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Abstract

This paper explores the use of FPGA technologies to
implement fuzzy logic controllers (FLCs). Two dif-
ferent approaches are described. The first option is
based on the logic synthesis of the boolean equations
describing the controller input-output relations. The
second approach uses dedicated hardware to imple-
ment the fuzzy algorithm according to a specific ar-
chitecture based on a VHDL cell library. In both al-
ternatives, the synthesis process is accelerated by
means of CAD tools which translate a high level de-
scription of the controller. A set of design examples
are included in order to analyze the application do-
mains covered by the different solutions.

1. Introduction

The number of applications using fuzzy logic tech-
niques to solve control and decision-making prob-
lems has increased considerably in the last years [1].
As a consequence, multiple solutions for the imple-
mentation of fuzzy algorithms resorting to either
software and hardware approaches have been pro-
posed and reported [2]-[17]. The applicability of
these solutions depends on both the problem com-
plexity (expressed as the number of input and output
variables, and control rules) and the temporal restric-
tions (which establish the required inference speed).
Software solutions provide flexibility to define the
knowledge base, to select the fuzzy operators, and to
choose the inference algorithms. However, they be-
come inadequate for problems demanding high in-
ference speed. In this case hardware solutions must
be adopted [4].

Hardware realizations of fuzzy controllers can be ac-
complished following two general strategies. In the
off-line strategy, output values are precomputed for
all the possible input combinations and the inference
process is carried out by a look-up table that can be
implemented by storing the values in a RAM or by
using combinational circuits [5]-[6]. Even though
this approach allows for a complete flexibility in the

definition of the fuzzy controller, its main drawback
is the exponential growth of the required memory
when the number of inputs or the number of ele-
ments in the universe of discourse is increased. To
eliminate this handicap, the realization of many
fuzzy controllers follows anon-line strategy by
which dedicated hardware evaluates the inference
process concurrently with the input changes [7].

Dedicated fuzzy hardware can be further classified
in two categories: 1)Fuzzy coprocessors, which co-
operate with a standard microprocessor to accelerate
typical fuzzy operations as Min or defuzzification
(Most of the commercially available fuzzy chips cor-
respond to this category [8]-[11]); and 2)Applica-
tion Specific Fuzzy Hardware, which implements
the fuzzy algorithm in an integrated circuit [12]-[17].
A typical ‘flexibility/speed’ trade-off can be estab-
lished between the two approximations. Fuzzy co-
processors provide a general purpose solution for
high-complexity applications, while specific fuzzy
hardware provides faster and cheaper implementa-
tions for middle and low-complexity problems.

This paper focuses on hardware implementations of
low-complexity fuzzy controllers by means of Field
Programmable Gate Arrays (FPGA). The choice of
this implementation technology presents several ad-
vantages. First, it provides a fast prototyping capa-
bility for applications that can later be realized as in-
tegrated circuits. Second, systems built with FPGAs
exhibit intrinsic programmability, thus providing a
simple mechanism to change or adjust their function.
Finally, a great number of development environ-
ments for FPGAs are commercially available.

Two different approaches for the realization of fuzzy
controllers are considered (look-up table and specif-
ic fuzzy hardware). Both approaches are supported
by design tools which bridge the gap between the
high level specification of a controller and the repre-
sentation required by FPGA synthesis tools. The ap-
plicability of the different solutions is analyzed by
exploring the design space for some examples.
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2. Design Flow for Fuzzy Controllers

The design flow of FLCs using our design tools is il-
lustrated in Fig 1. The starting point of the synthesis
process is a behavioral description of the controller
using the specification language XFL [18]. The con-
troller specification includes the initial knowledge
base (antecedent and consequent membership func-
tions, and rulebase) as well as the inference mecha-
nism and the defuzzification method to be imple-
mented. Such a description is suitable to be simulat-
ed and improved using the Xfuzzy 2.0 environment
[19]. The refinement process is carried out with the
help of a learning tool based on backpropagation al-
gorithms. This tool allows us to identify the system
rulebase and to adjust the membership function pa-
rameters.

When the controller specification is validated, the

designer can choose two target implementations.
The right branch in Fig 1 shows the steps to obtain a
logic implementation based on boolean minimiza-
tion. Xftl  receives as input an XFL description and
translates it to a look-up table with Berkeley’s PLA
format. The output PLA can be minimized and the
boolean equations can be extracted by means of any
compatible logic synthesis tool. In our case Xftl gen-
erates ascript file for Synopsys to select the synthe-
sis options.

