
LETTER Communicated by Sebastian Seung

Computing with Continuous Attractors: Stability and Online
Aspects

Si Wu
siwu@sussex.ac.uk
Department of Informatics, University of Sussex, Brighton, U.K.

Shun-ichi Amari
amari@brain.riken.go.jp
Laboratory for Mathematical Neuroscience, RIKEN Brain Science Institute, Tokyo,
Japan

Two issues concerning the application of continuous attractors in neural
systems are investigated: the computational robustness of continuous at-
tractors with respect to input noises and the implementation of Bayesian
online decoding. In a perfect mathematical model for continuous attrac-
tors, decoding results for stimuli are highly sensitive to input noises,
and this sensitivity is the inevitable consequence of the system’s neutral
stability. To overcome this shortcoming, we modify the conventional net-
work model by including extra dynamical interactions between neurons.
These interactions vary according to the biologically plausible Hebbian
learning rule and have the computational role of memorizing and prop-
agating stimulus information accumulated with time. As a result, the
new network model responds to the history of external inputs over a pe-
riod of time, and hence becomes insensitive to short-term fluctuations.
Also, since dynamical interactions provide a mechanism to convey the
prior knowledge of stimulus, that is, the information of the stimulus pre-
sented previously, the network effectively implements online Bayesian
inference. This study also reveals some interesting behavior in neural
population coding, such as the trade-off between decoding stability and
the speed of tracking time-varying stimuli, and the relationship between
neural tuning width and the tracking speed.

1 Introduction

Recent studies on neural population coding have revealed that continuous
stimuli, such as orientation, moving direction, and the spatial location of
objects, are likely to be encoded as continuous attractor in neural systems
(Amari, 1977; Georgopoulos, Kalaska, Caminiti, & Massey, 1982; Maunsell &
Van Essen, 1983; Wilson & McNaughton, 1993; Rolls, Robertson, & Georges-
François, 1995; Ben-Yishai, Lev Bar-Or, & Sompolinsky, 1995; Zhang, 1996;
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Seung, 1996; Hansel & Sompolinsky, 1998; Taube, 1998; Deneve, Latham,
& Pouget, 1999; Wang, 2001; Wu, Amari, & Nakahara, 2002; Stringer,
Trappenberg, Rolls, & Aranjo, 2002; Brody, Romo, & Kepecs, 2003;
Trappenberg, 2003). The notion of continuous attractor emphasizes that
the steady states of the system, which encodes stimulus values, form a
continuous parameter space on which the system is neutrally stable. This
representation-memory structure contrasts with that of discrete attractors,
such as the Hopfield model (Hopfield, 1984), where stimulus values are sup-
posed to be stored as discrete points in the state space. A simple illustration
of the structural difference between continuous and a discrete attractors is
shown in Figure 1.

The key property of continuous attractors that distinguishes themselves
from the discrete ones is the neutral stability of the system. Intuitively, neu-
tral stability implies that there is no resistance along the attractor space,
and as a result, the system can change state rather easily under external
drives. This property is crucial for neural systems to carry out many impor-
tant computation tasks, such as tracking a moving object or navigating in
space, in which decoding a time-varying stimulus in real time is essential.
For systems having discrete attractors, it will be extremely difficult to ac-
complish these tasks, as the systems have to overcome the associated energy
barrier for each state updating. Another good property of continuous attrac-
tors, which may not be that obvious, is that they provide a framework for
reading out stimuli by using a simple and efficient strategy called template
matching (details are introduced in section 2.2.2) (Pouget, Zhang, Deneve,
& Latham, 1998; Deneve et al., 1999; Wu et al., 2002).

The advantages of continuous attractors, and their associated roles on
brain functions, have been widely studied in the literature. An issue, how-
ever, that constantly puzzles computational neuroscientists is the insta-
bility of continuous attractors. Two aspects of instability are concerned.
One is the potential susceptibility of the attractor structure with respect
to the imprecision of network components. This takes into account the
fact that neuronal synapses in reality may not be as perfect as those re-
quired mathematically for maintaining a continuous attractor (Tsodyks &
Sejnowski, 1995; Zhang, 1996; Seung, Lee, Reis, & Tank, 2000; Wang, 2001).
The other concerns the robustness of network computation with respect
to input noises. This takes into account the fact that continuous attrac-
tors are intrinsically unstable along the attractor space and that a little
fluctuation in input may dramatically modify the decoding result (Amari,
1977; Wang, 2001; Brody et al., 2003). Consider the ubiquity of noise in bi-
ological systems a computational model of such instability is essentially
useless. Thus, understanding the stability of continuous attractors is of
critical importance for us to understand its applications in brain func-
tions. In this study, we mainly focus on how computational robustness
of continuous attractors is achieved, and do not consider their structural
stability.
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Figure 1: An illustration of structural difference between discrete and contin-
uous attractors. (A) An example of a discrete point attractor. The system is
stable only at the bottom of the bowl. (B) An example of line attractor, the one-
dimensional version of continuous attractor. The system is stable at any point on
the one-dimensional valley and can move easily along the valley under external
drive.

