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1. INTRODUCTIONBurgers [1] �rstly proposed the following nonlinear partial di�erential equation (nowcalled Burgers' equation) ut + uux = 1Ruxx; R > 0 (1)as a mathematical model of free turbulence. Since then this model has been studiedby many researchers for the following reasons: (1) it contains the simplest form ofnonlinear advection term uux and dissipation term uxx=R for simulating the physicalphenomena of wave motion; (2) its analytical solution was obtained by Cole [2] sothat numerical comparison can be made; and (3) its shock wave behavior when theReynolds number R is large. Various numerical techniques have been applied to solvenumerically equation (1) under the following boundary conditionsu(0; t) = 0 = u(1; t); t > 0 (2)and the initial condition u(x; 0) = f(x); 0 � x � 1: (3)It is not a purpose of this paper to exhaust all of existing numerical schemes forsolving Burgers' equation. To mention some of them: cubic spline and �nite di�er-ences by Jain & Holla [3], compact di�erencing technique by Hirsh [4] and Cimentet al. [5], �nite element method (FEM) by Arminjon & Beanchamp [6], FEM withsplitting technique by Jain & Raja [7] and Iskanda & Mohsen [8], FEM with mov-ing nodes technique by Herbst et al. [9] and Caldwell et al. [10], Tau method byOrtiz & Pun [11] and method of lines by Sincovec & Madsen [12]. In this paper anumerical scheme is devised by using Hardy's multiquadric (MQ), which is a specialkind of radial basis functions (RBF), to solve the nonlinear Burgers' equation. Hardy[13] �rstly developed this MQ to approximate two-dimensional geographical surfaces.In Franke's [14] review paper, the MQ was rated one of the best methods among29 scattered data interpolation schemes based on their accuracy, stability, e�ciency,2



memory requirement, and ease of implementation. Recently, Kansa [15; 16] success-fully modi�ed the MQ for solving PDE problems. Since then more researchers havebeen attracted by this mesh-free, scattered data approximation scheme. As an inter-polation method, the MQ always produces a minimal semi-norm error as proven byMadych and Nelson [17]. In this paper we propose a new mechanism to adjust thevalues of the shape parameters rj's whose magnitudes are a key factor for attaininghigh accuracy. Numerical computations show that this method o�ers an accuracybetter than FEM with moving nodes when the Reynold number R is small and muchbetter result than FEM with splitting technique when R is large. It is well known thatthere is no known numerical scheme which is good for arbitrary values of R. It wasshown in Caldwell's [18] paper that the �nite di�erence method (FDM) is good whenR is small but gives incorrect answers when R is large whilst in the latter case FEMis superior to FDM. Numerical computations for a wide range of values of R showthat this MQ o�ers better accuracy in comparison with all of the above mentionedmethods. To further illustrate the bene�t of this mesh-free MQ, an adaptive pointschoosing algorithm based on 'chasing the peak' of the shock wave is developed and isshown to provide an improved numerical result.Furthermore, this MQ proposed here is of a general nature and can be used forsolving nonlinear PDEs arising in other areas.2. NUMERICAL SCHEME USING MULTIQUADRICFor comparison purposes, we �rst discretize equation (1) by using a low order forwarddi�erence approximation scheme for the time derivative to obtainum + k(um�1umx � 1Rumxx) = um�1; m � 1; (4)where k is the length of time step and um denotes the mth iterate of the solution. Ithas been shown in our numerical computations that by decreasing only the magnitudeof the time step k, the numerical error has been reduced to an approximate order ofO(k). This indicates that the MQ spatial approximation are highly accurate which is3



particularly useful because this usually can only be achieved by using costly methodslike Fourier transform. As FEM typically uses low order polynomials as basic linearelements, the faster convergent MQ can represent a steeper function because of itshigher degree than FEM.Following the idea of modi�ed MQ by Kansa [16], we propose to approximate, ateach iteration m, the um byum(x) = NXj=0�mj [(x� xj)2 + r2j ]1=2 + �mN+1x+ �mN+2; (5)where xj = j=N; j = 0; 1; : : : ; N are (N + 1) distinct uniformly distributed pointsin [0; 1]. The rj's are called shape parameters whose magnitudes are a key factorfor obtaining accurate solution. Tarwater [19] in her recent numerical experimentsobserved that there exists an optimal miminum r, in the case of constant shapeparameter, due to the ill-conditioning e�ect