
Energy Minimizing for Parallel Real-Time Tasks Based on Level-Packing
Huiting Xu Fanxin Kong Qingxu Deng

Dept. of Computer Science & Technology, Northeastern University, China
xuht neu@hotmail.com, kongfx@ise.neu.edu.cn, dengqx@mail.neu.edu.cn

Abstract—While much work has addressed energy minimizing
problem of real-time sequential tasks, little has been done for the
parallel real-time task case. In this paper, based on level-packing,
we study energy minimization problem for parallel task systems
with discrete operation modes and under timing constraints. For
tasks with fixed (variable) parallel degrees, we first formulate
the problem as a 0-1 Integer Linear Program (0-1 ILP), and
then propose a polynomial-time complexity two-step (three-step)
heuristic to determine task schedule and frequency assignment
(and the task parallel degree). Our simulation result shows that
the heuristics consume nearly the same energy as do 0-1 ILPs.

I. INTRODUCTION

To prolong the battery lifetime in battery-powered em-

bedded systems and to cut the electricity bill of large-scale

server systems, energy efficiency has ever been an important

issue over the past decades in both academic and industry

communities. Dynamic voltage scaling is recognized as one of

the most effective and widely-used hardware methodologies,

which dynamically regulates the system operation mode and

the supply voltage/frequency for energy saving. In addition,

multiprocessor/multicore platforms have been also adopted

to balance the system performance and the power density

that dramatically grows with higher voltage and frequency.

As real-time constraints are required to maintain the system

dependability, one of key issues in embedded systems is to

minimize the energy consumption with timing guarantees.

The energy-efficient scheduling problem has been exten-

sively studied for multiprocessor real-time systems, e.g., [1]–

[9]. Despite adopting different assumptions on task and power

models, all of these previous work focused on the sequential
task model which restricts that an individual task can not run

on more than one processor at the same time but on only one

processor at a time. This model can not represent some key

characteristics of multiprocessor real-time systems.

Due to the boosting demand for system performance, par-
allel processing allowing that an individual task executes in

multiple processors simultaneously, has been widely used in

high performance computing area, such as scientific computing

which divides large amount of data/tasks across processors.

Some researchers discussed the tread-off between performance

and energy scalability in general-purpose parallel task systems.

The authors in [10] addressed the interplay between paral-

lelization, performance and energy consumption theoretically,

while the authors in [11] conducted evaluations on energy

scalability of parallel algorithms methodologically and exper-

imentally while satisfying some performance requirements.

In recent, parallel processing has appeared in embedded

real-time systems, such as robot arm dynamics [12] and video

processing [13]. Unlike general-purpose systems, there are

timing constraints such as release times and deadlines that

must be guaranteed in real-time systems. Some research has

addressed the scheduling problem that combines timing con-

straints and the task parallelization but no energy consumption

issues, such as some research work which addressed the real-

time scheduling problem of parallel tasks under gang schedul-

ing policy1 [14]–[18] and under multi-thread scheduling policy

[18], and real-time divisible load theory [19], [20] where the

computational loads can be arbitrarily divided.

Blindly adopting the sequential task energy minimization

approaches without considering parallelization, or the parallel

task scheduling approaches without considering processor

voltage/ frequency optimization, can result in a waste of en-

ergy. This work aims at exploring energy-efficient scheduling

for parallel real-time tasks. Specially, we study the energy min-

imization problem for parallel tasks when combining timing

constraints and gang scheduling scheme. The only one closely

related work is the research effort [21], which otherwise as-

sumes processors regulating frequency continuously, and uses

sub-linear speedup ratio model where the rate of increment in

speedup is lower than the rate of increment in the number of

the assigned processors. The Algorithm BS in [21], under the

two assumptions, would derive the optimal solution for any

level-packed schedule.

However, in this paper, we will address a more practical

and tough case where processors run on discrete number of

valid operation modes and make no constraints on processors’

speedup model, i.e., arbitrary speedup ratio. Firstly, we adopt

level-packing [22] as basic task scheduling policy for two

reasons. It first has very good performance when minimizing

schedule length, which tends to derive more slack time for task

stretching or lowering frequency to save energy. Then, it can

incorporate with frequency scaling scheme very well due to the

concept of level, which also can be seen from our approaches.

