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Abstract. Thinning on binary images is an iterative layer by layer ero-
sion until only the “skeletons” of the objects are left. This paper presents
an efficient parallel 3D surface–thinning algorithm. A three–subiteration
strategy is proposed: the thinning operation is changed from iteration to
iteration with a period of three according to the three deletion directions.

1 Introduction

Skeleton is a region–based shape feature that is extracted from binary image
data. A very illustrative definition of the skeleton is given using the prairie–fire
analogy: the object boundary is set on fire and the skeleton is formed by the
loci where the fire fronts meet and quench each other [4]. In discrete spaces, the
thinning process is a frequently used method for producing an approximation to
the skeleton in a topology–preserving way [7]. It is based on digital simulation of
the fire front propagation: border points of a binary object that satisfy certain
topological and geometric constraints are deleted in iteration steps. The entire
process is repeated until only the “skeleton” is left.

A simple point is a point whose deletion (or addition) does not alter the
topology of the picture [10]. Sequential thinning algorithms delete simple points
which are not end–points, since preserving end–points provides important in-
formation relative to the shape of the objects. Curve thinning (i.e. a thinning
process for extracting medial line) preserves line end–points while surface thin-
ning (i.e. a thinning process for extracting medial surface) does not delete surface
end–points.

Parallel thinning algorithms delete a set of simple points simultaneously. A
possible approach to preserve topology is to use subiteration–based approach
[6]: the thinning operation is changed from iteration to iteration with a period
of n (n ≥ 2); each iteration of a period is then called a subiteration where only
border points of certain kind can be deleted. Since there are six kinds of ma-
jor directions in 3D pictures, 6–subiteration thinning algorithms were generally
proposed [3,5,8,9,12,13,18,19]. Note, that 3–, 8–, and 12–subiteration algorithms
were also developed [14,15,16].

In this paper, a non–conventional 3–subiteration surface thinning algorithm
is proposed. Some experiments are made on synthetic objects and it is demon-
strated that the new algorithm is computationally efficient.
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2 Basic Notions

Let p be a point in the 3D digital space Z
3. Let us denote Nj(p) (for j = 6, 18, 26)

the set of points j–adjacent to point p (see Fig. 1a). The sequence of distinct
points 〈x0, x1, . . . , xn〉 is a j–path of length n ≥ 0 from point x0 to point xn in
a non–empty set of points X if each point of the sequence is in X and xi is
j–adjacent to xi−1 for each 1 ≤ i ≤ n. (Note that a single point is a j–path
of length 0.) Two points are j–connected in the set X if there is a j–path in X
between them. A set of points X is j–connected in the set of points Y ⊇ X if
any two points in X are j–connected in Y .
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Fig. 1. The frequently used adjacencies in Z
3 (a). The set N6(p) of the central point

p ∈ Z
3 contains the central point p and the 6 points marked U=u(p), N=n(p), E=e(p),

S=s(p), W=w(p), and D=d(p). The set N18(p) contains the set N6(p) and the 12 points
marked “�”. The set N26(p) contains the set N18(p) and the 8 points marked “•”. The
special local neighbourhood of the proposed algorithm (b). The new value of a black
point p depends on N26(p) (marked “�”) and six additional points (marked “�”).

The 3D binary (m,n) digital picture P is a quadruple P = (Z3, m, n, B) [7].
Each element of Z

3 is called a point of P . Each point in B ⊆ Z
3 is called a

black point and value 1 is assigned to it. Each point in Z
3\B is called a white

point and value 0 is assigned to it. Adjacency m belongs to the black points
and adjacency n belongs to the white points. A black component (or object) is
a maximal m–connected set of points in B. A white component is a maximal
n–connected set of points in B ⊆ Z

