AN EFFICIENT NUMERICAL SCHEME FOR
BURGERS’ EQUATION

Y.C. Hon' X.Z. Mao?

"Department of Mathematics
City University of Hong Kong, Hong Kong.
2Zhejiang Provincial Institute of Estuarine and
Coastal Engineering Research, China.

(visiting City University of Hong Kong)

ABSTRACT: This paper applies the multiquadric (MQ) as a spatial ap-
proximation scheme for solving the nonlinear Burgers’ equation. For com-
parison purposes, a low order explicit finite difference approximation of the
time derivative is employed. By decreasing the time step of the computa-
tion, it is shown that the major numerical error is from the time integration
instead of the MQ spatial approximation. The numerical results indicate
that this MQ offers an excellent approximation for all possible values of
Reynolds number. An adaptive algorithm is also developed to adjust the
MQ interpolation points to the peak of the shock wave which is shown to
provide an improved numerical result. Numerical comparisons are made
with most of the existing numerical schemes for solving the Burgers’ equa-

tion.
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1. INTRODUCTION

Burgers [1] firstly proposed the following nonlinear partial differential equation (now

called Burgers’ equation)

1
Uy + utly, = Eum, R>0 (1)

as a mathematical model of free turbulence. Since then this model has been studied
by many researchers for the following reasons: (1) it contains the simplest form of
nonlinear advection term uu, and dissipation term u,, /R for simulating the physical
phenomena of wave motion; (2) its analytical solution was obtained by Cole [2] so
that numerical comparison can be made; and (3) its shock wave behavior when the
Reynolds number R is large. Various numerical techniques have been applied to solve

numerically equation (1) under the following boundary conditions

u(0,t) =0 =u(1,1), t>0 (2)
and the initial condition

u(z,0) = f(x), 0<z<1. (3)

It is not a purpose of this paper to exhaust all of existing numerical schemes for
solving Burgers’ equation. To mention some of them: cubic spline and finite differ-
ences by Jain & Holla [3], compact differencing technique by Hirsh [4] and Ciment
et al. [5], finite element method (FEM) by Arminjon & Beanchamp [6], FEM with
splitting technique by Jain & Raja [7] and Iskanda & Mohsen [8], FEM with mov-
ing nodes technique by Herbst et al. [9] and Caldwell et al. [10], Tau method by
Ortiz & Pun [11] and method of lines by Sincovec & Madsen [12]. In this paper a
numerical scheme is devised by using Hardy’s multiquadric (MQ), which is a special
kind of radial basis functions (RBF), to solve the nonlinear Burgers’ equation. Hardy
[13] firstly developed this MQ to approximate two-dimensional geographical surfaces.
In Franke’s [14] review paper, the MQ was rated one of the best methods among

29 scattered data interpolation schemes based on their accuracy, stability, efficiency,
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memory requirement, and ease of implementation. Recently, Kansa [15, 16] success-
fully modified the MQ for solving PDE problems. Since then more researchers have
been attracted by this mesh-free, scattered data approximation scheme. As an inter-
polation method, the MQ always produces a minimal semi-norm error as proven by
Madych and Nelson [17]. In this paper we propose a new mechanism to adjust the
values of the shape parameters r;’s whose magnitudes are a key factor for attaining
high accuracy. Numerical computations show that this method offers an accuracy
better than FEM with moving nodes when the Reynold number R is small and much
better result than FEM with splitting technique when R is large. It is well known that
there is no known numerical scheme which is good for arbitrary values of R. It was
shown in Caldwell’s [18] paper that the finite difference method (FDM) is good when
R is small but gives incorrect answers when R is large whilst in the latter case FEM
is superior to FDM. Numerical computations for a wide range of values of R show
that this M(Q offers better accuracy in comparison with all of the above mentioned
methods. To further illustrate the benefit of this mesh-free MQ, an adaptive points
choosing algorithm based on 'chasing the peak’ of the shock wave is developed and is
shown to provide an improved numerical result.

