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Introduction
Serotonergic systems are implicated in coordinating the appro-
priate behavioral and physiologic responses to aversive stimuli, 
and dysfunction of these serotonin systems is postulated to con-
tribute to the etiology and pathophysiology of stress-related psy-
chiatric disorders, including anxiety and affective disorders. 
Even though this view is generally accepted, there are controver-
sies surrounding the particular role of 5-hydroxytryptamine 
(5-HT) in controlling defensive responses to aversive stimuli and 
the role of 5-HT in anxiety (such as whether 5-HT is anxiogenic 
or anxiolytic) and affective disorders (Griebel, 1995; Millan, 
2003; Soubrie, 1986).

Early investigations into the role of 5-HT in defense and anxi-
ety used conflict models of anxiety, in which the animal is trained 
to perform an operant response for a reward (e.g. pushing a lever 
for a food pellet), and this behavior is in turn suppressed through 
a response-contingent shock (Geller and Seifter, 1960). These 
conflict models found that interventions resulting in reduced sero-
tonergic neurotransmission increase punished responding, an 
effect indicative of an anxiogenic role for 5-HT (Geller and Blum, 
1970; Graeff and Schoenfeld, 1970; Robichaud and Sledge, 1969; 
Wise et al., 1972). Paradoxically, in other animal models of aver-
sive behavior, such as electrical stimulation of the dorsal periaq-
ueductal gray (DPAG), 5-HT has an anti-aversive (i.e. anti-panic) 
effect. Stimulation of the DPAG in animals rapidly elicits fight-or-
flight behaviors and sympathetic responses, resulting in tachycar-
dia, hypertension and hyperventilation (Keay and Bandler, 2001); 
a set of behavioral and physiological responses that is strikingly 

similar to the reaction provoked by an immediate threat, such as 
exposure to a predator (Blanchard et al., 1986). Studies using this 
model of DPAG-stimulated aversion reveal that pharmacological 
treatments that reduce serotonergic neurotransmission facilitate 
escape-responding behavior (Kiser and Lebovitz, 1975; Kiser 
et al., 1978b; Schenberg and Graeff, 1978). In other words, reduc-
ing 5-HT neurotransmission increases operant responding in order 
to shut down DPAG stimulation, an effect that suggests 5-HT 
inhibits DPAG stimulation-induced aversion. Similarly, interven-
tions that increase serotonergic neurotransmission attenuate lever-
pressing to escape DPAG stimulation (Kiser et al., 1978a), again 
suggesting that 5-HT decreases the aversiveness of DPAG stimu-
lation. Taken together with other evidence investigating the role of 
5-HT in DPAG stimulation-induced aversion (for comprehensive 
reviews and references, see Del-Ben and Graeff, 2009; Graeff, 
2004), these data illustrate that facilitation of serotonergic neuro-
transmission has anti-aversive-like effects in the DPAG, which is 
interpreted as an anti-panic-like effect of 5-HT.
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The Deakin/Graeff hypothesis

To reconcile the anxiogenic effect of 5-HT in conflict tasks 
with the panicolytic effect of 5-HT in DPAG models of aver-
sion/anxiety, Deakin and Graeff (1991) proposed that different 
types of aversive stimuli (e.g. unconditioned versus condi-
tioned aversive stimuli; and acute versus chronic stress) acti-
vate different 5-HT pathways that send unique patterns of 
efferents to specific forebrain and brainstem structures, in 
order to coordinate an adaptive behavioral and physiologic 
response, and that dysfunction of these neural circuits results 
in distinct pathological entities. Serotonin is thought to medi-
ate its effects through activation of a myriad of postsynaptic 
5-HT receptors, including: 5-HT1A, 5-HT2A, 5-HT2C, 5-HT3, 
5-HT4, 5-HT5, 5-HT6 and 5-HT7 receptors. Serotonin receptors 
consist of at least 14 different subtypes that predominantly 
belong to the family of G-protein coupled receptors (GPCR), 
except for the 5-HT3 receptors, which are ligand-gated ion 
channels. Further adding to this complexity, 5-HT receptors are 
located presynaptically or postsynaptically, or both; they can 
undergo extensive post-translational modifications through 
RNA editing (e.g. 5-HT2C receptors) and alternate splicing, 
they have different affinities for 5-HT, they can form homo- 
and heterodimers, and they can be modulated by a number of 
accessory proteins (for a review of serotonin receptor subtypes, 
see Artigas, 2013; Hannon and Hoyer, 2008; Hoyer et al., 1994; 
Hoyer et al., 2002; Millan et al., 2008; Werry et al., 2008). In 
this review, we will limit the discussion to the 5-HT receptors 
discussed by Deakin and Graeff (Table 1); however, it is likely 
that a complex interplay between postsynaptic 5-HT receptors 
is necessary to coordinate an adaptive stress response. The 
Deakin/Graeff hypothesis proposes three distinct serotonergic 
systems controlling behavioral responses to aversive stimuli. It 
was proposed that the first serotonergic pathway, consisting of 
the dorsal raphe periventricular tract, restrains fight-or-flight 
behavior in response to either (a) stimulation of the DPAG or 
(b) exposure to acute unconditioned aversive stimuli (e.g. 
predator exposure, pain or aversive interoceptive stress), 
resulting in freezing/quiescence. The inhibitory action of 5-HT 
in the DPAG is thought to be mediated by stimulation of 
5-HT1A and/or 5-HT2A receptors (described below). It was 
hypothesized that dysfunction of this serotonergic pathway 

results in unrestrained bouts of sympathetic and behavioral 
arousal reminiscent of panic disorder (PD). It was proposed 
that a second pathway (consisting of the dorsal raphe forebrain 
bundle tract innervating structures such as the amygdala, hip-
pocampus and prefrontal cortex) is recruited by exposure to 
acute conditioned aversive stimuli, with the goal of facilitating 
risk assessment and avoidance behaviors in order to direct the 
organism away from potential or distal danger. In this pathway, 
serotonin was thought to mediate its effects via binding to 
5-HT2A/2C and 5-HT3 receptors. It was hypothesized that abnor-
malities in this serotonergic circuit relate to anxiety disorders 
like Generalized Anxiety Disorder (GAD). Finally, it was pro-
posed that a third serotonergic pathway, consisting of the 
median raphe forebrain bundle tract and projecting to the 
septo-hippocampal system, is activated by chronic uncondi-
tioned and conditioned stimuli, promoting resilience or toler-
ance to chronic stress through activation of postsynaptic 
5-HT1A receptors in the hippocampus. It was hypothesized that 
dysfunction of this serotonergic pathway, and consequently 
failure to adapt to chronic stress, is relevant to depression. The 
experimental evidence that led to the Deakin/Graeff hypothesis 
and the evidence generated since their proposal have been 
reviewed extensively (the following are excellent reviews: 
Deakin and Graeff, 1991; Graeff, 1990; Graeff, 1991; Graeff, 
2004; Graeff et al., 1996).

Here, we describe studies from our laboratory and others, 
published over the previous 20 years, that are relevant to the 
Deakin/Graeff hypothesis. These studies are largely confirma-
tory of the Deakin/Graeff hypothesis and suggest that topo-
graphically-organized subpopulations of serotonergic neurons 
in the dorsal (DR) and median (MnR) raphe nuclei are differen-
tially activated by a number of stressful stimuli, have unique 
patterns of afferents/efferents, and are implicated in the specific 
symptoms associated with stress-related neuropsychiatric dis-
orders. More specifically, we hypothesize that serotonergic neu-
rons in (a) the dorsal part of the DR (DRD)/caudal part of the 
DR (DRC), (b) the ventrolateral part of the DR (DRVL)/ventro-
lateral periaqueductal gray (VLPAG), and (c) the interfascicular 
part of the DR (DRI)/MnR constitute the serotonergic subpopu-
lations that give rise to the pathways originally described by the 
Deakin/Graeff hypothesis (Deakin and Graeff, 1991; Graeff 
et al., 1996).

Table 1.  Serotonin receptor subtypes, their locations and affinities for serotonin.

Receptor Type Location Affinity (pki)a References

5-HT1A GPCR (Gi/o) presynaptic/
postsynaptic

9.1–9.7 Kalipatnapu et al., 2004; Newman-Tancredi et al., 1992; Newman-Tancredi et al., 1997; 
Newman-Tancredi et al., 1998a; Newman-Tancredi et al., 1998b; Newman-Tancredi et al., 
1999.

