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Abstract—In this paper, we consider a distributed transmitter
(D-TX) system, in which each TX has a dissimilar power amplifier
with different maximum output power, and different number of
transmit antennas. To improve energy efficiency (EE) of the D-
TX system, we design a multiuser multiple-input multiple-output
(MU-MIMO) precoding matrix, a transmit antenna selection (AS)
matrix, and a power control (PC) matrix. A conventional zero-
forcing based MU-MIMO precoding is shown to be EE optimal
for given AS and PC. Optimal and heuristic PC methods are
proposed for given AS and MU-MIMO precoding. For the AS, we
also propose heuristic algorithms. Average transmit power, outage
probability, and EE performance are evaluated to compare three
AS algorithms, and to observe the performance gap between
the optimal and heuristic PC methods. From the numerical
results, we discuss a tradeoff between AS complexity and EE
performance and provide a useful guide for energy efficient D-
TX system design.

Index Terms—Energy efficiency, multiuser MIMO, distributed
transmitters, antenna selection, power control.

I. INTRODUCTION

High spectral efficiency (SE) has been widely studied

and it becomes more tangible with distributed systems that

use, for example, coordination and/or cooperation among the

distributed antennas and transmitters. On the other hand,

energy efficiency (EE) has been recently emphasized in various

wireless communication systems [1]–[10]. Hence, it is natural

and timely to consider EE in the distributed systems, for

example, a distributed transmitter (D-TX), each TX of which

has dissimilar power amplifiers (PAs) with different maximum

output power, and different number of transmit antennas. In

[11], multiuser multiple-input multiple-output (MU-MIMO)

precoding, antenna selection (AS), and power control (PC)

are considered for energy efficient D-TX. To solve an EE

maximization problem including coupled nonlinear constraints

on instantaneous transmit power of each PA, a heuristic PC

method has been proposed.

In this paper, we extend the design framework in [6] to be

more systematic. To design MU-MIMO precoding, transmit

AS, and PC matrices, we formulate an EE maximization prob-

lem. The original problem includes a non-convex objective

function and integer optimization variables, and thus it is

difficult to be solved directly. We decompose the original

EE maximization problem into three subproblems, namely,

i) an MU-MIMO precoding design subproblem, ii) an AS

subproblem, and iii) a PC subproblem. In each subproblem,

we focus on EE maximization and consider a per-antenna

average transmit power constraint and a per-user data rate

central TX: TX 1

TX 2 TX 3 TX N

· · ·
· · ·

UE 1 UE 2 UE U

Fig. 1. Distributed transmitter (D-TX) system with N TXs and U UEs.

constraint. An outage is defined for the case when there is

no feasible solution, which means at least one user equipment

(UE) can not be supported. We show analytically that the con-

ventional zero-forcing (ZF) MU-MIMO precoding is optimal

with respect to EE for the given AS and PC. Furthermore,

we propose three effective AS algorithms based on greedy-

search, and optimal PC method for given antenna set and MU-

MIMO precoding. The optimal PC and heuristic PC with three

proposed AS algorithms are compared in computer simulation.

From the results, we provide insight of a tradeoff between AS

complexity and EE performance of the D-TX systems.

Notation: For any vector or matrix, the superscript (·)T ,

(·)H , and (·)+ denote transposition, Hermitian transposition,

and pseudo-inverse, respectively; tr(·) represents the trace of

matrix; E stands for expectation of a random variable; for any

scalar, column vector, and matrix, the notations | · |, ‖ ·‖2, and

‖ ·‖F denote the absolute value, 2-norm, and Frobenius-norm,

respectively; Ia is an a-dimensional identity matrix; and the

subscript (·)mn or [·]mn represents the (m,n)th element of

a matrix. Throughout this paper, we use the superscript (·)′
and (·)∗ for a given constant value and an optimized variable,

respectively.

II. SYSTEM MODEL

We consider a D-TX system with N TXs and U UEs as

illustrated in Fig. 1. Each UE has a single receive antenna,

while TX n has Mn co-located transmit antennas. One central

TX (e.g., a baseband unit and a signal processing center)

performs any required central processing for communications,

such as power control, resource allocation, and scheduling.