Furthermore, this M(@Q proposed here is of a general nature and can be used for

solving nonlinear PDEs arising in other areas.
2. NUMERICAL SCHEME USING MULTIQUADRIC

For comparison purposes, we first discretize equation (1) by using a low order forward

difference approximation scheme for the time derivative to obtain
m k‘ m—1,_m 1 myY _ . m—1 > 1 4
u™ + k(u™ ult — Eum) =u", m>1, (4)
where k is the length of time step and u™ denotes the m'" iterate of the solution. It
has been shown in our numerical computations that by decreasing only the magnitude

of the time step k, the numerical error has been reduced to an approximate order of

O(k). This indicates that the M@ spatial approximation are highly accurate which is
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particularly useful because this usually can only be achieved by using costly methods
like Fourier transform. As FEM typically uses low order polynomials as basic linear
elements, the faster convergent M@ can represent a steeper function because of its
higher degree than FEM.

Following the idea of modified MQ by Kansa [16], we propose to approximate, at

each iteration m, the u™ by
N
m m 2 2711/2 m m
u™(z) = AV (= x5)" +1j] 24 AN41T + AN 1o, (5)
j=0

where z; = j/N,j = 0,1,..., N are (N + 1) distinct uniformly distributed points
in [0,1]. The r,’s are called shape parameters whose magnitudes are a key factor
for obtaining accurate solution. Tarwater [19] in her recent numerical experiments
observed that there exists an optimal miminum r, in the case of constant shape
parameter, due to the ill-conditioning effect when solving systems of linear equations.
Kansa [16] proposed an exponential variation in r;’s to give a better conditioned
coefficient matrix resulted from collocation using a formula similar to equation (5).
However, our numerical computations indicate that a better condition number does
not necessarily lead to an optimal accuracy. In fact, we observe that the optimal
solution for the Burgers’ equation is attained with a resultant matrix having large
condition number (~ 10e12). This is consistent with the numerical results obtained
by Golberg & Chen [20], Bogomonly [21], and Cheng [22] . In this paper, we propose

the following formula for choosing the values of r;’s
r;=Mj+b ~ j=0,1,...,N, (6)

where M and b are input parameters. Our numerical observations show that the
accuracy of the solution depends on the magnitudes of M and b in such a way that
the error drops to a minimum by choosing first the value of M so that the numerical
solution provides a reasonable approximation to the exact solution. The accuracy
can then further be ’fine-tuned’ by adjusting the value of b. In fact, the value of
M is equal to a fixed constant -0.2 in all our numerical computations with various
Reynold number R. This constant M is easily found by entering M for 1, 10, -1,

-0.1, and finally -0.2 successfully because the numerical solutions are far from the
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exact solution for all the values other than -0.2. A monotonical convergent behavior
is observed when adjusting the value of b for better accuracy in which the value
of b decreases with respect to the increasing magnitude of the Reynold number R.
This observation guides us to adjust the value of b for optimal accuracy. Here, we
have a similar curiosity to Golberg & Chen [20] on the excellent performance of this
MQ in spite of huge condition number. This can be explained by Christiansen &
Saranen [23] which in their paper they pointed out that in solving a general matrix
equation Ax = b, the numerical error is in general related to the condition number
of the matrix A. However, there are two types of condition number: K (global) and
K (local) defined by

largest eigenvalue of A

K (global) = (7)

smallest eigenvalue of A’

and = ;

|||

In many cases, K (local) << K(global). In our numerical computations, K(global)
is approximately 10e12 but K(local) is only approximately 10e5. This explains the
excellent numerical results obtained by using this M(Q despite large condition number
(global). For each iteration m, to determine the (N + 3) coefficients A7"’s, the

boundary conditions (2) already give the following 2 equations
u™ () =0=u"(zn). (9)

We then collocate u™ at (N + 1) distinct uniformly distributed points Z; = i/(N + 2)
in (0, 1) using equation (4) to obtain, for i =1,2,..., N +1,

u™(2) + k[u™ T (3) ——u"(3) — = u™ ()] = u™ N (8), m o> 1, (10)

where u°(7;) is taken to be f(Z;) from the initial condition (3). The system of
equations (9) and (10) can then be solved by using Gaussian elimination with partial
pivoting to obtain the coefficients AT"’s. We note here that the points z; in (5) are
different from the points &; in (10). The following section gives numerical results to

verify the accuracy and efficiency of this MQ.