5-HT1B GPCR (Gi/o) presynaptic/ 
postsynaptic

7.4–9.0 Davidson et al., 1997; Newman-Tancredi et al., 1999; Newman-Tancredi et al., 2000; Selkirk 
et al., 1998; Watson et al., 1996; Weinshank et al. et al., 1992

5-HT2A GPCR (Gq/11) postsynaptic 6.0–8.4 Almaula et al., 1996; Branchek et al., 1990; Johnson et al., 1994; Knight et al., 2004; May 
et al., 2003; Sleight et al., 1996

5-HT2C GPCR (Gq/11) postsynaptic 6.8–8.6 Egan et al., 2000; Fitzgerald et al., 1999; Kimura et al., 2004; Knight et al., 2004; May et al., 
2003

aAffinities are for human serotonin receptors and were obtained from the IUPHAR database (Sharman et al., 2013). See the IUPHAR website (http://www.iuphar-db.org/
index.jsp) for further information about all serotonin receptor subtypes.
5-HT: 5-hydroxytryptamine; GPCR: G-protein coupled receptor; IUPHAR: International Union of Basic and Clinical Pharmacology
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Different methodological approaches have been used in pre-
vious studies to investigate the functional topography of seroton-
ergic neurons in specific subregions of the midbrain raphe 
complex. The first, and most extensively used, approach is immu-
nohistochemical staining of tryptophan hydroxylase (TPH) or 
serotonin (to identify serotonergic neurons) and immediate-early 
gene proteins (e.g. c-Fos, to identify biochemically-activated neu-
rons) following acute stress-related challenges. A second approach 
is in situ hybridization histochemistry, with high-resolution analy-
sis of expression of serotonergic genes throughout the midbrain 
raphe complex, such as tph2, encoding TPH 2; slc6a4, encoding 
the high affinity, sodium-dependent serotonin transporter; and 
htr1a, encoding the 5-HT1A receptor. This approach has the 
advantage of identifying both developmental and other long-term 
influences, and acute stimulus-induced changes in gene expres-
sion in subregions of the midbrain raphe complex. A third 
approach involves microdissections of subregions of the midbrain 
raphe complex, followed by measurement of in vivo TPH activity, 
or measurement of tissue concentrations of serotonin and the  
serotonin metabolite, 5-hydroxyindoleacetic acid (5-HIAA). 
Importantly, these three approaches provide convergent evidence 
for the functional properties of topographically-organized 

subpopulations of serotonergic neurons, and the evidence strongly 
supports the original tripartite model of serotonergic systems in 
anxiety and affective disorders, originally proposed by Deakin 
and Graeff.

Hodology and functional topography 
of DRD/DRC serotonergic neurons: 
Role in conflict anxiety and affective 
disorders

Serotonergic neurons in the DRD/DRC project 
to forebrain structures involved in emotional 
control and anxiety-related behavior

Consistent with Deakin and Graeff’s pathway involved in anxi-
ety, serotonergic neurons of the DRD/DRC send projections 
through the dorsal raphe forebrain bundle tract to innervate 
forebrain structures that are involved in emotional control and 
anxiety-related behavior, including the basolateral nucleus of 
the amygdala (BLA) (Hale et al., 2008a; Ottersen, 1981), cen-
tral nucleus of the amygdala (CeA) (Commons et  al., 2003), 
bed nucleus of the stria terminalis (BnST) (Petit et al., 1995) 
and the ventral medial prefrontal cortex (vmPFC) (Van 
Bockstaele et al., 1993). Serotonergic neurons of the DRD also 
send collateral projections to functionally-related structures 
involved in mediating fear and conflict anxiety-like behavior, 
including the BLA and ventral hippocampus (Imai et al., 1986), 
the CeA and vestibular nuclei (Halberstadt and Balaban, 2006), 
and the hippocampus and entorhinal cortex (Kohler and 
Steinbusch, 1982). Furthermore, many of these forebrain tar-
gets in turn project back to the DRD/DRC subregions (Peyron 
et al., 1998). These functional neuroanatomical studies support 
the notion that DRD/DRC serotonergic neurons are part of a 
widespread, interconnected stress- and anxiety-related circuit 
(Figure 1) (For a full list of DRD/DRC efferents and afferents, 
see the following reviews: Hale and Lowry, 2011; Hale et al., 
2012; Lowry, 2002; Lowry et al., 2008b).

Anxiety- and stress-related stimuli activate 
DRD/DRC serotonergic neurons

Anxiogenic drugs activate DRD/DRC serotonergic neu-
rons.  According to Deakin and Graeff (1991), a 5-HT pathway 
innervating forebrain limbic structures is activated by acute aver-
sive conditioned stimuli, in order to guide the organism away 
from potential danger. Based on neuroanatomical tracing and 
functional neuroanatomical studies, serotonergic neurons of the 
DRD and the functionally related DRC are part of a stress- and 
anxiety-related circuit. These serotonergic neurons are selectively 
activated by a number of anxiety-related and aversive stimuli and 
likely constitute the subpopulation of serotonergic neurons origi-
nally discussed by Deakin/Graeff. Serotonergic neurons in the 
DRD and DRC are selectively activated after intraperitoneal (i.p.) 
administration of diverse anxiogenic drugs, including caffeine (an 
adenosine receptor antagonist), m-chlorophenyl piperazine 
(mCPP; a 5-HT2A/2C receptor agonist), and N-methyl-beta-carbo-
line-3-carboxamide (FG-7142; a partial inverse agonist at the ben-
zodiazepine allosteric site on the γ-aminobutyric acid A (GABAA) 
receptor) (Abrams et al., 2005).

DRD

PrL

IL

CA1v; (+)

BLA;
(+), 5-HT2C

mfb

DRFT

Fear-/anxiety-
related behavior

Risk assessment, vigilance

CeA

(+)

PrL

Executive control,
emotional processing

(+)

Figure 1.  Schematic diagram depicts the serotonergic projections of 
the dorsal part of the DRD, which constitutes the “anxiety” pathway 
originally proposed by Deakin and Graeff. Serotonergic neurons in the 
DRD give rise to axons traveling through the DRFT to innervate forebrain 
limbic structures involved in controlling anxiety-related behavior, like 
the BLA, CeA and BnST (not shown). The BLA also projects to the CeA 
and BnST (not shown), two structures integral for fear and anxiety 
responses, respectively. Dysfunction of this pathway is thought to relate 
to symptoms of GAD. Coronal section templates reproduced with from 
Paxinos G and Watson C (1998) The Rat Brain in Stereotaxic Coordinates, 
4th Edition. San Diego: Academic Press: 1998 with permission from 
Elsevier.
BLA: basolateral amygdaloid nucleus; BnST: bed nucleus of the stria terminalis; 
CA1v: field CA1 of ventral hippocampus; CeA: central nucleus of the amygdala; 
DRD: dorsal raphe nucleus, dorsal part; DRFT, dorsal raphe forebrain bundle tract; 
GAD: Generalized Anxiety Disorder; IL: infralimbic cortex; mfb: medial forebrain 
bundle; PrL: prelimbic cortex; (+): excitation; ( – ): inhibition.
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Stress- and anxiety-related neuropeptides activate DRD/DRC 
serotonergic neurons.  DRD/DRC serotonergic neurons are 
selectively activated by the stress- and anxiety-related neuropep-
tide urocortin 2 (Ucn 2), when administered either through the 
intracerebroventricular (i.c.v.) route (Hale et  al., 2010b; Staub 
et al., 2005) or directly into the mid-rostrocaudal and caudal DR 
(Amat et al., 2004). Likewise, chronic infusion of Ucn 2 or ovine 
corticotropin-releasing factor (CRF), adjacent to the rostral DR, 
both result in a nearly 30% reduction in slc6a4 mRNA expression 
selectively in the DRD subregion, confirming studies above dem-
onstrating that the DRD is a CRF/Ucn-sensitive subpopulation of 
serotonergic neurons. The same study reports that chronic admin-
istration of Ucn 2 or ovine CRF increases the ratio of the expres-
sion of tph2 mRNA to the expression of slc6a4 mRNA within the 
core of the DRD, relative to the ventromedial DR. These neuro-
peptide-induced alterations of DRD serotonergic gene expression 
are associated with increases in anxiety-like behavior (Clark 
et al., 2007).