(N − 1) extended transmitters are connected to the central

TX through a noise-free wired backhaul (e.g., optical fiber)

for coordinated and cooperative MU-MIMO communications.

Specifically, the central TX performs i) computation of an MU-

MIMO precoding matrix according to the estimated channels;
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ii) selection of a transmit antenna set to be used for the MU-

MIMO preprocessing; and iii) allocation of transmit power

for each user’s data stream to satisfy its the target rate, and at

the same time to fulfill the maximum average transmit power

of each selected transmit antenna. In this work, we assume

that M =
∑N

n=1 Mn antennas are available for the ZF-MU-

MIMO preprocessing1. In other words, any channel matrix

of the selected antennas from M = {1, . . . ,M} is assumed

to be full rank. At least rank U MIMO channel is required

to support U UEs with a ZF-MU-MIMO. Thus, with enough

large number of TXs or their antennas, we assume M ≥ U to

perfectly eliminate inter user interferences (IUIs) throughout

the paper.

III. EE MAXIMIZATION PROBLEM FORMULATION

Denoting a received signal at UE u ∈ U = {1, . . . , U} by

yu, its vector form y = [y1 · · · yU ]T is written as

y = HSW
√
Px+ n, (1)

where H is a U -by-M MU-MIMO channel matrix; S is an

M -dimensional transmit AS matrix which is a binary diagonal

matrix, s.t. smm′ = 0 if m 6= m′ ∈ M; smm = 1 if the mth

antenna is selected, and smm = 0 otherwise; W is an M -by-U
ZF-MU-MIMO preprocessing matrix; P is a U -dimensional

diagonal matrix whose uth diagonal element puu determines

a power portion assigned to UE u; x = [x1 · · ·xU ]
T is a

transmit signal vector where xu is a transmit symbol to UE u
with E |xu|2 = 1; and n = [n1 · · ·nU ]

T is an additive white

Gaussian noise (AWGN) vector whose uth element nu is an

AWGN at UE u, and nu ∼ CN (0, σ2). The (u,m)th element

of H represents a channel gain
√
Aumhum consisting of the

path loss
√
Aum and the small scale fading hum between a

transmit antenna m ∈ M and UE u. The channels {hum} are

assumed to be independent and identically distributed (i.i.d.).

The mth transmit antenna is located at TXπ(m) where π(m)
is an one-to-one mapping function from antenna index m to

TX index n, i.e., π(m) = n. To eliminate the IUIs perfectly,

an M -by-U precoding matrix W satisfies a ZF property as

HSW = IU ;

therefore, ZF-MU-MIMO preprocessing yields the received

SNR of stream u in (1) as SNRu = puu/σ
2.

With sufficient input backoff, we assume that a PA input

signal is linearly amplified and the PA output signal has a

Gaussian distribution [10], and we can further assume that

UE u can correctly decode log2 (1 + SNRu)-bit information

per unit frequency and time (bits/sec/Hz). Accordingly, we

write the achievable throughput of UE u over bandwidth ΩHz
as Ω log2

(
1 + puu/σ

2
)
, ∀u ∈ U , and obtain the system

throughput per unit time (bits/sec) as follows:

R(P ) = Ω
∑

u∈U

log2
(
1 + puu/σ

2
)
. (2)

1Since a ZF-MU-MIMO precoding is near optimal with respect to the SE
if the signal-to-noise ratio (SNR) is high enough [12], [13], it is employed to
the D-TX systems [14], [15].

From the power consumption model of MIMO system

(refer to [16]), we now model the power consumption (watt)
corresponding to R(P ) as follows:

C(P ,S,W ) = f(W ,S,P ) + g(S), (3)

where f(·) and g(·) are transmit power-dependent (TPD) and

independent (TPI) terms, respectively. The average transmit

power of transmit antenna m of TXπ(m) is derived as

E
∣∣∣smmwT

m

√
Px

∣∣∣
2

= E
(
smmwT

m

√
PxxH

√
PwTH

m smm

)