Secondly, we focus on the realistic case that a processor can

only operate at discrete set of valid operational modes and

do not make any restriction on the form of power function

and task execution time function to the processor frequency.

As technical contributions, for tasks with fixed (variable)

parallel degrees, we first formulate the energy minimizing

problem as a 0-1 Integer Linear Program (0-1 ILP), and

then propose an efficient two-step (three-step) algorithm to

determine the task schedule and frequency assignment (and

the task parallel degree). Our simulation result shows that

the heuristics consume nearly the same energy as 0-1 ILPs

which derive optimal results for the level-packing based energy

minimizing problem.

1Gang scheduling is one of the most efficient parallel processing schemes,
in which processors execute a task in unison. In other words, the threads of
one task should be the same time quantum, start at the same time and execute
at the same pace.

2012 IEEE International Conference on Embedded and Real-Time Computing Systems and Applications

978-0-7695-4824-1/12 $26.00 © 2012 IEEE

DOI 10.1109/RTCSA.2012.10

98

The rest of this paper is organized as follows. Section II

provides the system models and defines the problem. Section

III and Section IV propose 0-1 ILP formulations and efficient

heuristics for two different parallel task models respectively.

Section V presents the experimental results. Section VI con-

cludes this paper and points out our future work.

II. PROBLEM SETTING

A. System Model

We study a real-time application consisting of a set of

independent parallel tasks Γ = {τ1, ..., τN} with a deadline

of T , i.e., frame based task, under a homogenous multi-

processor/multicore system of M identical processers/cores.

Each processor can dynamically adjust its frequency and

voltage on application requests, and has Q active states,

i.e., a discrete set of Q valid frequency and voltage pairs

denoted as {(F1, V1), ..., (FQ, VQ)}, F1 < ... < FQ. For

each frequency/voltage pair, there is a power consumption

associated with it, and thus we have a set of power values:

{P1, ..., PQ}. We adopt inter-task DVS policy, i.e, each task

τn has only one frequency assignment.

There is a vector of scaling factor {Θq
n|q ∈ [1, Q]} for

each task τn, and its execution time is Θq
nCn when τn runs

at frequency Fq , where Cn is the task execution time at the

maximum frequency FQ. In fact, for each task τn, we only

have to consider the frequency/voltage pair satisfying that

lower frequency (voltage) requires less energy, i.e., Θq
nPq <

Θq+1
n Pq+1. If one pair has low frequency but high energy, the

pair can be removed safely without harming energy saving.

Without loss of generality, we assume that all tasks has Q such

pairs where lower frequency requires less energy consumption.

Another parameter associated with each task τn is a vector

of {Υm
n |m ∈ [1,M]}, which denotes the speed up ratio

obtained by running τn on m processors. The number m
of processors assigned to τn is also called parallel degree
of the task.2 In sum, when running τn on m processors

simultaneously at frequency Fq , the execution time equals to
Θq

n

Υm
n
Cn while the energy consumption is

Θq
n

Υm
n
mP qCn.

According to the task flexibility, a parallel task can be

divided into three categories: (i) rigid, the parallel degree

of the task is fixed a priori [28], [29]; (ii) moldable, the

parallel degree of the task is determined when the task is to be

activated, and can’t change throughout its execution [15], [23],

[25], [26]; (iii) malleable, the parallel degree of the task can

change during its execution [24], [27], [30]. Since we use gang

scheduling scheme, the execution of one rigid or moldable task

forms a rectangle of processor×time space while the execution

of one malleable task corresponds to a union of rectangles.

We focus on the rigid and moldable tasks in this paper. Note

that since each frame has the same task schedule, we have to

determine the parallel degree of a moldable task only once.

2We make no assumption on the speedup ratio, such as linear [23], [24] or
sub-linear [15], [25]–[27], i.e., our approach can adopt to arbitrary speedup
ratio.

B. Level-Packing
As mentioned above, level-packing is an effective approach

to schedule parallel tasks for schedule length minimization,

which packs the tasks (rectangles) in levels. Each level is

determined by the horizontal line drawn on the top of the

rectangle with the maximum height packed on the previous

level. The highest rectangle in one level also determines the

height of the level. See Figure 1(b) has two levels: �1 and

�2. There are some classical heuristics for level-packing: First
Fit Decreasing Height (FFDH), Best Fit Decreasing Height
(BFDH) and Next Fit Decreasing Height (NFDH). They all

first sort tasks in a non-increasing order of the execution time

hi, and then pack tasks according to the different fit rules.

