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forgetting an old one; thus if the controlled process reverts to a previous con-dition, knowledge of this has been discarded and must be relearned. Thiscon
ict between stability and plasticity inevitably arises with a single model;for this reason, a multiple model approach is used here.Naeandra, Balakrishnan, and Ciliz (1995) give a review of some recentwork using the multiple model approach in the context of adaptive controland set it in a historical context including the seminal work of Lainiotis(1976a, Lainiotis (1976b). A key aspect of their work is the dual use ofmodels: to provide a set of controllers, each appropriate to a certain oper-ating condition of the controlled system; and to provide a set of errors uponwhich to base the choice of controller. It is this dual use of multiple modelswhich distinguishes the work from another main use of multiple models {gain scheduling { and provides the basis for the work reported here. Despitethe common ground of the multiple model approach the work reported heredi�ers from that of Naeandra, Balakrishnan, and Ciliz (1995) in a numberof ways:� implicit models (Equation 9) are used� a generalised predictive control formulation is used� the models are explicitly used to overcome the stability-plasticity di-lemma.As discussed by _Zbikowski, Hunt, Dzieli�nski, Murray-Smith, and Gaw-throp (1994) and by Gawthrop (1996), the Local Model Network of Johansenand Foss(1993, 1992) provides a conceptually powerful combination of gen-eral Neural Network ideas with conventional linear control techniques toprovide an approach to the control of nonlinear systems. The Local ModelNetwork may also be regarded as a multiple-model approach. This approachmay be contrasted with the NARMAX-based approach of Leontaritis andBillings (1985), much used in ANN-based control (Chen, Billings, and Grant1990; Chen, Billings, Cowan, and Grant 1990; Narendra 1990; Narendra andParthasarathy 1990; Narendra and Parthasarathy 1991) where the systemmodel is of the form:y(t) = F (y(t� 1); :::; y(t � ny); u(t� k); :::; u(t � k � nu)) (1)Indeed, in the introduction to his book (p.8), Harris (1994) comments thatthe NARMAX approach is \commonly adopted by the majority of the book'scontributors".This approach may be viewed as the natural extension of the conven-tional black-box ARMA approach to adaptive control pioneered by �Astr�omand Wittenmark (1973) and Clarke and Gawthrop (1975). However, as dis-cussed by Kallkuhl and Hunt (1996) the use of Equation 1 has somewhat2



vague theoretical foundations when regarded as an approximation to as anunderlying nonlinear system of the form_x = f(x; u) (2)y = g(x) (3)One way of contrasting this approach with ours is to realise that the stand-ard approach (Chen, Billings, and Grant 1990; Chen, Billings, Cowan, andGrant 1990; Narendra 1990; Narendra and Parthasarathy 1990; Narendraand Parthasarathy 1991; K. J. Hunt and Gawthrop 1992) to combining lin-ear control and ANN to give non-linear control is to embed the ANN withinan otherwise linear control structure. In contrast, the approach taken hereis to embed a number of linear controllers within a network (Gawthrop 1995;Gawthrop 1996). To distinguish between the two approaches, we make thecontrast between:� the external net approach comprising a network containing (local ad-aptive predictive) controllers� and the internal net approach comprising an (adaptive predictive) con-troller containing a network.We advocate the former approach.The Generalised Predictive Control (GPC) of Clarke, Mohtadi and Tu�s(1987a, 1987b, 1989) has proved to be a popular approach to control, partic-ularly in a self-tuning context. Although originally developed in a discrete-time context, a continuous-time version is available in both transfer func-tion form (Demircioglu and Gawthrop 1991; Demircioglu and Gawthrop1992) and state-space form it is the latter version that is used here. Tanand De Keyser (1994) and Saint-Donat, Bhat, and McAvoy (1994) combineGPC and ANN in a form suitable for adaptive control of nonlinear systems.However both use the internal net approach.As discussed by Ronco, Gollee, and Gawthrop (1996), we believe thatmodularity is the key to future developments in ANN in general and theirapplication to control in particular. For this reason, this paper presents anapproach to self-tuning predictive control of nonlinear systems based on aclear and transparent decomposition of the controller within a continuous-time LMN framework using an external net. Our approach to ANN basedadaptive predictive control may be contrasted with that of Tan and DeKeyser (1994) and Saint-Donat, Bhat, and McAvoy (1994) in a number ofways in that our approach1. uses an external net, as opposed to an internal net, framework;2. is set in continuous time rather than discrete time;3



