
A Reinforcement Learning Approach to Job-shop SchedulingWei ZhangDepartment of Computer ScienceOregon State UniversityCorvallis, Oregon 97331-3202U. S. A. Thomas G. DietterichDepartment of Computer ScienceOregon State UniversityCorvallis, Oregon 97331-3202U. S. A.AbstractWe apply reinforcement learning methods tolearn domain-speci�c heuristics for job shopscheduling. A repair-based scheduler startswith a critical-path schedule and incrementallyrepairs constraint violations with the goal of�nding a short con
ict-free schedule. The tem-poral di�erence algorithm TD(�) is appliedto train a neural network to learn a heuris-tic evaluation function over states. This eval-uation function is used by a one-step looka-head search procedure to �nd good solutions tonew scheduling problems. We evaluate this ap-proach on synthetic problems and on problemsfrom a NASA space shuttle payload process-ing task. The evaluation function is trained onproblems involving a small number of jobs andthen tested on larger problems. The TD sched-uler performs better than the best known exist-ing algorithm for this task|Zweben's iterativerepair method based on simulated annealing.The results suggest that reinforcement learn-ing can provide a new method for constructinghigh-performance scheduling systems.1 IntroductionMany problems of commercial interest|including jobshop scheduling|are instances of NP-Complete prob-lems. Hence, there is little hope of �nding general-purpose solutions to these problems. However, in anyparticular application setting, there are usually domain-speci�c constraints and regularities that can be exploitedto construct fast, domain-speci�c heuristic algorithms.While such domain-speci�c heuristics can be engineeredby hand, the process is expensive and time-consuming.The goal of the research described in this paper is to ex-plore the possibility of applying reinforcement learningalgorithms to discover good domain-speci�c heuristicsautomatically.Reinforcement learning algorithms learn policies forstate-space problem-solving tasks. For each state, thepolicy speci�es what action should be performed. Dur-ing learning, the learning system receives a reinforce-ment signal (called a \reward") after each action. The

goal of the learning system is to �nd a policy that maxi-mizes the expected reinforcement over future actions. Inthe context of job shop scheduling, the policy tells whatscheduling action to make next in order to maximizesome measure of the quality of the �nal schedule.In this paper, we focus on the application domain ofspace shuttle payload processing for NASA. The goal isto schedule a set of tasks to satisfy a set of temporal andresource constraints while also seeking to minimize thetotal duration (makespan) of the schedule. Of particularinterest to NASA are scheduling methods that can alsobe used to repair a schedule when some unforeseen di�-culty arises. In previous work on this task, Zweben andcolleagues [Zweben et al., 1994] developed an iterativerepair-based scheduling procedure that combines a set ofheuristics with a simulated annealing search procedure.The resulting scheduling system provides an e�cient and
exible facility for scheduling space shuttle ground op-erations. It is in regular use at the Kennedy Space Cen-ter [Deale et al., 1994]. The challenge for a learningapproach is to discover scheduling heuristics that canmatch or exceed the quality and e�ciency of this itera-tive repair method.In the remainder of the paper, we describe thescheduling task in greater detail. We then brie
y de-scribe Zweben's iterative repair-based scheduler. Follow-ing this, we review the reinforcement learning methodknown as TD(�) and describe how the scheduling taskcan be formulated so that TD(�) can be applied. Wethen describe our experiments on simulated problem setsand discuss the results. These results indicate that re-inforcement learning can outperform the iterative repairscheduler on realistic scheduling tasks. Furthermore, theknowledge learned through reinforcement learning canbe applied to scheduling problems that are larger andmore complex than the ones that were studied duringtraining. These initial results suggest that reinforce-ment learning has an important role to play in devel-oping high-performance AI scheduling systems.2 The NASA Domain and the IterativeRepair MethodThe NASA space shuttle payload processing (SSPP) do-main requires scheduling the various tasks that mustbe performed to install and test the payloads that are