= smmwT
mPwTH

m smm

=
[
SWPWHS

]
mm

;

where wm is a precoding vector for the mth antenna and

W T = [w1 · · ·wM ]; thus, the TPD power consumption is

defined as f(W ,S,P ) = c
∑

m∈M η−1
m [SWPWHS]mm,

where c is a system dependent power loss coefficient (c > 1)

which can be empirically measured, and ηm is the efficiency

of PA at the mth antenna (0 < ηm < 1). The TPI power

consumption is modeled as g(S) =
∑

m∈M Pcc,π(m)[S]mm+
tr(S)ΩPsp1 + ΩPsp2 + Pfix; Pcc,π(m) is radio frequency

(RF) circuit power consumption which is proportional to the

number of RF chains and depends on the type of transmitter

π(m); Psp1 and Psp2 are signal processing related power

consumption per unit frequency, where Psp1 is proportional

to the number of active antennas, i.e., tr(S), while Psp2 is

independent of tr(S); and Pfix is a fixed power consumption

which is independent of tr(S) and Ω, for example, a part of

power consumption at power supply and cooling systems.

A. Optimization Problem

From (2) and (3), we express a system EE (bits/joule) as

a function of P , S, and W as

EE (W ,S,P ) , R (P )/C (W ,S,P ), (4)

and formulate an EE maximization problem as follows:

max
{W ,S,P}

EE (W ,S,P ) (5a)

s.t. HSW = IU , (5b)[
SWPWHS

]
mm
≤ Pm, ∀m ∈ M, (5c)

Ω log(1 + puuσ
−2) ≥ Ru, ∀u ∈ U , (5d)

pu1u2
= 0, ∀u1 6= u2 ∈ U , (5e)

sm1m2
= 0, ∀m1 6= m2 ∈M, (5f)

smm ∈ {0, 1}, ∀m ∈ M, (5g)

where (5a) is the objective function; constraint (5b) follows

from the ZF property; (5c) is a per-antenna power constraint

with maximum output power Pm of antenna m; the inequali-

ties in (5d) are per-user rate constraints with a target rate Ru

of UE u, i.e., quality-of-service (QoS) constraints; constraints

(5e) and (5f) follow from the diagonal structure of P and

S; and (5g) is for AS. Specifically, the right hand side of

(5c) follows from the fact that the maximum transmit power

of TXn is limited by Pmax
n in regulation; and the transmit
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power of antenna m is then limited by Pm = Pmax
π(m)/Mπ(m)

to cover the case when all co-located Mπ(m) antennas are

selected for the MU-MIMO communications.

B. Problem Decomposition

Directly solving (5) is difficult due to the non-convex

objective function in (5a) and integer optimization variables

{smm} in (5f) and (5g). Instead, we propose a suboptimal de-

composition approach based on solving three computationally

tractable subproblems with respect to W , S, and P . We first

give some intuition for our decomposition approach and will

provide the details in subsequent sections.

The original problem (5) is reduced to an optimization

problem to find W for given feasible P and S that satisfy

(5d)–(5g). We denote this subproblem as P1. On the other

hand, for given feasible W and P that satisfy (5b)–(5e), the

original problem (5) becomes an AS problem to optimize

the matrix S. For fixed S, let G(S) denote the optimal

(minimum) objective value of P1. Ideally, we wish to choose

S as S∗ = argminS G(S). However, this AS problem is

combinatorial in nature and can be computationally intractable

when the number of antennas and users are prohibitively large.

We therefore present three simple AS algorithms in Section

V to obtain a computationally tractable suboptimal solution

to this problem, denoted by P2. At last, we note that the

optimization problem is quasi-convex over P if S and W

are fixed and it can be solved efficiently (more details are

provided in Section VI). This PC subproblem is denoted by

P3.

In summary, our decomposition approach is as follows:

Step 1: Solve P1 to obtain an optimal ZF-MU-MIMO precod-

ing matrix, i.e., W ∗, corresponding to fixed S′ and

P ′ (Section IV).

Step 2: Solve P2 to find a suboptimal set of transmit antennas

to use, i.e., S∗, for given W ∗ in Step 1 and P ′

(Section V).

Step 3: Solve P3 to obtain P ∗ for fixed S∗ and W ∗ (Section

VI).