3. NUMERICAL COMPUTATIONS

The analytical solution given by Cole [2] for equation (1) subject to the boundary
conditions (2) and the initial condition (3) is

211 3200 nA,sin(nmx)exp(—nlvnt)

B Ag + X300, Aycos(nma)exp(—n2vm?t)

(11)

u(z,t)
where v = 1/R and

1 1 T
A, =2 / cos(nmx)exp <2— / f(y)dy> dx, n>1, (12)
Jo v Jo

1 1 T
o= [ean(—5- [ fw)dy) d. (13)
Jo 2v Jo
In the case when f(z) = sinmx, Caldwell & Smith [24] derived that

(2.1) drv 3200 nl, (1/27v)sin(nrx)exp(—n*vr?t) (14)
u(x,t) =
’ In(1/27v) + 25200, I,(1/27v) cos(nmx)exp(—n2vn?t)

where I,, denotes the modified Bessel function of order n. It can be observed that
the difficulty in evaluating an accurate solution u(z,t) based on the analytical for-
mula (14) is due to the exponential increasing term I,,(1/27v) in the series when v is
small (i.e. when R is large). Using MATLAB [25] in Sun Sparc model 20 workstation
(with 64 bits double precision), we can compute u(z,t) to four decimal digits by eval-
uating the two series in formula (14) for R = 0.1, 1, 10, and 100 respectively. Unless
an asymptotic formula is used, it is not possible to compute u(z, t) using formula (14)
when R is large. In fact, the magnitude of I,(1/27v) already exceeds the limit of
the 64 bit computation when R > 4500. For comparison purposes, in the case when
R = 10000, we adopt the accurate solution computed by Christie & Mitchell [26]
using the Galerkin method with fully upwinded cubic functions and a particularly
small value of spatial step h. The numerical solution obtained by using a compact
differencing technique is also quoted from the book of Mitchell & Griffiths [27] for
comparison.

In order to compare with other algorithms, we apply the M(Q to solve the nonlin-

ear Burgers’ equation (1) subject to the boundary conditions (2) and initial condition
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f(z) = sinmz for R = 0.1, 1, 10, 100, and 10000 respectively. All the computations
are performed using MATLAB in Sun Sparc model 20 workstation. Due to the expla-
nation on the accuracies of various methods given in section 1 and the availability of
data, the comparison is made according to Table 1. The numerical results for various
cases of R are summarized in the followings:

Case i. R = 0.1. This is the case when the dissipation term dominates the ad-
vection term. In fact, the curve of the solution u drops dramatically from sinmx
to zero within the first 0.05 seconds. To compare with the numerical value of the
analytical solution, we compute using our MQ the approximation u™(z) by taking
time step £ = 0.001, 0.0001, and 0.00001 respectively. In this computation, we let
N = 10 in equation (5) so that x; = 0(0.1)1. M is taken to be -0.2 and b = 2.5 in
equation (6). The result of comparison at x = 0.1(0.1)0.9 and ¢ = 0.01 and 0.02 is
shown in Table 2. It can be observed that with fixed number of spatial points, the
accuracy of the numerical solution has been increased to an approximate order of
O(k). This indicates that the M(Q spatial approximation is highly accurate. All our
numerical computations in the following cases have the same finding.