placed in the cargo bay of the space shuttle. In job-shop scheduling terminology, each shuttle mission is ajob. Each job consists of a partially-ordered set of tasksthat must be performed. Each task has a duration anda list of resource requirements. For example, the taskMISSION-SEQUENCE-TEST has a duration of 7200 and re-quires two quality-control o�cers, two technicians, oneATE, one SPCDS, and one HITS. There are 35 di�erenttypes of resources. There may be many units of a re-source available. For example, there are 8 quality con-trol o�cers available and 25 technicians. However, theseavailable resources may be split into resource pools, sothat, for example, the 8 quality control o�cers might besubdivided into three pools of size 2, 2, and 4. If a taskrequires two quality control o�cers, they must both bedrawn from the same pool. Resource pools model multi-ple work shifts and multiple physical locations. A com-plete schedule must specify the start time of each taskand the resource pool by which each resource require-ment of each task is satis�ed.A typical SSPP problem involves the simultaneousscheduling of between two and six shuttle missions; eachmission involves between 32 and 164 tasks. Hence, theSSPP domain requires solving scheduling problems con-taining several hundred tasks. Most of these tasks mustbe performed prior to launch, but some also take placeafter the shuttle has landed. Each shuttle mission has a�xed launch date, but no starting date or ending date.Hence, tasks prior to launch have deadlines but no readytimes; tasks after landing have ready times but no dead-lines. A key goal of the scheduling system is to minimizethe total duration of the schedule. This is much morechallenging than simply �nding a feasible schedule.Zweben et al. 1994 developed the following iterative re-pair method for solving this scheduling problem. First,a critical path schedule is constructed by working back-ward and forward from the launch and landing dates.Each task prior to launch is scheduled as late as the tem-poral partial order will permit; each task after landing isscheduled as early as the temporal partial order will per-mit. Resource constraints are ignored; resource requestsare randomly assigned to resource pools. This criticalpath schedule can be constructed very e�ciently, and itprovides the starting state for the scheduling problemspace. In each state of this problem space, there are twopossible operators that can be applied. The Reassign-Pool operator changes the pool assignment for one ofthe resource requirements of a task. It is only appliedwhen the pool reassignment would allow the resource re-quirement to be successfully satis�ed. TheMove opera-tor moves a task to a di�erent time and then reschedulesall of the temporal dependents of the task using the crit-ical path method (leaving the resource pool assignmentsof the dependents unchanged). The Move operator isonly applied to move a task to the �rst earlier or the �rstlater time at which the violated resource requirement canbe satis�ed.These two operators are applied by the iterative repairmethod as follows. At each step, the earliest constraintviolation (i.e., where a resource pool is over-allocated) isidenti�ed. If a Reassign-Pool operator can be applied

to reduce this over-allocation, then it is applied. If not,then the Move operator is applied to move one of theo�ending tasks to an earlier or later time. If several dif-ferent pool reassignments are possible, one is chosen atrandom. If both an earlier and a later move are possi-ble, then one is chosen at random. Of the several tasksinvolved in the resource violation, one is chosen at ran-dom based on a heuristic that prefers to move the taskthat (a) requires an amount of resource nearly equal tothe amount that is over allocated, (b) has few tempo-ral dependents, and (c) needs to be moved only a shortdistance to satisfy the resource request.The overall control structure of the algorithm appliessimulated annealing to minimize the number of resourcepool violations. After each operator is applied, the num-ber of violations in the resulting schedule is computed. Ifthis has decreased, the resulting schedule is accepted asthe \current" schedule. If it has increased, the resultingschedule is accepted only with probability exp(��V=T),where �V is the change in the number of violations andT is the current temperature. The temperature is gradu-ally decreased. Search proceeds until no constraints areviolated. To obtain a short schedule, the algorithm isrun several times, and the shortest resulting schedule isselected.3 Reinforcement Learning, TemporalDi�erence Learning, and SchedulingReinforcement learning methods learn a policy for select-ing actions in a problem space. The policy tells for eachstate which action is to be performed in that state. Afteran action a is chosen and applied in state s, the problemspace shifts to state s0 and the learning system receivesreinforcement R(s; a; s0).To view the scheduling problem as a reinforcementlearning problem, we must describe the problem spaceand the reinforcement function R. We employ the sameproblem space as Zweben et al. The starting state s0is the critical path schedule as discussed above. Wede�ne the reinforcement function R(s; a; s0) to give areinforcement of �0:001 for each schedule s0 that stillcontains constraint violations. This assesses a smallpenalty for each scheduling action (Reassign-Pool orMove), and it is intended to encourage reinforcementlearning to prefer actions that quickly �nd a good sched-ule. For any schedule s0 that is free of violations, the rein-forcement is the negative of the resource dilation factor,�RDF (s0; s0). The RDF attempts to provide a scale-independent measure of the length of the schedule, andthis �nal reinforcement is intended to encourage rein-forcement learning to �nd short �nal schedules. Becausethe reinforcement function depends only on the resultingstate, we will write it as R(s0).The RDF is de�ned as follows. Let capacity(i) be the(�xed) capacity of resource type i|that is, the combinedcapacity of all resource pools of resource type i. At eachtime t in the schedule, let u(i; t) be the current utilizationof resources of type i. If u(i; t) > capacity(i), then theresource of type i is overallocated at time t (no matterhow we assign resource requests to resource pools of thistype). We de�ne the resource utilization index RUI(i; t)

