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Preface
Many designs for Integrated Services Packet Networks (ispn) o�er a bounded delaypacket delivery service to support real-time applications. Networks achieve boundeddelay by regulating their load and managing their resources. Admission control al-gorithm is the tool networks use to regulate their load. Previous work on admissioncontrol mainly focused on algorithms that compute the worst case theoretical queue-ing delay to guarantee either an absolute delay bound for all packets or a probabilisticbound on the statistical distribution tail of aggregate tra�c. Since worst-case boundsare computed from parameterized source models, we call such algorithms parameter-based algorithms. Our own work proposes a measurement-based admission controlalgorithm for predictive service. Instead of guaranteeing an absolute or a numericallyenforced probabilistic bound, predictive service promises a reliable bound. With themore relaxed bound, an admission control algorithm can operate without requiringa precise characterization of tra�c; instead, it can use measured tra�c characteris-tics. The reliance of our admission control algorithm on measurement dictates thatit works well only when there is a high degree statistical multiplexing. Several re-searchers have discovered that network tra�c is long-range dependent which risesand ebbs with possibly long ebb times. One dangerous implication of long-rangedependent tra�c on any measurement-based admission control algorithm is that thealgorithm may allow too many new ows into the network during the ebb times,resulting in prolonged delay bound violations during the ensuing tides. In our sim-ulations, besides traditional source models, we also use source models that exhibitlong-range dependence, both in themselves and in their aggregation. As with mostiii
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Chapter 1IntroductionThe technical and regulatory developments of the past decade have created the pos-sibility of merging digital telephony, multimedia transport, and data communicationservices into a single Integrated Services Packet Network (ispn). From an economicperspective, an ispn o�ering multiple service selections increases network's total util-ity by matching services closer to application needs [She95]. Chief among the servicesrequired by multimedia applications is bounded delay packet delivery. There havebeen many proposals for supporting bounded delay delivery in packet networks; see[OON88, FV90, GAN91] for a few representative examples. The ability of boundeddelay services to achieve high utilization and also meet their service commitmentsdepends crucially on their admission control algorithm. Conversely, the ability of anadmission control algorithm to increase network utilization is ultimately constrainedby the service commitments the network makes. A service model is a service com-mitments contract between the network and its users. Traditional real-time serviceprovides a hard or absolute bound on the delay of every packet; in [FV90, CSZ92],this service model is called the guaranteed, or deterministic guaranteed, service. Whena ow requests real-time service, it must characterize its tra�c so that the networkcan make its admission control decision. Typically, sources are described by eitherpeak and average rates [FV90] or a �lter like a token bucket [OON88]; these descrip-tions provide upper bounds on the tra�c that can be generated by the source. The1



admission control algorithm for guaranteed service uses a priori characterizations ofsources to calculate the worst-case behavior of all the existing ows in addition tothe incoming one. Calculating the worst-case delays may be very complex, but theunderlying admission control principle is conceptually simple: does granting a newrequest for service cause the worst-case behavior of the network to violate any delaybound? (See [FV90] for an example of this approach.) Network utilization underthis model is low when sources are bursty. However, network utilization can be in-creased if one can precisely characterize the o�ered tra�c, such as when playing backrecorded data [GKT95, WKZL96]; when ows carry live, bursty data, however, theirtra�c characterizations must necessarily be quite loose, in that the average behaviorof the ows is signi�cantly less than the upper bound of the tra�c descriptions, andguaranteed service inevitably results in low utilization [ZF94].A service model that promises a more relaxed delay bound than guaranteed serviceallows its admission control algorithm to admit more ows and attain a higher level ofnetwork utilization. There are many approaches to admission control that attempt toachieve higher utilization by weakening the degree of reliability of the delay bound.For instance, the probabilistic delay bound service described in [ZK94] does notprovide for the worst-case scenario, instead it guarantees a bound on the probabilityof lost/late packets based on statistical characterization of tra�c [VPV88]. In mostcases the a priori characterization of ows is based on a statistical model [Hui88,SS91] or on a uid ow approximation [GAN91, Kel91]). In this kind of approach,each ow is allotted an equivalent bandwidth that is larger than its average rate butless than its peak rate. If one can precisely characterize tra�c a priori, this approachwill increase network utilization. However, we think it will be quite di�cult, if notimpossible, to provide accurate and tight statistical models for each individual ow.For instance, the average bit rate produced by a given codec in a teleconference willdepend on the participant's body movements. This can't possibly be predicted inadvance with any degree of accuracy. Therefore the a priori tra�c characterizationshanded to admission control will inevitably be fairly loose upper bounds.
2