It is clear that Steps 1 to 3 can be iterated repeatedly to

find better suboptimal solutions, but we will include iteration

only between Steps 1 and 2 for simplicity. Note that the AS

in Step 2 is critical to the overall performance. Since the AS

involves minimizing the same objectives in P1, i.e., G(S), we

will propose simple suboptimal algorithms which perform the

iteration between Steps 1 and 2 to provide W ∗ and S∗ for the

subsequent Step 3. Alteration of the optimization, i.e., solving

P2 first and P1 subsequently, remains as further work.

IV. DESIGN OF ZF-MU-MIMO PRECODING MATRIX W

For given S′ and P ′, which are supposed to satisfy (5d)–

(5g), the objective is a function of only W and it can be

maximized by minimizing tr(S′WP ′WHS′). Therefore, the

original optimization problem (5) can be reformulated for W

as

P1 : W ∗ = min
W

tr
(
S′WP ′WHS′

)
, s.t. (5b). (6)

We note that in this formulation, we have dropped the con-

straint (5c) in the original optimization problem. Constraint

(5c) involves the optimization variable W and it is supposed to

be included in P1. However, for this paper, we adopt a simpler

approach, and drop (5c) to obtain a closed form solution for

W in (6). The power constraints (5c) can be fulfilled in the

subsequent Steps.

Using the general expression of a ZF-MU-MIMO pre-

coding matrix which satisfies (5b), i.e., W = (HS′)+ +
null(HS′)A, and the property that tr(AAH) = ‖A‖2F ,

without loss of optimality, we rewrite (6) to an unconstrained

optimization problem with respect to A as

A∗ = min
A

∥∥∥S′(HS′)+
√
P ′ + S′null(HS′)A

√
P ′

∥∥∥
2

F
(7)

where null(·) takes the span of nullspace of a matrix and A is

a U -dimensional arbitrary matrix. Since the lower bound of the

objective function in (7) is obtained when A∗ is a zero matrix

(see the Appendix), the EE-aware precoding matrix becomes

a conventional ZF-MU-MIMO precoding matrix as

W ∗ = (HS′)
+
. (8)

Note that W ∗ is a function of only S′; thus, Step 1 can be

associated with Step 2.

V. DESIGN OF ANTENNA SELECTION (AS) MATRIX S

We now design S for given W ∗ obtained in P1 and fixed

P ′. The fixed PC matrix is defined as

P ′ = αP , (9)

where P is a diagonal matrix with the diagonal element

p11 · · · pUU ; puu is the relative power portion of UEu, such

that puu = αpuu and
∑

u puu = 1; and α is a common power

scaling factor for power limit and target rate. The relative

power portion factors are determined, heuristically, based on

the minimum required power for target rate as follows [11]:

puu = p̃uu
/∑

k∈U

p̃kk, ∀u ∈ U , (10)

where p̃uu is the minimum required power to satisfy (5d),

which is derived as

p̃uu = σ2
(
2

Ru

Ω − 1
)
.

Using (9) and (10) to the power constraint (5c), we can

derive the upper bound of α, denoted by α(S), as

α ≤ min
m∈M

(
Pm

/[
SW ∗PW ∗HS

]
mm

)
, α(S). (11)

On the other hand, using (9) and (10) to the QoS constraint

(5d), we can derive the lower bound of α as follows:

α ≥ σ2
(
2

Ru

Ω − 1
)/

puu =
p′uu
puu

=
∑

u∈U

p′uu , αLB. (12)

Thus, if α′ satisfies (11) and (12), i.e., αLB ≤ α′ ≤ α(S), any

α′P satisfies (5c) and (5d). If α(S) < αLB for all candidates

of S, an outage happens and the transmitters stay in an idle
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mode. Since W ∗ and α′P satisfy (5b), (5d), and (5e), we can

reformulate (5) for given W ∗ and α′P as follows:

P2 : S∗ = min
S

G(S), s.t. (5f) and (5g), (13)

where

G(S) = C(W ∗,S,P ′) =
c

η
α′

∥∥∥SW ∗
√
P

∥∥∥
2

F
+ g(S). (14)

Note that the final EE performance after Step 3 depends on

the initial setup of feasible α′ as the optimal antenna set in

Step 2 depends on initial α′. Further discussion on α′ will be

provided in Section VII.

The problem P2 is a combinatorial problem over smm.