Details of the three algorithms can be found in [22]. We

adopt level-packing to schedule a parallel task set. It first has

very good performance to minimize makespan, which tends

to derive more slack time for stretching tasks, and then it can

incorporate with frequency scaling scheme very well due to

the concept of level.
TT

l
�4

l3

l4
�3

4

l

l3
�2

l2

�1

p1 p2 p3 p4
l1

(a) Assume 4 levels in ILP

TT

l
�2 �4l2

�1 �3

p1 p2 p3 p4
l1

�3

(b) 2 levels in solution

Fig. 1. An application of four tasks {τ1, τ2, τ3, τ4} under a multiproces-
sor/multicore with four cores. Shadow rectangle: packing in assumption. Solid
rectangle: packing in solution. The horizontal axis is the processor dimension
and the vertical axis is the time dimension.

C. Problem Statement
We address energy-efficient scheduling for a real-time ap-

plication consisting of N independent parallel tasks with

a deadline of T in homogeneous multiprocessors/multicores

with discrete operation modes. We aims at minimizing the

energy consumption for parallel tasks without violating the

timing constraints based on level-packing under gang schedul-

ing policy. The optimization problem has two dimensions: task

scheduling and frequency assignment for rigid tasks, while it

has another additional dimension of the parallel degree allotted

to each task for moldable tasks. Both of the two problems

are NP-hard, since both the parallel task scheduling problem

based on level-packing and the DVS problem targeting on the

processor with discrete operation modes, are well known to

be NP-hard in general. Hence, the objective of this paper is to

formulate them as 0-1 Integer Linear Programming (0-1 ILP)

problems as well as develop efficient heuristics.

III. RIGID TASKS

The energy minimizing problem for rigid real-time tasks has

two dimensions: task scheduling and frequency assignment.

Now we will first formulate a 0-1 ILP to deal with the two

dimensions together, and then present an efficient two-step

heuristic to solve them respectively.

99

We say a task initializes one level if its execution time is

the maximum in the level, and call the task as key task. In the

worst case, each task initializes a level and there are N levels.

Hence, we assume N levels in our 0-1 ILP formulation. There

may be less than N levels in the solution, and if there is no

task in one level, the height of the level equal to zero. Without

loss of generality, if τn is in level �n, we can say τn initializes

the level, since we can insert some levels without any task in-

between levels with tasks to make the key tasks index equal

the level index, i.e., τn to �n. For example, comparing Figure 1

(a) and (b), we can see that τ1 and τ2 are the key tasks of �1
and �2 respectively, and the heights of �3 and �4 both equals

to zero. In all, there are 2 levels in the solution.

A. 0-1 ILP

For each task τn, we define several binary variables for

determining the level and the frequency, at which τn executes.

• xniq = 1 iff τn executes at level �i and frequency Fq; note

that among these binary variables, xiiq (where the first

two indexes equal) is special, since it represents whether

τi initializes level �i, i.e., xiiq = 1 iff τi initializes level

�i and runs at frequency Fq .

Each task τn can locate at only one level and run on only

one frequency, whether τn initializes one level or not. Hence:

∀n ∈ [1, N],
∑N

i=1

∑Q
q=1 xniq = 1 (1)

The sum of parallel degrees of tasks in each level �i should

be less than or equal to the number of processors M :

∀i ∈ [1, N],
∑N

n=1

∑Q
q=1 xniqwn ≤M (2)

Note the parallel degree wn of τn is constant for the rigid task.

