(p) for an assumed value of θ, the

procedure works as follows. Iteratively, we combine two clusters Cj1 and Cj2 if

ej1ej2
ej1 + ej2

(
ȳCj1

− ȳCj2

)′ (
ȳCj1

− ȳCj2

) ≤ min
j2,j1∈{1,...,n(p)},j1 �=j2

{
ej1ej2
ej1 + ej2

(
ȳCj1

− ȳCj2

)′ (
ȳCj1

− ȳCj2

)}
; (11)

see the Appendix for the proof. We can interpret the resulting procedure as an instance of the hierarchical
clustering algorithm of Ward (1963), as the parameter θ can be regarded as an analogue of the presumed
number of clusters in the classical Ward procedure. For any given θ, we can compute functionals of the prior
information we are assigning to partitions through simulation.

Next we take m
(
yCj

)
to be (8). The procedure works as follows. Iteratively, we combine two clusters Cj1

and Cj2 if ∑
i1∈Cj1

∑
i2∈Cj2

di1,i2 ≤ min
j2,j1∈{1,...,n(p)},j1 �=j2

 ∑
i1∈Cj1

∑
i2∈Cj2

di1,i2

 . (12)

For the regression case, we take m
(
yCj

)
to be (9), and the procedure then works as follows.

(
β̂Cj1

− β̂Cj2

)′
WCj1 ,Cj2

(
β̂Cj1

− β̂Cj2

)
(13)

≤ min
j2,j1∈{1,...,n(p)},j1 �=j2

{(
β̂Cj1

− β̂Cj2

)′
WCj1 ,Cj2

(
β̂Cj1

− β̂Cj2

)}
where

WCj1 ,Cj2
=
[(

X′
Cj1

XCj1

)−1

+
(
X′
Cj2

XCj2

)−1
]−1

8

3.3 Real and simulated data sets

In order to make comparisons with different procedures, we employ 4 sets of artificial data and 2 sets of real
data to illustrate our methodology.

3.3.1 Simulated mixtures

We generate 4 sets of data. We first consider a 4 component mixture of bivariate Normal densities,

4∑
i=1

wiN (µi,Σi) with parameters
µ1 = (2, 2)′ µ2 = (2,−2)′ µ3 = (−2, 2)′ µ4 = (−2,−2)′

Σ1 = I2×2 Σ2 = I2×2 Σ3 = I2×2 Σ4 = I2×2

where I2×2 represent the identity matrix of order 2. We generate an artificial data set with the following settings,

w1 w2 w3 w4

Model 1 1 0 0 0
Model 2 1/2 1/2 0 0
Model 3 1/3 1/3 1/3 0
Model 4 1/4 1/4 1/4 1/4

We take the covariate [x1 · · ·xS]′ = I2×2 for S = 2 and K = 2. A comparison between the stochastic search
procedures and hierarchical clustering procedures is performed. We take 100 sets of data from each of the
models 1–4, each with n = 100 data points. We fit the data to the model (5) with the Dirichlet process prior.
The parameters are assigned to be θ = 1, a0 = 1, b0 = 0.01,m0 = [0 · · · 0]′ , t0 = 0.01I. We employ both SS and
BH procedures. For the stochastic search method, we run the Gibbs sampler for 20000 sweeps. We record the
partition of greatest posterior probability among all 20000 sweeps. In Figure 1 we plot the log (φ (p)) of the
stochastic search (SS) versus that of Bayesian hierarchical clustering procedures (BH). This seems to suggest
that the “hidden” number of components has an effect on the performance of both procedures. The stochastic
search (SS) attains higher posterior probability partitions than the Bayesian hierarchical clustering procedure
(BH) when the “hidden” number of components increases.

3.3.2 Galaxy data

The famous Roeder (1990) galaxy data consists of measurements of velocities in km/sec of 82 galaxies from
a survey of the Corona Borealis region. The data set is available in the paper, as well as in the VR package
of the statistical system R. We take the covariate [x1 · · ·xS]′ = 1 for S = 1 and K = 1. We fit our models
to these data. We plot the log posterior probability log (φ (p)) against the number of clusters of the Bayesian
hierarchical clustering procedures (BH) in Figure 2, and against sweep number for the first 200 sweeps of the
stochastic search (SS) in Figure 3. Interestingly, both procedures attain the same highest-posterior-probability
p, suggesting that the optimal number of clusters is 3. Moreover, stochastic search (SS) first attains the best p
at the 181th sweep of the 20000 sweeps used for comparison. Of course, we may want more sweeps to get better
performance. In Figure 4, in addition to the histogram we indicate the observations, and the inferred clusters,
numbered in no particular order.

3.3.3 Leukaemia data

The leukaemia data of Golub et al. (1999) consists of 7129 gene expression levels of 72 patients with either
acute myeloid leukaemia (AML) or acute lymphoblastic leukaemia (ALL). Golub et al. (1999) split the data
into training and test sets. The training set consists of 38 patients, of which 27 have acute lymphoblastic (ALL)
and 11 have acute myeloid leukaemia (AML) cases, while the test set of 34 patients has 20 with ALL and

9

Figure 1: Comparisons between SS and BH under Models 1–4 based on log posterior probability.

log (φ (p)) of best partitions from
SS vs those from BH for model 1

−140 −130 −120 −110 −100

−
14

0
−

13
0

−
12

0
−

11
0

−
10

0
lo

g(
φ(

p
))

 o
f s

to
ch

as
tic

 s
ea

rc
h

log(φ(p)) of Bayesian hierarchical clustering procedures

log (φ (p)) of best partitions from
SS vs those from BH for model 3

−260 −250 −240 −230

−
26

0
−

25
0

−
24

0
−

23
0

lo
g(
φ(

p
))

 o
f s

to
ch

as
tic

 s
ea

rc
h

log(φ(p)) of Bayesian hierarchical clustering procedures

log (φ (p)) of best partitions from
SS vs those from BH for model 2

−220 −210 −200 −190 −180 −170

−
22

0
−

21
0

−
20

0
−

19
0

−
18

0
−

17
0

lo
g(
φ(

p
))

 o
f s

to
ch

as
tic

 s
ea

rc
h

log(φ(p)) of Bayesian hierarchical clustering procedures

log (φ (p)) of best partitions from
SS vs those from BH for model 4

−300 −290 −280 −270 −260 −250

−
30

0
−

29
0

−
28

0
−

27
0

−
26

0
−

2
lo

g(
φ(

p
))

 o
f s

to
ch

as
tic

 s
ea

rc
h

log(φ(p)) of Bayesian hierarchical clustering procedures

Figure 2: Log posterior partition probability vs number of clusters, using BH algorithm applied to the Galaxy
data.

−
80

0
−

60
0

−
40

0
−

20
0

0 −31.42

80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5

3

lo
g(
φ(

p
))

n(p)

10

Figure 3: Log posterior partition probability vs sweep number, using SS algorithm applied to the Galaxy data.

−
80

0
−

60
0

−
40

0
−

20
0

0 −31.42

20 40 60 80 100 120 140 160 180 200

181

lo
g(
φ(

p
))

iteration

Figure 4: The best partition of the Galaxy data produced by the SS and BH algorithms.

10 15 20 25 30 35

0
5

10
15

velocity

F
re

qu
en

cy

Cluster 1 Cluster 2 Cluster 3

11

Figure 5: Log posterior partition probability vs number of clusters, using BH algorithm applied to the Leukaemia
data.