The output of Synopsys is an XNF file (Xilinx
Netlist Format) named ‘fuzzy.sxnf’ with the control-
ler description. Optionally it is possible to generate a
report file containing routing requirements (number
of CLBs and IOBs) and temporal constraints. Final-
ly, fuzzy.sxnf is used as the input file for Xilinx soft-
ware for mapping and routing the FPGA. Three files
are obtained as result: ‘fuzzy.lca’, ‘ fuzzy.bit’ and the
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implementation report (in file ‘fuzzy.rpt’). The last
step is to write the FPGA using the file ‘fuzzy.bit’, to
obtain the physical implementation of the fuzzy sys-
tem from the behavioral XFL description.

An alternative implementation based on dedicated
hardware can be accomplished by following the left
branch in Fig 1.Xfvhdl  reads an XFL file and gen-
erates a synthesizable VHDL description based on a
specific architecture for fuzzy controllers (see [16]
for a detailed description of this architecture). The
architectural options and the number of bits of preci-
sion are defined by the user when the Xfvhdl com-
mand is run.

Xfvhdl uses a cell library containing the parameter-
ized VHDL description for the basic building blocks.
There are two kind of blocks: data path building
blocks (implementing the inference algorithm) and
control blocks (controlling the memory write/read
operations and the signals that control the operation
scheduling). The code used in the description of the
cell library is compatible with the restricted VHDL
implementations of the Synopsys and Mentor
Graphics tools. Xfvhdl produces as output the fol-
lowing files describing the FLC:

Package files: Two VHDL packages are generated
by Xfvhdl. Theconstants file includes the declara-
tion of the constants used in the VHDL description.
Some of these constants are obtained directly from
the parameters of the Xfvhdl command. Others are
obtained by analyzing the XFL description. The last
set of parameters is calculated from the other two.
On the other hand, theentities file contains the dec-
laration of all the blocks that make up the FLC. The
instantiation of each block depends on the architec-
tural options selected.

Knowledge base files: The information about ante-
cedents, rules and consequents is codified in a set of
files. The definitions are based on tables of values by
means of VHDL “case” sentences, thus enabling
logic minimization when these blocks are imple-
mented as combinational logic.

Controller file: This file contains the structural
VHDL description of the FLC. The controller is con-
structed by concatenating a set of basic building
blocks according to the XFL description and the im-
plementation options.

TestBench file: In addition to the files required by the
synthesis process, a testbench file is generated to
ease the verification of the FLC. The testbench in-
cludes the instantiation of the FLC, a process which
generates a periodical clock signal, and another pro-
cess that provides the initial reset signal and the in-
puts used in the simulation of the FLC.

Xfvhdl also generates ascript file to drive the Syn-
opsys synthesis process. The steps required to obtain
the FPGA are similar to the one previously described
for the look-up table approach.

3. Design examples

In order to illustrate the versatility of the tools, and
to analyze the application domains for the different
implementation techniques, we will address in this
section the realization of FLCs performing as func-
tion approximators. Two objective functions (Fig 2a
and Fig 3a) will be studied [20]. We will explore the
design space considering three implementation tech-
niques (look-up table, and specific architecture using
memory and arithmetic based MFCs [17]) and two
defuzzification methods (Fuzzy Mean and Weighted

Fig. 2: Function F1: z=1/(1+exp(10*(x-y))). a) Function surface. b) Rule base.
c) Antecedent and consequent membership functions.
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Fuzzy Mean). A precision range from four to four-
teen bits will be analyzed for all the cases.

Using the Xfuzzy facilities we have identified the
rulebases and adjusted the parameters for the result-
ing fuzzy controllers. Fig 2b and Fig 3b show the
rulebases. Both examples use seven triangular mem-
bership functions to cover the input universes of dis-
course. Only five different values (z1, ..., z5) are
used for consequents. Although consequents are rep-
resented in Fig 2c and Fig 3c as bell-shaped func-
tions, only one or two significant parameters are re-
quired for simplified defuzzification methods which
calculate the controller output as a weighted mean.
For the Fuzzy Mean method (FM), the weight pa-
rameters are the bell-function centers. In the Weight-
ed Fuzzy Mean (WFM), the second weight parame-
ters correspond to bell-function widths.