Apart from exploring computational robustness, this study also inves-
tigates the implementation of Bayesian online decoding in continuous at-
tractors. A significant feature of biological computation is that its input is
continuous in time and highly fluctuating (van Vreeswijk & Somplinsky,
1996; Natschlager, Maass, & Markram, 2002). In such a scenario, online
computation, in terms of extracting stimulus values in real time and ad-
justing or modifying them constantly, is the natural solution for efficient
information processing. It is far from clear how online decoding is realized
in neural systems. Technically, to achieve online computation, the core is to
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have a mechanism that can store and propagate input information accumu-
lated in time, so that this information can be used as prior knowledge to
enhance further computation. Mathematically, this is expressed as Bayesian
inference. In this work, we use continuous attractors as a prototype model
for neural computation to explore the possible mechanisms for achieving
Bayesian inference in neural systems.

In summary, this study has two main goals: to explore the robustness and
online aspects of computation with continuous attractors. For simplicity, we
consider only a simple abstract network model for continuous attractors, as
is conventionally done in the literature (Amari, 1977; Ben-Yishai et al., 1995;
Zhang, 1996; Deneve et al., 1999; Wu et al., 2002; Wu, Chen, Niranjan, &
Amari, 2003). This model captures the essential features of how continuous
attractors are maintained in neural systems and is consistent with our goal of
exploring their general properties. Specifically, we concentrate on analyzing
linear attractors, the one-dimensional version of continuous attractors. The
results are applicable in general cases.

It turns out that the two goals can be achieved under the same neu-
ral mechanism. In the conventional recurrent network models for line at-
tractors, neuronal interactions are usually considered to be static (i.e., un-
changed with time). Here, we assume that apart from the original static
components, there are also dynamical ones between neuronal interactions.
These dynamical interactions vary according to the biologically plausible
Hebbian learning rule and have the computational role of storing and prop-
agating the temporal information of external inputs. The underlying pic-
ture is straightforward. Whenever the external input changes, due to either
noise or real movement of the stimulus, it generates varied neural activ-
ities, which subsequently modify the size of dynamical interactions due
to Hebbian learning. Thus, the history of external inputs is imprinted in
the time course of dynamical interactions. In terms of implementing on-
line Bayesian decoding, dynamical interactions have the role of conveying
the prior knowledge of stimuli, that is, the history of external inputs. In
terms of improving the computational robustness of continuous attractors,
dynamical interactions enable the system to respond to the history of ex-
ternal inputs over a period of time, and hence suppress short-term fluc-
tuations. Part of the idea that dynamical interactions contribute to imple-
menting Bayesian inference in neural circuitry has been studied by Wu et al.
(2003).

While the decoding stability of line attractors is improved by dynami-
cal interactions, a compromise is the delayed response to abrupt stimulus
changes. This is also understandable. Essentially, stabilizing the computa-
tion of line attractors requires the system to respond to the time-averaged
behavior of external inputs. Consider the situation that the stimulus expe-
riences an abrupt change, which unfortunately is indistinguishable from
noise in a short time window. Since the system responds to inputs over a
period of time, its reaction to the sudden change inevitably will be delayed.
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We analyze this trade-off between decoding robustness and tracking speed
in detail in this article.

As a by-product, this study also reveals some interesting behavior in
neural population coding. For instance, we observe that the tracking speed
of line attractors strongly depends on the size of the neural tuning width:
the larger the tuning width, the quicker the tracking. This gives us a fresh
justification of why the neural tuning width should be large, as seen in the
data, an issue of wide concern in the study of population coding (Pouget,
Deneve, Ducom, & Latham, 1999; Zhang & Sejnowski, 1999).

The organization of this letter is as follows. In section 2, we introduce a
simple recurrent network model for line attractors and review its computa-
tional advantages. In section 3, a modified network model that includes dy-
namical interactions is introduced, and its performance is interpreted from
the view of Bayesian inference. In section 4, the performances of the new
network model are investigated in detail, which particularly include how
computation robustness of line attractors is improved, what the trade-off
between decoding stability and tracking speed is, and how tracking speed
is affected by the size of neural tuning width. Section 5 presents the overall
conclusions and discussions of this work.

2 Computing with Line Attractors

In this section, we introduce a recurrent network model for line attractors
and review its two main computational advantages.

2.1 The Model. Let us consider a continuous stimulus x encoded by
N neurons. For simplicity, we assume N −→ ∞ and consider a continu-
ous neural field model (returning to finite N, however, is straightforward)
(Amari, 1977). We use Uc to denote the internal state of neurons whose pre-
ferred stimulus is c and Oc the corresponding neural activity (i.e., the firing
rate). The nonlinear relationship between Oc and Uc is defined by

Oc = U2
c

1 + µ
∫

U2
c dc

, (2.1)

where the parameter µ is a constant. The denominator on the right-hand
side reflects the effect of global inhibition. In effect, this prevents neural
activities from diverging to infinity.