when solving systems of linear equations.Kansa [16] proposed an exponential variation in rj's to give a better conditionedcoe�cient matrix resulted from collocation using a formula similar to equation (5).However, our numerical computations indicate that a better condition number doesnot necessarily lead to an optimal accuracy. In fact, we observe that the optimalsolution for the Burgers' equation is attained with a resultant matrix having largecondition number (' 10e12). This is consistent with the numerical results obtainedby Golberg & Chen [20], Bogomonly [21], and Cheng [22] . In this paper, we proposethe following formula for choosing the values of rj'srj = Mj + b; j = 0; 1; : : : ; N; (6)where M and b are input parameters. Our numerical observations show that theaccuracy of the solution depends on the magnitudes of M and b in such a way thatthe error drops to a minimum by choosing �rst the value of M so that the numericalsolution provides a reasonable approximation to the exact solution. The accuracycan then further be '�ne-tuned' by adjusting the value of b. In fact, the value ofM is equal to a �xed constant -0.2 in all our numerical computations with variousReynold number R. This constant M is easily found by entering M for 1, 10, -1,-0.1, and �nally -0.2 successfully because the numerical solutions are far from the4



exact solution for all the values other than -0.2. A monotonical convergent behavioris observed when adjusting the value of b for better accuracy in which the valueof b decreases with respect to the increasing magnitude of the Reynold number R.This observation guides us to adjust the value of b for optimal accuracy. Here, wehave a similar curiosity to Golberg & Chen [20] on the excellent performance of thisMQ in spite of huge condition number. This can be explained by Christiansen &Saranen [23] which in their paper they pointed out that in solving a general matrixequation Ax = b, the numerical error is in general related to the condition numberof the matrix A. However, there are two types of condition number: K(global) andK(local) de�ned byK(global) = largest eigenvalue of Asmallest eigenvalue of A; (7)and K(local) = k A�1 k � k b kk x k : (8)In many cases, K(local) << K(global). In our numerical computations, K(global)is approximately 10e12 but K(local) is only approximately 10e5. This explains theexcellent numerical results obtained by using this MQ despite large condition number(global). For each iteration m, to determine the (N + 3) coe�cients �mj 's, theboundary conditions (2) already give the following 2 equationsum(x0) = 0 = um(xN ): (9)We then collocate um at (N+1) distinct uniformly distributed points x̂i = i=(N + 2)in (0, 1) using equation (4) to obtain, for i = 1; 2; : : : ; N + 1,um(x̂i) + k[um�1(x̂i) ddxum(x̂i)� 1R d2dx2um(x̂i)] = um�1(x̂i); m � 1; (10)where u0(x̂i) is taken to be f(x̂i) from the initial condition (3). The system ofequations (9) and (10) can then be solved by using Gaussian elimination with partialpivoting to obtain the coe�cients �mj 's. We note here that the points xj in (5) aredi�erent from the points x̂i in (10). The following section gives numerical results toverify the accuracy and e�ciency of this MQ.5



3. NUMERICAL COMPUTATIONSThe analytical solution given by Cole [2] for equation (1) subject to the boundaryconditions (2) and the initial condition (3) isu(x; t) = 2��P1n=1 nAnsin(n�x)exp(�n2��2t)A0 +P1n=1Ancos(n�x)exp(�n2��2t) (11)where � = 1=R andAn = 2 Z 10 cos(n�x)exp�� 12� Z x0 f(y)dy�dx; n � 1; (12)A0 = Z 10 exp�� 12� Z x0 f(y)dy�dx: (13)In the case when f(x) = sin�x, Caldwell & Smith [24] derived thatu(x; t) = 4��P1n=1 nIn(1=2��)sin(n�x)exp(�n2��2t)I0(1=2��) + 2P1n=1 In(1=2��)cos(n�x)exp(�n2��2t) (14)where In denotes the modi�ed Bessel function of order n. It can be observed thatthe di�culty in evaluating an accurate solution u(x; t) based on the analytical for-mula (14) is due to the exponential increasing term In(1=2��) in the series when � issmall (i.e. when R is large). Using MATLAB [25] in Sun Sparc model 20 workstation(with 64 bits double precision), we can compute u(x; t) to four decimal digits by eval-uating the two series in formula (14) for R = 0.1, 1, 10, and 100 respectively. Unlessan asymptotic formula is used, it is not possible to compute u(x; t) using formula (14)when R is large. In fact, the magnitude of In(1=2��) already exceeds the limit ofthe 64 bit computation when R � 4500. For comparison purposes, in the case whenR = 10000, we adopt the accurate solution computed by Christie & Mitchell [26]using the Galerkin method with fully upwinded cubic functions and a particularlysmall value of spatial step h. The numerical solution obtained by using a compactdi�erencing technique is also quoted from the book of Mitchell & Gri�ths [27] forcomparison.In order to compare with other algorithms, we apply the MQ to solve the nonlin-ear Burgers' equation (1) subject to the boundary conditions (2) and initial condition6