−
26

55
00

−
26

45
00

−
26

35
00

−263793.14

100 90 80 70 60 50 40 30 20 10 5

12

lo
g(
φ(

p
))

n(p)

14 with AML. Acute lymphoblastic leukaemia actually arises from two different types of lymphocytes (T-cell
and B-cell). Among all 47 ALL patients, there are 38 and 9 with B-cell and T-cell lymphocytes respectively.
The data set is available at the website http://www-genome.wi.mit.edu/mpr/data_set_ALL_AML.html and
in the golubEsets package of the Bioconductor system (Gentleman, et al, 2004). Following Dudoit et al.
(2002), to transform the data we employ: (a) thresholding using a floor of 100 and ceiling of 16,000; (b) filtering,
exclusion of genes with max/min≤5 or max−min≤1600, where max and min refer to the maximum and minimum
intensities for a particular gene across the 72 mRNA samples; and (c) base 10 logarithmic transformation. There
are 1656 genes left. The analyzed data set is a normalized version of the selected gene expressions. Each gene is
normalized by subtracting its mean and dividing by its standard deviation across patients/samples. The design
matrix of covariates [x1 · · ·xS]′ is taken to be

[x1 · · ·xS]′ =

 1 · · · 1 1 · · · 1 1 · · · 1
1 · · · 1 0 · · · 0 0 · · · 0
0 · · · 0 1 · · · 1 0 · · · 0


′

︸ ︷︷ ︸
ALL (B-CELL) ALL (T-CELL) AML

for S = 72 and K = 3.
We fit the Leukaemia data to the cluster models. We plot the log posterior probability log (φ (p)) against

the number of clusters of the Bayesian hierarchical clustering procedures (BH) in Figure 5, and against sweep
number for 20000 sweeps of the stochastic search (SS) in Figure 6. In the plots, we also indicate where the best
partitions are. In this case, stochastic search (SS) performs much better than Bayesian hierarchical clustering
procedures (BH) in terms of quality, in that it discovers higher posterior probability partitions.

4 Optimal Bayesian clustering using a pairwise coincidence loss func-

tion

As previously commented, the maximum a posteriori partition has no objective status as a best estimate of
the clustering of the data. Posterior modes can be increasingly unrepresentative measures of the ‘centre’ of
a posterior distribution as the dimensionality of the unknown parameter increases. In normative Bayesian
theory, point estimation can only be accomplished after specifying a loss function: the optimal estimate is that
parameter value minimising the posterior expected loss. That is, if the focus is on the partition p, we have to

12

Figure 6: Log posterior partition probability vs sweep number, using SS algorithm applied to the Leukaemia
data.

−
26

55
00

−
26

45
00

−
26

35
00

−263040.69

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

12045

lo
g(
φ(

p
))

iteration

define a loss function L(p, p̂), the cost incurred in declaring that the true partition is p̂ when it is really p, and
choose as our optimal partition that p̂ which minimises E(L(p, p̂)|y). Of course, the partition which maximises
the posterior probability is the optimal Bayesian estimator under zero-one loss; however, we regard this as very
weak justification for using it as we do not find this loss function intuitively appealing.

The requirements of exchangeability of subset labels and items imposes strong constraints on the form of
L(·, ·), and the interests of tractability are even more demanding. We choose to use one of the loss functions
discussed by Binder (1978, 1981), which considers pairs of items and incurs a penalty for each pair that are
clustered together when they should not be, and vice versa. That is, if ci denotes the allocation variable: ci = k

if and only if i ∈ Ck, we define

L(p, p̂) =
∑

(i,j)∈M
(aI[ci = cj, ĉi 	= ĉj] + bI[ci 	= cj , ĉi = ĉj]) .

Here M = {(i, j) : i < j; i, j ∈ {1, . . . , n}}, and a and b are given non-negative constants, the unit costs for each
kind of pairwise misclassification.

The posterior expected loss is evidently

E(L(p, p̂)|y) =
∑

(i,j)∈M
(aI[ĉi 	= ĉj]P{ci = cj|y} + bI[ĉi = ĉj]P{ci 	= cj |y})

Let us abbreviate the posterior coincidence probabilities P{ci = cj |y} = ρij , then we can write

E(L(p, p̂)|y) = a
∑

(i,j)∈M
ρij − (a+ b)

∑
(i,j)∈M

I[ĉi = ĉj](ρij −K)

where K = b/(a+ b) ∈ [0, 1]. Minimising the posterior expected loss is thus equivalent to maximising

�(p̂,K) =
∑

(i,j)∈M
I[ĉi = ĉj](ρij −K) (14)

over choice of p̂.
Curves of the objective function �(p̂,K) regarded as a function of K are linear and have non-positive integer

slopes and non-negative intercepts, for each p̂. These functions of K characterise the quality of each possible
p̂, and the whole ensemble of such functions determines in particular for which K, if any, each partition is
optimal, as well as defining the optimal p̂ for each K. Our approach, therefore, is to consider all values of K

13

Figure 7: The objective function � (p̂,K) vs K for various partitions, for the illustrative Example.

−
6

−
4

−
2

0
2

4

0.0 0.2 0.4 0.6 0.8 1.0

{1,2},{3},{4,5

{1,2},{3,4,5}

{1,2,3},{4,5}

{1,2,4,5},{3}

{1,2,3,4,5}

{1},{2},{3},{4},{5}

K

l(
p̂

)

simultaneously.
Example Suppose there are 5 items and that the partitions of these have probabilities

p1 = {{1, 2, 3} , {4, 5}} P {p = p1} = 0.5
p2 = {{1, 2} , {3} , {4, 5}} P {p = p2} = 0.2
p3 = {{1, 2} , {3, 4, 5}} P {p = p3} = 0.3

The ρ matrix can be calculated easily based on those probabilities.

1 2 3 4 5
1 − 1 0.5 0 0
2 − − 0.5 0 0
3 − − − 0.3 0.3
4 − − − − 1
5 − − − − −

Figure 7 shows the objective function �(p̂,K) and related partitions. The dotted lines represent the performance
of various partitions. The solid curves represent the optimal performance for each value of K. It is easy to
observe that the solid curve is formed from three straight line segments. Each of these segments corresponds to
a partition that is optimal for certain K; note that one of these three has zero posterior probability, while one
of those with positive posterior probability is never optimal.

4.1 A binary integer programming formulation

We will represent the maximisation of (14) as a binary integer programming problem. Let us replace the
indicator function I[ĉi = ĉj] by a binary (0/1) variable Xij ; the objective function is a linear combination of the
Xij with weights (ρij−K). Since ĉ represents a proper partition of the items, the Xij are subject to constraints.
It is easy to see that what we require is that for all triples (i, j, k), if Xij = 1 then Xik = Xjk. These boolean
constraints can be represented as algebraic inequalities, and we find that maximisation of (14) is equivalent to

14

Figure 8: Running time vs problem size for simulated mixture models 1–4, using linear programming.

2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6

−
4

0
2

4
6

8
10

lo
g(

T
im

e)
 (

in
 lo

g(
se

c)
)

log(n)

Model 1
Model 2

Model 3
Model 4

solving the optimisation problem:

max
{Xij :i,j∈M}

∑
i,j∈M

Xij (ρij −K)

s.t. Xij +Xik −Xjk ≤ 1 for {i 	= j 	= k 	= i : i, j, k ∈ {1, . . . , n}} (15)

Xij ∈ {0, 1} for i, j ∈ M

We conduct a modest experiment to study the feasability of solving this programming problem, although
Bansal et al. (2004) have already shown that this is an NP hard problem. We use data sets of n points from each
of models 1–4, for various values of n, each replicated 10 times. The regression marginal (5) is fitted to each data
set, using a Dirichlet process prior with settings θ = 1.0, a0 = 1.0, b0 = 0.01,m0 = 0, t0 = 0.01I. The matrix
[x1 · · ·xS]′ is chosen to be an identity matrix IS×S . The MCMC sampler discussed in Section 3.1 was used to
generate 10,000 sweeps following 10,000 burn-in for each data sequence. We then estimated ρij for each data
sequence using the last 10,000 sweeps. We use the lpSolve package (Berkelaar et al, 2006) of the statistical
system R to solve the programming problem (15) for each K ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. The
code in this package solves general mixed linear-integer programmes. In all of the computations using lpSolve
reported in this paper, exactly the same solutions are obtained whether or not the solution is constrained to be
integer; however, it is possible to construct sets of ρij for which this is not true. The times spent on solving
the problem are recorded in seconds. In Figure 8 we plot log (Time) against log (n) for each data set and least
square regression parameters are estimated. In our very rough prediction, we may spend 225.57 billion years
to solve a programming program with n = 1000. This demonstrates the need for a faster algorithm to perform
the optimisation, or at least to obtain an approximation to the optimum.