The neurons in the network are fully connected. The form of the recurrent
interaction is the key that generates the structure of the linear attractor,
which is set to

Wc,c′ = exp[−(c−c′)2/2a2], (2.2)
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where the parameter a is the width of the gaussian function. The form
of Wc,c′ exhibits two features. First, Wc,c′ is translational invariant, being
a function of the difference between neuronal preferred stimuli, (c − c ′).
This symmetry leads to the neutral stability of the system. Second, Wc,c′ has
the gaussian form, which ensures that the steady states of the network are
bell-shaped, agreeing with experimental observations.

The dynamics of the network is given by

τ
dUc

dt
= −Uc +

∫ +∞

−∞
Wc,c′ Oc′ dc ′ + Ic, (2.3)

where the parameter τ is the time constant of Uc , and Ic is the external input.
It is straightforward to check that with the above recurrent interactions

and proper values of µ, when Ic = 0, the network accommodates a family
of nontrivial stable states, which can be written as1

Õc = A exp[−(c−z)2/2a2], ∀z, (2.4)

Ũc = B exp[−(c−z)2/4a2], ∀z, (2.5)

where the coefficients A and B are constants depending on µ, and the vari-
able z is a one-dimensional free parameter. We see that the steady states of
network indeed have a bell shape. Since equations 2.4 and 2.5 hold for any
value of z, the system is said to have a line attractor.

The value of z indicates the position of the steady state on the attractor
space, which is also the network representation of stimulus. In case there
is no external input, that is, Ic = 0, the system may stay at any point on
the attractor, depending on the initial condition of the dynamics. When
an external input is presented, the network will be driven to a particular
position, with the corresponding value of z reporting the decoding result.

It is worth noting that the parameter a has two functional meanings:
it determines the range of neuronal interactions (see equation 2.2), and it
defines the width of neural tuning function (see equation 2.4).

2.2 Computational Advantages of Linear Attractor. Based on this
model, we now illustrate two main advantages of line attractors: to track
stimuli smoothly and to implement template matching.

To mimic real situations more precisely, such as when the stimulus is
the orientation or moving direction of objects, we restrict the stimulus
in the simulation to be a periodical variable. More exactly, we consider
stimulus x (and so does the preferred stimulus of neurons) in the range

1 An easy way to check that equations 2.4 and 2.5 are the stable states of the network
is to substitute them in equations 2.1 and 2.3 and see whether dUc/dt = 0 (and, hence,
d Oc/dt = 0) holds when Ic = 0.
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(−π, π ], with x = θ and x = 2π + θ being the same. Under this condition,
the steady states of the network will no longer have the exact gaussian form
as in equation 2.4. However, provided that the value of a is not too large,
say, a < π as considered here, the bell shape of steady states still holds, as
confirmed by the simulation.

With the periodic condition, the form of recurrent interactions is adjusted
to be

Wc,c′ =
{

exp[−(c−c′)2/2a2] if |c − c ′| ≤ π

exp[−(2π−|c−c′ |)2/2a2] if |c − c ′| > π
. (2.6)

2.2.1 Tracking Time-Varying Stimuli Smoothly. One critical advantage of
line attractors is their capability to track time-varying stimuli smoothly.
For illustration, we consider a challenging situation (Georgopoulos, Taira,
& Lukashin, 1993; Ben-Yishai et al., 1995), in which the stimulus experi-
ences an abrupt change, say, jumping from x = 0 jumps to x = h, for h
a small constant. This process can be modeled by setting external input
Ic = γ exp−c2/2a2

initially, with γ a small constant, and then changing Ic

suddenly to Ic = γ exp−(c−h)2/2a2
.

Figure 2A records the activities of the network from the onset of the
change to the stationary state. It shows that the network can indeed track
the abrupt change of stimulus, in the sense that the network representation
for stimuli is updated accordingly. In contrast, we also illustrate the typical
behavior expected for discrete attractors in the same situation, as shown in
Figure 2B. We see that for discrete attractors, the system state is trapped at
the original position and is unable to follow the stimulus change.