Since M ≥ U as we assumed in Section II, the number of

candidates of transmit antenna sets becomes
(
M

U

)
+

(
M

U+1

)
+

· · ·+
(
M

M

)
, where

(
a

b

)
represents the number of b-combinations

from a set with a elements. To reduce the computational

complexity of the combinatorial problem, we propose three

AS algorithms that can reduce the candidates antenna set

effectively. The proposed AS algorithms are associated with

W ∗ in (8) and based on greedy search.

A. Channel Norm Based (CNB) Greedy Algorithm

One typically used AS method is based on the channel norm

[17]. The channel norm based (CNB) algorithm is focused

on the system SE; therefore, it may not be optimal for EE.

In each greedy step i, one channel column is decided to be

discarded based on channel column norm, i.e., ‖hm‖22. Thus,

the searching time complexity is O(M − U). Note that the

channel norms are computed at once before the iteration and

used in a whole iteration step without requiring additional

computational complexity. The pseudo-code of CNB algorithm

is shown in Algorithm 1.

Algorithm 1 : CNB-greedy algorithm

1. setup: M0 = [1, 2, . . . ,M ] and S = IM
2. compute qm = ‖hm‖22 , ∀m ∈M0

3. for i = 1 to M − U + 1 do

4. find W ∗ from (8)

5. compute G(Si) from (14)

6. q∗ = argmin
j∈Mi

qj

7. update: sq∗q∗ = 0;Mi =Mi−1 \{q∗}; and i← i+1
8. end for

9. construct S∗ such that smm = 1 for all m ∈ Mℓ where

ℓ =
(
argmin

i

G(Si)
)
− 1 and other elements are zeros.

B. Precoding Norm Based (PNB) Greedy Algorithm

The second algorithm modifies line 6 of Algorithm 1.

Specifically, instead of ‖hj‖22, we employ a scaled precod-

ing vector norm α′
∥∥w∗T

j

√
P
∥∥2
2

for discarding the channel

column vector, hence calling it as a precoding norm based

(PNB)-greedy algorithm. As a consequence, the PNB-greedy

algorithm may outperform the CNB-greedy algorithm because

α′‖w∗T
j

√
P ‖22 is directly related to the power consumption

G(S). Moreover, since the precoding vector norms are ob-

tained while G(Si) is computed, the time complexity of PNB-

greedy algorithm is the same as CNB-greedy algorithm. The

pseudo-code of PNB-greedy algorithm is shown in Algorithm

2.

Algorithm 2 : PNB-greedy algorithm

1. setup: same as line 1 in Algorithm 1

2. for i = 1 to M − U + 1 do

3. find W ∗ from (8)

4. compute G(Si) from (14) and

5. store qm = α′
∥∥∥w∗T

m

√
P

∥∥∥
2

2
, ∀m ∈Mi−1

6. q∗ = argmin
j∈Mi

qj

7. update: sq∗q∗ = 0;Mi =Mi−1 \{q∗}; and i← i+1
8. end for

9. construct S∗: same as line 9 in Algorithm 1.

C. Power Consumption Based (PCB) Greedy Algorithm

More complex, yet tractable compared to a naive exhaustive

search, a power consumption based (PCB)-greedy algorithm is

introduced. For the channel update, the PCB-greedy algorithm

compares the power consumption G(Sj), i.e., qj = G(Sj).
Since G(Sj) is an actual objective value, we can expect

further performance improvement. However, G(Sj) has to be

recomputed in each iteration i. Hence, the time complexity of

PCB-greedy algorithm increases to O(M2 + M − U2 − U)
as j’s are elements of Mi with |Mi| = M − i + 1. The

pseudo-code of PCB-greedy algorithm is shown in Algorithm

3.

Algorithm 3 : PCB-greedy algorithm

1. setup: same as line 1 in Algorithm 1

2. for i = 1 to M − U + 1 do

3. find W ∗ from (8)

4. compute G(Si) from (14)

5. for ∀j ∈Mi do

6. set sjj = 0 for test

7. compute qj = G(Sj)
8. reset sjj = 1 and update j ← j + 1
9. end for

10. q∗ = argmin
j

qj

11. update sq∗q∗ = 0;Mi =Mi−1 \{q∗}; and i← i+1.