Diverse stress-related stimuli activate DRD/DRC serotoner-
gic neurons.  Serotonergic neurons in the DRD/DRC are 
potently activated by a number of diverse stressors. Uncontrol-
lable stress, relative to controllable stress, activates serotonergic 
neurons in the mid-rostrocaudal to caudal DR, as measured by 
increases in extracellular 5-HT and c-Fos expression in 5-HT 
neurons (Amat et  al., 2005). Exposure to unpredictable noise 
stress, but not sham noise stress, increases in vivo TPH activity 
selectively, within the DRC (Evans et  al., 2009). Likewise, 
chronic oral corticosterone administration abolishes the diurnal 
rhythm of tph2 gene expression within the DRD/DRC region 
(and in the ventral part of the DR (DRV); see supplementary 
Figure S2) and increases anxiety- and depressive-like behavior 
(Donner et al., 2012b). In the elevated T-maze, which is a behav-
ioral test used to simultaneously measure anxiety- and panic-/
escape-like behavior, inhibitory avoidance (i.e. conflict anxiety-
like behavior) increases c-Fos immunoreactivity in serotonergic 
neurons of the DRD/DRC (and DRI/MnR, see below), whereas 
one-way escape, a measure of panic-like behavior, does not 
(Spiacci et al., 2012). Other more ethologically-relevant stress-
ors such as social defeat also result in activation of DRD seroto-
nergic neurons (Gardner et al., 2005).

Serotonergic neurons in the DRD/DRC 
facilitate conflict-anxiety-like behavior 
through projections to forebrain structures

Serotonergic projections from DRD/DRC 5-HT neurons to the 
basolateral amygdaloid nucleus.  Consistent with the evi-
dence showing that DRD 5-HT neurons are activated by anxio-
genic drugs and anxiety-related neuropeptides, exposure of rats to 
an open-field arena, which is mildly stressful and anxiogenic, 
increases the expression of the neuronal activation marker c-Fos 
in DRD 5-HT neurons, including a subpopulation of 5-HT neu-
rons that project to the BLA (Hale et al., 2008a), a critical struc-
ture for processing anxiety- and fear-related stimuli (Davis et al., 
1994; Hale et al., 2006; Ottersen, 1981). Administration of Ucn 2 
into the mid-rostrocaudal and caudal DR also increases extracel-
lular 5-HT within the BLA (Amat et al., 2004). A study by Hale 
and colleagues (2010a) reports that administration of the same 

anxiogenic drugs (except mCPP) discussed above increases neu-
ronal activity in a subset of parvalbumin (PV)-expressing GAB-
Aergic interneurons that also co-express the 5-HT2A receptor; the 
increases in activation of PV-GABA interneurons is positively 
correlated with the increases in activation of serotonergic neurons 
within the mid-rostrocaudal and caudal DR, as well as the 
increases in anxiety-like behavior observed by Abrams et  al. 
(2005; Hale et al., 2010a). These PV-expressing GABAergic neu-
rons are one of at least four subgroups of local inhibitory GAB-
Aergic interneurons that can be distinguished by the presence of 
calcium-binding proteins and neuropeptide content (McDonald 
and Mascagni, 2001). The function of PV-expressing GABAergic 
interneurons may be to terminate anxiety-related responses in the 
BLA (Hale et al., 2010a).

These anxiogenic drugs also activate non-PV-expressing 
neurons (presumably glutamatergic) that may facilitate anxiety 
(Hale et al., 2010a). Prior exposure to uncontrollable stress leads 
to an exaggerated elevation of extracellular 5-HT in the BLA 
during a social exploration task and it reduces social explora-
tion, an anxiogenic effect that is attenuated by microinjection of 
the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino) 
tetralin (8-OH-DPAT) into the mid-rostrocaudal and caudal DR, 
or by microinjection of the 5-HT2C receptor antagonist SB 
242,084 into the BLA (Christianson et al., 2010). Overall, these 
studies support Deakin and Graeff’s view that stress- and anxi-
ety-related stimuli facilitate anxiety-like behavior through acti-
vation of serotonin neurons (located in the DRD/DRC) that 
project to the amygdala.

Serotonergic projections from DRD/DRC 5-HT neurons to 
the hippocampal formation.  In addition to the BLA, seroto-
nergic neurons of the DRD/DRC may facilitate anxiety-like 
behavior through projections to the hippocampal formation 
(Hale and Lowry, 2011; Imai et  al., 1986; Kohler and Stein-
busch, 1982). Exposure to an open-field arena increases c-Fos 
expression in a subpopulation of neurons in the CA1 of the ven-
tral hippocampus, subiculum and entorhinal cortex that project 
to the BLA (Hale et  al., 2008b). The former structure is inti-
mately involved in anxiety-like behaviors (Bannerman et  al., 
2004), while the latter two structures are thought to be impor-
tant for cognitive conflict resolution and response-oriented con-
flict resolution, respectively, and form important components in 
Gray’s “behavioral inhibition system” (BIS), which functions to 
assess risk in conflict anxiety situations (Gray, 1982; McNaugh-
ton and Corr, 2004). In addition to a role of DRD/DRC seroto-
nergic neurons in behavioral inhibition in order to avoid 
aversive outcomes, a study recently found that serotonergic 
activity in the midrostrocaudal DR (i.e. DRD and DRV) is nec-
essary for inhibiting behavioral activity to wait for delayed 
rewards (Miyazaki et al., 2012). These data support the hypoth-
esis that DRD/DRC serotonergic neurons facilitate anxiety-like 
behavior (i.e. risk assessment behaviors) through projections to 
a distributed system of interconnected structures in the hippo-
campal formation that also project to the BLA.

Serotonergic projections from DRD/DRC 5-HT neurons to 
the ventromedial prefrontal cortex.  DRD/DRC 5-HT neu-
rons may control anxiety-related behavior through projections to 
the vmPFC, including the infralimbic (IL) and prelimbic (PrL) 
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cortices; which both integrate information about aversive stim-
uli, in order to coordinate the proper emotional response through 
projections to the amygdala (Sotres-Bayon and Quirk, 2010; 
Sylvester et al., 2012; Varela et al., 2012). Administration of the 
anxiogenic drug FG-7142 (i.p.) increases serotonin metabolism 
in the PrL (Evans et  al., 2006; Singewald and Sharp, 2000). 
Microinjection of the anxiety-related neuropeptide CRF into the 
mid-rostrocaudal to caudal DR (an area encompassing the DRD, 
DRV and DRVL/VLPAG) increases extracellular 5-HT in the 
medial prefrontal cortex, a measure that correlates with the ces-
sation of freezing (Forster et al., 2006). Activation of the ventral 
medial prefrontal cortex blocks the behavioral consequences of 
uncontrollable stress, as well as the stress-induced activation of 
serotonergic neurons in the mid-rostrocaudal to caudal DR 
(Amat et al., 2008). Likewise, controllable stress activates DR-
projecting PrL neurons, suggesting that the prefrontal cortex 
modulates the stress response through connections with the DR 
(Baratta et  al., 2009). Taken together, there is strong evidence 
suggesting that serotonergic neurons in the DRD/DRC are 
potently activated by a multitude of stress- and anxiety-related 
stimuli, and that these neurons control anxiety-like behavior 
through projections to forebrain structures that are critical in 
processing the emotional salience of aversive stimuli and coor-
dinating the appropriate behavioral and physiologic response.

Stress-induced activation of DRD/DRC 
serotonergic neurons by CRF afferents

Stress- and anxiety-related stimuli activate DRD/DRC seroton-
ergic systems, as well as a distributed interconnected network 
of brain regions (Singewald and Sharp, 2000; Singewald et al., 
2003) in addition to the ones described above, offering multiple 
sites for serotonin to modulate anxiety states and, in turn, many 
candidate brain structures that can modulate serotonergic activ-
ity in response to stress. One mechanism through which such 
diverse stressors can alter DRD/DRC neurotransmission, is 
through stress-induced alterations in CRF afferent input from 
forebrain structures. In addition to Ucn 2, microinjection of 
CRF into the mid-rostrocaudal DR, but not the rostral DR, mim-
ics the behavioral deficits observed following uncontrollable 
stress (Hammack et al., 2002). The behavioral consequences of 
uncontrollable stress are reversed by microinjection of anti-
sauvagine-30, a CRF2 receptor antagonist, into the mid-rostro-
caudal DR (Hammack et  al., 2003). Likewise, antagonism of 
CRF receptors with d-Phe-CRF (which displays 2–10 times 
greater affinity for the CRFR2 receptor than the CRFR1 recep-
tor) in the mid-rostrocaudal to caudal DR reduces social isola-
tion stress-induced increases in anxiety-like behavior (Lukkes 
et al., 2009). Chronic stimulation of CRF2 receptors, by overex-
pressing the high affinity CRF2 receptor agonist urocortin 3, 
results in elevated basal anxiety, as well as blunted responses to 
stress and differential 5-HT metabolism in forebrain projection 
regions of the DRD/DRC, including the BLA (Neufeld-Cohen 
et  al., 2012). CRF-enhanced acoustic startle increases c-Fos 
expression in serotonergic neurons in the caudal DR that project 
to the IL cortex, raising the possibility that stress-induced acti-
vation of the caudal DR by CRF may control anxiety-related 
behavior through increased 5-HT release in the frontal cortex 
(Meloni et al., 2008). A recent study by Sink et al. (2012) may 