For this reason, we think thatmeasurement-based admission control will play a keyrole in achieving high network utilization. The measurement-based admission controlapproach advocated in [CSZ92, JSZC92] uses the a priori source characterizationsonly for incoming ows (and those very recently admitted); it uses measurements tocharacterize those ows that have been in place for a reasonable duration. Therefore,network utilization does not su�er signi�cantly if the tra�c descriptions are not tight.For instance, if a source describes itself as conforming to a token bucket with a rateof 5 Mbps, but typically sends at an average rate of 1 Mbps, the measurement-basedadmission control approach does not inde�nitely continue to set aside 5 Mbps forthis ow, unlike the more traditional forms of admission control. Because it relieson measurements, and source behavior is not static in general, the measurement-based approach to admission control can never provide the completely reliable delaybounds needed for guaranteed, or even probabilistic, service. However, many real-time applications, such as vat, ivs, nv, and vic, have recently been developed forpacket-switched networks. These applications can adapt to actual packet delays andare rather tolerant of delay bound violations; they do not need an absolutely reliablebound. For these tolerant applications, references [CSZ92, SCZ93] propose predictiveservice, which o�ers a fairly, but not absolutely, reliable bound on packet deliverytimes. The ability to occasionally incur delay violations gives admission control agreat deal more exibility, and is the chief advantage of predictive service. Themeasurement-based approaches to admission control can only be used in the contextof predictive service and other more relaxed service commitments. Furthermore, whenthere are only a few ows present, the unpredictability of individual ow's behaviordictates that these measurement-based approaches must be very conservative|byusing some worst-case calculation for example. Thus a measurement-based admissioncontrol algorithm can deliver signi�cant gain in utilization only when there is a highdegree of multiplexing.The use of measurement in admission control algorithm has been mentioned inthe literature prior and subsequent to this work. The authors of [HLP93, GKK95],for example, use measurements to determine admission, but the admission decisions3



are pre-computed based on the assumption that all sources are exactly described byone of a �nite set of source models. This approach is clearly not applicable to alarge, heterogeneous, and ever-changing application base, and is very di�erent fromour approach to admission control that is based on ongoing measurements. Using on-going measurements of load in making admission decisions is suggested, but not fullydeveloped nor explored, in [OON88]. Several recent papers, such as [SS91, AS94] usemeasurement to learn the parameters of certain assumed tra�c distributions. Theauthors of [DJM96, Flo96a] use measurement of existing tra�c in their calculationof equivalent bandwidth. In references [Hir91, CLG95], a neural network is usedfor dynamic bandwidth allocation. In [LCH95], the authors use pre-computed lowfrequency of ows to allocate bandwidth dynamically by renegotiation. Hardwareimplementation of measurement mechanisms are studied in [C+91, WCKG94]. Inci-dentally, the work presented in this dissertation has been extended in [DKPS95] tosupport advance reservation. The authors of [DKPS95] have also replicated some ofour results on their independently developed network simulator.Several service models o�ering even more lax contractual agreement between thenetwork and its users than predictive service have recently been proposed in the Inter-net Engineering Task Force (ietf). The Controlled-load service described in reference[Wro95] and Committed-rate service described in reference [BGK96] are examples ofsuch service models. The service they provide do not in general involved an adver-tised quantitative service target such as loss rate or delay bound, rather they simplyensure that ows are alloted some reserved resources and experience low queueingdelays. The minimal commitment made by these services makes them especially wellsuited to the decentralized and heterogeneous Internet. Our measurement-based ad-mission control algorithm can thus also be used in conjunction with these more laxservices.In summary, when delay bound is strict, one can achieve high level of networkutilization only when one has a very precise characterization of o�ered tra�c. Byrelaxing the strictness of the delay bound, probabilistic service model can increasenetwork utilization without requiring the tightest tra�c characterization. Predictive4



service does not make any assumptions on source models and provides only reliable,not guaranteed, delay bound. Several new service models have recently been pro-posed that o�er even more lax contractual agreement between the network and itsusers. We show in this dissertation that when measurement-based admission controlalgorithm is used in conjunction with services o�ering lax delay bound, and predic-tive service in particular, it can, at times, deliver order of magnitude higher level ofnetwork utilization than those achievable under parameter-based algorithm o�eringguaranteed service and still maintain reliable delay bound. Earlier versions of thiswork have been published as references [JSZC92, JDSZ95, JDSZ96].

5



Chapter 2Traditional Realtime ServicesUnder the synchronous transfer mode (stm), sources send data at a constant bitrate (cbr). Sources with data rate higher than the constant bit rate must lowertheir quality either by dropping data or queueing it for later transmission. Sourceswith data rate less than the constant bit rate must pad their data. Constant bitrate leads to varying service quality or low network utilization. With the adventof asynchronous transfer mode (atm), and on packet-switched networks such as theInternet, sources can transmit at variable bit rate (vbr), delivering constant servicequality [VPV88]. Integrated services packet networks built on top of atm or Internettechnology allow packets from di�erent types of vbr sources to be statistically mul-tiplexed. Fig. 2.1 shows an example of an ispn where packets from traditional datasources are multiplexed with packets from audio and video sources. The �gure alsoshows a possible architecture of an ispn switch, consisting of a realtime scheduler,such as the uni�ed scheduler proposed in reference [CSZ92], an admission controlalgorithm, and a reservation protocol, such as the rsvp resource reservation protocolproposed in [Z+93]. By allowing statistical multiplexing, an ispn can increase net-work utilization; however, with statistical multiplexing, bursts of data could arrivesimultaneously at a switch, leading to long queue and packet losses. Whereas thequality requirements of traditional data tra�c are high throughput and short round-trip delay, the service requirements of realtime tra�c are short queueing delay and6
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small loss rate. The goal of all admission control algorithms is to meet users' qual-ity of service requirements. In most cases, a secondary goal of an admission controlalgorithm is to meet users' requirements at as high a level of network utilization asfeasible. The ability of an admission control algorithm to increase network utilizationis ultimately constrained by the service commitments the network makes. We nowlook at the commitments di�erent service models entail and the ensuing constraintsput on the admission control algorithm.2.1 Deterministic BoundTraditional realtime service provides a hard or absolute bound on the delay of everypacket; in the literature, this service model is called the guaranteed service. A de-terministic guaranteed service provides for the worst-case requirements of ows. Theworst-case requirements of ows are usually computed from parameterized models oftra�c sources. The source models used for this computation may be very complex,but the underlying admission control principle is conceptually simple: does grantinga new request for service cause the worst-case behavior of the network to violate anydelay bound?The admission control algorithms proposed in reference [KS85, KU93, OST88]require sources to provide peak rate characterization of their tra�c. The algorithmsthen check that the sum of all peak rates is less than link capacity. If sources arewilling to tolerate queueing delay, they can use a token bucket �lter, instead of peakrate, to describe their tra�c. The network ensures that the sum of all admittedows' token rate is less than link bandwidth and the sum of all token bucket depthsis less than available bu�er space. This approach is proposed in [LV93]. In [ZF94],the authors presented an admission control algorithm for deterministic service basedon calculation of maximum number of bits b� that can arrive from a source duringany interval � 1: b� = min (d(� mod �)pe ; d�ae) + ��� � d�ae ; (2.1)1We assume negligible packet size. 8