Case ii. R = 1. This is also the case when the dissipation term dominates the
advection term. In order to compare with the numerical values obtained by using
FDM and FEM with moving node technique (Caldwell & Smith [24]), we let N = 4
in equation (5) so that z; = 0(0.25)1. The time step £ is taken to be 0.01 for com-
parison. M is taken to be -0.2 and b = 2.5 in equation (6). The result of comparison
at = 0.25(0.25)0.75 and ¢ = 0.01, 0.05(0.05)0.25 is shown in Table 3. Numerical
comparison in this case shows that our MQ offers slightly better results than FEM
with moving nodes. We note here that our MQ has an advantage of ease of implemen-
tation compared to FDM. For illustrative purposes, we also list our numerical result
when £ = 0.0001 for comparison with the analytical solution at the end of Table 3.

Case iii. R = 10. This is the case when both the dissipation term and the ad-
vection term have a balanced influence on the solution. Again, the numerical value
of the analytical solution is available. We compute using our MQ the approximation
u™(x) by taking time steps £ = 0.1, 0.01, and 0.001 respectively. In this computation,
we let N = 10 in equation (5) so that z; = 0(0.1)1. M is taken to be -0.2 and b =
2.4 in equation (6). The result of comparison at x = 0.1(0.1)0.9 and ¢ = 0.5 and 1.0
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is shown in Table 4.

Case iv. R = 100. This is the case when the advection term dominates the
dissipation term. The behavior of the solution u is very different when advection
dominates. It can be observed that the solution w incurs a shock wave to the right
with speed proportional to the magnitude of u. We compare the numerical values of
the analytical solution and our MQ approximation u™(z) by taking time step k =
0.1, 0.01, and 0.001 respectively. In this computation, we let N = 10 in equation (5)
so that z; = 0(0.1)1. M is taken to be -0.2 and b = 2.22 in equation (6). The result
of comparison at = 0.1(0.1)0.9 and ¢ = 0.5 and 1.0 is shown in Table 5.

Case v. R = 10000. This is also the case when the advection term dominates the
dissipation term. In fact, the peak of the shock wave remains high and moves to the
right during the first 0.5 seconds. In order to compare with the numerical values ob-
tained using compact difference, FEM with splitting technique (Iskandar & Mohsen
[8]), and FEM with moving nodes (Caldwell et al. [10]), we let N = 10 in equation (5)
and the time step k is taken to be 0.1 and 0.001 for comparison. M is taken to be -0.2
and b = 2.205 in equation (6). The result of comparison at z = 0(1/18)1 and t = 1
is shown in Table 6. Numerical comparison in this case shows that our MQ offers
better results than FEM with moving nodes and much better results than compact
difference and FEM with splitting.

Also, in Figure 1(a-e), we display the graphs of our approximation u™ to the solu-
tion u by evaluating the last iterate u™ at x = 0(1/300)1 using the global formula (5)
for the above five cases. This shows that our proposed M(Q has an advantage of
offering a global formula to the solution. Figure 1d can also be compared with the
Figure 1 of Ortiz & Pun [11].



0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.9

0.8

0.7

0.6

0.5

0.3

0.2

0.1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Figure 1. Curves of MQ approximation of Burgers’ equation for R = 0.1, 1, 10, 100, and
10000 respectively in 0 < z < 1.
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Finally, to further illustrate the benefit of this mesh-free MQ, we develop an
adaptive MQ points choosing algorithm based on ’chasing the peak’ of the shock
wave which occurs when the Reynold number R is large. The idea in using FEM
in solving this Burger’s equation by Caldwell, Wanless and Cook [10] is to alter
the size of the elements at each stage using information from the previous step so
that more elements are closer to the peak. However, the expense of this element
alteration at each time step in FEM can be very costly which makes it impractical
for problems with complex geometry. Since the MQ is mesh free, the re-allocation of
the collocation points is comparatively simple and ease to implement. We re-allocate
at each time iteration m the points z; in (5) such that it always contains a point z*
where du™(z*)/dx is zero. This point z* can easily be found by using the following
Newton’s iterative scheme
%“m(m*om)