shed light on the origin of endogenous CRF input to the DR, as 
overexpression of CRF within the BnST, a region that inner-
vates the DRD/DRC region (Peyron et  al., 1998), alters fear 
conditioning and selectively decreases CRF2 receptor mRNA 
expression within the DRD/DRC. The DRD/DRC projects back 
to the BnST (Petit et al., 1995) and serotonin controls anxiety-
related behavior mediated by the BnST through complex actions 
of 5-HT on multiple cell types, differentially expressing multi-
ple 5-HT receptor subtypes (e.g. 5-HT1A, 5-HT2A, 5-HT2c, 
5-HT7 receptors), resulting in 5-HT having both anxiogenic and 
anxiolytic effects (Guo et  al., 2009; Hammack et  al., 2007; 
Hammack et  al., 2009; Hazra et  al., 2012). Moreover, unpre-
dictable shock stress, which produces long-lasting increases in 
anxiety-like behavior, differentially alters 5-HT receptor mRNA 
in a cell-type specific manner, underlining the complexity of 
BnST-5-HT interactions (Hazra et  al., 2012). An important 
direction of future research is to elucidate the complex effects 
of serotonin in the BnST on anxiety-related behavior and stress-
related disease.

Serotonin autoreceptors control DRD/DRC 
serotonergic activity: Implications for stress- 
and anxiety-related behavior

Serotonergic neurons contain 5-HT1A and 5-HT1B autoreceptors 
located on the cell body and terminal, respectively, providing 
important negative feedback control that may be relevant to 
stress-induced changes in serotonergic neurotransmission. A 
recent study by McDevitt and colleagues (2011) reveals that 
overexpression or stimulation of inhibitory 5-HT1B autorecep-
tors in the DRC reduces the expression of conditioned fear, as 
well as depressive-like behavior, consistent with the hypothesis 
that DRD/DRC serotonergic neurons facilitate conditioned fear 
responses. Since the 5-HT1B receptor is located pre-synaptically 
on the DRC terminals, this treatment presumably results in 
altered 5-HT release in DRC projection regions like the amyg-
dala, a region involved in mediating conditioned fear responses. 
On the other hand, uncontrollable stress, relative to controllable 
stress, compromises 5-HT1A receptor-mediated autoinhibition of 
DRD neuronal activity and this impairment closely follows the 
behavioral consequences of stress, including exaggerated fear 
conditioning (Rozeske et al., 2011). Highlighting the importance 
of the 5-HT1A autoregulatory receptor, a recent study reports that 
a 5-HT1A receptor polymorphism associates with comorbid 
depression and generalized anxiety disorder (Molina et  al., 
2011). These alterations in 5-HT1A/1B autoinhibitory mechanisms 
in the DRD/DRC region may influence fear- and anxiety-related 
behavior through changes in serotonin release in forebrain 
regions such as the BLA. Consistent with the Deakin/Graeff 
hypothesis, these studies suggest aversive stimuli alter autoregu-
latory mechanisms within DRD/DRC serotonergic neurons that 
may be relevant for 5-HT release in forebrain targets and anxi-
ety-like behavior.

Serotonergic markers in the DRD/DRC are 
altered in depressed patients

Studies of post-mortem human brain tissue in select populations 
of depressed patients reveal subregion-specific alterations in 
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neuronal markers of serotonergic neurotransmission within the 
DRD/DRC. For example, depressed suicide victims have increases 
in TPH protein in the mid-rostrocaudal DR (Underwood et  al., 
1999b). Another study confirmed the increases in TPH protein, 
albeit with the effects being more predominant in the rostral DR 
(Boldrini et al., 2005). Likewise, depressed suicides have increases 
in tph2 mRNA in the DR, which is mainly driven by a robust 
increase in tph2 mRNA in the DRD (Bach-Mizrachi et al., 2006). 
In addition, the increase in tph2 mRNA and TPH protein observed 
in depressed suicide victims is reflected in higher cellular tran-
scriptional capacity of the tph2 gene, especially in serotonergic 
neurons within the mid-rostrocaudal to caudal DR (Bach-Mizrachi 
et al., 2008). A study in alcohol-dependent depressed suicide vic-
tims revealed increases in TPH immunoreactivity that are 
restricted to the DRD subregion (Bonkale et  al., 2006). These 
studies suggest that increases in tph2 mRNA and TPH protein 
expression in the DRD and DRC are evident in select populations 
of depressed suicide patients. Overall, the functional topography 
of DRD serotonergic neurons supports the hypotheses that these 
neurons are an important component of a stress- and anxiety-
related network via their projections to forebrain structures, and 
that dysfunction of serotonergic neurotransmission in this circuit 
is implicated in the pathophysiology of anxiety and affective dis-
orders (Commons et al., 2003; Deakin and Graeff, 1991; Graeff 
et al., 1996; Lowry et al., 2008b).

Neuromodulation of DRD serotonergic 
neurons: Implications for anxiety and 
affective disorders

Serotonergic neurons in the DRD co-express 
corticotropin-releasing factor

In addition to 5-HT, the DRD contains a multitude of other neuro-
transmitters and neuropeptides that are important for modulating 
serotonergic neurotransmission (Lowry et al., 2008a; Michelsen 
et  al., 2007; Valentino and Commons, 2005; Vasudeva et  al., 
2011). The DRD contains a dense cluster of corticotropin-releas-
ing factor (CRF)-containing neurons and almost all of them (96%) 
co-localize with 5-HT (Commons et  al., 2003); these CRF co-
expressing 5-HT neurons also innervate CRF neurons in the lat-
eral portion of the central nucleus of the amygdala, suggesting 
that CRF has a unique modulatory role for 5-HT activity both at 
the level of the midbrain raphe nuclei as well as in terminal 
regions that mediate anxiety- and fear-related responses 
(Commons et al., 2003; LeDoux et al., 1988). This highlights a 
role for intrinsic CRF systems in the DRD (in addition to CRF 
afferents) in fine-tuning serotonergic activity (Valentino and 
Commons, 2005).

The DRD contains vesicular glutamate 
transporter 3-expressing neurons

The DRD, specifically the shell of the DRD, contains a subpopu-
lation of vesicular glutamate transporter 3 (VGLUT3)-expressing, 
non-serotonergic neurons with distinct projections (Hioki et  al., 
2010). Moreover, genetic deletion of VGLUT3 increases anxiety-
like behavior, decreases 5-HT1A receptor-mediated autoinhibition 
and alters 5-HT neurotransmission in forebrain limbic regions 

(Amilhon et al., 2010). Further research on the role of VGLUT-
expressing serotonergic and non-serotonergic neurons in modulat-
ing 5-HT neurotransmission and anxiety-like behavior is 
warranted.

The DRD contains glutamatergic fibers 
immunoreactive for the neurokinin 1 
receptor: Role of substance P

The DRD also contains a dense plexus of glutamatergic fibers that 
are immunoreactive for the neurokinin-1 (NK1) receptor; these 
processes encapsulate the CRF co-expressing 5-HT neurons 
(Commons and Valentino, 2002; Commons et al., 2003; Valentino 
et al., 2003), which may explain why application of substance P, 
an endogenous agonist of the NK-1 receptor, into the DR pro-
duces excitation in the DRD, whereas inhibition of 5-HT neurons 
is observed in other subregions of the DR (Valentino et al., 2003). 
This latter inhibitory effect may be mediated by substance 
P-induced activation of DRD serotonergic neurons and subse-
quent release of 5-HT in adjacent DR subregions, which would be 
expected to inhibit the other 5-HT neurons via 5-HT1A receptor-
mediated autoinhibition (Valentino and Commons, 2005). 
Considering the involvement of the substance P/NK1 receptor 
system and CRF in stress- and anxiety-related behavior (Binder 
and Nemeroff, 2010; Ebner and Singewald, 2006; Ebner et  al., 
2008; Nemeroff, 1996), and clinical evidence revealing the thera-
peutic potential for NK1 receptor and CRF receptor antagonists in 
treating anxiety and affective disorders (Adell, 2004; Chatzaki 
et  al., 2006; Koob and Zorrilla, 2012; Kramer, 2000; Kramer 
et  al., 1998; Kramer et  al., 2004; Rupniak and Kramer, 1999; 
Zorrilla and Koob, 2010; Zoumakis and Chrousos, 2010), an 
important objective for future research will be to delineate the 
contributions of these neuromodulatory neuropeptidergic and glu-
tamatergic systems in controlling the activity of serotonergic neu-
rons in adaptive and disease states.