If τi initializes level �i, the execution time of τi is always

largest (highest) among all tasks in �i no matter before or after

frequency assignment. Hence, we have:

∀i, n ∈ [1, N],
∑Q

q=1 xniq
Θq

n

Υwn
n

Cn ≤
∑Q

q=1 xiiq
Θq

i

Υ
wi
i

Ci (3)

To meet deadline, the sum of heights of levels or the sum

of execution times of key tasks, is less than or equal to T :

∑N
i=1

∑Q
q=1 xiiq

Θq
i

Υ
wi
i

Ci ≤ T (4)

The optimizing objective is to minimize the total energy

consumption:

min
∑N

n=1

∑N
i=1

∑Q
q=1 xniq

Θq
n

Υwn
n

wnPqCn (5)

Conditions (1) to (4) forms a constraint set, and combined

with the optimization objective in Condition (5), it forms a

0-1 ILP problem.

B. Efficient Heuristics

The heuristic contains of two steps: schedule task and

assign frequency. We first adopt the efficient level-packing

algorithms, such as FFDH, NFDH or BFDH to schedule the

parallel task set.

After task scheduling, there are I levels which may be less

than N , and Ki tasks in each level �i where
∑I

i=1 Ki = N .

We re-index tasks in each level �i as τik∈[1,Ki] in this

subsection. According to the packing strategies above, τi1
always has the largest execution time, thus the height of �i
equals to ti(zi1) =

Θ
zi1
i1

Υ
wi1
i1

Ci when τi1 runs at frequency Fzi1 .

As mentioned before, we only consider the voltage/frequency

pairs where lower frequency requires less energy. As the

parallel degree is fixed for the rigid task case, to minimize

energy, the remain task τik∈[2,Ki] in �i should stretch as close

as to the level height, and should run at the lowest frequency

that makes the corresponding execution time just less than the

level height. According to this, the frequencies and energy

consumptions of other tasks in �i can be easily obtained, if

zi1 is determined. This is also the explanation for Line 17

in Algorithm 1 and Line 12 in Algorithm 2. Hence, the total

energy consumption of level �i can expressed by frequency

of the key task τi1. We use ei(zi1) to denote the energy

consumption of level �i. The ei(zi1) value for all levels and

all voltage/frequency pairs can be calculated in O(QN) time

in the worst case when each task forms a level. It’s easy to

know ei(1) < ... < ei(Q).
Then, for frequency assignment, we will present two greedy

algorithms: Stretch and Shrink.

Algorithm 1 Stretch

Input: the derived schedule by FFDH, NFDH or BFDH;

Output: the frequency assignment of each task;

1: L⇐ {�1, ..., �I};
2: if

∑I
i=1 ti1(Q) > T then

3: return no feasible solution;

4: end if
5: while L �= ∅ do
6: find level �i with largest Δiq in L;

7: zi1 ⇐ q − 1;

8: if
∑I

i=1 ti1(zi1) > T then
9: zi1 ⇐ q;

10: L⇐ L− �i;
11: continue;

12: end if
13: if zi1 = 1 then
14: L⇐ L− �i;
15: end if
16: end while
17: calculate all frequencies of the remain tasks τik accord-

ingly;

18: return the frequency assignment of each task;

1) Stretch: For the first heuristic, we begin with assigning

all frequencies of τi1, i ∈ [1, I] to the maximum value of

FQ (zi1 = Q). If the total level height
∑I

i=1 ti(Q) is greater

than the deadline T , no feasible solution exists. Otherwise, if∑I
i=1 ti(Q) ≤ T , we have to stretch the schedule as close as

to the deadline. For such purpose, we will iteratively increase

the height of the level �i with the largest value of Δiq =
ei(q)−ei(q−1)
ti(q−1)−ti(q)

, i.e., search for the level with the largest energy

change but the least height change by changing zi1 from q

100

to q − 1. Note that during the iteration, it may happen that

some τi1 already runs at F1 (zi1 = 1) and can not lower the

frequency or increase the level height, so we will not consider

the level any more. See Algorithm 1.

2) Shrink: Instead of assigning the frequency from the

maximum value FQ, the second heuristic starts from an

opposite direction. We initialize the frequency of each task to

F1, and then shrink the schedule by decreasing the level height

until
∑I

i=1 ti(zi1) ≤ T . We will iteratively decrease height of

the level �i with the least value of Δiq . See Algorithm 2.