* . k o
TNew = Toud — g2 ()
a2 4\ Loid

(15)

because the first and second derivatives of u™ are readily computed by using (5). This
is definitely an advantage of this MQ since its basis functions are C'* and globally
defined. In contrast, this high order Newton iterative scheme cannot be used in FEM
because the numerical solution is defined locally in each element. In each iteration,
the initial iterate at each time step m in (15) is the z* computed from the last time
step (m — 1). After z* is obtained, the re-allocation of the points are done by first

computing how many L points should be on the left of z*:
L = round(Nz* — 0.5). (16)

The (N + 1) points z; in (5) are then re-computed by letting z; = ja*/L,j =
0,1,....,Land z; = 2*+ (j — L)(1 —2*)/(N - L),j = (L+1),...,N. Numerical
verification of this adaptive algorithm is performed to our last case (v) computation
with R = 10000. The time step k is again taken to be 0.1 and 0.001 for comparison.
The parameters M and b remain the same as -0.2 and 2.205 respectively although the

points z; are now changing at each time step. This shows that the location of the
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MQ points z; has little effect on the choice of the shape parameter which affects the
accuracy of the optimal solution. This phenomena is also reported by Carlson and
Foley [28]. Numerical computations show that this adaptive MQ offers much better
results near the peak of the shock wave. Compared with FEM with moving nodes,
this adaptive M(Q is much easier to implement and, as shown in Table 7, offers much

better numerical results.

4. CONCLUSION

Numerical results show that the multiquadric offers a very high accuracy in compu-
tation. Unlike the finite element method which interpolates the solution by using
local basis functions, this multiquadric provides a global interpolation formula not
only for the solution but also for the derivatives of the solution. Unfortunately, the
relationship between the magnitudes of the shape parameters r;’s and the rate of
convergence is still yet to be studied. However, in our numerical computations, we
observe that the magnitudes of the b’s in the formula for r;’s decreases monotonically
from 2.5 to 2.205 as the Reynolds number R increases from 0.1 to 10000 for optimal
accuracy. This highlights an existence of radius of convergence of this multiquadric
corresponding to the derivatives of the solution which we hope could be obtained in
the future. For comparison purpose, this paper applies only low order explicit finite
difference approximation for the time derivatives. Our numerical results show that
the major numerical error is from the time integration instead of the MQ spatial ap-
proximation. A much better result should be obtained by taking a numerical Laplace
inversion scheme to the time derivative as reported by Moridis & Kansa [29] because
the time marching process can contaminate the solutions by means of time truncation
errors. In the meantime, we expect that this multiquadric can provide an alterna-
tive mesh-free computational algorithm supplement to finite element and boundary

element methods.
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Table 1. Comparison between MQ and other methods for various R

R Compared with

0.1  Cole’s analytical solution
1 Cole, FDM, FEM with moving node
10 Cole
100 Cole, Tau method
10000 Christie’s accurate solution, FEM with splitting,

FEM with moving nodes, Compact difference method
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Table 2. Comparison of results for R = 0.1

time ¢ = 0.01 time ¢ = 0.02

MQ (time step k) MQ (time step k)

x Anal 0.001 0.0001 0.00001 Anal 0.001 0.0001 0.00001

0.10 0.1146 0.1199 0.1152  0.1147 0.0428 0.0469 0.0433  0.0429
0.20 0.2182 0.2283 0.2192  0.2183 0.0815 0.0893 0.0823  0.0816
0.30 0.3006 0.3146 0.3021  0.3008 0.1122 0.1230 0.1133  0.1124
0.40 0.3539 0.3704 0.3556  0.3541 0.1320 0.1447 0.1333  0.1322
0.50 0.3727 0.3902 0.3745  0.3729 0.1389 0.1522 0.1403  0.1391
0.60 0.3550 0.3717 0.3567  0.3552 0.1322 0.1449 0.1335 0.1324
0.70 0.3024 0.3167 0.3039  0.3026 0.1125 0.1234 0.1136  0.1127
0.80 0.2200 0.2304 0.2211  0.2201 0.0818 0.0897 0.0826  0.0819
0.90 0.1157 0.1213 0.1163  0.1139 0.0430 0.0472 0.0434 0.0431
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Table 3. Comparison of results for R =1