4.2 A novel algorithm

When K = 1 or K = 0, the optimal partitions are trivially obtained – they are those corresponding to Xij = 0
and Xij = 1 for all i, j in the set M, respectively. For other K, as we have seen, the solution is not obvious and
the problem NP hard. We propose an iterative procedure that gives a locally optimal solution for the problem.
The main idea is to solve the problem partially in each iteration; see the following algorithm 1. We subsequently
introduce a procedure that gives locally optimal solutions simultaneously for all K ∈ [0, 1]; see Algorithm 2.
Algorithm 1 Define Mi = {(1, i), . . . , (i− 1, i), (i, i+ 1), . . . , (i, n)}. Given a value K and a partition p,

15

Step 1 For i = 1, . . . , n, given {Xjk : j, k ∈ M\Mi} are fixed, solve a binary integer programming problem

max
{Xjk:j,k∈Mi}

∑
j,k∈Mi

Xjk (ρjk −K)

s.t. Xij +Xik −Xjk ≤ 1 for {i 	= j 	= k 	= i : i, j, k ∈ {1, . . . , n}}
Xij ∈ {0, 1} for i, j ∈ M

Step 2 Go to step 1 if the value of the objective function evaluated at the new partition exceeds that on the
previous iteration.

Algorithm 1 expresses the idea that we can seek to increase the objective function by cycling over items i, taking
i out of the current partition and reallocating it in the optimal way: either by assigning it to an existing cluster
or by creating a new one.

As we varyK and thus the relative costs of the two kinds of pairwise error in clustering, the optimal partition
varies. If K is not pre-determined, we may repeat Algorithm 1 for several choices of K, but there are advantages
of convenience and efficiency in considering all K ∈ [0, 1] simultaneously. Empirically, we find this also helps to
avoid converging to local optima.

As we see from (15), each partition p is characterised by a non-increasing linear function of K, with intercept
and slope depending on p. For any set of partitions P , we can define

�(P ,K) = max
p∈P

�(p,K)

and by basic properties of convexity, this is a non-increasing convex polygonal (piecewise linear) function of
K for each P , and is non-decreasing (with respect to set inclusion) in P for each K. Further, �(P ,K) can be
parameterised by a set of increasing values 0 = K0 < K1 < · · · < Kr = 1 and partitions p1,p2, . . . ,pr ∈ P ,
with

�(P ,K) = �(ps,K) for all K ∈ [Ks−1,Ks] (16)

for s = 1, 2, . . . , r. Note that ps is optimal among p ∈ P (�(ps,K) ≥ �(p,K)) for all K ∈ [Ks−1,Ks].
Our true objective is, for every K, to maximise �(p,K) over the set P̃ of all partitions; we could then use

(16) with P = P̃ to read off the optimal partition (which is evidently constant on intervals of K) for each K.
For any subset P ⊆ P̃ , �(P ,K) is a lower bound for �(P̃,K). Algorithm 2 is a heuristic for iteratively increasing
P and hence the lower bound �(P ,K) to obtain successive approximations to the optimum.
Algorithm 2 Initiate the algorithm by setting P = {pa,ps} where pa is the partition that has all items in one
cluster and ps is the partition consisting of all singleton clusters.

Step 1 Take a pair of adjacent partitions, say ps and ps+1, from the set representing �(P ,K) defined in (16).
Step 2 Run Algorithm 1 twice using the value Ks, starting from partitions ps and ps+1. The resulting parti-

tions are p∗
s and p∗

s+1.
Step 3 Insert p∗

s and p∗
s+1 into the set P.

Step 4 Recompute the representation (16) for the modified set of partitions P.
Step 5 End if all pairs (ps,ps+1) have been visited and the representation of the set P is unchanged; go to

step 1 otherwise.

We perform an experiment based on the same settings as in the previous section, using Algorithm 2 on
the interval [0, 0.99]. (We find that the optimal partition changes rapidly for K near 1, so that Algorithm 2
is computationally expensive applied to the full interval.) In Figure 9 we plot the log (Time) against log (n)
for each data set, and estimate the least squares regression. Interestingly, the run time of the algorithm is an
increasing function of the number of hidden components. We predict a run time of 3.51 hours to solve the
optimisation for n = 1000 items under model 4.

16

Figure 9: Running time vs problem size for simulated mixture models 1–4, using Algorithm 2.

4.0 4.5 5.0

−
4

−
2

0
2

lo
g(

T
im

e)
 (

in
 lo

g(
se

c)
)

log(n)

Model 1
Model 2

Model 3
Model 4

Table 1: Proportion of 10,000 replicates from model 1 for which Algorithm 2 obtains the true optimum, for a
range of K and n.

K = 0.1 K = 0.2 K = 0.3 K = 0.4 K = 0.5 K = 0.6 K = 0.7 K = 0.8 K = 0.9
n = 3 1 1 1 1 1 1 1 1 1
n = 4 1 1 1 1 1 1 1 1 1
n = 5 1 1 1 1 1 1 1 1 0.9999
n = 6 0.9990 0.9993 0.9994 0.9998 0.9996 0.9994 0.9996 0.9998 0.9998
n = 7 0.9985 0.9983 0.9984 0.9985 0.9984 0.9986 0.9993 0.9993 0.9995
n = 8 0.9971 0.9974 0.9982 0.9986 0.9982 0.9980 0.9982 0.9991 0.9991
n = 9 0.9966 0.9978 0.9978 0.9966 0.9977 0.9979 0.9981 0.9990 0.9988

n = 10 0.9986 0.9980 0.9983 0.9987 0.9983 0.9984 0.9985 0.9991 0.9984
n = 11 0.9983 0.9986 0.9987 0.9985 0.9987 0.9982 0.9979 0.9982 0.9982
n = 12 0.9987 0.9981 0.9983 0.9978 0.9987 0.9986 0.9993 0.9993 0.9984
n = 13 0.9989 0.9987 0.9987 0.9986 0.9990 0.9987 0.9986 0.9991 0.9982
n = 14 0.9985 0.9993 0.9996 0.9990 0.9986 0.9989 0.9991 0.9985 0.9987
n = 15 0.9992 0.9997 0.9997 0.9992 0.9994 0.9993 0.9997 0.9987 0.9984

As pointed out by a referee, we may also attempt to find the optimal partition using stochastic search: that
is, to deliver as an estimate the partition with smallest expected loss encountered during the Monte Carlo run.
This is somewhat similar to the approach of Dahl (2006), in a different model, although he does not use an
explicit decision theoretic formulation. We have not explored this, but note that this method always yields one
of the partitions actually visited during the run, whereas our approach considers a much larger set of possible
partitions.

4.3 Numerical experiments

4.3.1 Assessment of heuristic approximation

Our assessment of the performance of the algorithm uses models 1–4, but with small data sets, n varying from
3 to 15. 10000 replications are made of each case. We fit the regression marginal (5) to each data set, with the
Dirichlet process prior. The matrix [x1 · · ·xS]′ is chosen to be the identity matrix IS×S . The sampling uses the
Gibbs sampler with parameters θ = 1.0, a0 = 1.0, b0 = 0.01,m0 = 0, t0 = 0.01I and generates 10,000 partitions
following 10,000 burn-in for each data set. We estimate ρij for each data set based on the last 10,000 sweeps.
We use our Algorithm 2 to generate best partitions for K ∈ [0, 0.99], and compare these to the true optima,
calculated using lpSolve as in Section 4.1. Tables 1 – 4 show the proportions of runs in which the algorithm
finds the true optimum for different K and n, while Tables 5 – 8 show the mean of the ratios of the optimised
�(p,K) for different K and n.