where � is the averaging interval for a, the source's average rate, and p is the source'speak rate. Queueing delay per switch is then calculated as:D� = max8��0 fPni=1 b�i (�)� ��g� ; (2.2)� being the link bandwidth. The admission control checks that D� does not violateany delay bounds. This algorithm performs better than those requiring peak ratecharacterization and can achieve acceptable (> 50%) link utilization when sourcesare not very bursty (peak-to-average ratio < 4) and the delay bound is not tootight (> 60 ms, per switch); when ows are bursty, however, deterministic serviceultimately results in low utilization. In references [Gol91, RD91], the authors pro-pose reshaping users' tra�c according to network resources available at call setuptime. While reshaping users' tra�c according to available resources may increasenetwork utilization, the reshaped tra�c may not meet users' end-to-end quality re-quirements. Instead of imposing a tra�c shaper at call setup time, authors of ref-erences [GKT95, WKZL96] propose characterizing di�erent segments of a realtimestream and renegotiating the ow's resource reservation prior to the transmission ofeach segment. Renegotiation failure results in tra�c from the next segment to bereshaped according to reservations already in place for the ow. This scheme may beapplicable to video-on-demand application where the entire data stream is availablefor a priori characterization prior to transmission.2.2 Probabilistic Bound: Equivalent BandwidthStatistical multiplexing is the interleaving of packets from di�erent sources where theinstantaneous degree of multiplexing is determined by the statistical characteristicsof the sources. Contrast this to slotted Time Division Multiplexing (TDM), forexample, where packets from a source is served for a certain duration at �xed intervalsand the degree of multiplexing is �xed by the number of sources that can be �tedinto an interval. The probability density function (pdf) of statistically multiplexedindependent sources is the convolution of the individual pdf's; and the probability9
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Figure 2.2: Statistical multiplexing of three ows and their equivalent bandwidth.that the aggregate tra�c will reach the sum of the peak rates is in�nitesimally small(1e-48), much smaller than the loss characteristics of physical links. Atm network,for example, has a loss probability of 1e-8|in which case, guaranteeing a 1e-9 lossrate at the upper layer is su�cient [VPV88]. Hence networks that support statisticalmultiplexing can achieve higher level of utilization without sacri�cing much on qualityof service.Probabilistic guaranteed service exploits this statistical observation and does notprovide for the worst-case, sum of peak rates, scenario. Instead, using the statisticalcharacterization of the current and incoming tra�c it guarantees a bound on theprobability of lost packets:� > Prob(aggregate tra�c > available bandwidth); (2.3)where � is the desired loss rate. In environments where the available bandwidth isa portion of link capacity alloted to realtime tra�c and realtime tra�c is allowedto use the remaining bandwidth during overow, � simply bounds the overow rate.We do not make the distinction between loss rate and overow rate in the remainderof this dissertation. The aggregate tra�c of the statistically multiplexed sourcesis called the equivalent bandwidth (or e�ective bandwidth or equivalent capacity) ofthe sources [WKFR90, Rob93]. In Fig. 2.2 we show the statistical multiplexing ofthe three ows, water, vinegar, and oil, and their bandwidth requirements according10



to peak rate allocation and equivalent bandwidth. Using the equivalent bandwidthmethod to compute the bandwidth requirement of the three ows, we decide thatthey can be served by a link with capacity �. Whereas if we consider only peak rateallocation, we would not have admitted all three ows into the network. For switcheswith bu�er, the probabilistic bound can be formulated as:� > Prob((aggregate tra�c - available bandwidth) � > bu�er); (2.4)where � is a time interval.We now look at the di�erent approaches used to compute equivalent bandwidth.Let Xi;t be the instantaneous arrival rate of ow i at time t. Assume that Xi;t's areindependent, identically distributed. Let St = Pni=1Xi;t be the instantaneous arrivalrate of n ows. We want St such that:� > Prob(St > �) (2.5)where � is the link bandwidth. St can be computed directly from aggregate tra�c, orby summing up Xi;t; i = 1 : : : n. If the switch has bu�er, we can de�ne Xi;� to be theinstantaneous arrival rate of ow i during time period � . Xi;� 's are again assumedto be independent, identically distributed. Let S� = Pni=1Xi;� be the instantaneousarrival rate of n ows. And we want S� such that:� > Prob((S� � �)� > B); (2.6)where B is the bu�er size.Bernoulli Trials. In references [RS90, SS91], the authors model Xi;� as Bernoullirandom variables. The aggregate arrival rate is then the convolution of the Bernoullivariables. The bound on bu�er overow probability over � can be calculated as:� > P1�=0(�� ��)%�1 ? � � � ? %�n(�)P1�=0 �%�1 ? � � � ? %�n(�) (2.7)11