3.
We are dealing with (26, 6) pictures. It is assumed that any picture contains

finitely many black points.
A black point is called border point in (26, 6) pictures if it is 6–adjacent to

at least one white point. A border point p is called U–border point if the point
marked by U=u(p) in Fig. 1a is white. We can define N–, E–, S–, W–, and
D–border points in the same way. A black point p is called interior point if it is
not border point (i.e. u(p), n(p), e(p), s(p), w(p), and d(p) are all black points).
A black point is called simple point if its deletion does not alter the topology of
the picture [7].
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We propose a new surface thinning algorithm for extracting medial surfaces
from 3D (26, 6) pictures. The deletable points of the algorithm are border points
of certain types and not surface end–points (i.e. which are not extremities of sur-
faces). The proposed algorithm uses the following characterization of the surface
end–points: a black point is surface end–point in a picture if it is border point and
it is not 6-adjacent to any interior point. Note, that the same characterization
has been used by other authors [1,11].

3 The New Thinning Algorithm

Each conventional 6–subiteration 3D thinning algorithm uses the six deletion
directions that can delete certain U–, D–, N–, E–, S–, and W–border points,
respectively [3,5,8,9,12,13,18,19]. In our 3–subiteration approach, two kinds of
border points can be deleted in each subiteration. The three deletion directions
correspond to the three kinds of opposite pairs of points, and are denoted by UD,
NS, and EW. The first subiteration assigned to the deletion direction UD can
delete certain U– or D–border points; the second subiteration associated with
the deletion direction NS attempt to delete N– or S–border points, and some
E– or W–border points can be deleted by the third subiteration corresponding
to the deletion direction EW. The proposed algorithm is given as follows:

Input : picture P = (Z3, 26, 6, B)
Output : picture P ′ = (Z3, 26, 6, B′)
3-subiteration thinning(B,B′)
begin

B′ = B;
repeat

B′ = deletion from UD(B′); /* 1st subiteration */
B′ = deletion from NS(B′); /* 2nd subiteration */
B′ = deletion from EW(B′); /* 3rd subiteration */

until no points are deleted ;
end.

The new value of a black point depends on the values of 26+6 = 32 additional
points. The considered special neighbourhood is presented in Fig. 1b.

Deletable points in a subiteration are given by a set of matching templates.
A black point is deletable if at least one template in the corresponding set of
templates matches it.

The deletion rule corresponding to the first subiteration is given by the set of
templates TUD (see Fig. 2). Note that Fig. 2 shows only the ten base templates
U1–U5, D1–D5. Additionally, all their rotations around the vertical axis belong
to TUD, where the rotation angles are 90◦, 180◦, and 270◦.

It is easy to see that the complete TUD contains 2 · (1 + 4 + 4 + 2 + 4) = 30
templates. This set of templates was constructed for deleting some simple points
which are neither surface end–points nor extremities of surfaces. The deletable
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Fig. 2. Base templates U1–U5, D1–D5 and their rotations around the vertical axis
form the set of templates TUD assigned to the deletion direction UD. Note, that a
point p deleted by templates D1–D5 and their rotated version must be 6–adjacent to
at least one interior point.

Notations: each position marked “p”, “•”, “�”, and “♣” matches a black point;
each position marked “◦” matches a white point; each “·” (“don’t care”) matches
either a black or a white point.

Configurations “CU” and “CD”, and using different symbols for black template
positions help us to prove the topological correctness of the algorithm.
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points of the other two subiterations (corresponding to deletion directions NS
and EW) can be obtained by proper rotations of the templates in TUD. Note
that choosing another order of the deletion directions yields another algorithm.
The proposed algorithm terminates when there are no more black points to be
deleted. Since all considered input pictures are finite, it will terminate.