Algorithm 2 Shrink

Input: the schedule by FFDH, NFDH or BFDH;

Output: the frequency assignment of each task;

1: L⇐ {�1, ..., �I};
2: if

∑I
i=1 ti1(Q) > T then

3: return no feasible solution;

4: end if
5: while L �= ∅ &

∑I
i=1 ti1(zi1) > T do

6: find level �i with least Δi(q+1) in L;

7: zi1 ⇐ q + 1;

8: if zi1 = Q then
9: L⇐ L− �i;

10: end if
11: end while
12: calculate all frequencies of the remain tasks τik accord-

ingly;

13: return the frequency assignment of each task;

The time complexity of the first step is O(NlogN) due to

the task sorting in the FFDH, NFDH or BFDH. Calculating

ei(zi1) values for all levels and all voltage/frequency pairs

need O(QN) time. Both of Algorithm 1, 2 is O(N). So, the

time complexity of the overall two-step algorithm is O(QN).

IV. MOLDABLE TASKS

Compared to the rigid task case, the energy minimization

of moldable tasks becomes even harder due to the freedom

of the parallel degree allotted to each task, i.e., we have to

determine the number of processors each task runs on, as well

as task schedule and frequency assignment. In this section, we

first formulate a 0-1 ILP to determine the three dimensions

together, and then present an efficient three-step algorithm to

solve them respectively.

A. 0-1 ILP

Similar to Subsection III-A, we also assume there are N
levels. For each task τn, we define several binary variables for

determining the level, the parallel degree and the frequency,

at which τn executes.

• xnimq = 1 iff τn executes at level �i, m processors

and frequency Fq; also note that among these binary

variables, xiimq represents whether τi initializes level �i,
i.e., xiimq = 1 iff τi initializes level �i, and runs at m
processors and frequency Fq .

Each task τn can execute at only one level, only one parallel

degree and only one frequency, whether τn initializes one level

or not. Hence, we have

∀n ∈ [1, N],
∑N

i=1

∑M
m=1

∑Q
q=1 xnimq = 1 (6)

For the similar reasons of Conditions (2)(3)(4), we have

∀i ∈ [1, N],
∑N

n=1

∑M
m=1

∑Q
q=1 xnimqm ≤M (7)

∀i, n ∈ [1, N],
∑M

m=1

∑Q
q=1 xnimq

Θq
n

Υm
n
Cn

≤∑M
m=1

∑Q
q=1 xiimq

Θq
i

Υm
i
Ci

(8)

∑N
i=1

∑M
m=1

∑Q
q=1 xiimq

Θq
i

Υm
i
Ci ≤ T (9)

Note that m is now the parallel degree to be chosen in the

moldable task case.

The optimization objective is to minimize the total energy

consumption:

min
∑N

n=1

∑N
i=1

∑M
m=1

∑Q
q=1 xnimq

Θq
n

Υm
n
mPqCn (10)

Conditions (6) to (9) forms a constraint set, and combined

with the optimization objective in Condition (10), it forms a

0-1 ILP problem.

B. Efficient Heuristics

A vector W = {w1, ..., wN} is defined as an allotment of

processors to the N tasks, where wn is the parallel degree

allotted to τn. Since one rigid task set can be seen as an

allotment of the corresponding moldable task set, we can

use the algorithm in Section III-B as subroutines. The overall

three-step algorithm consists of:

• Parallel Degree Allotment: Each parallel degree wn of

task τn can be anyone of the M parallel degrees, so there

are MN candidate allotments totally. We propose in what

follows an efficient heuristic to generate at most N(M −
1) + 1 candidate allotments instead of dealing with the

exponential search space.

• Task Scheduling: Pack each allotment by a level-packing

heuristic algorithm, such as FFDH, BFDH or NFDH.

• Frequency Assignment: For each allotment and the cor-

responding schedule, adopt the Algorithm 1 (Algorithm

2) to derive one solution.

The overall algorithm returns the allotment, task schedule

and frequency assignment that derives the minimum energy

consumption among all these candidate allotments.