3. contains a number of locally valid physically transparent models asopposed to a single black-box model with no clear physical signi�canceThe idea of using multiple models in the context of predictive control hasbeen explored by Chow, Kuznetsov, and Clarke (1995). They use a singlecontroller whose coe�cients are based on interpolating the poles and zeros ofthe GPCs corresponding to linearised models corresponding to each operat-ing point. Our approach to LMN based predictive control may be contrastedwith the multiple model approach of Chow, Kuznetsov, and Clarke (1995)in a number of ways in that our approach1. is set in continuous time rather than discrete time;2. contains a number of local controllers whose outputs are interpolatedas opposed to a single controller whose coe�cients are interpolated.3. no scheduling signal is explicitly used { the choice of model is autonom-ous.The outline of the paper is as follows. Sections 2 and 3 provide a sum-mary of (continuous-time) Local Model Networks and Generalised Predict-ive Control respectively. Section 4 contains the Local Model Network basedGeneralised Predictive Control and forms the core of the paper and Section5 gives a self-tuning version. Section 6 illustrates and evaluates the al-gorithm using a nonlinear process engineering example. Section 7 concludesthe paper and point to future research directions.2 Continuous-time LMNThis paper considers the control of nonlinear time varying single-input singleoutput (SISO) systems of the form:_x = f(x; u; v) (4)y = g(x) (5)where y,u and x are the system output, control input and state respectively.The (scalar) signal v is a disturbance signal which, typically, changes thedynamics of the system relating y and u. Unlike Gawthrop (1996), the signalv is unknown precluding gain-scheduling-like approaches to the problem.As discussed in some detail by Gawthrop (1996), such systems may belinearised aboutm equilibriumpoints to give a set ofm linear systems which,in Laplace transform terms, are of the form:a(s)Y = b(s)U + d(s)V (6)4



where a(s), b(s) and d(s) are polynomials in s of the form:a(s) = nXk=0 aisn�k (7)and Y , U and V are the Laplace transforms of y, u and v respectively.As discussed by Gawthrop (1996), careful consideration of the linearisationprocess leads to the conclusion that the polynomials have order one greaterthan the dimension of the state x and, moreover, thata(0) = an = 0; b(0)bn = 0 (8)In this paper,as v is unknown, the term d(s)V is not explicitly used, butrather regarded as contributing to an error term. Dividing Equation 6 bythe polynomial c(s) and rearranging gives:E0 = a(s)c(s)Y � b(s)c(s)U (9)where E0 is an error term including the e�ect of V , linearisation error V ,and other disturbances.De�ning the parameter vector � and data vector X as
� = 0BBBBBBBBBBBB@

a0a1: : : :an�1b0b1: : : :bn�1
1CCCCCCCCCCCCA ; X = 1c(s)
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1CCCCCCCCCCCCA (10)
(To be more precise, X is generated from the state-space system given inLaplace transform terms by Equation 10) Equation 9 becomes:e0 = �TX (11)Following the discussion by Gawthrop (1996) an array of m models para-meterised by �̂i can be de�ned with corresponding errors ei as:ei(t) = �̂Ti X(t) (12)De�ning �̂ to be the matrix containing the m vectors �̂i and e the columnvector containing the m corresponding errors gives:e(t) = �̂TX(t) (13)Equation 13 is used in the sequel for selecting an appropriate model.5