f(x) = sin�x for R = 0.1, 1, 10, 100, and 10000 respectively. All the computationsare performed using MATLAB in Sun Sparc model 20 workstation. Due to the expla-nation on the accuracies of various methods given in section 1 and the availability ofdata, the comparison is made according to Table 1. The numerical results for variouscases of R are summarized in the followings:Case i. R = 0.1. This is the case when the dissipation term dominates the ad-vection term. In fact, the curve of the solution u drops dramatically from sin�xto zero within the �rst 0.05 seconds. To compare with the numerical value of theanalytical solution, we compute using our MQ the approximation um(x) by takingtime step k = 0.001, 0.0001, and 0.00001 respectively. In this computation, we letN = 10 in equation (5) so that xj = 0(0.1)1. M is taken to be -0.2 and b = 2.5 inequation (6). The result of comparison at x = 0.1(0.1)0.9 and t = 0.01 and 0.02 isshown in Table 2. It can be observed that with �xed number of spatial points, theaccuracy of the numerical solution has been increased to an approximate order ofO(k). This indicates that the MQ spatial approximation is highly accurate. All ournumerical computations in the following cases have the same �nding.Case ii. R = 1. This is also the case when the dissipation term dominates theadvection term. In order to compare with the numerical values obtained by usingFDM and FEM with moving node technique (Caldwell & Smith [24]), we let N = 4in equation (5) so that xj = 0(0.25)1. The time step k is taken to be 0.01 for com-parison. M is taken to be -0.2 and b = 2.5 in equation (6). The result of comparisonat x = 0.25(0.25)0.75 and t = 0.01, 0.05(0.05)0.25 is shown in Table 3. Numericalcomparison in this case shows that our MQ o�ers slightly better results than FEMwith moving nodes. We note here that our MQ has an advantage of ease of implemen-tation compared to FDM. For illustrative purposes, we also list our numerical resultwhen k = 0.0001 for comparison with the analytical solution at the end of Table 3.Case iii. R = 10. This is the case when both the dissipation term and the ad-vection term have a balanced in
uence on the solution. Again, the numerical valueof the analytical solution is available. We compute using our MQ the approximationum(x) by taking time steps k = 0.1, 0.01, and 0.001 respectively. In this computation,we let N = 10 in equation (5) so that xj = 0(0.1)1. M is taken to be -0.2 and b =2.4 in equation (6). The result of comparison at x = 0.1(0.1)0.9 and t = 0.5 and 1.07



is shown in Table 4.Case iv. R = 100. This is the case when the advection term dominates thedissipation term. The behavior of the solution u is very di�erent when advectiondominates. It can be observed that the solution u incurs a shock wave to the rightwith speed proportional to the magnitude of u. We compare the numerical values ofthe analytical solution and our MQ approximation um(x) by taking time step k =0.1, 0.01, and 0.001 respectively. In this computation, we let N = 10 in equation (5)so that xj = 0(0.1)1. M is taken to be -0.2 and b = 2.22 in equation (6). The resultof comparison at x = 0.1(0.1)0.9 and t = 0.5 and 1.0 is shown in Table 5.Case v. R = 10000. This is also the case when the advection term dominates thedissipation term. In fact, the peak of the shock wave remains high and moves to theright during the �rst 0.5 seconds. In order to compare with the numerical values ob-tained using compact di�erence, FEM with splitting technique (Iskandar & Mohsen[8]), and FEM with moving nodes (Caldwell et al. [10]), we let N = 10 in equation (5)and the time step k is taken to be 0.1 and 0.001 for comparison. M is taken to be -0.2and b = 2.205 in equation (6). The result of comparison at x = 0(1/18)1 and t = 1is shown in Table 6. Numerical comparison in this case shows that our MQ o�ersbetter results than FEM with moving nodes and much better results than compactdi�erence and FEM with splitting.Also, in Figure 1(a-e), we display the graphs of our approximation um to the solu-tion u by evaluating the last iterate um at x = 0(1=300)1 using the global formula (5)for the above �ve cases. This shows that our proposed MQ has an advantage ofo�ering a global formula to the solution. Figure 1d can also be compared with theFigure 1 of Ortiz & Pun [11].