Figure 2A also exhibits another important characteristic of line attractors:
during tracking, the bell shape of population activity is roughly maintained.
This property can be illustrated in another way. Let us consider the case of
the stimulus being an angle variable (e.g., the orientation or moving direc-
tion) and record network representations during the intermediate stages
of tracking. The result is shown in Figure 3, which demonstrates that the
network state rotates in a seamless way from the initial position to where
the stimulus value has changed. This phenomenon is actually a unique
feature of continuous attractors, not shared by discrete ones (Ben-Yishai
et al., 1995). It tells us that the state change of continuous attractors must
follow paths defined by the attracting space. For instance, if the stimu-
lus changes from 0 to h, the state of line attractors must go through all
the intermediate values between 0 and h. For discrete attractors, there is
no such restriction, and the system in principle can update its state dis-
continuously from 0 to h, though this process may need extra effort. This
property of seamless rotation has been identified as important evidence
for the existence of line attractors in neural systems (Georgopoulos et al.,
1993).
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Figure 2: An illustration of network response in the situation when the stim-
ulus experiences an abrupt change. The population activity of the network is
drawn every 20τ time units. Neurons are labeled by their preferred stimuli.
In the simulation, the stimulus value is abruptly changed from 0 to 0.5π . The
parameters used are N = 40, a = 1, τ = 1, µ = 0.5 and γ = 0.05. (A) The line at-
tractor. (B) The discrete attractor. The discrete attractor is constructed by adding
a small amount of position-dependent component, 0.1e−(c2+c′2)2

, to the recurrent
interactions, equation 2.2, so that the neutral stability of the system is broken.

2.2.2 Decoding Stimulus by Template Matching. Another advantage of lin-
ear attractors is their effectiveness in reading out stimuli from a noise en-
vironment. Let us consider an external input that is noisy and modeled
by Ic = γ exp[−(c−x)2/2a2] + εc , where x denotes the true stimulus and εc a
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Initial direction

Final direction 

Figure 3: An alternative way to illustrate the tracking process shown in
Figure 2A. The network representation is represented by a direction vector.

random variable. The goal of the neural estimator is to infer the value of x
from the input Ic . Provided that Ic is a constant during decoding (though
this is not plausible in practice), it will drive the network to the position
on the attractor space that has the maximum overlap with Ic (Pouget et al.,
1998; Deneve et al., 1999; Wu et al., 2002), that is,

ẑ = argmaxz

∫ π

−π

Ic Õc(z)dc, (2.7)

where ẑ denotes the final position of the network state, that is, the estimation
of stimulus, and Õc(z) is given by equation 2.4. This decoding operation is
called template matching, in the sense that the tuning function, {Õc}, is used
as the template to match Ic . This process is illustrated in Figure 4.

To implement template matching, the neutral stability of the line attrac-
tor plays the key role, which guarantees that the template can be moved
freely in order to fit Ic . For the decoding performance of template match-
ing, it has been proved that template matching is equivalent to maximum
likelihood inference (MLI) based on an unfaithful model that neglects the
correlation between neuronal activities (Wu, Nakahara, & Amari, 2001). In
general cases, template matching outperforms center of mass (COM) (or
population vector equivalently). Compared with MLI that uses all informa-
tion of the encoding process, template matching has the advantage of being
much simpler.

3 Line Attractors with Dynamical Interactions

A possible difficulty for applying line attractors in practice is its sensitivity
to input noise, the inevitable consequence of the attractor’s neutral stability.
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Figure 4: An illustration of the template-matching operation. The initial position
of the template is at z = −0.5π . The true stimulus value is at x = 0. The diagram
shows how the template is driven by the external input to a new position that
has the maximum overlap with the noisy input.

Input noises generate a random drift, constantly fluctuating along the at-
tractor space,2 which makes decoding unreliable. Thus, to improve the ro-
bustness of decoding, the neural system must have a mechanism to suppress
this sensitivity.

Consider that neural systems have no extra source of information on stim-
ulus except from the one of external input; an efficient way to increase com-
putational robustness is to let the system respond to the time-averaged be-
havior of external input, so that short-term fluctuations can be suppressed.
To achieve this, the essence is to have a mechanism that can store and prop-
agate input information accumulated with time. For the simple abstract
model we consider, the form of recurrent interactions determines the type
of operation performed by the network. We therefore expect that by prop-
erly adjusting recurrent interactions, the neural mechanism we want can be
achieved.

2 Only in the extreme case when the input noise is constant over time, the driving
force generated along the valley is vanishing after the system is relaxed. This is the case
considered in Pouget et al. (1998), Deneve et al. (1999), and Wu et al. (2002).
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3.1 The New Network Model. The new network model we consider
has the following form

τ
dUc

dt
= −Uc +

∫ π

−π

(Wc,c′ + wc,c′ )Oc′ dc ′ + Ic, (3.1)

τw
dwc,c′

dt
= −wc,c′ + ηOc Oc′ , (3.2)

where we assume that the recurrent interaction consists of two parts: the
original static component, Wc,c′ , given by equation 2.1, and the new dy-
namical one, wc,c′ , which varies according to the Hebbian learning rule. The
parameters τw and η are the time constant and the learning rate of wc,c′ ,
respectively. From now on, we consider the fluctuations of external input Ic

changing over time. Without loss of generality, we consider the fluctuations
that are updated every T time units, that is, the frequency of noise is 1/T .