1) Allotment Algorithm: To reduce the energy consumption,

it may be better to derive allotments with small workload

and short execution time for each task. However, in general,

the task workload and execution time does not always vary

with the parallel degree in the same direction, i.e., smaller

workload does not accompany shorter execution time, and

vice versa. Hence, we propose an algorithm to generate a set

of candidate allotments that contains some with small task

workload, some with short task execution time and some in-

between. See Algorithm 3. The algorithm iteratively reduces

101

Algorithm 3 Allotment

Input: Cn and vector Υwn
n of each task τn;

Output: a set A of candidate allotments;

1: Γ = {τ1, ..., τN}, i = 1;

2: sort the workload of each task τn in an increasing order

and re-denote it as {wn1 × hn1, ..., wnM × hnM};{wnm

denotes the parallel degree and hnm denotes the corre-

sponding execution time, i.e., Cn

Υwnm
n

}
3: Ai ⇐ {w11, ..., wN1}, i++;

4: while Γ �= ∅ do
5: find the largest hnm among those with corresponding

wnm in Ai and task τn in Γ;

6: find such t that hnt < hnm ∧m < t;
7: if t �= ∅ then
8: wnm ⇐ wn(min{t});
9: Ai ⇐ the new allotment, i++;

10: else
11: Γ⇐ Γ− τn;

12: end if
13: end while
14: return A;

the execution time of the longest task in the current allotment

according to the sorted workload list.

Recall that the time complexity is O(QN) for the latter

two steps, so the time complexity of the overall three-step

algorithm is O(QMN2).

V. SIMULATION RESULTS

We performed a series of simulations to evaluate the energy

efficiency of our approaches. Since no comparison work has

addressed the energy minimizing problem of rigid (moldable)

tasks from all the two (three) dimensions: task scheduling,

frequency assignment (and the parallel degree allotment) in

multiprocessors with discrete operation modes, we mainly

compared the heuristics with the 0-1 ILPs which derive the

optimal solutions for the level-packing based energy-efficient

scheduling problem.

In our simulation, we considered multiprocessor/multicore

systems with M equal to 4, 8, 16 and 32 cores respectively.

The realistic processor parameters (frequencies and power

consumptions) of IBM PowerPC 750 and Intel XScale in [31]

were employed, and we only present the simulation results

for Intel XScale cores due to the similar results of IBM

PowerPC 750. The period (deadline) of the application was

set to 100 time units. For each task τn, its execution time

Cn at maximum frequency FQ was randomly generated in the

range of [0.01T, T]. Recall that the proposed algorithms in this

paper dose NOT restrict to any task execution time function to

the frequency. However, for simplicity, the execution time at

frequency Fq was then computed as FQ

F q Cn (Θq
n =

FQ

Fq
), i.e.,

the execution time was assume to be inversely proportional

with the frequency. Note that since the lowest frequency level

of Intel XScale does not satisfy that lower frequency requires

less energy due to this task setting, we focus on its four highest

frequency levels. For speed up ratio vector, Υ1
n, when τn runs

at one processor, was set to 1, and then other ratios was

randomly generated with Υm−1
n ≤ Υm

n ≤ m, m ∈ [2,M]
satisfied, which is realistic, due to the communication over-

heads between threads, but the proposed algorithms could

deal with arbitrary speedup ratio. The task number N was

set to range from M
2 to 3M

2 , due to the larger task number

leading to infeasible solutions. We only plot the results of the

approaches combining FFDH, since similar conclusions can

be draw from other approaches combining BFDH or NFDH.

The energy consumptions in each figure were normalized to

that of the heuristics incorporating with algorithm Shrink for

each setting, respectively. We record the energy consumption

for each simulation run, and plot the results averaged over 500

runs. The 0-1 ILPs are solved by ILOG CPLEX solver. The

experiments are performed on a Windows PC with an Intel

Core2 2.83GHZ 32-bit processor and 2GB main memory.

A. Rigid Task Case

In this experiment, we evaluate the energy efficiency of

different approaches for rigid real-time tasks. Each rigid task

randomly chooses one of the M parallel degrees and also the

corresponding execution time. As shown in Figure 2, although

the energy difference between the heuristics and 0-1 ILP

slightly increases as the number of task grows, the approach

combining with Algorithm Stretch performs nearly the same

as the 0-1 ILP solution, while the one with Algorithm Shrink
performs slightly worse. The reason is that the heuristic Stretch
aims at minimizing the energy consumption in each iteration,

which complies with the goal of the initial problem. While the

heuristic Shrink follows a different direction, which may lead

to irreversible energy consumption jump.