Hodology and functional topography 
of DRVL/VLPAG serotonergic neurons: 
Role in sympathomotor inhibition and 
panic disorder

Serotonergic neurons in the DRVL/VLPAG 
project to brainstem structures involved in 
fight-or-flight responses

The Deakin/Graeff hypothesis suggests that a second serotonergic 
system arising from the DR inhibits the innate defensive responses 
generated by the DPAG in response to exposure to an acute uncon-
ditioned stimulus, innate defensive responses that resemble the 
strong autonomic and behavioral arousal associated with PD. 
Serotonergic neurons of the DRVL/VLPAG (also called the “lat-
eral wings” of the DR), predominately project to brainstem struc-
tures involved in controlling autonomic activity and fight-or-flight 
responses to aversive stimuli. DRVL/VLPAG serotonergic neu-
rons give rise to axons that likely travel through the DR periven-
tricular tract to innervate the DPAG (Beitz, 1982; Stezhka and 
Lovick, 1997). The 5-HT neurons of the DRVL/VLPAG provide 
virtually all the serotonergic input from the DR to the C1 
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adrenaline neurons of the rostroventrolateral medulla (C1/RVL). 
Indeed, these serotonergic neurons appear to be part of a sympa-
thomotor command center and send multisynaptic projections to 
both the hindlimb skeletal muscle and the adrenal gland, control-
ling somatomotor and sympathetic responses to stress (Kerman 
et al., 2006). The hodology of DRVL/VLPAG 5-HT neurons sug-
gests these neurons constitute the original serotonergic pathway 
innervating the DPAG, proposed by Deakin and Graeff (Figure 2). 
For a full list of DRVL/VLPAG efferents and afferents, see the 
following reviews (Hale and Lowry, 2011; Hale et  al., 2012; 
Johnson et al., 2004; Lowry, 2002).

Stress-induced activation of DRVL/VLPAG 5-HT 
neurons: Inhibition of fight-or-flight and 
sympathetic arousal

Functional neuroanatomical studies of DRVL/VLPAG serotoner-
gic neurons, combined with the hodology described above, 
strongly support a role for this subregion in controlling the behav-
ioral and physiological responses to aversive stimuli, including 
acute unconditioned aversive stimuli, as originally suggested by 
the Deakin/Graeff hypothesis. For example, exposure to acute 
social defeat in adulthood elevates expression of tph2 and slc6a4 

mRNA selectively within the DRVL/VLPAG, but only in rats pre-
viously exposed to maternal separation (Gardner et  al., 2009a; 
Gardner et al., 2009b). Maternally-separated rats also display a 
more passive-submissive coping style, characterized by increases 
in anxiety- and fear-like behaviors during social defeat in adult-
hood (Gardner et al., 2005). Consistent with these development by 
environment interactions, immune challenge of mice with lipopol-
ysaccharide (LPS) early in life increases the expression of tph2 
and slc6a4 mRNA and decreases htr1a mRNA selectively, within 
the DRVL/VLPAG and DRV (Sidor et al., 2010), which all have 
the net effect of increasing DRVL/VLPAG 5-HT activity. 
Peripheral immune activation with LPS activates DRVL/VLPAG 
(and DRI) 5-HT neurons and also decreases behavioral arousal 
(e.g. seen by locomotion or grooming), which is consistent with 
the hypothesis that DRVL/VLPAG 5-HT neurons inhibit sympa-
thetic arousal (Graeff et al., 1996; Hollis et al., 2006; Keay and 
Bandler, 2001). DRVL/VLPAG and DRI serotonergic neurons are 
co-activated by exposure to warm ambient temperature (Hale 
et al., 2011) and cold water swim stress (Kelly et al., 2011), sug-
gesting these 5-HT neurons may be important for thermoregula-
tory mechanisms.

A convergent line of evidence shows that diverse inescapable 
stressors (e.g. deep muscular pain, cutaneous pain and visceral 
pain) increase the expression of the neuronal activity marker 
c-Fos in the VLPAG longitudinal column, which includes 5-HT 
neurons in the lateral wings. These stressors all produce passive 
coping responses, characterized by behavioral quiescence, hypo-
reactivity, hypotension, bradycardia and opioid-mediated analge-
sia (Keay and Bandler, 2001). This, together with the functional 
role of the DPAG, has led to the suggestion that the VLPAG (and 
the adjacent DRVL) and DPAG have opposing roles in mediating 
behavioral coping strategies to aversive stimuli, with the former 
eliciting passive (reactive) coping strategies and the latter promot-
ing active coping strategies, characterized by fight-or-flight 
responses, hypertension, tachycardia, hindlimb vasodilation and 
non-opioid analgesia (Johnson et  al., 2004; Keay and Bandler, 
2001). This notion is consistent with Deakin and Graeff’s hypoth-
esis that the DPAG produces active defensive responses in the 
presence of a proximal threat, like a predator, and that 5-HT nor-
mally restrains these innate fight-or-flight responses (Deakin and 
Graeff, 1991; Graeff et al., 1996).

It is unclear how DRVL/VLPAG serotonergic neurons are acti-
vated by such diverse stressors that encompass multiple sensory 
modalities, but one potential mechanism may be through the 
unique afferent input to this subregion. DRVL/VLPAG serotoner-
gic neurons receive afferents from medullary structures involved 
in autonomic control, including the parabrachial nucleus, nucleus 
of the solitary tract, and viscerosensory areas of the glossopharan-
geal and vagal nerves; and from forebrain limbic structures 
involved in controlling defensive responses, such as the CeA and 
BnST (for a full list of afferents and references, see Hale and 
Lowry, 2011; Hale et al., 2012). Serotonergic neurons in the lat-
eral wings have unique electrophysiological properties that make 
them more excitable than serotonergic neurons located in other 
DR subregions, suggesting that inherent properties of DRVL/
VLPAG 5-HT neurons make them more likely to become acti-
vated by stressful stimuli (Crawford et al., 2010). Further research 
is needed, but the unique properties of DRVL/VLPAG 5-HT neu-
rons, which potentially make them more susceptible to activation 
by stress, and their afferent input from structures involved in  
autonomic control, support the hypothesis that this subset 

‘Fight-or-flight’ behaviors

RVL/C1;
(–), 5-HT1A/2A

Sympathoexcitation
(Hypertension, tachycardia, etc.)

RPa; (+)

ROb; (+)

DMPAG/DLPAG;
(–), 5-HT1A/2A

DRPT
DRVL/
VLPAG

DRST

Figure 2.  Schematic diagram shows the serotonergic pathways of the DRVL 
and the adjacent VLPAG, which corresponds to the “panic” circuit proposed 
by the Deakin and Graeff hypothesis. The DRVL/VLPAG serotonergic 
neurons send projections through the DRPT and DRST, to innervate the 
dorsal periaqueductal gray (DMPAG/DLPAG) and the RVL/C1, respectively, 
and inhibit structures involved in eliciting the autonomic and behavioral 
components of the fight-or-flight response. Dysfunction of this pathway is 
thought to relate to symptoms of panic disorder. Coronal section templates 
reproduced with permission from Paxinos G and Watson C (1998) The Rat 
Brain in Stereotaxic Coordinates, 4th Edition. San Diego: Academic Press: 
1998 with permission from Elsevier.
DRVL: dorsal raphe nucleus, ventrolateral part; VLPAG: ventrolateral periaqueductal 
gray; DMPAG: dorsomedial periaqueductal gray; DLPAG: dorsolateral periaqueductal 
gray; DRPT: dorsal raphe periventricular tract; DRST: dorsal raphe spinal tract; Rob: 
raphe obscurus nucleus; RPa: raphe pallidus nucleus; RVL/C1: rostroventrolateral 
medulla/C1 adrenaline cells; (+): excitation; ( – ): inhibition.
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of serotonergic neurons inhibits fight-or-flight responses and 
facilitates a passive (reactive) coping style in response to aversive 
stimuli, including acute unconditioned aversive stimuli, as pre-
dicted by the Deakin/Graeff hypothesis.