where � is the number of bits, %�j(�) is the probability that � bits arrived from sourcej, ? denotes convolution, and%�j(�) = 8>>><>>>: � if � = ��;1� � if � = 0;0 otherwise. (2.8)Binomial Distribution. The number of arrivals in a sequence of Bernoulli trialshas a binomial distribution. Assuming sources are homogeneous two-state Markovprocesses, the convolution in Eqn. 2.7 reduces to a binomial distribution [KS89,RSKJ91, MSST91]. The bound on bu�er overow probability becomes:� > Pni=�=C+1 %(i)(iC � �)nm (2.9)where %(i) is the binomially distributed probability that i sources are active:%(i) =  ni!�i(1� �)n�i; (2.10)and � is the probability of success in a Bernoulli trial. This computation results inoverestimation of actual bandwidth for sources with short burst period because thebu�er allows short bursts to be smoothed out and the approximation does not takethis smoothing e�ect into account [GAN91]. In [ZK94], instead of a single binomialrandom variable, the authors used a family of time-interval-dependent binomial ran-dom variables, i.e. associated with each time interval is a binomial random variablethat is stochastically larger than the actual bit rate generated. This method of mod-eling bit rate was �rst proposed by the author of reference [Kur92]. It allows a tighterbound on S� . The main drawback of modeling S� with binomial distribution is thecost of convoluting the arrival probabilities of heterogeneous sources. In [ZK94], forexample, the authors suggest using the Fast Fourier Transform (FFT) to calculatethe convolution. FFT has a complexity of �(n bB log bB), where n is the number ofsources and bB the size of the largest burst from any source. Furthermore, when the12



number of sources multiplexed is small, this approximation of equivalent bandwidthunderestimates the actual requirement [RSKJ91].Fluid-ow Approximation. A uid-ow model characterizes tra�c as a Markovmodulated continuous stream of bits with peak and mean rates. Let bc be the equiv-alent bandwidth of a source, as seen by a switch, computed using the uid-owapproximation. In [GAN91], bc is computed using:bc ' �n(1� �)p�B +q[�n(1� �)p� B]2 + 4B�n�(1� �)p2�n(1� �) ; (2.11)where � is the source's utilization (average/peak), p the source's peak rate, � =ln(1=�), and B the switch's bu�er size. This approximation assumes ows are notvery bursty and have short average burst period.2 When ows do not conform tothis assumption the bandwidth requirement is overestimated [GAN91]. Equivalentbandwidth for more general source models have also be computed; see for examplereferences [AMS82, Mit88, EM93, Kel91, KWC93, MP90]. Computing the equiva-lent bandwidth of a source using this method depends only on the ow's uid-owcharacteristics and not on the number nor characteristics of other existing ows. Thecomputation of equivalent bandwidth for general sources, however, is computationallyexpensive (O(n3) is quoted in [Mit88], where n is the number of sources).Gaussian Distribution. In references [VPV88, LPP90, GAN91, Sai92, AS94,SRLL94], St is approximated with a Gaussian distribution. Let bCG be the equiv-alent capacity of the aggregate tra�c. Given a desired loss rate, reference [GAN91]computes CG using: CG = � + �0� (2.12)where, �0 = q�2 ln(�)� ln(2�), � = Pni=1 ai, and �2 = Pni=1 �2i , where � and �2are the average and variance of the aggregate tra�c respectively and ai and �2i are2The length of a burst is measured relative to the bu�er size of a switch. 13



those of each source. Hence the CG bounds the right tail of the Gaussian distri-bution. This approximation tracks the actual bandwidth requirement well whenthere is a large number of sources (e.g. more than 10 homogeneous sources) withlong burst period. When only a small number of sources are multiplexed, this ap-proximation overestimates the required bandwidth. It also overestimates requiredbandwidth when sources have short bursts because short bursts are smoothed out bythe switch bu�er and the approximation does not take this into account. The authorsof reference [GG93] use the minimum of the uid-ow and Gaussian approximations,bC = minf� + �0�;Pni=1 bcig, in making admission control decisions.Large Deviation Approximation. Originally proposed by the author of reference[Hui88], an approximation based on the theory of large deviation was later generalizedin reference [Kel91] to handle resource with bu�er. The theory of large deviationbounds the probability of rare events occuring. In this case, the rare event is St > �.The approximationn in references [Hui88, Kel91] are based on the Cherno�'s bound,while the one in [Flo96a] is based on the Hoe�ding's bound. The Hoe�ding's bounddoes not require that Xi;t be independent of Xi;t+�. Equivalent bandwidth computedusing the Hoe�ding's bound is given by:CH(�; fpig1�i�n; �) = � +s ln(1=�)Pni=1(pi)22 ; (2.13)where � is the average arrival rate of the aggregate tra�c and pi source i's peak rate.Further approaches to admission control based on the theory of large deviation arepresented in references [dVKW95, CT95, EMW95].Poisson Distribution. The above approximations of equivalent bandwidth all as-sume high enough degree of statistical multiplexing. When the degree of statis-tical multiplexing is low, or when bu�er space is small, approximations based onGaussian distribution and theory of large deviation overestimate required bandwidth[GAN91, AS94, Flo96a], while approximations using both uid-ow characterizationand binomial distribution underestimate it [Fil89, NRSV91, RSKJ91]. In such cases,14