The dynamical behavior of the above network is governed by three
timescales: (1) the frequency of input fluctuations, given by 1/T ; (2) the
converging speed of neural activity when Ic and wc,c′ are fixed, which is
determined by 1/τ ; and (3) the response speed of dynamical interactions
with respect to the change of neural activities, which is controlled by τw

and η.
We are particularly interested in the parameter region when T � τ and

τw ≥ T . The first requirement ensures that the updates of network states can
catch up to the input change. Computationally, this is the only meaningful
case, since any input information varying more quickly than 1/τ is unde-
tectable by the network. The second requirement ensures that dynamical
interactions will memorize the history of external input over a sufficiently
long time.

3.2 Statistic Interpretation of the Network Performance. In general,
it is difficult to analytically solve the dynamics of above network model,
whose solution largely depends on the details of the external input. In order
to get an intuitive understanding of the role of dynamical interactions, we
first consider a special case in which the input fluctuations are sufficiently
small. This condition allows us to approximate the continuous equation 3.2
as an equation discrete in time. More specifically, we approximate wc,c′ to be
a constant during each period of T when Ic is fixed. This takes into account
the fact that within each period, the contribution due to the variation of wc,c′

on the change of network states is a small quantity of a higher order when
compared with that due to the change of input. As compensation of this
approximation, wc,c′ is updated at the end of each period according to

wc,c′ (m) ≈ βwc,c′ (m − 1) + (1 − β)ηÕc(m − 1)Õc′ (m − 1), (3.3)
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Figure 5: Confirming the plausibility of the approximation 3.3. The network
performances based on equations 3.2 and 3.3 are compared. The true stimulus
x = 0. The unit of each time step is T . The network estimation of stimulus at
each time step is shown. The parameters T = 20τ and τw = 100τ , which gives
β = e−T/τw ≈ 0.82. Gaussian random noise is added in the input, which has zero
mean and variance 2 × 10−3. The other parameters are N = 40, a = 1, τ = 1, µ =
0.5, γ = 0.05, and η = 10.

where m labels the time step of duration T , wc,c′ (m) the approximated value
of the dynamical interaction at the step m, and Õc(m − 1) the stable state of
neurons at step m − 1. The coefficient β is given by β = exp[−T/τw ]. Equa-
tion 3.3 can be seen as the solution to equation 3.2 under the approximation
Oc(t) = Õc(m − 1).

The value of wc,c′ (m) consists of two parts. The first one is inherited
from the previous time step, and the second is the newly learned result.
The plausibility of this approximation is confirmed by the simulation in
Figure 5.

By iteration, we further write down the dependence of wc,c′ (m) on all
previous neural activities,

wc,c′ (m) ≈ (1 − β)η[Õc(m − 1)Õc′ (m − 1) + β Õc(m − 2)Õc′ (m − 2)

+ β2 Õc(m − 3)Õc′ (m − 3) + · · ·], (3.4)

which displays how the history of input information is imprinted on the
time course of dynamical interactions.
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With the above approximation, the network estimation at step m is cal-
culated to be (see the appendix),

ẑ(m) = argmaxz

[ ∫ π

−π

Õc(z)Ic(m)dc

+ (1 − β)η
∑
k=1

βk−1
(∫ π

−π

Õc(z)Õc(m − k)dc
)2

]
. (3.5)

From the above equation, we see that the network estimation is deter-
mined by two parts. The first corresponds to the conventional template
matching with respect to the instant external input (compare with equa-
tion 2.7), and the second with the summation of contributions from all
previous neural activities, weighted according to their temporal proxim-
ity. Thus, equation 3.5 can be seen as implementing an online Bayesian
inference, where the first term corresponds to MLI and the second to the
contribution of prior knowledge.3

Now, the role of dynamical interactions becomes clear. It serves to store
and propagate the input information being accumulated with time.

4 The Performances of the New Network Model

Now we investigate the detailed performance of the new network model.

4.1 Reading-Out Stimulus Smoothly and Accurately. To confirm the
analysis in section 3.2, we carry out the following simulation experiment.
We consider a situation in which the true stimulus x is fixed, whereas the
external input fluctuates over time, which is written as

Ic(m) = γ e [−(c−x)2/2a2] + εc(m), (4.1)

where Ic(m) is the input value at the time step m and εc(m) the corresponding
noise.

3 To formally illustrate that equation 3.5 corresponds to Bayesian inference (more
specifically, the implementation of maximum a posteriori), we may need to formulate
the second term as the logarithm of a prior distribution of stimulus. It turns out, however,
that in general situations, this distribution is complex and does not have a simple form.
Only in the extreme case, as considered in Wu et al. (2003), which corresponds to β being
sufficiently small here, this distribution can be formulated as a gaussian prior centered at
the network estimation of the previous step (but in this case, the learning rate needs to be
subtly adjusted in order to efficiently use the prior knowledge). For details, refer to Wu
et al. (2003).
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Without loss of generality, we consider εc(m) being independent gaussian
white noise satisfying

〈εc(m)〉 = 0, (4.2)

〈εc(m)εc′ (m)〉 = σ 2δ(c − c ′), (4.3)

〈εc(m)εc(m′)〉 = σ 2δ(m − m′), (4.4)

where σ denotes the noise strength and the symbol 〈·〉 the average over many
trials. The condition (4.3) implies that noises are independent between the
ensemble units and the condition (4.4) noises are uncorrelated over time.