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Finally, to further illustrate the bene�t of this mesh-free MQ, we develop anadaptive MQ points choosing algorithm based on 'chasing the peak' of the shockwave which occurs when the Reynold number R is large. The idea in using FEMin solving this Burger's equation by Caldwell, Wanless and Cook [10] is to alterthe size of the elements at each stage using information from the previous step sothat more elements are closer to the peak. However, the expense of this elementalteration at each time step in FEM can be very costly which makes it impracticalfor problems with complex geometry. Since the MQ is mesh free, the re-allocation ofthe collocation points is comparatively simple and ease to implement. We re-allocateat each time iteration m the points xj in (5) such that it always contains a point x�where dum(x�)=dx is zero. This point x� can easily be found by using the followingNewton's iterative scheme x�New = x�Old � ddxum(x�Old)d2dx2um(x�Old) (15)because the �rst and second derivatives of um are readily computed by using (5). Thisis de�nitely an advantage of this MQ since its basis functions are C1 and globallyde�ned. In contrast, this high order Newton iterative scheme cannot be used in FEMbecause the numerical solution is de�ned locally in each element. In each iteration,the initial iterate at each time step m in (15) is the x� computed from the last timestep (m � 1). After x� is obtained, the re-allocation of the points are done by �rstcomputing how many L points should be on the left of x�:L = round(Nx� � 0:5): (16)The (N + 1) points xj in (5) are then re-computed by letting xj = jx�=L; j =0; 1; : : : ; L and xj = x� + (j � L)(1 � x�)=(N � L); j = (L + 1); : : : ; N . Numericalveri�cation of this adaptive algorithm is performed to our last case (v) computationwith R = 10000. The time step k is again taken to be 0.1 and 0.001 for comparison.The parameters M and b remain the same as -0.2 and 2.205 respectively although thepoints xj are now changing at each time step. This shows that the location of the10



MQ points xj has little e�ect on the choice of the shape parameter which a�ects theaccuracy of the optimal solution. This phenomena is also reported by Carlson andFoley [28]. Numerical computations show that this adaptive MQ o�ers much betterresults near the peak of the shock wave. Compared with FEM with moving nodes,this adaptive MQ is much easier to implement and, as shown in Table 7, o�ers muchbetter numerical results.4. CONCLUSIONNumerical results show that the multiquadric o�ers a very high accuracy in compu-tation. Unlike the �nite element method which interpolates the solution by usinglocal basis functions, this multiquadric provides a global interpolation formula notonly for the solution but also for the derivatives of the solution. Unfortunately, therelationship between the magnitudes of the shape parameters rj's and the rate ofconvergence is still yet to be studied. However, in our numerical computations, weobserve that the magnitudes of the b's in the formula for rj's decreases monotonicallyfrom 2.5 to 2.205 as the Reynolds number R increases from 0.1 to 10000 for optimalaccuracy. This highlights an existence of radius of convergence of this multiquadriccorresponding to the derivatives of the solution which we hope could be obtained inthe future. For comparison purpose, this paper applies only low order explicit �nitedi�erence approximation for the time derivatives. Our numerical results show thatthe major numerical error is from the time integration instead of the MQ spatial ap-proximation. A much better result should be obtained by taking a numerical Laplaceinversion scheme to the time derivative as reported by Moridis & Kansa [29] becausethe time marching process can contaminate the solutions by means of time truncationerrors. In the meantime, we expect that this multiquadric can provide an alterna-tive mesh-free computational algorithm supplement to �nite element and boundaryelement methods.