x=0.25 x =0.50
FEM FDM MQ FEM FDM MQ
t  (n=4)* (exp) (N=4) Anal (n=4)* (exp) (N=4) Anal
0.01 0.6333 0.6267 0.6332 0.6290 0.9100 0.9063 0.9097 0.9057
0.05 0.4231 0.4099 0.4228 0.4131 0.6233 0.6100 0.6229 0.6091
0.10 0.2648 0.2525 0.2645 0.2536 0.3889 0.3729 0.3886 0.3716
0.15 0.1671 0.1565 0.1669 0.1566 0.2429  0.2281 0.2426 0.2268
0.20 0.1053 0.0967 0.1052 0.0964 0.1517 0.1395 0.1515 0.1385
0.25 0.0662 0.0661 0.0592 0.0948 0.0946 0.0845
* n is the number of elements
x=0.75 MQ (k = 0.0001)
FEM FDM MQ x
t  (n=4)* (exp) (N=4) Anal £ 025 050 075
0.01 0.6539 0.6550 0.6537 0.6524 0.01 0.6291 0.9057 0.6525
0.05 0.4601 0.4556 0.4597 0.4502 0.05 0.4130 0.6092 0.4502
0.10 0.2862 0.2762 0.2858 0.2726 0.10 0.2535 0.3716 0.2726
0.15 0.1767 0.1663 0.1765 0.1644 0.15 0.1566 0.2268 0.1644
0.20 0.1093 0.1006 0.1092 0.0994 0.20 0.0964 0.1385 0.0995
0.25 0.0678 0.0677 0.0603 0.25 0.0592 0.0846 0.0604
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Table 4. Comparison of results for R = 10

time £ = 0.5 time ¢ = 1.0
MQ (time step k) MQ (time step k)

T Anal 0.1 0.01  0.001 Anal 0.1 0.01  0.001
0.10 0.1099 0.1118 0.1104 0.1103 0.0663 0.0670 0.0664 0.0664
0.20 0.2180 0.2211 0.2186 0.2183 0.1312 0.1325 0.1314 0.1313
0.30 0.3222 0.3258 0.3227 0.3224 0.1928 0.1948 0.1930 0.1928
0.40 0.4190 0.4221 0.4194 0.4191 0.2480 0.2512 0.2483 0.2481
0.50 0.5028 0.5038 0.5028 0.5028 0.2919 0.2969 0.2923 0.2919
0.60 0.5623 0.5594 0.5618 0.5621 0.3161 0.3239 0.3167 0.3159
0.70 0.5759 0.5674 0.5744 0.5753 0.3081 0.3192 0.3090 0.3079
0.80 0.5055 0.4924 0.5030 0.5041 0.2537 0.2666 0.2548 0.2534
0.90 0.3093 0.2974 0.3059 0.3066 0.1461 0.1554 0.1468 0.1459
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Table 5. Comparison of results for R = 100

time £ = 0.5 time ¢ = 1.0
MQ (time step k) MQ (time step k)

T Anal 0.1 0.01  0.001 Anal 0.1 0.01  0.001
0.10 0.1211 0.1211 0.1211 0.1211 0.0754 0.0754 0.0755 0.0755
0.20 0.2415 0.2413 0.2415 0.2415 0.1506 0.1506 0.1507 0.1507
0.30 0.3603 0.3589 0.3601 0.3603 0.2257 0.2253 0.2256 0.2257
0.40 0.4764 0.4724 0.4760 0.4764 0.3003 0.2995 0.3002 0.3003
0.50 0.5887 0.5799 0.5877 0.5886 0.3744 0.3726 0.3742 0.3744
0.60 0.6953 0.6780 0.6935 0.6951 0.4478 0.4444 0.4475 0.4478
0.70 0.7935 0.7615 0.7901 0.7932 0.5203 0.5143 0.5197 0.5202
0.80 0.8783 0.8189 0.8719 0.8776 0.5915 0.5813 0.5905 0.5913
0.90 0.9381 0.8128 0.9264 0.9381 0.6600 0.6438 0.6594 0.6607
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Table 6. Comparison of results for R = 10000