for resource type i at time t to beRUI(i; t) = max�1; u(i; t)capacity(i)� :If the resource is not over-allocated, RUI(i; t) is 1; oth-erwise it is the fraction of overallocation.The total resource utilitization index (TRUI) for aschedule of length l is the sum of the resource utiliza-tion index taken over all n resources and all l times:TRUI = nXi=1 lXt=1RUI(i; t):Given these de�nitions, the resource dilation factor isde�ned as RDF (s; s0) = TRUI(s)TRUI(s0) :To understand the rationale behind this formula, �rstnote that in the �nal schedule s, TRUI(s) is just n timesthe length of the schedule. This is because in the �nalschedule, no resource is overallocated, so RUI(i; t) = 1.Hence, TRUI(s) = l � n. We could have used the neg-ative of this value as the reinforcement function, but re-inforcement learning is easier if the reinforcement func-tion is independent of the di�culty of the schedulingproblem. A very di�cult problem (e.g., with many jobsthat have simultaneous deadlines) would require a verylong schedule, whereas a simple problem would requirea much shorter schedule. The total resource utilizationindex of the initial schedule, TRUI(s0), measures theamount of overallocation of resources in the initial state,and hence, provides a crude measure of the di�culty ofthe scheduling problem. Hence, we use this to normalizethe �nal schedule length to produce the resource dilationfactor.Now that we have speci�ed how to view repair-basedscheduling as a reinforcement learning problem, we turnour attention to the learning algorithm. Suppose at agiven point in the learning process we have developedpolicy �, which says that in state s the best action toselect is a = �(s). We can de�ne an associated functionf� , called the value function, such that f�(s) tells the cu-mulative reward that we will receive if we follow policy �from state s onward. Formally, f�(s) = PNj=0R(sj+1),where N is the number of steps until a con
ict-free sched-ule is found.As in most reinforcement learning work, we will at-tempt to learn the value function of the optimal policy��, denoted f� = f�� , rather than directly learning ��.Once we have learned this optimal value function, wecan transform it into the optimal policy via a simpleone-step lookahead search: To choose the best actionin state s, we compute the state a(s) that would resultfrom applying each possible action a to state s. For eachsuch action, we compute the value of the resulting state,f�(a(s)), and choose the action a that maximizes thisvalue. Note that this approach requires that we knowthe e�ects of our operators|which is certainly true forrepair-based scheduling operators.To learn the value function, we can apply the methodof temporal di�erence learning known as TD(�) devel-oped by Sutton 1988. In TD(�), the value function is