3 Continuous-time GPCThe Generalised Predictive Control (GPC) of Clarke, Mohtadi and Tu�s(1987a, 1987b, 1989) has proved to be a popular approach to control, partic-ularly in a self-tuning context. Although originally developed in a discrete-time context, a continuous-time version is available in both transfer functionform (Demircioglu and Gawthrop 1991; Demircioglu and Gawthrop 1992)and state-space form (Gawthrop and Siller-Alcala 1995); it is the latter ver-sion that is used here. GPC is particularly relevant for adaptive control asit is insensitive to system structural parameters such as: system order, sys-tem relative degree and number of nonminimum phase zeros. The details ofGPC appear in the cited works; only the bare essentials are presented here.Like any other emulator-based controller, GPC can be written in emu-lator form as:R = 
U + g(s)c(s)U + f(s)c(s) Y (14)where R is the Laplace transform of the reference signal r and c(s) is a designpolynomial (Gawthrop and Siller-Alcala 1995). Using the same approach asGawthrop (1996), and making use of Equations 8, it follows that this canbe rewritten in a form exposing integral action as:U = �U + 1
 (R� �Y )� s
 �g0(s)c(s) U � f 0(s)c(s) Y � (15)where �U = Uc(s) �Y = Yc(s) (16)g0(s) = g(s)� gn f 0(s) = f(s)� fn (17)The �rst, second and third terms of Equations 15 may be regarded as gen-eralised integral, proportional and derivative action respectively.De�ning the control parameter vector �c and control data vector Xc as
�c = 1
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Equation 15 becomes:u = �Tc Xc (19)Note that Xc is the same as X (Equation 10) but with the addition oftwo more elements. In a similar way to that of Section 2, an array of mcontrollers parameterised by �̂ci can be de�ned with corresponding controlsui as:ui = �̂TciXc (20)De�ning �̂c to be the matrix containing the m vectors �̂ci and u the columnvector containing the m corresponding control signals gives:u = �̂Tc X (21)4 LMNGPCAs a preliminary to the self-tuning algorithm of Section 5, a local-modelnetwork based Generalised Predictive Control (LMNGPC) is presented. Al-though there is no explicit parameter estimation, this algorithm does havean adaptive aspect in that a local-model network is used to choose an appro-priate weighting for the m control signals. Unlike gain scheduling, and somelocal controller networks ( _Zbikowski, Hunt, Dzieli�nski, Murray-Smith, andGawthrop 1994), a measurement of the perturbing variable v is not required.Following Naeandra, Balakrishnan, and Ciliz (1995), the key idea usedhere is to use the error vector e(t) (Equation 13) to determine the `best'model, and corresponding controller, to use at each time t. To providerobustness to sudden disturbances, a �ltered squared version �e(t) of e isused give by:� d�edt (t) = e2(t)� �e(t) (22)The �lter time constant � is chosen to give a trade o� between smoothingextraneous noise and detecting genuine changes in the system.It is this m dimensional vector �e(t) that is used to determine the LMNweighting vector � which selects from the vector of possible control signalsu (Equation 21). This weighing vector corresponds to the `gating function'of Jacobs and Jordan (1993) and the elements �i must satisfy:0 ��i � 1 for all i (23)mXi=1�i = 1 (24)7



There are many possible ways of generating �; one such possibility is theSOFTMAX function (Haykin 1994) with variable positive gain ��i = exp��eiPmj=1 exp��ej (25)Another possibility is a `winner takes all' operation where one element of� is one and the rest zero; this is approximated by choosing a large � inEquation 25.The algorithm can now be summarised as:Algorithm 1� Initialisation1. Linearise Equation 2 about m equilibria.2. Create the system parameter matrix �̂.3. Create the controller parameter matrix �̂c.� On-line1. Generate the controller data vector Xc using state-variable �lters(X is a subvector of Xc).2. Generate the error vector e = �̂TX (Equation 13)3. Generate the weight vector � (Equation 25)4. Generate the control vector u = �̂Tc Xc (Equation 21)5. Generate the control signal u = �Tu (Equation 21)5 Self-tuning LMNGPCEquation 12 gives the ith model error in terms of the data vector X(t) andthe ith model parameter vector �̂i. The same equation may also be usedto choose �̂i to minimise the error over a time-period Te. In particular themean squared error from time T � Te to time T is given by:Z TT�Te e2i dt = �̂Ti S(T )�̂i (26)whereS(T ) = Z TT�Te X(t)XT (t) dt (27)To avoid the trivial solution �̂i = 0, �̂i is constrained by k�̂ik = 1. Theminimisation of Equation 26 is then simply accomplished by performinga Singular Value Decomposition (SVD) of S(T ) and choosing the singularvector corresponding to the smallest singular value.This leads to the self-tuning version of Algorithm 1.8