To check the susceptibility of network decoding with respect to input
fluctuations, we measure its decoding error, defined by 〈(x̂ − x)2〉, and com-
pare the obtained result with that of the original network model without
dynamical interactions. The typical performances of the two networks are
shown in Figure 6. We see that the new network becomes much more ro-
bust with respect to input noises. The extent of improvement depends on
the choice of β (or τw) and η, that is, how much history of the external input
is memorized by the dynamical interactions. For the case in Figure 6, the
decoding error of the new network is down to 6 × 10−3, compared with
2 × 10−2 of the original model.

4.2 Retaining the Capacity of Smooth Tracking. A major reason for
neural systems to adopt continuous attractors is that they provide the ca-
pacity of tracking time-varying stimuli smoothly. Therefore, it is important
to check whether this property is retained in the new network model.

Again, as in the case of Figure 2A, we consider a situation where the stim-
ulus experiences an abrupt change. The typical behavior of the new network
is illustrated in Figure 7, which confirms that the property of smooth track-
ing indeed holds.

Intuitively, one may suspect that since wc,c′ has now broken the trans-
lational invariance of the recurrent interactions (consider a situation when
a fixed input has been presented for a sufficiently long time; the value of
wc,c′ becomes concentrated around that input), why it does not destroy the
property of smooth tracking (see the example in Figure 2B). The explanation
is that wc,c′ is dynamical here, which also evolves under the drive of external
input.

4.3 The Trade-Off Between Decoding Stability and the Speed of Track-
ing. We do, however, observe a difference in performance between the new
and old network models: the reaction speed to abrupt stimulus change is
slower in the new model. The reaction time, whose inverse defines the re-
sponse speed, is measured from the moment the change occurs to when the
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Figure 6: A comparison of the decoding performances of the two network
models with and without dynamical interactions. The noise strength σ 2 = 0.01.
(A) New network model. The parameters are β = 0.8 and η = 10. (B) Original
network model.

system catches up to the change. This phenomenon is not a surprise to us,
which is due to the fact that the neural system responds to the time-averaged
behavior of the external input. Thus, there is a trade-off between decoding
robustness of line attractors and their speed of tracking. It is conceivable
that the longer the network memorizes the input history, the more robust
the network decoding will be and the more likely the tracking speed will
be delayed.

The parameters that determine how much history of the external input is
to be memorized by dynamical interactions areβ andη. From eqution 3.5, we
see that the larger the value of η, the more the network estimation depends
on previous neural activities. Thus, the tracking speed should decrease
with η (or equivalently, the reaction time increases with η), as confirmed
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Figure 7: Illustration of the tracking capacity of the new network model. The
input condition is as the same as in Figure 2. The parameters for dynamical
interactions are β = 0.8 and η = 10.

in Figure 8A.4 To check the trade-off on decoding robustness, we measure
decoding accuracy versus η. The decoding accuracy is calculated when the
true stimulus is fixed (only in this case can the accuracy be easily calculated
by the mean square error). We observe that the decoding accuracy increases
with η, as expected. For β = 0.8 and the noise strength σ 2 = 0.01, decoding
errors are calculated to be 9 × 10−3, 6 × 10−3, and 4 × 10−3 for η = 5, 10, and
15, respectively.

Similarly, the trade-off between robustness and tracking speed can also
be displayed based on their dependence with β. The larger the value of
β, the more information about previous neural activities is memorized by
dynamical interactions, and, hence, the longer delay in tracking can be ex-
pected. This is confirmed in Figure 8B. As a trade-off, decoding robustness
increases with β. For η = 10 and σ 2 = 0.01, decoding errors are calculated
to be 8−3, 6 × 10−3, and 2.5 × 10−3 for β = 0.7, 0.8, and 0.9, respectively.

4 One may note that in both Figures 8 and 9, there is a sudden jump in the network
representation immediately after the stimulus change. Mathematically, this is due to the
sudden change of input value, as is evident by the fact that when we vary the size of γ in
Ic , the magnitude of the jump will also change. It is not clear whether this implies certain
biological behavior.
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Figure 8: Illustration of the dependence of tracking speed on the size of η and
β. In the simulation, the stimulus value is abruptly changed from 0 to 0.5π .
The time course of the network representation during the tracking is shown.
(A) For different values of η, β = 0.8. η = 0 corresponds to the situation of no
dynamical interactions. (B) For different values of β, η = 10. β = 0 corresponds
to the situation of no dynamical interactions.