represented by a feed-forward neural network, f̂ (s;W),where W is the vector of weights in the network. If thepolicy � were �xed, TD(�) could be applied to learnthe value function fpi as follows. Let s0; s1; : : : ; sN be asequence of states visited by following policy � with as-sociated reinforcements R(s1); : : : ; R(sN). At step j+1,we can compute the temporal di�erence error at step jas Jj = [f̂(sj+1;W) +R(sj+1)]� f̂ (sj ;W):TD(�) then computes the smoothed gradientej = rWf̂ (sj ;W) + �ej�1and updates the weights of the network according to�W = �Jtej :Here, � is a smoothing parameter that combines previousgradients with the current gradient in ej , and � is thelearning rate.The TD(�) algorithm was designed to learn the valuefunction for a stationary Markov random process such aswould result from following a �xed policy. In reinforce-ment learning, however, we want to apply it to learnthe value function of the optimal policy starting with aninitial, random policy. To do this, we employ a form ofvalue iteration. TD(�) is applied online to the sequencesof states and reinforcements that result from choosing ac-tions according to the current estimated value function,f̂ . At each state s during learning, we conduct a one-step lookahead search using the current estimated valuefunction f̂ to evaluate the states resulting from apply-ing each possible operator. We then select the actionthat maximizes the predicted value of the resulting states0. After applying this action and receiving the reward,we update our estimate of f̂ to re
ect the di�erence be-tween the value of f̂ (s) and the more informed valueR(s0)+ f̂ (s0). (We actually employ a slightly more com-plex procedure described below.) This means that thepolicy is continually changing during the learning pro-cess. Fortunately, TD(�) will still converge under theseconditions [Sutton, 1988].There are �ve further modi�cations that we made tothis algorithm based on preliminary experiments. First,for any reinforcement learning algorithm it is critical toperform some kind of exploration to discover new andbetter ways of getting from the start state to the goal.We employed the following simple exploration strategy.At each state, with probability � we choose a randomaction instead of the action recommended by the currentvalue function and policy. Initially, � is set to 1. Aftereach action, � is decreased by an amount �� until itreaches a �nal value of 0.05. (The values used for ��are given below.)Second, we do not perform weight updates in the neu-ral network after each action. Instead, we remember thesequence of states visited along the path from the start-ing state to the �nal con
ict-free schedule. Then we up-date the network starting with the �nal action and work-ing backward to the start of the action sequence. Exper-imentally, this works better than simple online training,because the values being backed up are more up-to-date.

Third, we employ Lin's experience replay method.During learning, the best sequence of moves from startto goal is remembered, and after every four training se-quences, we update the network using this best trainingsequence. This improved learning and performance sig-ni�cantly.Fourth, we do not employ a full one-step lookaheadsearch to select actions, because the branching factor inthis problem space is typically 20, and it is costly tocompute the value of each of these 20 successor states.Instead, we employ random sample greedy search, whichgenerates a random subset of the possible operators andevaluates their resulting states. The best of these oper-ators is then chosen. The size of the random sample isdetermined incrementally. An initial sample of four ac-tions is chosen. Based on the resulting computed valuesand a permitted amount of error � and desired con�dence1� �, we can compute the probability that the value ofthe best sampled action is within � of the best possibleaction. We continue sampling possible actions until thisprobability exceeds 1 � � (we set � = 0:1 and � = 0:1).Random-sample greedy search is employed during bothtraining and execution.The �nal change in the learning algorithm is that wedo not use the actual states of the scheduling process asinput to the neural network. The neural network canaccept only a �xed vector of feature values describingeach state (i.e., each current schedule). Schedules, on theother hand, are variable-length objects. Hence, it wasnecessary to de�ne a set of useful features that extractimportant aspects of the current schedule that the neuralnetwork can use to predict the value of the state. Wede�ned the following features (based on a very modestamount of experimentation):Mean and standard deviation of the free poolcapacity for bottleneck pools: Simple experimentsshowed that only the technician, logistics, electrical en-gineer, mechanical engineer, and quality control o�cerresource types became major bottleneck resources. Foreach bottleneck pool, the number of unallocated units(the free capacity) is measured over the whole sched-ule period and the mean and standard deviation of thisquantity provide two features for each pool.Mean and standard deviation of slacks: Theslack time between a task and one of its temporal prereq-uisites is the di�erence between the end time of the pre-requisite task and the scheduled start time of the task.We measure the minimum slack for each task (and allof its temporal prerequisites) and the average slack foreach task. The mean and standard deviation of thesetwo quantities taken over all tasks provide four features.Modi�ed RDF: We used a slightly modi�ed versionof the resource dilation factor of the current schedule.The numerator of the modi�ed RDF is computed usingthe capacity and allocation of individual resource-poolsrather than of resource types.Over-allocation index: This is the total number ofunits of over-allocated resources in the current scheduledivided by the total number of units of over-allocatedresources in the starting schedule.Percentage of windows in violation: A window