the authors of references [RSKJ91, Fil89] suggest calculating equivalent bandwidthby solving for an M=D=1=B queue, assuming Poisson arrivals.Measurement-based. Each approach to compute equivalent bandwidth above canbe approximated by using measurement to determine the values of some of the pa-rameters used. In reference [SS91], the authors proposes measuring the convolutionof arrival probabilities used in Eqn. 2.7 instead of computing them:� > P1k=0(k � �t)b% ? %�n+1(k)P1k=0 k b% ? %�n+1(k) (2.14)where b% is the measured arrival probabilities of existing tra�c and %�n+1 the arrivalprobability of the prospective source. The authors of reference [dVKW95] proposemeasuring the e�ective bandwidth of each source; while the authors of references[AS94, DJM96] propose measuring the mean and variance of tra�c, assuming it hasa Gaussian distribution. Given the unreliable nature of measurement, the authors ofreference [DJM96] further provide an estimate of the measurement errors. In reference[Flo96a], the author proposes using measured arrival rates in the computation ofequivalent bandwidth based on the Hoe�ding's bound:bCH(b�; fpig1�i�n; �) = b� +s ln(1=�)Pni=1(pi)22 : (2.15)In reference [LCH95], the authors propose measuring the spectral density of traf-�c. Bandwidth is provisioned according to the low frequency of tra�c and bu�erspace according to the high frequency. The authors further suggest using a resourcerenegotiation method similar to the one mentioned in Section 2.1 to increase networkutilization. This approach is appealing, however it is not clear what should the cut-o�frequency be and how tra�c spectral density can be computed on-line.Two other methods to estimate equivalent bandwidth are speci�cally suited tomeasurement-based approach. The �rst is based on the Bayesian Estimation method.From a given initial load, and a set of recursive equations, one can estimate fu-ture load from successive measurements. This approach is presented in references15



[WCKG94, GKK95]. The authors of reference [WCKG94] further describe a hardwareimplementation of the measurement mechanism. The second method is a table-drivenmethod. An admissible region is a region of space within which service commitmentsare satis�ed. The space is de�ned by the number of admitted ows from a �nite setof ow types. The �rst approach to compute an admissible region uses simulation[DTVV90, HLP93, DLM93]. For a given number of ows from each ow type, sim-ulate how many more ows of each type can be admitted without violating servicecommitments. Running such simulations repeatedly with a di�erent set of initial owmix, one eventually maps out the admissible region for the given ow types. Theadmissible region is encoded as a table and down-loaded to the switches. When aprospective ow makes a reservation, the admission control algorithm looks up thetable to determine whether admittance of this ow will cause the network to operateoutside the admissible region; if not, the ow is admitted. The major drawbacks ofthis method for doing admission control are: (1) it supports only a �nite numberof ow types, and (2) the simulation process can be computationally intensive. Theauthors of reference [GKK95] use a Bayesian method to pre-compute an admissibleregion for a set of ow types. The admissible threshold is chosen to maximize thereward of increased utilization against the penalty of lost packet. The computationassumes knowledge of link bandwidth, size of switch bu�er space, ows' token bucket�lter parameters, ows' burstiness, and the desired loss rate; it also assumes Poissoncall arrival process and independent, exponentially distributed call holding times.However, the authors of [GKK95] claim that this algorithm is robust against uctu-ations in the value of the assumed parameters. The measurement-based version ofthis algorithm ensures that the measured instantaneous load plus the peak rate of anew ow is below the admissible region. The authors of references [Hir91, CLG95]use a neural-network to learn the admissible region for a given set of ow types. InChapter 10 we present a comparative study of a couple of the measurement-basedadmission control algorithms presented in this section next to our own.
16



Chapter 3Relaxed Realtime ServicesTraditional realtime service models have been designed on two assumptions: �rst,tra�c sources can be well characterized by Markov chains, and second, receivers re-quire rigid delay bound. Recent studies show that network tra�c exhibits long-rangedependence, a phenomenon not consistent with the �rst assumption. Long-rangedependence has been observed in isdn tra�c [MH+91], telephone tra�c [DMRW94],local-area ethernet tra�c [LTWW94], wide-area Internet tra�c [PF94, KM94], world-wide-web tra�c [CB96], video tra�c [BSTW95, GW94], and audio tra�c [Flo96a].Long-range dependent tra�c has been shown to e�ect queue behavior and loss rate[LW91, ENW96, GB96] and its cause has been traced back to source processes withheavy-tailed on and/or off times distributions [WTSW95, PKC94, Flo96a]. As tothe second assumption, recent realtime applications speci�cally designed for the In-ternet, such as the vat, ivs, nv, and vic teleconferencing programs, can bu�er receivedpackets and adjust their playback point to adapt to experienced delay. Given suchadaptive playback applications, the network is not required to provide absolute delaybound. This relaxation of delay bound enables the network to further increase uti-lization. Recognizing the above two trends and the heterogeneous and decentralizednature of the Internet, several \relaxed" realtime service models have been proposedin the literature. We review them in the remainder of this chapter.
17