Algorithm 2 (Self-tuning)� Initialisation1. Choose a set m of arbitrary models (including prior informationif available).2. Create the system parameter matrix �̂.3. Create the controller parameter matrix �̂c.4. Choose an identi�cation time period te.5. Set i = m+ 1 and Si = 0� On-line1. As algorithm 12. Update the information matrix Si3. Every Te:(a) Compute a new parameter vector �̂i from the SVD of S(b) Add �̂i as a new column of �̂(c) Reinitialise S: Si+1 = �Si(d) Increment iRemarks� The parameter � allows remembering of information from previoustime periods; typically � = 0 in the multi-model version.� A single model version of this algorithm arises when m = 1 and i isalways set to 1; thus each new model overwrites the previous model.With small Te, this is essentially standard self-tuning control withforgetting factor �.� The ever growing data requirements are discussed further in Section7.6 An exampleA detailed model of an experimental heated tank system is given by Cos-tello and Gawthrop (1995). The system is third order and has a singleoutput y = temperature (with respect to ambient), single control input u =Heater power and a single disturbance v = inflow. This system was sim-ulated, together with the algorithms of this paper, using Simulink/Matlabfor a total time of 200. The reference output temperature r(t) was a square-wave of period 20 and unit amplitude. (The use of a periodic referenceis for illustration; it is not required to be periodic). The disturbance v issinusoidal as illustrated in Figure 1. 9



Parameter Meaning Valuep(s) Reference model (1 + 0:1s)(1 + 0:5s)2c(s) State-variable �lter (1 + 0:5s)4t1 Min. time horizon 0t2 Max time horizon 0:1N� Predictor order 10Nu Control order 0Table 1: GPC parameters
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Figure 1: Non-adaptive control based on a single model linearised aboutv = 50. The three plots show the output y, control input u and disturbanced.
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Figure 2: Non-adaptive control based on a single model linearised aboutv = 50. The output y from Figure 1 is superimposed. Notice the variationin response due to changing system dynamics due to v.
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Figure 3: Adaptive control based on a single model (0 � t � 100).11
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Figure 4: Adaptive control based on a single model(100 � t � 200). Noticethat the performance is no better than that of Figure 3 { the earlier learninghas been forgotten
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Figure 5: Non-adaptive control based on 26 models linearised about valuesof v throughout it's range. Notice the improvement relative to Figure 212
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Figure 6: Adaptive control based on 26 models (0 � t � 100).
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Figure 7: Adaptive control based on 26 models (100 � t � 200). Noticethe improvement in performance relative to Figure 6 { this is because noinformation has been forgotten 13



In all cases, the GPC design parameters (Gawthrop and Siller-Alcala1995) were as given in Table 1. Figures 2 { 7 show y, from each period ofthe reference r, superimposed. This gives a clearer view of the change ofperformance with time. The single-model versions used � = 0:5 and themulti-model versions used � = 0. In each case Te = 9.7 Conclusions and further workWe have presented an algorithm which overcomes the \stability-plasticitydilemma" of Carpenter and Grossberg (1988) by combining methods asso-ciated with self-tuning control and methods associated with arti�cial neuralnetworks.The algorithm presented here has an ever-growing memory requirementas models are never discarded; even though some of the models may besimilar. We believe that the way forward here is to cluster similar mod-els. There are two issues here: to determine which models to combine andhow to combine them. There are a number of possible approaches to theformer problem. Clustering could be based on the (unit norm) parametervectors �̂i using standard self-organising methods (see Haykin (1994) for adiscussion), adaptive resonance theory Carpenter and Grossberg (1988) orprogressive learning (Ronco, Gollee, and Gawthrop 1996). The latter prob-lem is essentially that of deducing a parameter vector describing a number ofnon-contiguous sets of data; this problem has been addressed by Gawthrop(1984).AcknowledgementsThis work was partially supported by ESPRIT grant 8039 (NACT).References�Astr�om, K. J. and B. Wittenmark (1973). On self-tuning regulators. Auto-matica 9, 185{199.Carpenter, G. A. and S. Grossberg (1988, March). The art of adaptivepattern recognition by a self-organising neural network. IEEE Com-puter 21 (3), 77{88.Chen, S., S. A. Billings, C. F. Cowan, and P. M. Grant (1990). Practicalidenti�cation of NARMAX models using radial basis functions. Int. J.Control 52, 1327{1350.Chen, S., S. A. Billings, and P. M. Grant (1990). Non-linear system iden-ti�cation using neural networks. Int. J. Control 51, 1191{1214.14
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