is de�ned to be a maximal period of time during whichthe set of currently scheduled tasks does not change. Aschedule can be segmented into a sequence of windows.We compute the percentage of windows that contain aconstraint violation. We also �nd the earliest windowthat contains a constraint violation and compute the per-centage of the following 9 windows that have violations.Percentage of windows in violation that can beresolved by pool reassignment: This is the fractionof those windows having constraint violations where thetotal amount of resources assigned is actually less thanthe total capacity, so that|if the resources were not sub-divided into pools|the resource requirements could bemet.Percentage of time units in violation: This ismeasured over the whole schedule period.First violated window index (normalized): Letw0 be the index of the earliest window that has a viola-tion. Let W be the total number of windows. Then thisfeature is (W � w0)=W . As violations are repaired, thisvalue decreases to zero. If no window has a violation, weset w0 = W .Each of these features was developed by studying smallscheduling problems to �nd quantities that had someability to predict RDF. However, we believe that thesefeatures can be improved substantially, and this is a goalof our ongoing research.A consequence of using these features instead of thefull state is that the learned policy may enter in�niteloops. We have taken two steps to detect and preventthese loops. First, the randomness introduced by therandom sample greedy procedure and by the randomexploration process tends to avoid loops, because evenwhen the same state is revisited, the same action maynot be chosen. Second, all states visited while solvinga particular problem are recorded and checked to detectloops. When a loop is detected, we apply the learnedvalue function to compute the second best action andchoose it. If a loop is detected again at the same state,we backtrack to the preceeding state and again take thesecond best action. If this were to create a loop also, wewould continue backtracking to earlier states.4 MethodsWe brie
y describe the methods applied to generate thetraining and test problems, the network architecture,and the parameters employed in the learning algorithm.4.1 Problem SetsWe constructed two problem sets: an arti�cial prob-lem set and a problem set based on speci�cations forthe NASA SSPP problem. The arti�cial problems weregenerated as follows. First, we generated a pool of 20jobs. From these, we constructed scheduling problemsby choosing random subsets of these jobs. This was in-tended to model the NASA setting where there are onlya limited number of possible shuttle-cargo-bay con�gura-tions (i.e., jobs), but where each scheduling problem is aunique combination of such shuttle missions. More gen-erally, this models a job shop where each new scheduling

interval requires scheduling a unique mix of more-or-lessstandard jobs.To generate a synthetic job, we choose the numberof tasks randomly in the range 6 to 10. A set of tem-poral constraints among these tasks is then randomlygenerated such that approximately 60% of all possiblepairwise precedence constraints are asserted.Next, resource requirements are determined for eachtask. There are two types of resources. Each resourcehas two pools|one pool has a capacity of 6 units, andthe other has a capacity of 8 units. Resource require-ments are randomly assigned to each task uniformly inthe range from 0 to 6 units for each resource type.Once the pool of 20 jobs is generated in this way, 50training problems and 50 test problems are constructed.To generate a problem, we �rst choose the number ofjobs in the problem to be either 3 or 4 (with equal prob-ability). The desired number of jobs is selected ran-domly with replacement from the 20-job pool. Each jobis assigned a completion deadline with the deadlines ran-domly separated by between 8 and 15 time units.Sixteen input features are computed to representschedules for these problems: 8 pool capacity featuresfor the 4 pools, 4 slack features, and features describ-ing the modi�ed RDF, percentage of windows and timeunits in violation, and percentage of violated windowsin which the violation can be resolved by pool reassign-ment.During training, 15 of the 50 training problems wereheld out as a validation set to determine when to halttraining. The remaining 35 problems were repeatedlyprocessed to train the value function networks.In addition to the 50 test problems, we generated asecond test set of 20 larger problems to evaluate the abil-ity of the learned value functions to scale up to largerscheduling problems. Each of these larger problems wasgenerated in the same way as the smaller problems ex-cept that the number of jobs was chosen uniformly be-tween 15 and 20.For the space shuttle payload processing task, a prob-lem consists of a set of shuttle missions with launch datesone to three months apart. Each mission can have oneor two payloads. We considered three kinds of payloads:long module (LM), mission peculiar equipment supportstructure (MPESS), and pallet and igloo (PALLET &IGLOO). These have 65, 32, and 82 tasks, respectively.There are 35 types of resources of which only �ve aremajor bottleneck resources.We randomly generated a training set of 20 problemsand a test set of 20 problems. The training problemseach contained between two and four shuttle missions.Of the 20 training problems, 5 were held out for valida-tion to determine when to stop training. The test prob-lems each contained 3 to 6 shuttle missions. The testproblems thus assess the ability of the learned policy toscale up to larger problems.For the shuttle problems, 20 input features are used:10 features for pool capacity, 4 slack features, modi�edRDF, 2 features describing windows in violation, per-centage of time units in violation, index of �rst violatedwindow, and the overallocation index.