B. Moldable Task Case

In this experiment, we evaluate the energy efficiency of

different approaches for moldable real-time tasks. As shown

in Figure 3, the two heuristics perform almost the same as the

0-1 ILP solution3, which represents that the allotments derived

by Algorithm 3 always contains some appropriate ones.

From the results of both Figure 2 and Figure 3, we can

see that the energy difference between the heuristics and 0-1

ILP for moldable task case, is smaller than that for the rigid

task case. The reason is that the moldable task case has larger

allotment search space and the overall algorithm returns the

minimum energy value among all those polynomial allotments,

while the parallel degree is fixed for a rigid task set. According

to this, we can also conclude that the parallel degree allotment

dominates other problem dimensions.

VI. CONCLUSION

This is the first work addressing energy minimizing for

parallel tasks by combining timing constraints and gang

scheduling in multiprocessor/multicore systems with discrete

3Note that the 0-1 ILP curve is shorter than other two in Figure 3(b), since
the CPLEX solver runs out of time when we use node files to store some
parts of the branch & cut tree in disk due to the limited main memory.

102

2 3 4 5 6
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
N

or
m

al
iz

ed
 E

ne
rg

y
C

on
su

m
pt

io
n

task no.

 0-1 ILP
 FFDH+Stretch
 FFDH+Shrink

(a) 4 cores

4 6 8 10 12

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n

task no.

 0-1 ILP
 FFDH+Stretch
 FFDH+Shrink

(b) 8 cores

8 10 12 14 16 18 20 22 24

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n

task no.

 0-1 ILP
 FFDH+Stretch
 FFDH+Shrink

(c) 16 cores

20 25 30 35 40 45
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n

task no.

 0-1 ILP
 FFDH+Stretch
 FFDH+Shrink

(d) 32 cores

Fig. 2. Comparison of energy efficiency of 0-1 ILP and rigid tasks under multiprocessors with 4, 8, 16 and 32 cores using FFDH.

2 3 4 5 6

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n

task no.

 0-1 ILP
 FFDH+Stretch
 FFDH+Shrink

(a) 4 cores

4 6 8 10 12

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
N

or
m

al
iz

ed
 E

ne
rg

y
C

on
su

m
pt

io
n

task no.

 0-1 ILP
 FFDH+Stretch
 FFDH+Shrink

(b) 8 cores

8 10 12 14 16 18 20 22 24

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n

task no.

 0-1 ILP
 FFDH+Stretch
 FFDH+Shrink

(c) 16 cores

20 25 30 35 40 45
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n

task no.

 0-1 ILP
 FFDH+Stretch
 FFDH+Shrink

(d) 32 cores

Fig. 3. Comparison of energy efficiency 0-1 ILP and moldable tasks under multiprocessors with 4, 8, 16 and 32 cores using FFDH.

operation modes. Based one level-packing, for rigid tasks,

we first presented 0-1 ILP to deal with the task scheduling

and frequency assignment together, and then proposed an

efficient two-step algorithm to solve them respectively. For

moldable tasks, a 0-1 ILP was also provided, and then com-

bining the new allotment heuristic, a three-step algorithm with

polynomial-time complexity was proposed. Simulation exper-

iments reported excellent results of the proposed heuristics.

For the future work, we will explore energy saving for other

general packing schemes with timing guarantees and compare

to the approaches proposed in this paper.

Acknowledgement: We would like to thank the anonymous

reviewers for their constructive comments. This work is

partially supported by the NSF of China under Grant No.

60973017 and the Fundamental Research Funds for the Central

Universities under Grant No. N100604010 and N110804003.

REFERENCES

[1] J. Chen, H. Hsu, K. Chuang, C. Yang, A. Pang, and T. Kuo, “Multipro-
cessor energy-efficient scheduling with task migration considerations,”
in ECRTS’04.

[2] J. Chen and T. Kuo, “Multiprocessor energy-efficient scheduling for
real-time tasks with different power characteristics,” in ICPP’05.

[3] C. Yang, J. Chen, and T. Kuo, “An approximation algorithm for energy-
efficient scheduling on a chip multiprocessor,” in DATE’05.

[4] T. AlEnawy and H. Aydin, “Energy-aware task allocation for rate
monotonic scheduling,” in RTAS’05.