DRVL/VLPAG 5-HT neurons inhibit fight-or-
flight responses and sympathetic outflow 
through projections to brainstem structures

Serotonergic projections from DRVL/VLPAG neurons to the 
DPAG.  Serotonergic neurons in the DRVL/VLPAG are believed 
to be a critical node in a “defense circuit” and can restrain fight-
or-flight responses generated by the DPAG. Chemical or electrical 
stimulation of the DPAG elicits a behavioral and autonomic 
response characterized by fight-or-flight behaviors, hypertension 
and tachycardia, which closely mimics the rodent’s response to a 
natural predator (Bandler and Depaulis, 1988; Bandler et  al., 
2000; Canteras, 2002; Keay and Bandler, 2001). Chemical stimu-
lation of the DRVL/VLPAG region (as well as the DRD/DRV) 
elevates extracellular 5-HT 14-fold in the DPAG in addition to 
blocking one-way escape in the elevated T-maze, indicative of an 
antipanic-like effect of DRVL/VLPAG 5-HT (Viana et al., 1997). 
Likewise, electrical stimulation of the DR (especially the lateral 
wing region) is also effective at reducing operant response to 
escape DPAG stimulation (Kiser et  al., 1980). The panicolytic 
effect (i.e. impaired escape) of DR stimulation can be blocked by 
local microinjection of 5-HT1A or 5-HT2A receptor antagonists 
into the DPAG (Pobbe and Zangrossi, 2005). Similarly, microin-
jections of 5-HT1A and 5-HT2A receptor agonists into the DPAG 
impair escape from an unconditioned stressor like a predator 
(Pobbe et  al., 2011). The inhibitory 5-HT1A receptor is likely 
expressed by DPAG output neurons and/or excitatory amino acid 
“on cells,” which activate DPAG output neurons, whereas the 
excitatory 5-HT2A receptor appears to be located on GABAergic 
“off cells,” which inhibit DPAG output neurons (Brandao et al., 
2008). Recent evidence suggests that local endogenous opioids in 
the DPAG may interact with serotonergic systems to produce 
panicolytic effects. For example, application of 5-HT or fluox-
etine (SSRI) into the DPAG impairs escape in the elevated T-maze, 
indicative of a panicolytic effect; however, this effect is attenuated 
by prior intra-DPAG microinjection of naloxone, an opioid inverse 
agonist that is a competitive antagonist at multiple opioid recep-
tors (Graeff, 2012; Roncon et  al., 2012). Altogether, these data 
support the Deakin/Graeff hypothesis that 5-HT, likely arising 
from serotonergic neurons located in the DRVL/VLPAG, pro-
duces anti-panic behavioral effects in the DPAG.

Serotonergic projections from DRVL/VLPAG neurons to the 
C1/RVL region.  The 5-HT neurons of the DRVL/VLPAG send 
dense projections to the C1/RVL, suggesting an important role 
for DRVL/VLPAG serotonergic neurons in controlling the car-
diovascular responses to emotionally salient events (Bago et al., 
2002; Underwood et al., 1999a). Lesions of the DR cause drastic 
reductions in 5-HT and 5-HIAA (a major metabolite of 5-HT) 
concentrations and 5-HT transporter binding within the C1/RVL 
region (Underwood et al., 1999a). The C1/RVL region contains 
an abundance of 5-HT1A receptor-immunoreactive catechol-
aminergic and non-catecholaminergic neurons that project to  
the intermediolateral cell column (Helke et al., 1997). Microin-
jection of 8-OH-DPAT into the RVL results in inhibition of 

sympathetic renal and hindlimb skeletal muscle nerve activity 
(Bago et  al., 1999). Likewise, sympathoinhibition elicited by 
electrical stimulation of the VLPAG is blocked by intra-RVL 
microinjection of the 5-HT1A receptor antagonist, WAY-100635 
(Bago and Dean, 2001). These data support the notion of a sero-
tonergic pathway, predominantly arising from the DRVL/
VLPAG to the C1/RVL, that is involved in inhibiting motor and 
visceral sympathetic outflow.

Altered DRVL/VLPAG serotonergic function in 
rodent models of panic

There is evidence in rodent models of panic that compromise of 
the DRVL/VLPAG 5-HT system leads to robust sympathetic and 
behavioral arousal, in the presence of stimuli that normally do not 
warrant such a response, that are strikingly similar to the symp-
toms of a panic attack. Shekhar et al. (1996) report that chronic 
disinhibition of the dorsomedial hypothalamus produces an 
anxiety-like phenotype as well as susceptibility to panic-like 
responses induced by exposure to sodium lactate or elevated car-
bon dioxide (5%), both of which can elicit panic attacks in patients 
with panic disorder, but have no effect in healthy volunteers 
(Gorman et al., 1994; Liebowitz et al., 1986; Pitts and McClure, 
1967). Exposure to intravenous (i.v.) sodium lactate increases 
c-Fos expression in DRVL/VLPAG serotonergic neurons, but 
only in control rats that do not show panic-like behavioral and 
physiological responses. On the other hand, sodium lactate fails to 
activate DRVL/VLPAG serotonergic neurons in panic-prone rats 
and these rats display panic-like responses (Johnson et al., 2008). 
These data suggest that DRVL/VLPAG 5-HT neurons normally 
suppress sympathetic activation, following exposure to innocuous 
stimuli. Consistent with this idea, priming of the BLA by chronic 
microinjection of the stress- and anxiety-related neuropeptide Ucn 
1 increases baseline anxiety and sensitivity to panicogenic agents 
(Rainnie et al., 2004; Sajdyk et al., 1999) and also elevates tph2 
mRNA within the DRVL/VLPAG (Donner et al., 2012a). Taken 
altogether, these data suggest that DRVL/VLPAG 5-HT neurons 
normally inhibit sympathetic responses to seemingly innocuous 
stimuli, possibly through projections to the DPAG and C1/RVL, 
but dysregulation of this system leads to unrestrained behavioral 
(i.e. fight-or-flight) and sympathetic (i.e. increased heart rate, 
blood pressure, etc.) responses that may be relevant for the patho-
physiology of panic disorder.

Hodology and functional topography 
of DRI/MnR serotonergic neurons: Role 
in coping with stress and depression

Serotonergic neurons in the DRI/MnR project 
to forebrain structures implicated in coping, 
resilience and tolerance to stress

The final 5-HT pathway discussed by Deakin and Graeff is 
hypothesized to originate in the MnR and through its projections 
through the median raphe forebrain bundle tract to the hippocam-
pus promotes tolerance or adaptation to chronic stress. 
Serotonergic neurons of the DRI/MnR send dense projections 
through this fiber tract to innervate the septohippocampal system, 
including the dorsal hippocampus and medial septum/diagonal 
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band of Broca region (MS/DBB), two structures that are critical for 
theta rhythm generation (Crooks et al., 2012; Petsche and Stumpf, 
1962; Petsche et  al., 1962); a significant number of these 5-HT 
neurons send collateral projections to both structures (Acsady 
et al., 1996; Kohler et al., 1982; McKenna and Vertes, 2001). The 
DRI also sends projections to the IL and PL cortices of the vmPFC 
(Van Bockstaele et  al., 1993), which, in the case of the PL, is 
known to promote resilience to stress when activated pharmaco-
logically or by behavioral control over the stressor (Amat et al., 
2008; Amat et al., 2005; Baratta et al., 2009). The anatomical pro-
jections of DRI/MnR 5-HT neurons are consistent with Deakin and 
Graeff’s predicted pathway that innervates forebrain structures like 
the hippocampus, in order to promote resilience to stress (Figure 
3). For a full list of DRI/MnR efferents and afferents, see the fol-
lowing reviews (Hale and Lowry, 2011; Hale et al., 2012).

Serotonergic neurons in the DRI and MnR 
share a common embryonic origin

In addition to their hodological similarities, there is strong evi-
dence that DRI serotonergic neurons and serotonergic neurons in 

the dorsal part of the MnR share a common embryonic origin. 
For example, at gestational day 15 there are two groups of 
5-HT-immunoreactive neurons that give rise to the DR and 
MnR, which later (gestational day 17) separate, with one group 
forming the DRI and MnR and the other group forming the other 
DR subregions (Azmitia and Gannon, 1986; Jacobs and Azmitia, 
1992). Consistent with this, serotonergic neurons of the DRI and 
dorsal MnR appear to share a common genetic lineage, as both 
populations of serotonergic neurons are derived from rhom-
bomere 1, whereas 5-HT neurons in the ventral MnR and more 
caudal raphe nuclei develop from rhombomeres 2–7 (Jensen 
et al., 2008). These developmental similarities, together with the 
hodological and functional similarities of the DRI and MnR 
serotonergic neurons are consistent with the hypothesis that 
these neurons promote coping and resilience to stress through 
projections to forebrain limbic structures (Graeff et  al., 1996; 
Hale and Lowry, 2011; Lowry, 2002).