4.2 Network Architecture and TrainingProcedureTo represent the value function, we trained feed-forwardnetworks having 40 sigmoidal hidden units and 8 sig-moidal output units. The 8 output units encode the pre-dicted RDF using the technique of overlapping gaussianranges [Pomerleau, 1991] as follows. Each output unitrepresents one assigned RDF value, vj (j = 1; : : : ; 8).For the arti�cial problems, these RDF values are v1 =0:8; v2 = 1:0; : : : ; v8 = 2:2. For the SSPP problems, theRDF values are v1 = 0:9; v2 = 1:0; : : : ; v8 = 1:6. Duringtraining, the target output activation for each outputunit is set to be targetj = '(RDF � vj; 0:2)='(0; 0:2),where '(�; �) is the standard normal probability den-sity function with mean � and standard deviation �.During testing, the predicted RDF value is computed as(Pj actj � vj)=(Pj actj), where actj is the actual outputactivation for output unit j.For each problem, we trained eight di�erent net-works using all combinations of the following parame-ters: learning rate � = 0:1 or 0.05, exploration schedule�� = 0:001 or 0.0005, and � = 0:2 or 0.7. (Prelimi-nary experiments showed that � = 0 did not performas well.) The training set problems are processed inround-robin fashion. Each problem is solved using oneof the networks to obtain a sequence of states and ac-tions. That network is then updated (via backpropaga-tion with TD(�)) by processing the state sequence work-ing backward from the �nal state. After every 50 passesthrough the training set, a cross-validation test is con-ducted to compute the average RDF of the �nal sched-ules produced over all cross-validation problems. Thebest network found during cross-validation (for each ofthe eight parameter sets) is retained. For each network,training continues until the cross-validated RDF of thatnetwork is worse than the previous nine measured valuesfor cross-validated RDF.Six networks are chosen for testing as follows. Thethree best networks found during cross-validation are re-tained along with their corresponding �nal networks. Weretain the �nal networks to compensate for variance inthe cross-validation measurements.For the simulated annealing component of the iterativerepair method, we set the starting temperature to 100 forthe synthetic scheduling task and to 200 for the SSPPtask. After every 10 accepted repairs to the schedule,the temperature is reduced according to T := 0:95T .5 ResultsFigure 1 shows the average cross-validation RDF for thefour value function networks trained with � = 0:1. Thehorizontal axis gives the number of training sequencesprocessed. This �gure shows that the performance ofthe trained networks is improving on the cross-validationproblems. Figure 2 plots the number of repair actionsfor these same networks. This shows that there is somereduction in the number of actions required to convertthe starting schedule into a con
ict-free �nal schedule.Figures 3 compares the performance of temporal dif-ference (TD) scheduling with the iterative repair (IR)