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Table 1. Comparison between MQ and other methods for various RR Compared with0.1 Cole's analytical solution1 Cole, FDM, FEM with moving node10 Cole100 Cole, Tau method10000 Christie's accurate solution, FEM with splitting,FEM with moving nodes, Compact di�erence method
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Table 2. Comparison of results for R = 0:1time t = 0.01 time t = 0.02MQ (time step k) MQ (time step k)x Anal 0:001 0:0001 0:00001 Anal 0:001 0:0001 0:000010.10 0.1146 0.1199 0.1152 0.1147 0.0428 0.0469 0.0433 0.04290.20 0.2182 0.2283 0.2192 0.2183 0.0815 0.0893 0.0823 0.08160.30 0.3006 0.3146 0.3021 0.3008 0.1122 0.1230 0.1133 0.11240.40 0.3539 0.3704 0.3556 0.3541 0.1320 0.1447 0.1333 0.13220.50 0.3727 0.3902 0.3745 0.3729 0.1389 0.1522 0.1403 0.13910.60 0.3550 0.3717 0.3567 0.3552 0.1322 0.1449 0.1335 0.13240.70 0.3024 0.3167 0.3039 0.3026 0.1125 0.1234 0.1136 0.11270.80 0.2200 0.2304 0.2211 0.2201 0.0818 0.0897 0.0826 0.08190.90 0.1157 0.1213 0.1163 0.1159 0.0430 0.0472 0.0434 0.0431
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Table 3. Comparison of results for R = 1x = 0:25 x = 0:50FEM FDM MQ FEM FDM MQt (n=4)* (exp) (N=4) Anal (n=4)* (exp) (N=4) Anal0.01 0.6333 0.6267 0.6332 0.6290 0.9100 0.9063 0.9097 0.90570.05 0.4231 0.4099 0.4228 0.4131 0.6233 0.6100 0.6229 0.60910.10 0.2648 0.2525 0.2645 0.2536 0.3889 0.3729 0.3886 0.37160.15 0.1671 0.1565 0.1669 0.1566 0.2429 0.2281 0.2426 0.22680.20 0.1053 0.0967 0.1052 0.0964 0.1517 0.1395 0.1515 0.13850.25 0.0662 0.0661 0.0592 0.0948 0.0946 0.0845* n is the number of elements
x = 0:75 MQ (k = 0:0001)FEM FDM MQ xt (n=4)* (exp) (N=4) Anal t 0.25 0.50 0.750.01 0.6539 0.6550 0.6537 0.6524 0.01 0.6291 0.9057 0.65250.05 0.4601 0.4556 0.4597 0.4502 0.05 0.4130 0.6092 0.45020.10 0.2862 0.2762 0.2858 0.2726 0.10 0.2535 0.3716 0.27260.15 0.1767 0.1663 0.1765 0.1644 0.15 0.1566 0.2268 0.16440.20 0.1093 0.1006 0.1092 0.0994 0.20 0.0964 0.1385 0.09950.25 0.0678 0.0677 0.0603 0.25 0.0592 0.0846 0.0604
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Table 4. Comparison of results for R = 10time t = 0.5 time t = 1.0MQ (time step k) MQ (time step k)x Anal 0:1 0:01 0:001 Anal 0:1 0:01 0:0010.10 0.1099 0.1118 0.1104 0.1103 0.0663 0.0670 0.0664 0.06640.20 0.2180 0.2211 0.2186 0.2183 0.1312 0.1325 0.1314 0.13130.30 0.3222 0.3258 0.3227 0.3224 0.1928 0.1948 0.1930 0.19280.40 0.4190 0.4221 0.4194 0.4191 0.2480 0.2512 0.2483 0.24810.50 0.5028 0.5038 0.5028 0.5028 0.2919 0.2969 0.2923 0.29190.60 0.5623 0.5594 0.5618 0.5621 0.3161 0.3239 0.3167 0.31590.70 0.5759 0.5674 0.5744 0.5753 0.3081 0.3192 0.3090 0.30790.80 0.5055 0.4924 0.5030 0.5041 0.2537 0.2666 0.2548 0.25340.90 0.3093 0.2974 0.3059 0.3066 0.1461 0.1554 0.1468 0.1459