3.1 Against Delay BoundThere is only one service model available on the current Internet: the best-e�ort ser-vice model. Under this model, neither packet delivery time nor loss rate is bounded.Some researchers believe that there will be such abundance of network bandwidthin the future that this service model will be su�cient to support realtime tra�c.Without adding extra mechanism that will only slow down packet transmission, thenetwork can attain high level of utilization by admitting all o�ered ows; users dis-satis�ed with network performance can leave the network, resulting in better perfor-mance for those who remain [WC93]. Where network bandwidth is not in abundance,applications should be written to adapt to available bandwidth. Applications thatcan gracefully adapt to heterogeneous environment are more robust and will survivethose that cannot [Hui95]. Aside from the ability of video sources to adapt their com-pression ratio to available bandwidth [Cha86, GG91, YH91, GV93, WC93, KMR93,VC94], video sources can also be hierarchically encoded into separate levels. In ref-erences [MJV96, HS96], each level of the hierarchically encoded data is transmittedas a separate ow under the control of receivers. Depending on available bandwidthand receiver interest, more or fewer levels are actually transmitted. The ability ofapplications to adapt to available bandwidth thus further obviate the need for thenetwork to guarantee a delay bound.Next we question the meaning of a delay bound. Given the heterogeneous, decen-tralized, and non-deterministic nature of the Internet, is it even realistic to expectthe network to guarantee a delay bound? If a ow is routed through a portion ofthe Internet that does not support delay bound, the guarantees provided by the restof the path becomes contractually unenforceable. Such routing could happen eitherat ow setup time or during the ow's lifetime. Furthermore, how should the delaybound at each switch be chosen? Assuming \appropriate" per-hop bounds, one stillhas to determine the end-to-end delay bound; is this to be a simple sum of the per-hop bounds? Finally, if network tra�c is indeed long-range dependent, tra�c tideshappen when sources burst simultaneously; at which time, the most e�ective controlis to ensure su�cient bandwidth, lack of which will result in bu�er overow, for any18



reasonable bu�er sizes. The purpose of bu�er space in switches is merely to holdpackets that arrive simultaneously because they were \jostled" a bit in upstreamswitches, not to reshape tra�c tide [Flo96a, LCH95]. Except on networks whereows are isolated from each other, by means of a weighted fair queue for example,and bu�er space is allocated for worst-case requirements, delay bound is inherentlyunenforceable.Related to the question of how to provision for long-range dependent tra�c, is howto choose the token bucket �lter parameters to characterize a source. If long-rangedependence in aggregate tra�c is caused by on/off sources with in�nite varianceon times, for all bucket depths one chooses, there is a longer on time than what thechosen bucket depth can accommodate. Furthermore, unless one is willing to toleratelong queues at the token bucket �lters, ows must be assigned token rates very closeto their peak rates. If ows are reserved bandwidth close to their peak rates, therewill not be long queueing delay anyway.3.2 Unadvertised BoundWhile assuming in�nite bandwith gives us a simple network architecture that is veryappealing, it is still to be determined whether there really will be such abundance ofbandwidth in the future. A more conservative version of the above model allow usersto reserve a minimum bandwidth for each ow; tra�c exceeding this minimum ratecompetes for the remaining capacity. The admission control algorithm checks that thesum of bandwidth requested does not exceed link capacity. Each ow may increaseits transmission rate until it receives congestion feedback from the network. Uponcongestion, the ow throttles back its o�ered load accordingly, down to the minimumbandwidth reserved [KMR93, WC93]. Alternatively, one could make reservations toensure that the base level of an hierarchically encoded stream will be successfullytransmitted. The service models discussed in this section recognizes the need ofeven adaptive applications to sometimes have some resources reserved. Concedingthe di�culty of guaranteeing delay bound as raised in the previous section, however,they do not provide a contractually strict delay bound. 19



The controlled-load service model de�ned in reference [Wro95] \tightly approxi-mates the behavior visible to applications receiving best-e�ort service under unloadedconditions" over the same path. Furthermore, applications requesting controlled-load service may assume that its packet loss rate is on the order of the transmissionmedium's error rate and that its typical experienced delay should be on the orderof the path's transmission and propagation delays. More speci�cally, average packetqueueing delay should be no greater than the ow's \burst time" and there shouldbe minimal loss rate averaged over time-scales larger than \burst time"|where the\burst time" is de�ned as the time required to serve a ow's maximum burst at theow's reserved rate. For a ow described by a token bucket �lter, the \burst time"is b=r, where b is the token bucket depth and r its replenishment rate. Switchesensures adequate resources by doing admission control. While the speci�cation ofcontrolled-load service does not dictate speci�c quantitative values for service param-eters such as delay bound or loss rate, operationally the admission control decisionsmust still be computed and evaluated based on meeting one or both of these con-straints. In Chapter 10 we investigate �ve admission control algorithms that couldsupport controlled-load service.The committed rate service model described in reference [BGK96] provides re-source reservation as in guaranteed service but without any delay or loss guaran-tee nor the ability to pre-compute end-to-end delay. Committed-rate di�ers fromcontrolled-load service in that it allows for tra�c policing and re-shaping, therebymore closely emulates a dedicated circuit.3.3 Predictive ServiceAdaptive playback applications do not require an absolute delay bound; however,they may still prefer an upper bound on the tail of their delay distributions. Evenif the delay distribution has a very small median, it may be useful to some applica-tions to have a bounded worst-case. A small dynamic range of a parameter shouldnot be confused with the uselessness of that parameter. Furthermore, applicationsusing the networks may have di�erent levels of delay bound tolerance; by providing20