17

Table 2: Proportion of 10,000 replicates from model 2 for which Algorithm 2 obtains the true optimum, for a
range of K and n.

K = 0.1 K = 0.2 K = 0.3 K = 0.4 K = 0.5 K = 0.6 K = 0.7 K = 0.8 K = 0.9
n = 3 1 1 1 1 1 1 1 1 1
n = 4 1 1 1 1 1 1 1 1 1
n = 5 1 1 1 1 1 1 1 1 1
n = 6 0.9978 0.9996 0.9999 0.9998 0.9998 0.9998 0.9996 0.9997 0.9995
n = 7 0.9871 0.9952 0.9983 0.9995 0.9998 0.9996 0.9997 0.9995 0.9993
n = 8 0.9748 0.9875 0.9945 0.9972 0.9989 0.9995 0.9995 0.9993 0.9988
n = 9 0.9648 0.9775 0.9904 0.9945 0.9965 0.9979 0.9988 0.9989 0.9980

n = 10 0.9564 0.9748 0.9875 0.9927 0.9969 0.9976 0.9983 0.9992 0.9987
n = 11 0.9529 0.9696 0.9852 0.9918 0.9955 0.9971 0.9967 0.9975 0.9986
n = 12 0.9493 0.9673 0.9829 0.9914 0.9943 0.9955 0.9970 0.9971 0.9983
n = 13 0.9478 0.9688 0.9838 0.9899 0.9922 0.9943 0.9950 0.9961 0.9973
n = 14 0.9517 0.9702 0.9825 0.9902 0.9926 0.9932 0.9951 0.9965 0.9962
n = 15 0.9475 0.9689 0.9836 0.9877 0.9928 0.9937 0.9959 0.9955 0.9968

Table 3: Proportion of 10,000 replicates from model 3 for which Algorithm 2 obtains the true optimum, for a
range of K and n.

K = 0.1 K = 0.2 K = 0.3 K = 0.4 K = 0.5 K = 0.6 K = 0.7 K = 0.8 K = 0.9
n = 3 1 1 1 1 1 1 1 1 1
n = 4 1 1 1 1 1 1 1 1 1
n = 5 1 1 1 1 1 1 1 1 1
n = 6 0.9970 0.9993 1 0.9999 0.9999 0.9999 0.9999 0.9997 0.9996
n = 7 0.9891 0.9961 0.9991 0.9999 0.9998 0.9998 0.9997 0.9996 0.9992
n = 8 0.9752 0.9904 0.9958 0.9978 0.9992 0.9995 0.9992 0.9987 0.9984
n = 9 0.9616 0.9817 0.9883 0.9961 0.9982 0.9987 0.9993 0.9989 0.9982

n = 10 0.9463 0.9690 0.9828 0.9884 0.9956 0.9975 0.9980 0.9989 0.9987
n = 11 0.9377 0.9620 0.9776 0.9862 0.9931 0.9962 0.9979 0.9986 0.9983
n = 12 0.9240 0.9582 0.9745 0.9854 0.9907 0.9943 0.9970 0.9986 0.9983
n = 13 0.9168 0.9537 0.9741 0.9844 0.9885 0.9919 0.9953 0.9974 0.9974
n = 14 0.9164 0.9522 0.9719 0.9828 0.9881 0.9897 0.9926 0.9961 0.9968
n = 15 0.9257 0.9517 0.9723 0.9806 0.9867 0.9897 0.9929 0.9945 0.9962

Table 4: Proportion of 10,000 replicates from model 4 for which Algorithm 2 obtains the true optimum, for a
range of K and n.

K = 0.1 K = 0.2 K = 0.3 K = 0.4 K = 0.5 K = 0.6 K = 0.7 K = 0.8 K = 0.9
n = 3 1 1 1 1 1 1 1 1 1
n = 4 1 1 1 1 1 1 1 1 1
n = 5 1 1 1 1 1 1 1 1 1
n = 6 0.9985 0.9999 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
n = 7 0.9925 0.9981 0.9991 0.9996 0.9997 0.9995 0.9994 0.9992 0.9987
n = 8 0.9773 0.9917 0.9959 0.9983 0.9991 0.9991 0.9987 0.9977 0.9968
n = 9 0.9626 0.9807 0.9894 0.9942 0.9962 0.9981 0.9984 0.9969 0.9955

n = 10 0.9581 0.9759 0.9831 0.9893 0.9938 0.9968 0.9978 0.9975 0.9957
n = 11 0.9519 0.9698 0.9790 0.9869 0.9905 0.9948 0.9958 0.9984 0.9973
n = 12 0.9522 0.9658 0.9755 0.9828 0.9909 0.9934 0.9954 0.9971 0.9961
n = 13 0.9527 0.9677 0.9780 0.9821 0.9870 0.9917 0.9939 0.9967 0.9961
n = 14 0.9539 0.9676 0.9804 0.9825 0.9860 0.9906 0.9921 0.9958 0.9969
n = 15 0.9584 0.9709 0.9782 0.9847 0.9865 0.9888 0.9945 0.9948 0.9953

Table 5: Mean of the ratio of expected posterior loss calculated by Algorithm 2 to the true minimised expectation,
over 10,000 replicates from model 1, for various K and n.

K = 0.1 K = 0.2 K = 0.3 K = 0.4 K = 0.5 K = 0.6 K = 0.7 K = 0.8 K = 0.9
n = 3 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
n = 4 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
n = 5 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
n = 6 1.00032 1.00019 1.00010 1.00000 1.00005 1.00005 1.00002 1.00000 1.00000
n = 7 1.00036 1.00032 1.00016 1.00013 1.00008 1.00004 1.00004 1.00001 1.00003
n = 8 1.00058 1.00042 1.00019 1.00012 1.00011 1.00008 1.00005 1.00002 1.00001
n = 9 1.00084 1.00030 1.00017 1.00017 1.00014 1.00008 1.00006 1.00002 1.00002

n = 10 1.00057 1.00032 1.00010 1.00006 1.00007 1.00004 1.00003 1.00002 1.00001
n = 11 1.00041 1.00022 1.00007 1.00005 1.00005 1.00006 1.00004 1.00002 1.00002
n = 12 1.00043 1.00019 1.00010 1.00007 1.00005 1.00005 1.00001 1.00001 1.00001
n = 13 1.00015 1.00014 1.00008 1.00007 1.00004 1.00004 1.00002 1.00001 1.00002
n = 14 1.00022 1.00004 1.00002 1.00005 1.00004 1.00004 1.00001 1.00001 1.00001
n = 15 1.00010 1.00002 1.00002 1.00003 1.00001 1.00002 1.00000 1.00001 1.00001

18

Table 6: Mean of the ratio of expected posterior loss calculated by Algorithm 2 to the true minimised expectation,
over 10,000 replicates from model 2, for various K and n.

K = 0.1 K = 0.2 K = 0.3 K = 0.4 K = 0.5 K = 0.6 K = 0.7 K = 0.8 K = 0.9
n = 3 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
n = 4 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
n = 5 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
n = 6 1.00063 1.00004 1.00001 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
n = 7 1.00508 1.00064 1.00009 1.00003 1.00001 1.00002 1.00001 1.00004 1.00006
n = 8 1.01201 1.00305 1.00083 1.00023 1.00005 1.00001 1.00001 1.00002 1.00008
n = 9 1.01520 1.00436 1.00129 1.00052 1.00016 1.00006 1.00002 1.00005 1.00011

n = 10 1.01813 1.00441 1.00121 1.00036 1.00011 1.00003 1.00005 1.00003 1.00006
n = 11 1.01723 1.00408 1.00107 1.00037 1.00012 1.00009 1.00006 1.00005 1.00004
n = 12 1.01816 1.00469 1.00111 1.00038 1.00020 1.00010 1.00006 1.00005 1.00003
n = 13 1.01764 1.00432 1.00116 1.00047 1.00026 1.00012 1.00008 1.00005 1.00004
n = 14 1.01568 1.00391 1.00123 1.00048 1.00022 1.00011 1.00007 1.00004 1.00005
n = 15 1.01733 1.00420 1.00100 1.00044 1.00018 1.00012 1.00006 1.00004 1.00003

Table 7: Mean of the ratio of expected posterior loss calculated by Algorithm 2 to the true minimised expectation,
over 10,000 replicates from model 3, for various K and n.