4.4 Reaction Time vs. the Magnitude of Abrupt Stimulus Change. It
is also valuable to see the relationship between the amount of delay and
the size of the abrupt stimulus change. Figure 9A shows that the amount of
delay increases with the jump size. This finding qualitatively agrees with
the experimental observation (Georgopoulos & Massey, 1987; Georgopoulos
et al., 1993).
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Figure 9: (A) Illustration of the dependence of tracking time on the size of abrupt
stimulus change. In the simulation, the stimulus value abruptly jumps from 0 to
0.2π, 0.4π , and 0.6π , respectively. (B) Illustration of the dependence of tracking
on the width of tuning function. In the simulation, the stimulus value abruptly
changes from 0 to 0.5π .

4.5 Tracking Speed vs. Neural Tuning Width. Another interesting be-
havior we observe is the dependence of the tracking speed on the width
of tuning function. Figure 9B shows that the tracking speed increases
with the tuning width a . This is understandable. Intuitively, tracking is
to move the bump of population activity from the initial position to where
the stimulus has changed (see Figure 7), and this operation is conducted
through neuronal recurrent interactions. Therefore, it can be expected that
the broader the range of neural interactions, the quicker the bump can move.
From equation 2.1, we see that the tuning width a controls the range of
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neuronal interactions. Thus, larger tuning width implies quicker tracking
speed. Notably, this property also holds for the network without dynamical
interactions.

This finding gives us a new justification for why the neural tuning width
is large, a long-standing debate in the field of population coding (Pouget
et al., 1999; Zhang & Sejnowski, 1999). Through calculating the Fisher infor-
mation (whose inverse, the Cramér-Rao bound, defines the optimal accu-
racy for any unbiased estimator to achieve), Zhang and Sejnowski (1999).
found that smaller tuning width actually leads to higher decoding accu-
racy. This seems to be in contrast to the experimental finding that the neural
tuning width is often very large and suggests that apart from decoding ac-
curacy, other factors also influence the construction of neural population
code. One such factor is believed to be the speed of computation (Brunel &
Nadal, 1998; Bethge, Rotermund, & Pawelzik, 2002). The idea is as follows.
Large tuning width implies that more neurons can be active shortly after
the onset of stimulus, and hence more neurons are involved in decoding in
a short time window. This helps to average out fluctuations in the activi-
ties of individual neurons, and hence increases the decoding accuracy in a
short time window.5 The finding of Figure 9B gives us another justification
on large tuning width: it increases the tracking speed of neural systems, a
critical property needed for carrying out many computational tasks.

5 Conclusions and Discussions

This study has investigated two important issues that arise when applying
continuous attractors in neural systems. One issue concerns the computa-
tional robustness of continuous attractors with respect to input noises, a
consequence of the system’s neutral stability. The other concerns the im-
plementation of Bayesian online coding, an advanced strategy to read out
stimulus accurately from a noisy environment. It turns out that both as-
pects can be resolved under the same neural mechanism, that is, to include
dynamical interactions of proper form between neurons. These dynamical
interactions evolve according to the biologically plausible Hebbian learning
rule and have the computational role of storing and propagating input in-
formation accumulated with time. In terms of stabilizing the computation of
continuous attractors, dynamical interactions enable the system to respond
to the history of external input over a period of time and, hence, suppress
short-term fluctuations. In terms of realizing Bayesian online inference, dy-
namical interactions have the effect of conveying the prior knowledge of

5 In a short time window, MLI is not asymptotically efficient; instead, its decoding
error satisfies the Cauchy distribution. The Cramér-Rao bound is not achievable. This is
the reason that the analysis based on the Fisher information fails in this case (Wu & Dayan,
unpublished result).
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stimulus, which, in the coding paradigm of our concern, is the temporal
information of external inputs.

Understanding the stability of continuous attractors, on either its com-
putational or structure robustness, has been an active topic in the research
of neural information processing (e.g., see (Wang, 2001; Brody et al., 2003)).
Apart from the one proposed here, another potential mechanism to improve
the robustness of attractor computation is to consider the multiple stabil-
ity of neural responses (Camperi & Wang, 1998; Koulakov, Raghavachari,
Kepecs, & Lisman, 2002). Because of multiple stability, the system will not
respond to small variations of input signals, and hence achieves a certain
level of robustness. This mechanism is different from the one proposed in
this work. In our consideration, it is the response of the system to the time-
averaged behavior of input that increases the robustness of computation.
The beneficial point of our mechanism is that its realization is naturally as-
sociated with Bayesian online inference. In other words, neural systems do
not simply ignore noise in order to maintain stability; instead, they actively
use this information to enhance decoding (note that in a noisy environment,
it is the time dependence of input fluctuations that gives us the information
about the stationary value of the stimulus). Nevertheless, these two mech-
anisms are not necessarily contradictory. They may be applied in different
conditions, for example, for noises of different sizes or different timescales.
Further studies are needed to clarify this point.