The XFL descriptions were introduced as input files
for the synthesis tools. All the controllers were de-
signed using Xilinx XC4000 family FPGAs. To
evaluate the performance of the different realiza-
tions, three characteristics have been considered: 1)
implementation cost in terms of the number of
CLBs; 2) approximation accuracy measured by the
root mean square error (RMSE); and 3) inference
speed in terms of main clock cycles. The results ob-
tained are summarized in the next section.

4. Experimental Results

Fig 4a shows the evolution of the cost for the three
implementation techniques when the number of bits
is increased. For low resolution implementations the
look-up table approach provides the best results.
Conversely, as soon as the resolution grows (more
than 5 bits), the specific hardware techniques ad-
dress better results. In this sense, for higher resolu-
tion implementations, the arithmetic option seems to

be more suitable than the memory option.

A similar analysis corresponding to the defuzzifica-
tion methods is depicted in Fig 4b. Only the look-up
table technique and the specific hardware with arith-
metic MFCs have been considered for simplicity.

Fig. 4: Implementation cost comparison. a) Function F1
with FM, b) Function F2 with FM and WFM.
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Fig. 3: Function F2: z=0.5(1+sin(2πx)cos(2πy)). a) Function surface. b) Rule base.
c) Antecedent and consequent membership functions.



For look-up table techniques, the cost of WFM is
slightly higher than that of FM. However, specific
hardware implementation of WFM requires one ad-
ditional multiplier, thus increasing the cost com-
pared to FM.

Regarding approximation accuracy, errors can be
caused by three causes: 1) the inherent fuzzy approx-
imation error; 2) the truncation error due to limited
bus width; and 3) the hardware implementation in-
duced error. The first error is inherent to the approx-
imated reasoning mechanism used by fuzzy logic
systems. This error can be minimized by increasing
the number of memberships for antecedents and con-
sequents. To reduce the truncation error the bus
width should be increased. Finally, the implementa-
tion error is a consecuence of the fixed-point arith-
metic used in the controller. In certain parts of the
circuit, such as in the defuzzification stage, this error
is accumulative.

Fig 5a represents the RMSE as a function of the
number of bits. The behavior is similar for the three
implementation techniques. For low resolutions (up
to 6 bits) the truncation error is the dominant factor.
When resolution is increased, approximation and
hardware errors become the main error sources.
Comparing the three techniques, implementation er-
rors have higher influence when specific hardware is
used.

The results obtained for function F2 let us analyze
how the defuzzification method influences the
RMSE. As shows Fig 5b, WFM provides in general
better results than FM. The difference between both
defuzzification methods is more significant for the
look-up table approach.

The final aspect of our study is focused on the eval-
uation of the inference speed provided by the differ-
ent techniques. Implementations based on look-up
tables are combinational circuits. In this case the in-
ference speed is limited by the propagation delay of
the FPGA critical path. The controller operation is
slower when a specific architecture is used because
several clock cycles are needed to calculate an infer-
ence. The system throughput depends on the bus
width. On the other hand, latency is also fixed by the
number of pipeline stages (two for memory based
MFCs and three for arithmetic MFCs). Experimental
results for five and six bits controllers implemented
using the Xilinx 4013PQ160-5 FPGA prove that a
clock frequency of 5.5 MHz. is sufficient to assure
correct operation. This means an inference speed
above 5 MFLIPS for look-up table controllers, and
close to 1 MFLIPS for specific hardware controllers.

According to the reported results, a trade off between
cost, accuracy and speed must be considered in the
design process of a fuzzy controller. The look-up ta-
ble technique is the best choice in terms of accuracy
and speed, but cost criteria make this solution im-
practicable when the resolution grows. Techniques
based on specific hardware are feasible for higher
resolution controllers. Particularly architectures us-
ing arithmetic MFCs can be used to build high reso-
lution controllers.

5. Conclusions

Two automatic synthesis tools for FPGA implemen-
tation of fuzzy controllers have been presented.
These tools generate the controller circuit from a
high-level behavioral description. One of the advan-
tages is that (by definition of automatic synthesis
tools) the implementation will be free of design er-
rors. Other advantage is that the tools provide a
mechanism for exploring the design space and let the
designer choose the best solution. Xfuzzy 2.0 lets us
do this with an additional advantage because it is an
open environment. It permits us to introduce new el-
ements (other controller architectures, other synthe-
sis styles, etc).

4 5 6 7 8 9
0.01

0.02

0.03

0.04

0.05

Fig. 5: RMSE comparison. a) Function F1 with FM. b)
Function F2 with FM and WFM.
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