K = 0.1 K = 0.2 K = 0.3 K = 0.4 K = 0.5 K = 0.6 K = 0.7 K = 0.8 K = 0.9
n = 3 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
n = 4 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
n = 5 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
n = 6 1.00101 1.00017 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
n = 7 1.00308 1.00037 1.00006 1.00000 1.00000 1.00000 1.00001 1.00004 1.00009
n = 8 1.00966 1.00263 1.00069 1.00015 1.00003 1.00003 1.00009 1.00014 1.00019
n = 9 1.01412 1.00413 1.00130 1.00023 1.00005 1.00004 1.00003 1.00005 1.00010

n = 10 1.01809 1.00552 1.00191 1.00061 1.00011 1.00005 1.00002 1.00003 1.00003
n = 11 1.01780 1.00523 1.00177 1.00065 1.00015 1.00006 1.00003 1.00002 1.00002
n = 12 1.01822 1.00463 1.00160 1.00059 1.00023 1.00011 1.00008 1.00004 1.00004
n = 13 1.02111 1.00538 1.00169 1.00066 1.00024 1.00012 1.00006 1.00003 1.00003
n = 14 1.01828 1.00463 1.00144 1.00054 1.00024 1.00016 1.00013 1.00006 1.00004
n = 15 1.01742 1.00511 1.00149 1.00060 1.00028 1.00013 1.00008 1.00007 1.00005

Table 8: Mean of the ratio of expected posterior loss calculated by Algorithm 2 to the true minimised expectation,
over 10,000 replicates from model 4, for various K and n.

K = 0.1 K = 0.2 K = 0.3 K = 0.4 K = 0.5 K = 0.6 K = 0.7 K = 0.8 K = 0.9
n = 3 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
n = 4 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
n = 5 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
n = 6 1.00025 1.00000 1.00001 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
n = 7 1.00104 1.00013 1.00003 1.00001 1.00000 1.00000 1.00000 1.00000 1.00007
n = 8 1.00455 1.00119 1.00037 1.00007 1.00002 1.00003 1.00011 1.00020 1.00015
n = 9 1.00786 1.00243 1.00088 1.00023 1.00006 1.00004 1.00006 1.00011 1.00014

n = 10 1.00914 1.00312 1.00112 1.00037 1.00013 1.00005 1.00005 1.00013 1.00016
n = 11 1.01060 1.00332 1.00128 1.00048 1.00020 1.00008 1.00005 1.00005 1.00008
n = 12 1.00960 1.00325 1.00132 1.00049 1.00018 1.00011 1.00008 1.00005 1.00008
n = 13 1.00849 1.00257 1.00092 1.00046 1.00026 1.00013 1.00005 1.00003 1.00006
n = 14 1.00767 1.00268 1.00095 1.00049 1.00024 1.00011 1.00008 1.00003 1.00002
n = 15 1.00708 1.00201 1.00084 1.00035 1.00019 1.00013 1.00004 1.00004 1.00004

19

4.3.2 Optimal vs. maximum probability partitions

To get some appreciation of the difference between (approximate) MAP partitions and (approximate) optimal
partitions according to our loss function, we make some comparisons of point estimates based on three different
approaches, stochastic search (SS), Bayesian hierarchical clustering procedure (BH) and the loss function (Al-
gorithm 2), using simulated data from models 1–4. Similarly to the simulation study in section 3.3.1, we take
100 sets of data from each of the models 1–4, each with n = 100 data points. We fit the model (5) with the
Dirichlet process prior. The parameters are assigned to be θ = 1, a0 = 1, b0 = 0.01,m0 = [0 · · · 0]′ , t0 = 0.01I.

For the stochastic search method, we run the Gibbs sampler for 20000 sweeps. We record the partition
of greatest posterior probability among all 20000 sweeps. We then use Algorithm 2 based on the last 10,000
MCMC samples, following 10,000 burn-in to produce the ρ matrix. We run Algorithm 2 and the � functions
(defined by equation (14)) to get the point estimates forK ∈ {0.1, 0.2, . . . , 0.9}. Figure 10 compares log posterior
probabilities log (φ (p)) for the partitions produced by the three procedures, stochastic search (SS), Bayesian
hierarchical clustering procedure (BH) and the loss function method (Algorithm 2). As expected, the results
show that the approximate MAP methods tend to yield higher probability partitions, with SS outperforming
BH on average. However, to an extent increasing with the number of components in the simulation of the data,
the loss function approach nevertheless produces higher probability partitions for a substantial proportion of
the data sets.

On the other hand, Figure 11 compares the quantity �(p,K) for the partitions produced by the three
procedures. The results show that the loss function nethod (Algorithm 2) always yields partitions with lower
posterior expected loss than the approximate MAP methods, particularly for larger values of K. Among the
methods inferior by this criterion, SS is again slightly superior to BH, although for smaller values of K, all three
methods perform very similarly.

4.3.3 Optimal partition of Galaxy and Leukaemia data sets

Now we consider the Galaxy data. We calculate the ρ matrix based on the last 10000 partitions sampled. We
run Algorithm 2 and the � functions (defined by equation (14)) for the partitions in P are plotted in Figure 12.
Here we can see that we have the same best partition for all K ∈ [0.1, 0.9]. Moreover, this partition is the same
as that found by SS and BH, and we conclude that for this data set, the optimal partition for such values of K
coincides with the maximum a posteriori partition.

Finally we present the case of the Leukaemia data. Figure 13 shows � (P ,K) over the interval [0,1]. We
also plot the � functions for the partitions produced by the SS and BH procedures. For this loss function,
these approximate maximum a posteriori partitions are not optimal whatever the value of K, although the
result from the BH procedure is close to optimal for K ≈ 0.08. We calculate log (φ (p)) for the partitions
generated by the algorithm for different Ks, and these, together with the log posterior probabilities for the best
partitions found by the SS and BH algorithms, are displayed in Table 9. It is interesting to note that in this
example, for K = 0.1, 0.2, 0.3, the highest posterior probability partitions are produced by our algorithm, which
thus produces the best partitions under both the MAP and loss function criteria! Using the same computer
resources as in the experiment in the last section, the computer program takes approximately 21 mins and 7292
mins for the Galaxy data and the Leukaemia data respectively.

5 Conclusion

Clustering is an important and challenging problem, with implications in many fields, including biology, en-
gineering and management. The highly complex structure of partition problems makes objective inference
difficult, quite apart from the heavy computational burden entailed in any approach when the number of items
to be clustered is large. A Bayesian formulation is attractive in principle, but can be particularly demanding

20

Figure 10: Pairwise comparisons of maximised log partition posterior probability, computed using the SS, BH
and Loss function approaches, under simulation models 1–4. In each of the 4 panels, the comparisons are: top
left – SS vs loss function; top right – SS vs BH; bottom left – BH vs loss function.