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

0 200 400 600 800 1000 1200 1400 1600 1800

A
ve

ra
ge

 R
D

F

Number of Sequences Trained

λ=.2, β=.0005
λ=.2, β=.001

λ=.7, β=.0005
λ=.7, β=.001Figure 1: Average RDF over 15 CV Problems

26

28

30

32

34

36

38

40

42

44

0 200 400 600 800 1000 1200 1400 1600 1800

A
ve

ra
ge

 N
um

be
r

of
 R

ep
ai

rs

Number of Sequences Trained

λ=.2, β=.0005
λ=.2, β=.001

λ=.7, β=.0005
λ=.7, β=.001Figure 2: Average Number of Repairs over 15CV Problemsmethod of Zweben. The vertical axis is the RDF of thebest con
ict-free schedule found so far. The horizontalaxis is a machine-independent proxy for the amount ofCPU time consumed by each method. For IR, the hori-zontal axis gives the number of restarts of the simulatedannealing procedure, and the vertical axis records theRDF of the best con
ict-free schedule found so far. Thelonger IR is run, the better its performance.For the TD scheduler, the horizontal axis representsthe number of neural network evaluation functions em-ployed. When k networks are used to solve a schedul-ing problem, the problem is solved k times, once witheach network, and the schedule having the best RDF isreturned as the answer. The best k networks, as deter-mined by cross-validation, are used. The curves stop atk = 6, because only six networks were used (once each).Some care must be taken in interpreting the horizontalaxis as a measure of CPU time. Each step of the TDscheduler requires more CPU time than a step of the IRscheduler, because the TD scheduler must perform therandom sample lookahead search and check for loops. Onthe average, TD spends 2.2 times as much CPU time perstep as IR. On the other hand, TD requires fewer stepsto �nd a con
ict-free schedule. The average sequencelength for an iteration of TD is 82% as long as an averageIR sequence. The net e�ect is that one iteration of TDis equivalent to approximately 1.8 iterations of IR.Bearing this in mind, the key point to notice is that thecurve for the TD scheduler always lies below the curve foriterative repair. This means that given the same amountof CPU time, TD always �nds a better schedule (i.e.,with lower RDF). For example, with 6 networks, TD ob-tains an RDF of 1.320 compared to IR's RDF of 1.371(at 1:8 � 6 = 11 iterations). This is a 3.9% improvement,which in a schedule lasting a year is a savings of 14 days

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 R
D

F

Number of Iterations

TD
IRFigure 3: Performance Comparison of TD to IRon 50 Small-scale Problems

1.36

1.38

1.4

1.42

1.44

1.46

1.48

0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 R
D

F

Number of Iterations

TD
IRFigure 4: Performance Comparison of TD to IRon 20 Medium-scale Problems(and thousands of dollars). The curve also shows thatiterative repair always requires much more time (29 iter-ations vs. 11) to �nd a schedule whose quality matchesthe RDF found by TD.Figure 4 shows a similar comparison for TD and IR onthe 20 larger test problems. Here the di�erence betweenthe algorithms is even more pronounced. Temporal dif-ference scheduling scales better to larger problems, eventhough it has only been trained on smaller problems.Figure 5 shows analogous results for temporal di�er-ence and iterative repair on the 20 test-set SSPP prob-lems. Here the horizontal axis is log CPU time. We seethat TD maintains a constant factor advantage over iter-ative repair. Temporal di�erence scheduling �nds betterschedules faster than iterative repair.Note, however, that this �gure just gives the averageRDF over the whole test set. Because of the randomcomponents of both algorithms, this hides considerablevariation. Figure 6 reveals this variation. Let us saythat TD \wins" on a particular problem if the RDF ofits best schedule computed so far is better than the RDFof the best IR schedule computed with the same amountof CPU time. The two algorithms will be said to \tie" ifthey �nd schedules with identical RDF values. Figure 6plots the fraction of TD \wins" and TD \wins + ties"as a function of log CPU time. We see that at low CPUcosts, TD wins on almost every problem. Eventually, asCPU time becomes larger, TD still wins or ties slightlymore than 50% of the time.6 Discussion and Concluding RemarksThese results show that temporal di�erence (TD) meth-ods outperform the best previous algorithm for schedul-ing space shuttle payload processing jobs. Furthermore,

1.22

1.24

1.26

1.28

1.3

1.32

1.34

1.36

1.38

1024 2048 4096 8192 16384 32768 65536 131072

A
ve

ra
ge

 R
D

F

Running Time (seconds)

TD
IRFigure 5: Performance Comparison of TD to IRon 20 PPS Problems (RDF)

0.4

0.5

0.6

0.7

0.8

0.9

1

4096 8192 16384 32768 65536 131072

P
er

ce
nt

ag
e

of
 T

D
 w

in
s

Running Time (seconds)