Although the proposed algorithm may seem complicated, in fact it can be
simply implemented and it runs efficiently. We can state that a border point is
to be deleted from deletion direction UD if:

( ( d(p) is interior point and u(p) is white ) or
(u(p) is black and p is 6–adjacent to interior point and d(p) is white )

) and f(x0, x1, . . . , x24) = 1,

where f is a Boolean–function of 25 variables derived from the set of templates
TUD. It is easy to see, that function f can be given by a pre-calculated 225 bit ≡ 4
Mbyte (unit time access) look-up-table. The considered 25 variables correspond
to 25 points in N26(p) (see Fig. 3). More details concerning the implementation
of 3D thinning algorithms are presented in [17].
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Fig. 3. Indices of the 25 Boolean variables (i.e. the considered points in N26(p)). Note,
that investigating the point marked “�” is not needed. Since the deletion rule of a
subiteration can be derived from the deletion rule of the reference subiteration UD by
the proper rotation, the indexing scheme of a subiteration corresponds to the proper
permutation of positions assigned to the reference subiteration.

4 Discussion

Thinning algorithms have to take care of the following four aspects:

1. forcing the “skeleton” to retain the topology of the original object (i.e. topol-
ogy has to be preserved);

2. providing “shape preservation” (i.e. significant features of the original object
are to be produced);

3. forcing the “skeleton” to be in its geometrically correct position (i.e. in the
“middle” of the object);

4. producing “maximal” thinning (i.e. the desired “width” of the “skeleton” is
one point).
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The topological correctness (the 1st requirement) of the proposed algorithm
is shown in Section 5.

Shape preservation (the 2nd requirement) is a fairly important requirement,
too. For example, an object having same shape as letter “b” cannot be thinned
to a circular shape. The aim of the thinning is not to produce the topological
kernel [2] of an object: the thinning differs from shrinking. That is the reason
why end–point criteria are used in thinning. It is easy to see that surface–end
points are removed by none of our templates (see Fig. 2).

Geometrical correctness (the 3rd requirement) of the extracted skeleton is
mostly achieved by the subiteration (multi–directional) thinning approach. An
object is to be shrunk uniformly from each direction.

It is rather difficult to prove that the 4th requirement about maximal thinning
is satisfied. Due to the used surface end–point criterion, the produced skeleton
may contain 2–point thick surface patches [1,11]. It is easy to overcome this
problem (e.g., by applying the final thinning step proposed by Arcelli et al. [1]).

Our algorithm has been tested on objects of different shapes. Here we present
five examples (see Figs. 4–5).

Fig. 4. Two synthetic pictures containing a 140 × 140 × 50 horse and a 45 × 45 × 45
cube (top); and their skeletons produced by the proposed surface–thinning algorithm
(bottom)
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Fig. 5. Three synthetic pictures containing a 45 × 45 × 45 cube with one, two, and
three hole(s), respectively (top); and their skeletons produced by the proposed surface–
thinning algorithm (bottom)

The computation time of a thinning process depends on the complexity of an
iteration step and the required number of iteration steps. The 3–subiteration 3D
thinning strategy has been compared with other subiteration–based approaches
with periods of 6, 8, or 12. It has been shown that the 3–subiteration approach
requires the least number of iterations [16]. If we use unit time access look-up-
tables (corresponding the deletion rules of the considered algorithms) and our
efficient implemetation method [17] is applied, then 3–subiteration algorithms
are the fastest subiteration–based ones. The efficiency of the proposed method
is illustrated in Table 1.

Note, that the new algorithm differs greatly from the existing 3–subiteration
surface–thinning algorithm [16] in its surface end-point characterization and
deletion rule. While in the earlier work a black point p is a surface end-point if
u(p) = d(p) = 0 or n(p) = s(p) = 0 or e(p) = w(p) = 0 (see Fig. 1a), in the
new algorithm a black point is surface end–point if it is border point and it is
not 6-adjacent to any interior point. In addition, the set of matching templates
corresponding to a deletion rule of the earlier 3–subiteration surface–thinning al-
gorithm contains only 26 templates [16] in contrast to the 30, used in this work.
Consequently, the new and the earlier algorithms produce significantly different
medial surfaces.
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Table 1. Computation times for the considered five kinds of test pictures. The imple-
mented surface–thinning algorithm was run under Linux on an Intel Pentium 4 CPU
2.80 GHz PC. (Note, that only the thinning itself was considered; reading the input
volume and the 4 MB look-up-table, and writing the output image were not taken into
account.).

test picture size number of object points running time (sec.)