Model 1

0
10

00
20

00
30

00
40

00
S

to
ch

as
tic

 s
ea

rc
h

(S
S

)

0 1000 2000 3000 4000
Bayesian hierarchical Clustering procedures (BH)

0 1000 2000 3000 4000

0
10

00
20

00
30

00
40

00
B

ay
es

ia
n

hi
er

ar
ch

ic
al

 C
lu

st
er

in
g

pr
oc

ed
ur

es
 (

B
H

)

Loss Function Apporach

K=0.1
K=0.2
K=0.3
K=0.4
K=0.5

K=0.6
K=0.7
K=0.8
K=0.9

Model 3

0
50

0
10

00
15

0
S

to
ch

as
tic

 s
ea

rc
h

(S
S

)

0 500 1000 150
Bayesian hierarchical Clustering procedures (BH)

0 500 1000 1500

0
50

0
10

00
15

00
B

ay
es

ia
n

hi
er

ar
ch

ic
al

 C
lu

st
er

in
g

pr
oc

ed
ur

es
 (

B
H

)

Loss Function Apporach

K=0.1
K=0.2
K=0.3
K=0.4
K=0.5

K=0.6
K=0.7
K=0.8
K=0.9

Model 2

0
50

0
10

00
15

00
20

00
S

to
ch

as
tic

 s
ea

rc
h

(S
S

)

0 500 1000 1500 2000
Bayesian hierarchical Clustering procedures (BH)

0 500 1000 1500 2000

0
50

0
10

00
15

00
20

00
B

ay
es

ia
n

hi
er

ar
ch

ic
al

 C
lu

st
er

in
g

pr
oc

ed
ur

es
 (

B
H

)

Loss Function Apporach

K=0.1
K=0.2
K=0.3
K=0.4
K=0.5

K=0.6
K=0.7
K=0.8
K=0.9

Model 4

−
20

00
0

20
00

40
00

S
to

ch
as

tic
 s

ea
rc

h
(S

S
)

−2000 0 2000 4000
Bayesian hierarchical Clustering procedures (BH)

−2000 0 2000 4000

−
20

00
0

20
00

40
00

B
ay

es
ia

n
hi

er
ar

ch
ic

al
 C

lu
st

er
in

g
pr

oc
ed

ur
es

 (
B

H
)

Loss Function Apporach

K=0.1
K=0.2
K=0.3
K=0.4
K=0.5

K=0.6
K=0.7
K=0.8
K=0.9

Table 9: Log posterior probabilities for partitions computed by Algorithm 2, and by the SS and BH algorithms.

log (φ (p))
K = 0.1 −262774.69

0.2 −262744.51
0.3 −262753.13
0.4 −263451.11
0.5 −265768.95
0.6 −270588.76
0.7 −274760.07
0.8 −279583.08
0.9 −286715.36
SS −263040.69
BH −263793.14

21

Figure 11: Pairwise comparisons of maximised objective function �(p,K), computed using the SS, BH and Loss
function approaches, under simulation models 1–4. In each of the 4 panels, the comparisons are: top left – SS
vs loss function; top right – SS vs BH; bottom left – BH vs loss function.

Model 1

−
14

0
−

13
0

−
12

0
−

11
0

−
10

0
S

to
ch

as
tic

 s
ea

rc
h

(S
S

)

−140 −130 −120 −110 −100
Bayesian hierarchical Clustering procedures (BH)

−140 −130 −120 −110 −100

−
14

0
−

13
0

−
12

0
−

11
0

−
10

0
B

ay
es

ia
n

hi
er

ar
ch

ic
al

 C
lu

st
er

in
g

pr
oc

ed
ur

es
 (

B
H

)

Loss Function Apporach

K=0.1
K=0.2
K=0.3
K=0.4
K=0.5

K=0.6
K=0.7
K=0.8
K=0.9

Model 3

−
26

0
−

25
0

−
24

0
−

23
0

S
to

ch
as

tic
 s

ea
rc

h
(S

S
)

−260 −250 −240 −230
Bayesian hierarchical Clustering procedures (BH)

−260 −250 −240 −230

−
26

0
−

25
0

−
24

0
−

23
0

B
ay

es
ia

n
hi

er
ar

ch
ic

al
 C

lu
st

er
in

g
pr

oc
ed

ur
es

 (
B

H
)

Loss Function Apporach

K=0.1
K=0.2
K=0.3
K=0.4
K=0.5

K=0.6
K=0.7
K=0.8
K=0.9

Model 2

−
22

0
−

21
0

−
20

0
−

19
0

−
18

0
−

17
0

S
to

ch
as

tic
 s

ea
rc

h
(S

S
)

−220 −210 −200 −190 −180 −170
Bayesian hierarchical Clustering procedures (BH)

−220 −210 −200 −190 −180 −170

−
22

0
−

21
0

−
20

0
−

19
0

−
18

0
−

17
0

B
ay

es
ia

n
hi

er
ar

ch
ic

al
 C

lu
st

er
in

g
pr

oc
ed

ur
es

 (
B

H
)

Loss Function Apporach

K=0.1
K=0.2
K=0.3
K=0.4
K=0.5

K=0.6
K=0.7
K=0.8
K=0.9

Model 4

−
30

0
−

29
0

−
28

0
−

27
0

−
26

0
−

2
S

to
ch

as
tic

 s
ea

rc
h

(S
S

)

−300 −290 −280 −270 −260 −2
Bayesian hierarchical Clustering procedures (BH)

−300 −290 −280 −270 −260 −250

−
30

0
−

29
0

−
28

0
−

27
0

−
26

0
−

25
0

B
ay

es
ia

n
hi

er
ar

ch
ic

al
 C

lu
st

er
in

g
pr

oc
ed

ur
es

 (
B

H
)

Loss Function Apporach

K=0.1
K=0.2
K=0.3
K=0.4
K=0.5

K=0.6
K=0.7
K=0.8
K=0.9

Figure 12: The objective function � (p̂,K) vs K for the partitions considered by Algorithm 2, for the Galaxy
data.

0
50

0
10

00
15

00
20

00
25

00

0.0 0.2 0.4 0.6 0.8 1.0
K

l(
p

,K
)

22

Figure 13: The objective function � (p̂,K) vs K for the partitions considered by Algorithm 2, for the Leukaemia
data.

0
50

00
0

10
00

00
15

00
00

20
00

00
25

00
00

0.0 0.2 0.4 0.6 0.8 1.0
K

l(
p

,K
)

Stochastic Search
Bayesian Hierarchical

computationally. However, the speed of modern processors is such that it is now practical to follow formal de-
cision theoretic principles in partitioning a few thousand genes in Bayesian analysis of gene expression profiles.
Computer time remains an issue, however. Further research should be conducted towards developing better
algorithms to reduce the running time.

6 Acknowledgements

This work was carried out with the financial support of the BBSRC Exploiting Genomics initiative.

7 Appendix

7.1 Proof of equation (11)

We first consider the ratio used to combine two clusters, say Cj1 and Cj2 ,

m
(
yCj1∪Cj2

)
m
(
yCj1

)
m
(
yCj2

) = exp
{− [ψ (yCj1∪Cj2

)− ψ
(
yCj1

)− ψ
(
yCj2

)]}

23

and the exponent term is now,

ψ
(
yCj1∪Cj2

)− ψ
(
yCj1

)− ψ
(
yCj2

)
=

n∑
i∈Cj1∪Cj2

(
yi − ȳCj1∪Cj2

)′ (
yi − ȳCj1∪Cj2

)− n∑
i∈Cj1

(
yi − ȳCj1

)′ (
yi − ȳCj1

)− n∑
i∈Cj2

(
yi − ȳCj2

)′ (
yi − ȳCj2

)
=

n∑
i∈Cj1

(
yi − ȳCj1∪Cj2

)′ (
yi − ȳCj1∪Cj2

)− n∑
i∈Cj1

(
yi − ȳCj1

)′ (
yi − ȳCj1

)
+

n∑
i∈Cj2

(
yi − ȳCj1∪Cj2

)′ (
yi − ȳCj1∪Cj2

)− n∑
i∈Cj2

(
yi − ȳCj2

)′ (
yi − ȳCj2

)
= ej1

(
ȳCj1

− ȳCj1∪Cj2

)′ (
ȳCj1

− ȳCj1∪Cj2

)
+ ej2

(
ȳCj2

− ȳCj1∪Cj2

)′ (
ȳCj2

− ȳCj1∪Cj2

)
= ej1 ȳ

′
Cj1

ȳCj1
+ ej2 ȳ

′
Cj2

ȳCj2
− (ej1 + ej2) ȳ

′
Cj1∪Cj2

ȳCj1∪Cj2

=
ej1ej2
ej1 + ej2

(
ȳCj1

− ȳCj2

)′ (
ȳCj1

− ȳCj2

)
.