DRI/MnR serotonergic neurons promote 
coping, resilience or tolerance to stress

Stress-induced alcohol reinstatement: Role of MnR seroto-
nergic neurons.  Evidence supporting a role for MnR 5-HT neu-
rons in coping with stress comes from studies showing the 
importance of the MnR in stress-induced reinstatement of alcohol 
administration. For example, inactivation of MnR serotonergic 
neurons by intra-MnR administration of 8-OH-DPAT, muscimol 
(a GABAA receptor agonist), or CRF causes alcohol relapse, an 
effect that mimics the effects of stress- (foot shock-) induced rein-
statement of alcohol administration (Le et  al., 2002; Le et  al., 
2008). Antagonism of MnR CRF receptors blocks the effects of 
stress on alcohol relapse and also prevents the stress-induced 
increases in c-fos mRNA expression in the CeA (Funk et al., 2003; 
Le et  al., 2002). These studies highlight a complex interplay 
between CRF, GABAA receptors and MnR serotonergic neurons 
on stress-induced alcohol reinstatement, while supporting a role 
for the MnR in tolerance to stress.

The MnR promotes resilience to the physiological and 
immunological consequences of stress.  Another line of 
evidence supporting a role for MnR serotonergic neurons in 
stress resilience comes from the observation that lesions of the 
MnR enhance sensitivity to stress (e.g. food deprivation, brain 
surgery and restraint stress) as measured by increases in stress-
induced gastrointestinal ulcer formation (Graeff et  al., 1996; 
Hoshino and Sugizaki, 1986), whereas lesions of the DR have 
no effect on stress-induced ulcer formation following food 
deprivation (Hoshino and Sugizaki, 1986). Also, MnR lesions, 
compared to sham lesions, result in blunted splenic immune 
responses to the mitogen, concanavalin A, suggesting these cul-
tured rat splenic cells are more sensitive to surgical stress 
(Graeff et al., 1996). These data support a role for the MnR in 
promoting tolerance to the physiological and immunological 
consequences of stress.

Serotonergic neurons of the MnR and anxiety-like behav-
ior.  Serotonergic neurons in the MnR are also involved in the 
behavioral effects of anxiety-provoking tasks, possibly through 
altered 5-HT activity in forebrain targets. For example, selective 
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Figure 3.  Serotonergic neurons of the interfascicular part of the dorsal 
raphe nucleus and the developmentally and anatomically related median 
raphe nucleus (DRI/MnR) constitute Deakin and Graeff’s “depression” 
pathway and project via the MnRFT, to forebrain limbic structures that 
are involved in controlling anxiety- and depressive-like behavior, and 
function to suppress hippocampal theta and to promote resilience 
to aversive stimuli. Dysfunction of this pathway is thought to relate 
to symptoms of depression. Coronal section templates reproduced 
with permission from Paxinos G and Watson C (1998) The Rat Brain in 
Stereotaxic Coordinates, 4th Edition. San Diego: Academic Press: 1998 
with permission from Elsevier.
CA1d: field CA1 of dorsal hippocampus; DRI: dorsal raphe nucleus, interfascicular 
part; IL: infralimbic cortex; MnR: median raphe nucleus; MnRFT: median raphe 
forebrain tract; mfb: medial forebrain bundle; PrL: prelimbic cortex; (+): excita-
tion; ( – ): inhibition.
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neurotoxic lesions of 5-HT neurons in the MnR result in increased 
inhibitory avoidance (an anxiety-like behavior) in the elevated 
T-maze, but have no effect on escape (a panic-like behavior) 
(Andrade et al., 2004). Consistent with this, inhibitory avoidance 
in the elevated T-maze increases c-Fos expression in 5-HT neu-
rons within the DRI/MnR (as well as the anxiety-related DRD/
DRC subregions), but not in serotonergic neurons in the panic-
related DRVL/VLPAG (Spiacci Jr et  al., 2012). Noradrenergic 
modulation of MnR serotonergic neurons alters anxiety-like 
behavior in the elevated plus-maze (Mansur et al., 2010; Mansur 
et al., 2011), which may be mediated by altered 5-HT release in 
forebrain structures such as the hippocampus and amygdala 
(Adell and Artigas, 1999; Adell et al., 2002; Mansur et al., 2011). 
Together, these data support the notion that activation of MnR 
5-HT neurons promotes adaptation to stress, possibly through 
altered 5-HT release in forebrain targets.

Activation of DRI serotonergic neurons has antidepressant-
like effects.  Like the MnR, serotonergic neurons in the DRI are 
implicated in cognition, control of emotional behavior and antide-
pressant-like effects. We have found that DRI as well as DRVL/
VLPAG (Hale et al., 2012) serotonergic neurons are activated by 
peripheral immune stimulation with LPS (Hollis et al., 2006) and 
a heat-killed preparation of the nonpathogenic, saprophytic bacte-
ria Mycobacterium vaccae (Lowry et al., 2007). The latter effect 
is associated with increased 5-HT metabolism in DRI projection 
regions like the infralimbic and prelimbic cortices, as well as anti-
depressant-like behavioral effects in the forced swim test (Lowry 
et al., 2007; Porrino and Goldman-Rakic, 1982).

Serotonergic modulation of 
hippocampal theta rhythm

Theta rhythms and aversive learning and 
memory: Implications for anxiety and 
affective disorders

Theta rhythms are characteristic wave patterns in the electroen-
cephalogram (EEG) that are generated during waking exploratory 
behavior, as well as REM sleep (Bland, 1986; Buzsaki, 2002; 
Grosmark et al., 2012; Sharman et al., 2013; Vanderwolf, 1969). 
Evidence suggests hippocampal theta rhythms are important for a 
number of learning and memory processes, including spatial 
memory, sensory gating and long-term potentiation (Bland, 1986; 
Vertes, 2005). In addition to mnemonic functions, theta rhythms 
(e.g. type 2 theta) are generated by conditioned aversive stimuli 
and unconditioned aversive stimuli, including predator exposure 
and foot shock (Graeff et al., 1980; Hsiao et al., 2012; Sainsbury 
et al., 1987).

More recently, theta rhythms have garnered attention in the 
context of anxiety and affective disorders. McNaughton and col-
leagues (2007) reported that all classes of effective anxiolytics, 
including anxiolytics that act on serotonergic systems (e.g. 5-HT1A 
receptor agonists and SSRIs), suppress the theta rhythm. Indeed, 
the antiepileptic, phenytoin, has anxiolytic effects in the elevated 
plus-maze, while also suppressing theta, offering prima facie evi-
dence for the predictive validity of the theta suppression model 
(Yeung et al., 2012). Somatostatin administered i.c.v. has anxio-
lytic- and antidepressant-like effects that are associated with 
reductions in hippocampal theta elicited by simulation of the 

reticular formation (Engin et al., 2008). Likewise, a sub-anesthetic 
dose of ketamine, a noncompetitive N-methyl-D-aspartate 
(NMDA) receptor antagonist with rapid-acting antidepressant 
effects in healthy volunteers, leads to reductions in prefrontal 
theta cordance, a quantitative EEG measure that correlates well 
with cortical perfusion measured by positron emission tomogra-
phy (Engin et al., 2009; Horacek et al., 2010). Conflict tasks that 
provoke anxiety in humans evoke a marked increase in right fron-
tal cortex theta rhythm, which correlates with behavioral indices 
of anxiety such as neuroticism and avoidance (Neo and 
McNaughton, 2011); anxiolytics block this conflict-induced fron-
tal theta, leading the authors to suggest this type of theta could be 
used as a human anxiety-specific biomarker (McNaughton et al., 
2012). Theta oscillations in structures such as the prefrontal cor-
tex can be entrained by hippocampal theta and this is thought to be 
critical for the integration of information across disparate neocor-
tical networks (Sirota et al., 2008). Indeed, a recent study revealed 
that theta coupling between the hippocampus, lateral amygdala 
and medial prefrontal cortex occurs during retrieval of condi-
tioned fear memory and recall of extinction memory; however, 
theta coupling in this network decreased during extinction learn-
ing (Lesting et al., 2011). These studies support a functional role 
of theta rhythms in processing fear- and anxiety-related memo-
ries, which may be relevant for stress-related human disease.