140 × 140 × 50 92 534 0.146

45 × 45 × 45 91 125 0.074
93 × 93 × 93 804 357 0.377

141 × 141 × 141 2 803 221 1.465
45 × 45 × 45 81 000 0.033
93 × 93 × 93 714 984 0.405

141 × 141 × 141 2 491 752 1.493
45 × 45 × 45 74 250 0.028
93 × 93 × 93 655 402 0.343

141 × 141 × 141 2 284 106 1.389
45 × 45 × 45 67 500 0.029
93 × 93 × 93 595 820 0.393

141 × 141 × 141 2 076 460 1.271

5 Verification

The proposed 3–subiteration thinning algorithm is topology preserving for (26, 6)
pictures [7]. It is sufficient to prove that reduction operation given by the set of
templates TUD is topology preserving. If the first subiteration of the algorithm
is topology preserving, then the other two ones are topology preserving as well,
since rotation of the deletion templates do not alter their topological properties.
Therefore, the proposed algorithm is topology preserving, since it is composed
of topology preserving reductions.

We make use of the following result for (26, 6) pictures:

Theorem 1. [10] Black point p is simple in picture (Z3, 26, 6, B) if and only if
all of the following conditions hold:

1. the set (B\{p}) ∩ N26(p) contains exactly one 26–component; and
2. the set (Z3\B)∩N6(p) is not empty and it is 6–connected in the set (Z3\B)∩

N18(p).

Theorem 1 shows that the simplicity in (26, 6) pictures is a local property; it can
be decided in view of the 3 × 3 × 3 neighbourhood of a given point.

We need to consider what is meant by topology preservation when a number of
black points are deleted simultaneously. We use the following sufficient conditions
for parallel reduction operations:
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Theorem 2. [14] Let F be a parallel reduction operation on (26, 6) pictures.
Then F is topology preserving, if for all pictures P = (Z3, 26, 6, B), all of the
following conditions hold:

1. for all points p ∈ B that are deleted by F and for all sets Q ⊆ (N18(p)\{p})
∩ B that are deleted by F , p is simple in the picture (Z3, 26, 6, B\Q); and

2. no black component contained entirely in a 2× 2× 2 configuration in Z
3 can

be deleted completely by F .

Unfortunately, there is no room to present the detailed proof concerning the
topological correctness. Our proof is based on the following properties of the
deletion rule of the first subiteration given by the set of templates TUD (see
Fig. 2):

1. Each template in TUD deletes only simple points.
2. The simplicity of a deletable point p does not depend on the points that

coincide with a template position marked “♣” and “·”.
3. Black points that coincide with template positions marked “�” cannot be

deleted by any template in TUD.
4. Let us investigate the configuration “CU” (and its rotations around the

vertical axis) and assume that central point p is black and it can be deleted
by a template in U1–U5 (or their rotations). Then the followings hold:
– If point q is black, then it cannot be deleted by any template in TUD.
– If point a is black and it can be deleted by a template in TUD, then point

b is white.
– If points a and c are black and they can be deleted by a template in TUD,

then point d is white.
5. Let us investigate the configuration “CD” (and its rotations around the

vertical axis) and assume that central point p is black and it can be deleted
by a template in D1–D5 (or their rotations). Then the followings hold:
– If point q is black, then it cannot be deleted by any template in TUD.
– If point a is black and it can be deleted by a template in TUD, then point

b is white.
– If points a and c are black and they can be deleted by a template in TUD,

then point d is white.
6. If a black point p can be deleted by a template in TUD, then p must be

6–adjacent at least one interior point. Hence p cannot be in a small object
contained entirely in a 2 × 2 × 2 configuration in Z

3.

Condition 1 of Theorem 2 can be seen with the help of properties 1–5. Condi-
tion 2 of Theorem 2 is obvious by property 6. Therefore, the proposed algorithm
is topology preserving for (26, 6) pictures.
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