This equality will be useful:

n∑
i∈Cj1∪Cj2

(
yi − ȳCj1∪Cj2

)′ (
yi − ȳCj1∪Cj2

)
−

n∑
i∈Cj1

(
yi − ȳCj1

)′ (
yi − ȳCj1

)− n∑
i∈Cj2

(
yi − ȳCj2

)′ (
yi − ȳCj2

)
=

ej1ej2
ej1 + ej2

(
ȳCj1

− ȳCj2

)′ (
ȳCj1

− ȳCj2

)
. (17)

7.2 Proof of equation (12)

Similarly to the proof of (11), we need only consider the exponent term. In this case we first prove an equality∑
i1∈Cj1

∑
i2∈Cj2

(yi1 − yi2)
′ (yi1 − yi2)

=
∑

i1∈Cj1

∑
i2∈Cj2

(
yi1 − ȳCj1

+ ȳCj1
− ȳCj2

+ ȳCj2
− yi2

)′ (
yi1 − ȳCj1

+ ȳCj1
− ȳCj2

+ ȳCj2
− yi2

)
= ej2

∑
i1∈Cj1

(
yi1 − ȳCj1

)′ (
yi1 − ȳCj1

)
+ ej1ej2

(
ȳCj1

− ȳCj2

)′ (
ȳCj1

− ȳCj2

)
+ej1

∑
i2∈Cj2

(
ȳCj2

− yi2
)′ (

ȳCj2
− yi2

)
.

This is combined with the equality (17):

ψ
(
yCj1∪Cj2

)− ψ
(
yCj1

)− ψ
(
yCj2

)
= (ej1 + ej2)

∑
i∈Cj1∪Cj2

(
yi − ȳCj1∪Cj2

)′ (
yi − ȳCj1∪Cj2

)
−ej1

∑
i∈Cj1

(
yi − ȳCj1

)′ (
yi − ȳCj1

)− ej2
∑
i∈Cj2

(
yi − ȳCj2

)′ (
yi − ȳCj2

)
=

∑
i1∈Cj1

∑
i2∈Cj2

(yi1 − yi2)
′ (yi1 − yi2)

=
∑

i1∈Cj1

∑
i2∈Cj2

di1,i2 .

24

7.3 Proof of equation (13)

Again we consider only the exponent term. We first prove

ψ
(
yCj1∪Cj2

)− ψ
(
yCj1

)− ψ
(
yCj2

)
=

∑
i∈Cj1∪Cj2

(
yi − [x1 · · ·xS]′ β̂Cj1∪Cj2

)′ (
yi − [x1 · · ·xS]′ β̂Cj1∪Cj2

)
−
∑
i∈Cj1

(
yi − [x1 · · ·xS]′ β̂Cj1

)′ (
yi − [x1 · · ·xS]′ β̂Cj1

)
−
∑
i∈Cj2

(
yi − [x1 · · ·xS]′ β̂Cj2

)′ (
yi − [x1 · · ·xS]′ β̂Cj2

)
=

∑
i∈Cj1

(
[x1 · · ·xS]′ β̂Cj1

− [x1 · · ·xS]′ β̂Cj1∪Cj2

)′ (
[x1 · · ·xS]′ β̂Cj1

− [x1 · · ·xS]′ β̂Cj1∪Cj2

)
+
∑
i∈Cj2

(
[x1 · · ·xS]′ β̂Cj2

− [x1 · · ·xS]′ β̂Cj1∪Cj2

)′ (
[x1 · · ·xS]′ β̂Cj2

− [x1 · · ·xS]′ β̂Cj1∪Cj2

)
= β̂

′
Cj1

X′
Cj1

XCj1
β̂Cj1

+ β̂
′
Cj2

X′
Cj2

XCj2
β̂Cj2

− β̂
′
Cj1∪Cj2

(
X′
Cj1

XCj1
+X′

Cj2
XCj2

)
β̂Cj1∪Cj2

=
(
β̂Cj1

− β̂Cj2

)′ [(
X′
Cj1

XCj1

)−1

+
(
X′
Cj2

XCj2

)−1
]−1 (

β̂Cj1
− β̂Cj2

)
.

Finally, note that

X′
Cj1

XCj1
=

∑
i∈Cj1

[x1 · · ·xS] [x1 · · ·xS]′ and X′
Cj2

XCj2
=

∑
i∈Cj2

[x1 · · ·xS] [x1 · · ·xS]′ .

8 References

Antoniak, C. E. (1974), “Mixtures of Dirichlet processes with applications to Bayesian nonparametric prob-
lems”, The Annals of Statistics, 2, 1152–1174.

Banfield, J. D., and Raftery, A. E. (1993), “Model-based Gaussian and mon-Gaussian clustering”,
Biometrics, 49, 803–821.

Bansal, N., Blum, A., and Chawla, S. (2004), “Correlation clustering”, Machine Learning, 56, 89–113.

Barry, D., and Hartigan, J. A. (1992), “Product partition models for change point problems”, The Annals
of Statistics, 20, 260–279.

Basu, S. and Chib, S. (2003), “Marginal Likelihood and Bayes Factors for Dirichlet Process Mixture Models”,
Journal of the American Statistical Association, 98, 224–235

Berkelaar, M. and others (2006), “lpSolve: Interface to Lp solve v. 5.5 to solve linear/integer programs”,
R package version 5.5.3.

Binder, D. A. (1978), “Bayesian cluster analysis”, Biometrika, 65, 31–38.

– – (1981), “Approximations to Bayesian clustering rules”, Biometrika, 68, 275–285.

Blackwell, D., and MacQueen, J. B. (1973), “Ferguson distributions via Pólya Urn Schemes”, The
Annals of Statistics, 1, 353–355.

Brunner, L. J., and Lo, A. Y. (1999), “Bayesian classifications”, Preprint, University of Toronto, Canada.
Available at http://www.erin.utoronto.ca/~jbrunner/papers/BayesClass.pdf

Dahl, D. B. (2006), “Model-Based Clustering for Expression Data via a Dirichlet Process Mixture Model”, in
Bayesian Inference for Gene Expression and Proteomics, Kim-Anh Do, Peter Müller, Marina Vannucci
(Eds.), Cambridge University Press. in press.

25

de Finetti, B. (1930), “Funzione caratteristica di un fenomeno aleatorio”, Atti Reale Accademia Nazionale
dei Lincei, Mem. 4, 86–133.

– – (1974), Theory of Probability 1. Wiley.

Diaconis, P., and Freedman, D. (1984), “Partial exchangeability and sufficiency”, in Statistics: Applica-
tions and New Directions, eds. J. K. Ghosh and J. Roy, pp. 205–236.

– – (1987), “A dozen de Finetti-style results in search of a theory”, Annales de l’Institut Henri Poincaré (B)
Probabilités et Statistiques, 23, 397–423.

Dubey, A., Hwang, S., Rangel, C., Rasmussen, C. E., Ghahramani, Z., and Wild, D. L. (2004)
“Clustering Protein Sequence and Structure Space with Infinite Gaussian Mixture Models”, Pacific Sym-
posium in Biocomputing World Scientific Publishing, Singapore, 9, 399–410.

Dudoit, S., Fridlyand, J. and Speed, T. P. (2002), “Comparison of discrimination methods for the
classification of tumors using gene expression data”, Journal of the American Statistical Association, 97,
77–87.

Escobar, M. D., and West, M. (1995), “Bayesian density estimation and inference using mixtures”, Journal
of the American Statistical Association, 90, 577–588.