di�erent levels of realtime service with order of magnitude di�erence in delay bound,a network can increase its portion of realtime tra�c. While the heterogeneous anddecentralized nature of the Internet does pose an implementation problem for servicesproviding delay bound, predictive service can nevertheless be implemented on privateinternetworks or commercial portions of the Internet.Unlike the controlled-load and committed-rate service models, predictive serviceo�ers a delay bound. Nevertheless, predictive service di�ers in two important waysfrom traditional guaranteed service: (1) the service commitment is somewhat lessreliable, (2) while predictive service requires that sources be characterized by tokenbucket �lters at admission time, the behavior of existing ows is determined by mea-surement rather than by a priori characterizations. It is important to keep these twodi�erences distinct because while the �rst is commonplace, the second, i.e. the useof measurement-based admission control, is more novel. On the reliability of servicecommitment, we note that the de�nition of predictive service itself does not specifyan acceptable level of delay violations. This is for two reasons. First, it is not par-ticularly meaningful to specify a failure rate to a ow with a short duration [NK92].Second, reliably ensuring that the failure rate never exceeds a particular level leadsto the same worst-case calculations that predictive service was designed to avoid. In-stead, the csz approach proposes that the level of reliability be a contractual matterbetween a network provider and its customers|not something speci�ed on a per-owbasis. We presume that these contracts would only specify the level of violations oversome large time scale (e.g. days or weeks) rather than over a few hundred packettimes.1 Hence the bound o�ered by predictive service is not a probabilistic bound.Probabilistic bounds, as discussed in Section 2.2, are based on the statistical charac-terizations of the tra�c. Under probabilistic service, a ow can request any amountof bandwidth and thereby exibly tune its resultant delay bound or statistical \loss"rate. In contrast, the delay bounds for predictive service are less exible; each switchhas a few predictive service classes which have pre-established target delay bounds.1A network provider might promise to give its customers their money back if delay violationsexceed some level over the duration of their ow, no matter how short the ow; however we contendthat the provider cannot realistically assure that excessive violations will never occur. 21



These bounds will typically be chosen to be roughly an order of magnitude apart.Prospective ows can choose which class of predictive service they desire based onthe delay bound they can tolerate. The validity of these bounds are assessed whenmaking admission control decisions, based on actual measured characteristics of traf-�c, rather than the theoretical worst-case behavior. Since our measurement-basedadmission control algorithm does not rely on pre-existing measurements or computa-tions, such as the ones in Section 2.2, predictive service is not limited to serve onlya small and well-characterized set of tra�c sources.
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Chapter 4Measurement-based AdmissionControlOur admission control algorithm consists of two logically distinct aspects. The �rstaspect is the set of criteria controlling whether to admit a new ow; these are basedon an approximate model of tra�c ows and use measured quantities as inputs. Thesecond aspect is the measurement process itself, which we will describe in Chapter 5.In this chapter we present the analytical underpinnings of our admission controlcriteria.4.1 FrameworkWe have studied the behavior of our admission control algorithmmostly under the cszscheduling discipline [CSZ92], however we believe that the observations we made onour measurement-based admission control algorithm, and our methodology for study-ing such an algorithm, apply equally to other scheduling disciplines|for example, inChapter 10 we apply our methodology and observations in studying several admis-sion control algorithms for the controlled-load service model. While we believe thatmost future realtime applications written for asynchronous packet switched networkswill be adaptive playback applications, we do not discount the need for guaranteed23



service. In the csz scheme, guaranteed service is provided by the weighted fair queue-ing (wfq) algorithm described in [DKS89]|also known as the generalized processorsharing (gps) algorithm in [PG93]. Wfq assigns a share of link capacity to eachactive ow; the admission control criterion is merely that the sum of the previouslyassigned bandwidths plus the bandwidth requested by the prospective ow does notexceed link capacity. The scheduling discipline for predictive service is a priorityqueue, as described in [CSZ92]; the scheduler attempts to minimize the maximal(minimax) delays actually experienced in each class, but does not guarantee an ab-solute maximum delay bound. Because of the minimax scheduler, we expect that forthe same amount of bandwidth reserved, predictive service users will see lower delaythan guaranteed service users. Under the csz model, a switch can support multiplelevels of predictive service, each with its own delay bound. We envision that the delaybounds of di�erent level of predictive service will be on the order of magnitude apart.In our scheme, the admission control algorithm at each switch enforces the queueingdelay bound at that switch, assuming in�nite bu�er space. We leave the satisfactionof end-to-end delay requirements to the end systems. An end system could, for ex-ample, use adaptive source routing, such as the one proposed in reference [Bre95], toselect a route that satis�es its end-to-end requirements. We also assume the existenceof a reservation protocol, such as the one in [Z+93], which the end systems could useto communicate their resource requirements to the network. We require that therebe compelling incentives, such as quality of service based pricing (e.g. [CESZ93]), forusers to always request the least costly quality of service satisfying their needs.Sources requesting service must characterize the worst-case behavior of their ow.In [CSZ92] this characterization is done with a token bucket �lter. A token bucket�lter for a ow has two parameters: its token generation rate, r, and the depth of itsbucket, b, i.e. no more than b tokens can be accumulated. Each token represents asingle bit; sending a packet consumes as many tokens as there are bits in the packet.Without loss of generality, in this study we assume packets are of �xed size and thateach token is worth a packet; sending a packet consumes one token. A ow is said toconform to its token bucket �lter if no packet arrives when the token bucket is empty.24