12. end for

13. construct S∗: same as line 9 in Algorithm 1.

VI. DESIGN OF POWER CONTROL (PC) MATRIX P

If we fix a ZF-MU-MIMO matrix and an AS matrix as W ∗

and S∗, which are obtained in Sections IV and V and satisfy

(5b), (5f), and (5g), the original problem (5) is given by

P3 : P ∗ = max
P

R(P )

C(W ∗,S∗,P )

s.t. (5c), (5d), and (5e).

(15)
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The optimal and heuristic solutions of P3 are provided in

subsequent Subsections.

A. Convex Optimization with Bisection Search

By introducing an additional variable ξ, we can rewrite the

optimization problem in (15) as

P3
′ : P ∗ = max

P

ξs.t.(5c), (5d), (5e), and (16a)

R(P )− ξG(S∗) ≥ 0. (16b)

This rewriting of the optimization problem introduces an

additional constraint (16b) to the problem. However, for fixed

ξ, the (5c) and (5d) are convex constraints and (5e) is lin-

ear constraint; therefore, the feasibility of this optimization

problem can be checked through solving a convex feasibility

problem [18]. This optimization problem is therefore quasi-

convex and the optimal ξ can then be found through bisection

and sequentially solving the convex feasibility problem at

each step of the bisection. We present the bisection search

in Algorithm 4.

Algorithm 4 : Bisection search

1. setup: ξLB = 0, ξUB ≃ ∞, and a tolerance value, δ > 0
2. while ξUB − ξLB > δ do

3. ξ ← (ξUB − ξLB)/2
4. Solve convex feasibility problem with constraints (5c),

(5d), (5e) and (16b), and find (update) P ∗.

5. if infeasible then ξUB ← ξ
6. else ξLB ← ξ end if

7. end while

8. P ∗
optimal = P ∗

B. Heuristic Method with Problem Modification

In this subsection, we revisit the heuristic PC method

proposed in [11]. For simple closed form solution of (15),

we maximize EE lower bound instead of EE directly. Using

(9), P3 can be modified to maximize the EE lower bound as

follows (for details see [11]):

P3
′′ : α∗ = argmax

α

ΩU log2 (1 + c1α)

c2α+ c3
(17a)

s.t. αLB ≤ α ≤ αUB, (17b)

where c1 , minu{puu}σ−2; c2 , c
∑

m∈M η−1
m

[S∗W ∗PW ∗HS∗]mm; c3 = g(S∗); and αUB = α(S∗)
defined in (11). Note that all c1, c2, c3, αLB , and αUB in (17)

are constant values for given W ∗, S∗, and P . Now, we can

readily find the maximizer αo which makes the first derivative

of the objective function in (17a) to zero as

αo =
1

c1

(
exp

(
1 +W

(
− 1

exp(1)
+

c1c3
c2exp(1)

))
− 1

)
,

where exp(·) is an exponential function and W(·) denotes the

Lambert W function that satisfies q = W(q)eW(q). Considering

the feasible region (17b), we get the optimal feasible solution

of (17) as

α∗ = [αo]
αUB

αLB
, (18)

where [x]ba takes x if it is between a and b, and the closest

boundary a or b otherwise. Consequently, we get the heuristic

PC matrix as

P ∗
huristic = α∗P . (19)

Since the solution in (19) is obtained from heuristic ap-

proach, namely EE lower bound maximization and fixed P in

(10), it yields performance degradation compared to P ∗
optimal.

However, the computational complexity for P ∗
huristic is ob-

viously lower than that for P ∗
optimal as (19) is a tractable,

closed form expression. Note that the α∗ in (18) can be

recursively used in Step 2 to update α′ in (14) for additional

EE improvement. This recursion will be considered in future

work.