Exploring the neural mechanism for implementing Bayesian inference is
the other main goal of this work. It is widely believed that Bayesian inference
should be used in neural systems to cope with typical inputs in the natural
environment that are both noisy and highly structured (see, e.g., Mumford,
1992; Dayan, Hinton, Neal, & Zemel, 1995; Zemel, Dayan, & Pouget, 1998;
Zhang, Ginzburg, McNaughton, & Sejnowski, 1998; Baddley, Hancock, &
Foldiak, 2000; Rao, Olshausen, & Lewicki, 2002; Wu et al., 2003; Lee & Mum-
ford, 2003; Rao, 2004). To implement Bayesian inference, the core is to have
a mechanism that can store and propagate the prior knowledge of stimulus.
In this work, we investigate this issue for the case of using line attractors
to decode stimulus. For the coding paradigm of concern, the prior knowl-
edge of stimulus is the temporal information of external inputs, which is
critically needed for suppressing short-term fluctuations. Interestingly, it
turns out that Hebbian learning, the fundamental principle that underlies
the modification of neural interactions, serves to convey this prior knowl-
edge. It converts the temporal information of external inputs into spatially
distributed patterns of neuronal interactions, which subsequently influence
the computation in network. Also, the amount of temporal information to
be memorized by the network can be adaptively controlled through adjust-
ing the decay and learning speed of dynamical interactions. This finding
may have important implications for our understanding of neural coding.
It suggests that Hebbian learning can also play an active role in information
retrieval, not merely in learning new knowledge (Bi & Poo, 2001).
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Dynamical recurrent interactions can also have other contributions in
computation associated with continuous attractors. For instance, Zhang
(1996) investigated a line attractor model for head direction representa-
tion, in which a key operation is to integrate the self-motion signal of object
with the observer-centered one, so that the world-centered representation
for head direction can be achieved. Zhang found that this computation can
be carried out by including properly varied recurrent interactions. Stringer
et al. (2002) further show that these rapidly varying interactions can be
generated by Hebbian learning, sharing the same mechanism as proposed
here for stabilizing the computation of line attractors and implementing
Bayesian online decoding. It will be interesting to see how these studies can
be combined to give a full picture of the roles of dynamical interactions in
attractor computation.

An obvious direction to extend the current work is to include more
detailed structures of biological systems. Recent research has shown that
continuous attractors can be readily achieved in spiking neural networks
(Trappenberg, 1998; Seung et al., 2000; Gutkin, Laing, Colby, Chow, &
Ermentrout, 2001; Degris, Brunel, Sigaud, & Arleo, in press; Osan, Curtu,
Rubin, & Ermentrout, 2004). Considering the simplicity and plausibility of
computational roles of dynamical interactions proposed here, we expect that
they are also feasible for spiking neurons. Taking into account the nature
of timescale considered here, we expect that the neural basis of dynamical
interactions is associated with the short-term activity-dependent plasticity
of synapses (Bi & Poo, 2001). These issues will be explored in our future
study.

Appendix: Bayesian Interpretation of the Network Performance

Under the approximation that wc,c′ is a constant in each time interval when
Ic is fixed, the dynamics of the new network model is simplified as

τ
dUc

dt
= −Uc +

∫ π

−π

(Wc,c′ + wc,c′ (m))Oc′ dc ′ + Ic(m), (A.1)

where wc,c′ (m) is given by equation 3.3.
Since we are interested only in the case when noise fluctuations are suf-

ficiently small, the above equation can be further approximated as

τ
dUc

dt
≈ −Uc +

∫ π

−π

Wc,c′ Oc′ dc ′ + I ′
c(m), (A.2)

with

I ′
c(m) = Ic(m) +

∫ π

−π

wc,c′ (m)Õc′ (m)dc ′. (A.3)
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To get equation A.2, the condition
∫ π

−π
wc,c′ (m)Oc′ dc ′ ≈∫ π

−π
wc,c′ (m)Õc′ (m)dc ′, is used, where Õc(m) is the stable state of neu-

rons in the step m. This approximation takes into account the fact that∫ π

−π
wc,c′ (m)(Oc′ − Õc′ (m))dc ′ is a small quantity of higher order when

compared with the input fluctuations.
Comparing equation A.2 with equation 2.3, we see the only difference is

that Ic is replaced by I ′
c(m). Thus, in effect, the contribution of dynamical

interactions is equivalent to an extra “input” component to neurons.
When I ′

c(m) is sufficiently small, the case we consider, the solution of
equation A.2, that is, the estimation of the network, is given by Wu et al.
(2003),

ẑ(m) = argmaxz

∫ π

−π

Õc(z)I ′
c(m)dc. (A.4)

Further, using equation 3.4, we get

ẑ(m) = argmaxz

[ ∫ π

−π

Õc(z)Ic(m)dc

+ (1 − β)η
∞∑

k=1

βk−1
(∫ π

−π

Õc(z)Õc(m − k)dc
)2

]
. (A.5)

The above equation consists of two terms. The first one corresponds to the
contribution from the current input, and the second one to the contributions
from previous neural activities.
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