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Table 5. Comparison of results for R = 100time t = 0.5 time t = 1.0MQ (time step k) MQ (time step k)x Anal 0:1 0:01 0:001 Anal 0:1 0:01 0:0010.10 0.1211 0.1211 0.1211 0.1211 0.0754 0.0754 0.0755 0.07550.20 0.2415 0.2413 0.2415 0.2415 0.1506 0.1506 0.1507 0.15070.30 0.3603 0.3589 0.3601 0.3603 0.2257 0.2253 0.2256 0.22570.40 0.4764 0.4724 0.4760 0.4764 0.3003 0.2995 0.3002 0.30030.50 0.5887 0.5799 0.5877 0.5886 0.3744 0.3726 0.3742 0.37440.60 0.6953 0.6780 0.6935 0.6951 0.4478 0.4444 0.4475 0.44780.70 0.7935 0.7615 0.7901 0.7932 0.5203 0.5143 0.5197 0.52020.80 0.8783 0.8189 0.8719 0.8776 0.5915 0.5813 0.5905 0.59130.90 0.9381 0.8128 0.9264 0.9381 0.6600 0.6438 0.6594 0.6607
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Table 6. Comparison of results for R = 10000Christie Compact FEM FEM MQaccurate di�erence splitting moving node (N = 10)x solution k=0.001 k=0.1* k=0.001* k=0.1 k=0.0010.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000.05 0.0422 0.0501 0.0419 0.0422 0.0422 0.04240.11 0.0843 0.0753 0.0839 0.0844 0.0843 0.08430.16 0.1263 0.1471 0.1253 0.1266 0.1263 0.12630.22 0.1684 0.1359 0.1692 0.1687 0.1682 0.16840.27 0.2103 0.2611 0.2034 0.2108 0.2100 0.21030.33 0.2522 0.2091 0.2666 0.2527 0.2517 0.25220.38 0.2939 0.3340 0.2527 0.2946 0.2931 0.29390.44 0.3355 0.3048 0.3966 0.3362 0.3343 0.33550.50 0.3769 0.4173 0.2350 0.3778 0.3751 0.37690.55 0.4182 0.3741 0.5480 0.4191 0.4156 0.41820.61 0.4592 0.5059 0.2578 0.4601 0.4557 0.45920.66 0.5000 0.4634 0.6049 0.5009 0.4952 0.49990.72 0.5404 0.5808 0.6014 0.5414 0.5341 0.54040.77 0.5806 0.5369 0.4630 0.5816 0.5722 0.58050.83 0.6203 0.6671 0.7011 0.6213 0.6093 0.62010.88 0.6596 0.6201 0.6717 0.6605 0.6455 0.66000.94 0.6983 0.7410 0.7261 0.6992 0.6783 0.69571.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000* with 16 intervals
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Table 7. Comparison of results for R = 10000 by using the adaptive algorithmChristie FEM Adaptive MQaccurate moving node (N = 10)x solution k=0.001* k=0.1 k=0.0010.00 0.0000 0.0000 0.0000 0.00000.05 0.0422 0.0422 0.0421 0.04210.11 0.0843 0.0844 0.0843 0.08430.16 0.1263 0.1266 0.1263 0.12640.22 0.1684 0.1687 0.1682 0.16840.27 0.2103 0.2108 0.2100 0.21030.33 0.2522 0.2527 0.2517 0.25220.38 0.2939 0.2946 0.2931 0.29390.44 0.3355 0.3362 0.3343 0.33550.50 0.3769 0.3778 0.3751 0.37690.55 0.4182 0.4191 0.4156 0.41820.61 0.4592 0.4601 0.4557 0.45920.66 0.5000 0.5009 0.4952 0.49990.72 0.5404 0.5414 0.5341 0.54040.77 0.5806 0.5816 0.5722 0.58050.83 0.6203 0.6213 0.6093 0.62020.88 0.6596 0.6605 0.6453 0.65950.94 0.6983 0.6992 0.6785 0.69721.00 0.0000 0.0000 0.0000 0.0000* with 16 intervals
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FIGURE CAPTIONSFigure 1. Curves of MQ approximation of Burgers' equation for R = 0.1, 1, 10, 100, and10000 respectively in 0 � x � 1.1a. R = 0.1.1b. R = 1.1c. R = 10.1d. R = 100.1e. R = 10000.
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