Serotonergic neurons in the MnR suppress 
hippocampal theta

There is evidence that serotonergic systems arising from the 
MnR suppress hippocampal theta, in part through projections to 
the septum. As mentioned earlier, it is notable that serotonergic 
neurons of the DRI/MnR densely innervate the hippocampus 
and medial septum/diagonal band of Broca region (MS/DBB), 
two structures that are critical for theta rhythm generation 
(Crooks et al., 2012; Petsche and Stumpf, 1962; Petsche et al., 
1962), and a significant number of these serotonergic neurons 
send collateral projections to both structures (Acsady et  al., 
1996; Kohler et  al., 1982; McKenna and Vertes, 2001). 
Stimulation of MnR serotonergic neurons desynchronizes hip-
pocampal theta (Jackson et  al., 2008; Nitz and McNaughton, 
1999; Vertes, 1981), whereas lesions of the MnR or inactivation 
of the MnR using 8-OH-DPAT results in persistent theta activa-
tion (Maru et al., 1979; Vertes et al., 1994).

Serotonergic neurons in the MnR likely desynchronize hip-
pocampal theta through excitation of a subpopulation of 
GABAergic neurons and/or inhibition of cholinergic (and possi-
bly glutamatergic) pacemaker neurons in the MS/DBB that all 
contribute to the generation of hippocampal theta (Buzsaki, 2002; 
Crooks et  al., 2012; Leranth and Vertes, 1999; Sharman et  al., 
2013; Vertes and Kocsis, 1997). In addition, the MnR (similar to 
the DR) has reciprocal connections with the supramammillary 
area, a region known to control the frequency of hippocampal 
theta rhythm probably through connections with structures impli-
cated in modulating hippocampal theta (for review, see Pan and 
McNaughton, 2004). The mechanisms for how stress alters MnR 
serotonergic activity and hippocampal theta are beginning to be 
elucidated (Figure 4) (Hsiao et al., 2012). There is a paucity of 
information on the role of DRI serotonergic neurons in controlling 
theta rhythms (possibly due to the small size of this subregion); 
therefore, future studies should address this knowledge gap. The 

 at PENNSYLVANIA STATE UNIV on September 13, 2016jop.sagepub.comDownloaded from 

http://jop.sagepub.com/


Paul and Lowry	 11

observations that serotonergic neurons of the MnR (and possibly 
DRI) desynchronize hippocampal theta, including stress-induced 
theta, are consistent with the Deakin/Graeff hypothesis that the 
MnR serotonergic-hippocampal pathway promotes resilience or 
tolerance to chronic stress, possibly in part through desynchroniz-
ing hippocampal theta rhythms, and that the dysfunction of this 
pathway leads to stress-related anxiety and affective disorders 
(Deakin and Graeff, 1991; Graeff et al., 1996).

Implications of the functional 
topography of serotonergic systems
The functional topography of serotonergic systems raises a 
number of interesting questions. For example, are these 

different pathways activated independently? Do they interact? 
What are the advantages to having a coordinated behavioral 
response that increases fear, but reduces panic? Evidence sug-
gests that different serotonergic pathways are activated inde-
pendently. For example, a number of studies have now shown 
that when the midline DRD/DRC serotonergic systems (impli-
cated in facilitation of conflict anxiety) are active, DRVL/
VLPAG and DRI serotonergic systems (implicated in inhibition 
of panic-like responses and stress resilience, respectively) are 
not (Abrams et  al., 2005; Gardner et  al., 2005; Hale et  al., 
2010b; Hale et al., 2012; Staub et al., 2006). Conversely, when 
DRVL/VLPAG and DRI serotonergic systems are active, mid-
line DRD/DRC serotonergic systems are not (Commons, 2008; 
Hale et al., 2012; Hollis et al., 2006; Lowry et al., 2007). It is 
likely that functional subsets of serotonergic systems interact, 
perhaps in reciprocal inhibition in the case of competing behav-
ioral strategies (Jasinska et al., 2012). A clear advantage to hav-
ing a coordinated behavioral response that increases fear, but 
reduces panic, is evident in the case of contextual fear. In con-
texts where a predator has been observed previously, but where 
the presence or absence (and location) of a predator is uncer-
tain, increased contextual fear (freezing behavior) and inhibi-
tion of a flight/escaping behavior is clearly adaptive in order to 
avoid detection by, or direct confrontation with, a potential 
predator (Blanchard and Blanchard, 1988; Blanchard and 
Blanchard, 1989; Graeff, 2011; Graeff and Zangrossi, 2010; 
McNaughton and Corr, 2004).

Conclusions
Over 20 years have passed since Deakin and Graeff hypothesized 
that different 5-HT pathways respond to diverse types of aversive 
stimuli and that dysregulation of these pathways contributes to the 
pathophysiology of anxiety and affective disorders. Here we pre-
sent convergent lines of evidence supporting the involvement of 
topographically organized subpopulations of serotonergic neurons 
comprising the original 5-HT pathways. Although Deakin and 
Graeff argue that specific aversive (e.g. unconditioned versus con-
ditioned stress and acute versus chronic stress) stimuli selectively 
activate distinct 5-HT pathways, it seems numerous characteris-
tics interact to determine which 5-HT pathway is activated, 
including factors like the proximity of the threat, the subjective 
perception of threat, the escapability from/controllability of the 
stressor, the sensory modality involved, and whether the aversive 
stimulus is interoceptive or exteroceptive; however, the data over-
whelmingly support the idea that specific 5-HT pathways are acti-
vated by diverse aversive stimuli and function to coordinate the 
appropriate behavioral and physiologic response in order to avoid, 
escape, remove or cope with the threat. Overall, experimental evi-
dence strongly supports the core of the Deakin/Graeff hypothesis: 
that different 5-HT pathways are intimately involved in control-
ling stress-induced anxiety- and depressive-like behavioral and 
physiologic responses, and that dysfunction of these pathways can 
lead to anxiety and affective disorders. In this review, we’ve 
extended the original hypothesis to identify the location of topo-
graphically-organized subpopulations of serotonergic neurons 
involved. Future research should elucidate the mechanisms of 
how specific stressors activate these topographically-organized 
serotonergic pathways and how they mediate changes in behavior 
and physiology.

MS/DBB

MnRLH

Hippocampal theta

CA1

X

SuM

Figure 4.  Schematic diagram of a sagittal section of the rat brain 
illustrating the effects of stress on serotonergic activity in the MnR 
and on hippocampal theta rhythms. Hippocampal theta rhythms are 
generated through a complex interaction of excitatory and inhibitory 
inputs onto the soma and dendrites of hippocampal CA1 pyramidal 
neurons (inverted triangle), likely coming from GABAergic interneurons 
(closed circle) and cholinergic pacemaker cells (triangle) in the MS/DBB, 
hippocampal basket cell interneurons (closed square) and the entorhinal 
cortex (not shown: Buzsaki, 2002). Serotonergic neurons of the MnR 
(diamond) normally desynchronize hippocampal theta rhythms through 
projections to the MS/DBB. Here, serotonin can activate GABAergic 
neurons (closed circle) or inhibit cholinergic pacemaker neurons 
(triangle), with the net effect being inhibition of hippocampal theta. 
Stress (e.g. foot shock) activates hypocretin/orexin neurons (open 
square) located in the PeF/LH that project to and activate GABAergic 
interneurons (closed circle) in the MnR (Hsiao et al., 2012). These 
GABAergic interneurons suppress MnR serotonergic activity, removing 
the desynchronizing serotonergic input to the MS/DBB and resulting 
in stress-induced hippocampal theta. The MnR and DR project back to 
the PeF/LH and, at least in regards to the DR, some projections directly 
innervate hypocretin/orexin neurons (Yoshida et al., 2006). The MnR 
also has reciprocal connections with the SuM (open circle), a structure 
known to control theta frequency (Pan and McNaughton, 2004). Solid 
lines ending in inverted arrowheads represent excitatory pathways, 
dashed lines ending in rectangles represent inhibitory pathways, 
solid curved lines ending in arrowheads represent projections with 
complex or uncertain biological effects and solid straight lines ending 
in arrowheads represent functional systems output. Sagittal section 
template reproduced with permission from Paxinos G and Watson C 
(1998) The Rat Brain in Stereotaxic Coordinates, 4th Edition. San Diego: 
Academic Press: 1998 with permission from Elsevier.
CA1: field CA1 of dorsal hippocampus; DR: dorsal raphe nucleus; GABA: gamma-ami-
nobutyric acid; MnR: median raphe nucleus; MS/DBB: medial septum/diagonal band of 
Broca region; PeF/LH: perifornical/lateral hypothalamus; SuM: supramammillary area
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