TD Win+Tie
TD WinFigure 6: Performance Comparison of TD to IRon 20 PPS Problems (% Wins)there are clearly many ways that the TD methods can beimproved. For example, the current set of features needsto be improved so that the learning procedure can cap-ture more domain-speci�c knowledge. There is also someevidence to suggest that the training procedure could beimproved.Several authors [Bradtke, 1993; Thrun and Schwartz,1993; Boyan and Moore, 1995; Schraudolph et al., 1994]have shown that there are pitfalls associated with us-ing neural networks (and other function approximationschemes) to represent value functions in reinforcementlearning. However, the results of this paper and the no-table success of Tesauro's [1992] TD backgammon sys-tem show that in some situations, these pitfalls are notencountered. An important open question is to under-stand why TD(�) works in this and other applications.We suspect that the success of TD methods in thisdomain results from two factors. First, there are prob-ably many good solutions to each scheduling problem.Certainly there are many good solution paths, becausethe search space is highly redundant. Second, TD is es-sentially a technique for smoothing adjacent estimates ofthe �nal RDF. This smoothing can remove local minimaeven if it does a poor job of predicting the �nal RDF.These two properties may permit a simple greedy algo-rithm to �nd good schedules.These same two properties may explain why the iter-ative repair method with simulated annealing also suc-ceeds in this domain. Simulated annealing is a stochasticmethod for locally smoothing an objective function. Asapplied in this domain, simulated annealing is not runlong enough to �nd a global optimum, but it may be ableto escape local minima and �nd an acceptable solution

in spite of this.Industrial scheduling problems abound, and general-purpose solutions to these problems probably do not ex-ist. This research has shown that reinforcement learn-ing methods have the potential for quickly �nding high-quality solutions to these scheduling problems. The goalof future research must be to improve these learningmethods so that they can be applied with a minimumof domain-speci�c engineering to produce a new, cost-e�ective scheduling technology.AcknowledgementsThe authors thank Rich Sutton and Monte Zweben forseveral helpful discussions. The authors gratefully ac-knowledge the support of NASA grant NAG 2-630 fromNASA Ames Research Center. Additional support wasprovided by NSF grants CDA-9216172 and IRI-9204129.References[Boyan and Moore, 1995] J. A. Boyan and A.W. Moore.Generalization in reinforcement learning: safely ap-proximating the value function. In Advances in Neu-ral Information Processing Systems 7, San Mateo, CA,1995. Morgan Kaufmann.[Bradtke, 1993] S. J. Bradtke. Reinforcement learningapplied to linear quadratic regulation. In Advances inNeural Information Processing Systems 5, pages 295{302, San Mateo, CA, 1993. Morgan Kaufmann.[Deale et al., 1994] M. Deale, M. Yvanovich, D. Schnitz-ius, D. Kautz, M. Carpenter, M. Zweben, G. Davis,and B. Daun. The space shuttle ground processingscheduling system. In M. Zweben and M. S. Fox, ed-itors, Intelligent Scheduling, chapter 15, pages 423{449. Morgan Kaufmann, San Francisco, CA, 1994.[Pomerleau, 1991] D. A. Pomerleau. E�cient training ofarti�cial neural networks for autonomous navigation.Neural Computation, 3(1):88{97, 1991.[Schraudolph et al., 1994] N. Schraudolph, P. Dayan,and T. Sejnowski. Using TD(�) to learn an evalu-ation function for the game of go. In Advances inNeural Information Processing Systems 6, San Mateo,CA, 1994. Morgan Kaufmann.[Sutton, 1988] R. S. Sutton. Learning to predict by themethods of temporal di�erences. Machine Learning,3(1):9{44, August 1988.[Tesauro, 1992] G. Tesauro. Practical issues in tempo-ral di�erence learning. Machine Learning, 8:257{278,1992.[Thrun and Schwartz, 1993] S. Thrun and A. Schwartz.Issues in using approximation for reinforcement learn-ing. In Proceedings of the Fourth Connectionist Mod-els Summer School, Hillsdale, NJ, 1993. Lawrence Erl-baum Publisher.[Zweben et al., 1994] M. Zweben, B. Daun,and M. Deale. Scheduling and rescheduling with it-erative repair. In M. Zweben and M. S. Fox, editors,Intelligent Scheduling, chapter 8, pages 241{255. Mor-gan Kaufmann, San Francisco, CA, 1994.