– – (1998), “Computing monparametric hierarchical models”, in Practical Nonparametric and Semiparametric
Bayesian Statistics, eds. D. Dey, P. Müller, and D. Sinha, New York: Springer, pp. 1–22.

Ferguson, T. S. (1973), “A Bayesian analysis of some nonparametric problems”, The Annals of Statistics,
1, 209–230.

Fraley, C., and Raftery, A. E. (2002), “Model-based clustering, discriminant analysis, and density
estimation”, Journal of the American Statistical Association, 97, 611–631.

Gentleman, R. and others (2004), “Bioconductor: Open software development for computational biology
and bioinformatics”, Genome Biology, 5, R80. http://genomebiology.com/2004/5/10/R80.

Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J. P., Coller,

H., Loh, M. L., Downing, J. R., Caligiuri, M. A., Bloomfield, C. D., and Lander, E. S. (1999),
“Molecular classification of cancer: class discovery and class prediction by gene expression monitoring”,
Science, 286, 531–537.

Gordon, A. D. (1999), Classification, 2nd edition. Chapman & Hall.

Green, P. J. (1995), “Reversible jump Markov chain Monte Carlo computation and Bayesian model deter-
mination”, Biometrika, 82, 711–732.

Green, P. J., and Richardson, S. (2001), “Modelling heterogeneity with and without the Dirichlet process”,
Scandinavian Journal of Statistics, 28, 355–375.

Hartigan, J. A. (1990), “Partition models”, Communications in statistics – Simulation and computation,
19, 2745–2756.

Heard, N. A., Holmes, C. C., and Stephens, D. A. (2006), “A quantitative study of gene regulation
involved in the immune response of Anopheline mosquitoes: an application of Bayesian hierarchical clus-
tering of curves”, Journal of the American Statistical Association, 101, 18–29.

Heller, K.A. and Ghahramani, Z. (2005), “Bayesian Hierarchical Clustering”, Twenty-second Interna-
tional Conference on Machine Learning (ICML-2005). Available at http://learning.eng.cam.ac.uk/

zoubin/papers/icml05heller.pdf

Hewitt, E., and Savage, L. J. (1955), “Symmetric measures on Cartesian products”, Transactions of the
American Mathematical Society, 80, 470–501.

Hurn, M., Justel, A., and Robert, C. P. (2003), “Estimating mixtures of regressions”, Journal of
Computational and Graphical Statistics, 12, 55–79.

26

Ishwaran, H., and James, L. F. (2001), “Gibbs sampling methods for stick-breaking priors”, Journal of
the American Statistical Association, 96, 161–173.

– – (2003a), “Generalized weighted Chinese restaurant processes for species sampling mixture models”, Sta-
tistica Sinica 13 1211–1235.

– – (2003b), “Some further developments for stick-breaking priors: finite and infinite clustering and classifica-
tion”, Sankhya Series A, 65, 577–592.

James, L. F. (2002), “Poisson process partition calculus with applications to exchangeable models and
Bayesian Nonparametrics”, Available at http://arXiv.org/abs/math/0205093.

– – (2005), “Bayesian Poisson process partition calculus with an application to Bayesian Levy moving averages”,
The Annals of Statistics, 33, 1771–1799.

James, L. F., Lijoi, A. and Prüenster, I. (2005) “Bayesian inference for classes of normalized random
measures”, Available at http://arxiv.org/abs/math.ST/0503394

Kingman, J. F. C. (1975), “Random discrete distributions”, Journal of the Royal Statistical Society: Series
B, 37, 1–22.

– – (1993), Poisson Processes, Oxford University Press.

Kirkpatrick, S., Gelatt, C. D. and Vecchi, M. P., (1983), “Optimization by Simulated Annealing”,
Science, 220, 671–680.

Lijoi, A., Mena, R. H., and Prünster, I. (2005), “Hierarchical mixture modeling with normalized inverse-
Gaussian priors”. Journal of the American Statistical Association, 14, 1278–1291.

Lo, A. Y. (1984), “On a class of Bayesian nonparametric estimates. I. Density estimates”, The Annals of
Statistics, 12, 351–357.

– – (2005), “Weighted Chinese restaurant processes”, COSMOS, 1, 59–63.

Lo, A. Y., Brunner, L. J. and Chan, A. T. (1996), “Weighted Chinese restaurant processes and Bayesian
mixture models”, Research Report, Hong Kong University of Science and Technology. Available at http:
//www.erin.utoronto.ca/~jbrunner/papers/wcr96.pdf

MacEachern, S. N. (1994), “Estimating normal means with a conjugate style Dirichlet process prior”,
Communications in statistics – Simulation and computation, 23, 727–741.

MacEachern, S. N., and Müller, P. (1998), “Estimating mixture of Dirichlet process models”, Journal
of Computational and Graphical Statistics , 7, 223–238.

– – (2000), “Efficient MCMC schemes for robust model extensions using encompassing Dirichlet process mixture
models”, Robust Bayesian analysis, 295–315.

Medvedovic, M., and Sivaganesan, S. (2002), “Bayesian infinite mixture model based clustering of gene
expression profiles”, Bioformatics, 18, 1194–1206.

Medvedovic, M., Yeung, K. Y., and Bumgarner, R. E. (2004), “Bayesian mixture model based clus-
tering of replicated microarray data”, Bioformatics, 20, 1222–1232.

Neal, R. M. (2000), “Markov chain sampling methods for Dirichlet process mixture models”, Journal of
Computational and Graphical Statistics, 9, 249–265.

Nobile, A., and Fearnside, A. (2005), “Bayesian finite mixtures with an unknown number of components:
the allocation sampler”, Technical Report 05-4, University of Glasgow. Available at: http://www.stats.
gla.ac.uk/~agostino/mixalloc.pdf

Pitman, J. (1995), “Exchangeable and partially exchangeable random partitions”, Probability Theory and
Related Fields, 102, 145–158

27

– – (1996), “Some developments of the Blackwell–MacQueen urn scheme”, in Statistics, Probability and Game
Theory. Papers in honor of David Blackwell, IMS Lecture Note Series, eds. T. S. Ferguson, J. B.
MacQueen, L. S. Shapley, pp. 245–267.

– – (2003), “Poisson Kingman partitions”, in Science and Statistics: A Festschrift for Terry Speed, IMS Lecture
Note Series, eds. D. Goldstein, pp. 1–34. Available at http://arxiv.org/abs/math/0210396

Pitman, J., and Yor, M. (1997), “The two-parameter Poisson–Dirichlet distribution derived from a stable
subordinator”, The Annals of Probability, 25, pp. 855–900.

Quintana F. A., and Iglesias P. L. (2003), “Bayesian clustering and product partition models”, Journal
of the Royal Statistical Society: Series B, 65, 557–574.

Ray, S. and Mallick, B. (2006), “Functional clustering by Bayesian wavelet methods”, Journal of the Royal
Statistical Society: Series B, 68, 305–332.

Richardson, S., and Green, P. J. (1997), “On Bayesian analysis of mixtures with an unknown number of
components (with discussion)”, Journal of the Royal Statistical Society: Series B, 59, 731–792.

Roeder, K. (1990), “Density estimation with confidence sets exemplified by superclusters and voids in the
galaxies”, Journal of the American Statistical Association, 85, 617–624.

Rue, H. (1995), “New loss functions in Bayesian imaging”, Journal of the American Statistical Association,
90, 900–908.

West, M., Müller, P., and Escobar, M. D. (1994), “Hierarchical priors and mixture models, with
applications in regression and density estimation”, in A tribute to D. V. Lindley, eds. A. F. M Smith and
P. R. Freeman, New York: Wiley.

Ward, J. H. (1963), “Hierarchical grouping to optimize an objective function”, Journal of the American
Statistical Association, 58, 236–244.

Yeung, K. Y., Fraley, C., Murua, A., Raftery, A. E., and Ruzzo, W. L. (2001), “Model-based
clustering and data transformations for gene expression data”, Bioinformatics, 17, 977–987.

28