VII. PERFORMANCE EVALUATION AND DISCUSSION

In this section, we evaluate EEof D-TX systems with three

AS algorithms and two PC methods. For comparison purpose,

we show the system throughput and outage probability as

well. For simple star topology network setup, we assume that

i) two UEs, four TXs, and all TXs have two antennas, i.e.,

U = 2, N = 4, Mn = 2, ∀n ∈ {1, 2, 3, 4}; ii) three extended

TXs are located at 0.5 km from a central TX and they are

equidistant from one another; and iii) UEs are distributed

uniformly within 0.8 km from the central TX. The path loss

is modeled as Aum = g − 128 + 10 log10(d
−ν
um) in dB scale,

where g includes the transceiver feeder loss and antenna gains,

d−ν
um is the path loss for the distance dum between TX antenna

m and UE u, and ν is a path loss exponent. In our simulation,

we set g = 5dB, ν = 3.76, and σ2 = −174 dBm/Hz.
The distance dum depends on the UE location. The small

scale fading is modeled as Rayleigh fading, i.e., i.i.d and

zero-mean complex Gaussian random variables with a unit

variance. System bandwidth is 5MHz. R1 = 40Mbps and

R2 = 60Mbps. Power related parameters are as follows

[2], [3], [16]: c = 2.63, Pcc = 66.4W, Pfix = 36.4W,

Psp1 = 1.82µW /Hz and Psp2 = 3.32µW /Hz. For high EE,

we assume equal power output capability [9], i.e., ηm = 0.3
and Pmax

n = P . In AS algorithm of Step 2, we fix α′ as

its maximum, i.e., α′ = α(S) for maximum (worst case) and

conservative power allocation for QoS.

In Figs. 2(a), (b), and (c), we compare throughput, EE,

and outage probability over maximum transmit power of TXs.

First, we compare three AS algorithms with optimal PC

method. This comparison verifies well the tradeoff between AS

complexity and EE performance. For example, PCB-greedy

algorithm can achieve the highest EE compared to the other

algorithms, yet its complexity is obviously highest. Next,

comparing the optimal and heuristic PC methods, we see that

the optimal PC method can always obtain the higher EE than

the heuristic PC method, for the same AS algorithm with a

cost of higher complexity. The above results are well expected.

However, one interesting result is observed by comparing the

EEs of different AS algorithms with a heuristic PC method. In

contrast with an optimal PC method, the heuristic PC method

with a CNB-greedy AS algorithm achieves the highest EE.
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Fig. 2. Numerical comparison when U = 2, N = 4, and Mu = 2. a) Average transmit power. b) Outage probability. c) Energy efficiency (EE).

This is because of the initial value of α′ in Step 2. Since

the AS algorithms focus on minimization of G(S) in (14) in

Step 2, the α′ = α(S) is desired to be as small as possible

in the AS optimization. The smaller α(S) yields the smaller

upper bound αUB in Step 3, resulting in the lower EE with

higher probability in the heuristic PC. One interesting remark

is as follows. Depending on an initialization of PC in AS

optimization, the tradeoff between AS complexity and EE

performance may be violated. In our simulation setup, we

can conclude that the CNB-greedy AS algorithm requires the

lowest complexity, and at the same time it is the most efficient

suboptimal method in terms of EE.

VIII. SUMMARY AND FUTURE WORK

In this paper, we have considered energy efficiency (EE)

maximization for a distributed transmitter (D-TX) system, in

which each TX has different number of transmit antennas

with individual power constraint. A three-step decomposition

approach involving multiuser multiple-input multiple-output

precoding matrix weight minimization, antenna selection, and

power control has been introduced to solve the EE maximiza-

tion problem sub-optimally. Numerical results have validated

the potential of our proposed approach in EE maximization.

Remaining work for further study includes a decomposition

approach through: i) introducing an iterative approach between

Steps 2 and 3; and ii) including an additional step for power

initialization in Step 2.

APPENDIX

Proof: Noting the properties for given S and P that

SS = S, SS+ = S, SH = S, and PH = P , we can

further derive the objective function in (7) as

tr
[√

PH+HS
(
SH+

√
P + Snull(HS)S

√
P
)

+
√
PAH (null(HS))

H
S

×
(
SH+

√
P + Snull(HS)A

√
P
) ]

= tr
[√

PH+HSH+
√
P

+
√
PAH (null(HS))

H
Snull(HS)A

√
P
]

=
∥∥SH+

√
P
∥∥2
F
+
∥∥Snull(HS)A

√
P
∥∥2
F
,

and obtain the lower bound when A is a zero matrix.
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