Christie  Compact FEM FEM MQ
accurate difference splitting moving node (N = 10)

T solution  £=0.001  k=0.1* k=0.001* k=0.1 £k=0.001
0.00  0.0000 0.0000 0.0000 0.0000 0.0000  0.0000
0.05  0.0422 0.0501 0.0419 0.0422 0.0422  0.0424
0.11  0.0843 0.0753 0.0839 0.0844 0.0843  0.0843
0.16 0.1263 0.1471 0.1253 0.1266 0.1263  0.1263
0.22  0.1684 0.1359 0.1692 0.1687 0.1682  0.1684
0.27  0.2103 0.2611 0.2034 0.2108 0.2100  0.2103
0.33  0.2522 0.2091 0.2666 0.2527 0.2517  0.2522
0.38  0.2939 0.3340 0.2527 0.2946 0.2931  0.2939
0.44 0.3355 0.3048 0.3966 0.3362 0.3343  0.3355
0.50  0.3769 0.4173 0.2350 0.3778 0.3751  0.3769
0.55 0.4182 0.3741 0.5480 0.4191 0.4156  0.4182
0.61 0.4592 0.5059 0.2578 0.4601 0.4557  0.4592
0.66  0.5000 0.4634 0.6049 0.5009 0.4952  0.4999
0.72  0.5404 0.5808 0.6014 0.5414 0.5341  0.5404
0.77  0.5806 0.5369 0.4630 0.5816 0.5722  0.5805
0.83 0.6203 0.6671 0.7011 0.6213 0.6093  0.6201
0.88  0.6596 0.6201 0.6717 0.6605 0.6455  0.6600
0.94  0.6983 0.7410 0.7261 0.6992 0.6783  0.6957
1.00  0.0000 0.0000 0.0000 0.0000 0.0000  0.0000

*

with 16 intervals
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Table 7. Comparison of results for R = 10000 by using the adaptive algorithm

Christie FEM Adaptive MQ
accurate moving node (N = 10)

T solution k=0.001* k=0.1 £=0.001
0.00  0.0000 0.0000 0.0000  0.0000
0.05  0.0422 0.0422 0.0421  0.0421
0.11  0.0843 0.0844 0.0843  0.0843
0.16 0.1263 0.1266 0.1263  0.1264
0.22  0.1684 0.1687 0.1682  0.1684
0.27  0.2103 0.2108 0.2100  0.2103
0.33  0.2522 0.2527 0.2517  0.2522
0.38  0.2939 0.2946 0.2931  0.2939
0.44 0.3355 0.3362 0.3343  0.3355
0.50  0.3769 0.3778 0.3751  0.3769
0.55 0.4182 0.4191 0.4156  0.4182
0.61 0.4592 0.4601 0.4557  0.4592
0.66  0.5000 0.5009 0.4952  0.4999
0.72  0.5404 0.5414 0.5341  0.5404
0.77  0.5806 0.5816 0.5722  0.5805
0.83 0.6203 0.6213 0.6093  0.6202
0.88  0.6596 0.6605 0.6453  0.6595
0.94  0.6983 0.6992 0.6785  0.6972
1.00  0.0000 0.0000 0.0000  0.0000

* with 16 intervals
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FIGURE CAPTIONS

Figure 1. Curves of MQ approximation of Burgers’ equation for R = 0.1, 1, 10, 100, and
10000 respectively in 0 < x < 1.

la. R =0.1.
1b. R =1.

le. R = 10.
1d. R = 100.
le. R = 10000.
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