[5] J. Chen, T. Kuo, C. Yang, and K. King, “Energy-efficient real-time task
scheduling with task rejection,” in DATE’07.

[6] J. Chen, H. Hsu, and T. Kuo, “Leakage-aware energy-efficient schedul-
ing of real-time tasks in multiprocessor systems,” in RTAS’06.

[7] D. Zhu, R. Melhem, and B. Childers, “Scheduling with Dynamic
Voltage/Speed Adjustment Using Slack Reclamation in Multi-Processor
Real-Time Systems,” in RTSS’01.

[8] C. Xian, Y. Lu, and Z. Li, “Energy-aware scheduling for real-time
multiprocessor systems with uncertain task execution time,” in DAC’07.

[9] J. Chen, C. Yang, H. Lu, and T. Kuo, “Approximation Algorithms
for Multiprocessor Energy-Efficient Scheduling of Periodic Real-Time
Tasks with Uncertain Task Execution Time,” in RTAS’08.

[10] S. Cho and R. Melhem, “Corollaries to Amdahls law for energy,” CAL,
2008.

[11] V. Korthikanti and G. Agha, “Analysis of Parallel Algorithms for Energy
Conservation in Scalable Multicore Architectures,” in ICPP’09.

[12] A. Y. Zomaya, “Parallel processing for real-time simulation: A case
study,” PDT, 1996.

[13] S. Kwon, Y. Kim, W. Jeun, S. Ha, and Y. Paek, “A retargetable parallel-
programming framework for MPSoC,” TODAES, 2008.

[14] G. Manimaran, C. Murthy, and K. Ramamritham, “A new approach for
scheduling of parallelizable tasks in real-time multiprocessor systems,”
RTS, 1998.

[15] G. Manimaran and C. Murthy, “An Efficient Dynamic Scheduling
Algorithm for Multiprocessor Real-Time Systems,” TPDS, 1998.

[16] O. Kwon and K. Chwa, “Scheduling parallel tasks with individual
deadlines,” TCS, 1999.

[17] S. Kato and Y. Ishikawa, “Gang EDF Scheduling of Parallel Task
Systems,” in RTSS’09.

[18] I. Lupu and J. Goossens, “Scheduling of hard real-time multi-thread
periodic tasks,” Arxiv preprint arXiv:1105.5080, 2011.

[19] X. Lin, Y. Lu, J. Deogun, and S. Goddard, “Real-time divisible load
scheduling for cluster computing,” in RTAS’07.

[20] ——, “Real-time divisible load scheduling with different processor
available times,” in ICPP’07.

[21] F. Kong, N. Guan, Q. Deng, and W. Yi, “Energy-efficient scheduling
for parallel real-time tasks based on level-packing,” in SAC’11.

[22] E. Coffman Jr, M. Garey, D. Johnson, and R. Tarjan, “Perfor-
mance bounds for level-oriented two-dimensional packing algorithms,”
SICOMP, 1980.

[23] Q. Wang and K. Cheng, “A heuristic of scheduling parallel tasks and
its analysis,” SICOMP, 1992.

[24] M. Drozdowski, “Real-time scheduling of linear speedup parallel tasks,”
IPL, 1996.

[25] J. Turek, J. Wolf, K. Pattipati, and P. Yu, “Scheduling parallelizable
tasks: putting it all on the shelf,” SIGMETRICS, 1992.

[26] G. Mounie and D. Trystram, “Efficient approximation algorithms for
scheduling malleable tasks,” in SPAA’92.

[27] C. Han and K. Lin, “Scheduling parallelizable jobs on multiprocessors,”
in RTSS’89.

[28] J. Blazewicz, M. Drabowski, J. Weglarz, I. Automatyki, and
P. Poznańska, “Scheduling multiprocessor tasks to minimize schedule
length,” TC, 1986.

[29] O. Kwon, J. Kim, S. Hong, and S. Lee, “Real-time job scheduling in
hypercube systems,” in ICPP’97.

[30] S. Collette, L. Cucu, and J. Goossens, “Integrating job parallelism in
real-time scheduling theory,” IPL, 2008.

[31] R. Xu, D. Zhu, C. Rusu, R. Melhem, and D. Mossé, “Energy-efficient
policies for embedded clusters,” in LCTES’05.

103