When the ow is idle or transmitting at a lower rate, tokens are accumulated up tob tokens. Thus ows that have been idle for a su�ciently long period of time candump a whole bucket full of data back to back. For constant bit rate sources, onecan set the token rate, r, to the peak tra�c generation rate and let the bucket depth,b, be 1. In this case, the token-bucket �lter precisely characterizes the tra�c comingout of the sender. Many non-constant bit rate sources do not naturally conform to atoken bucket �lter with token rate less than their peak rates. The user, then, shouldpick a token bucket �lter which looks like a reasonable upper bound on its behavior.It is conceivable that future real-time applications will have a module that can, overtime, learn a suitable r and b to bound their tra�c.When admitting a new ow, not only must the admission control algorithmdecide whether the ow can get the service requested, but it must also decide if ad-mitting the ow will prevent the network from keeping its prior commitments. Letus assume, for the moment, that admission control cannot allow any delay viola-tions. Then, the admission control algorithm must analyze the worst-case impactof the newly arriving ow on existing ows' queueing delay. However, with burstysources, where the token bucket parameters are very conservative estimates of theaverage tra�c, delays rarely approach these worst-case bounds. To achieve a fairlyreliable bound that is less conservative, we approximate the maximal delay of pre-dictive ows by replacing the worst-case parameters in the analytical models withmeasured quantities. We call this approximation the equivalent token bucket �lter .This approximation yields a series of expressions for the expected maximal delaythat would result from the admission of a new ow. As mentioned above, in the cszarchitecture, switches serve guaranteed tra�c with the weighted fair queueing (wfq)scheduling discipline and serve predictive tra�c with priority queueing. Hence, thecomputation of worst-case queueing delay is di�erent for guaranteed and predictiveservices. In this chapter, we will �rst look at the worst-case delay computation ofpredictive service, then that of guaranteed service. Following the worst-case delaycomputations, we present the equivalent token bucket �lter. We close this chapter25



by presenting the details of the admission control algorithm based on the equivalenttoken bucket �lter approximations.4.2 Worst-case Delay: Predictive ServiceTo compute the e�ect of a new ow on existing predictive tra�c, we �rst need a modelfor the worst-case delay of priority queues. Cruz, in [Cru91], derived a tight boundfor the worst-case delay, D�j , of priority queue level j. Our derivation follows Parekh's[Par92], which is a simpler, but looser, bound for D�j that assumes small packet sizes,i.e. the transmission time of each packet is su�ciently small (as compared to otherdelays) and hence can be ignored. This assumption of small packet sizes furtherallows us to ignore delays caused by the lack of preemption. Further, we assumethat the aggregate rate, aggregated over all tra�c classes, is within the link capacity(P rj � �).Theorem 1 Parekh [Par92]: The worst-case class j delay, with fifo discipline withinthe class and assuming in�nite peak rates for the sources, isD�j = Pji=1 bi��Pj�1i=1 ri (4.1)for each class j. Further, this delay is achieved for a strict priority service disciplineunder which class j has the least priority.Proof: Let j be the session with the lowest priority at the �rst switch from thesource of j. Session j dumps a bucket full of data at time t0. We �rst prove that thedelay seen by the last bit of session j's bucket is Eqn. 4.1. We then prove that thisdelay is the worst-case delay.1Case 1: All higher priority sessions also dump their bucket full of data at timet0. Session j's queue is empty. After dumping their bucket full of data, the higherpriority sessions continue sending at their respective token rate, ri; 0 < i < j � 1.1Interested readers may also refer to [Par92], Theorem 2.4 for an alternate proof. 26



The �rst bit of data from session j's bucket will be served only after all the packetsof higher priority sessions have been served. The number of accumulated higherpriority packets is Pj�1i=1 bi; since all the higher priority sessions continue sending attheir respective rate after dumping their bucket full of packets, the bandwidth left toserve Pj�1i=1 bi is ��Pj�1i=1 ri. Thus the �rst bit of session j's bucket will be served attime: ts = t0 + Pj�1i=1 bi��Pj�1i=1 ri (4.2)To determine the queueing delay experienced by the last bit of session j's packet,we �rst determine how long it takes to drain bj at the source. In the worst casescenario, session j has in�nite amount of data to transmit. The bucket drain rate isthen Cj, the transmission rate of session j's source. Since the bucket is replenishedat rate rj, it takes �j time to drain the bucket. Note that we have accounted for thebucket replenishment rate here.During session j's bucket draining time, it sends Cj�j amount of data onto thenetwork. It takes Cj�j��Pj�1i=1 ri (4.3)time to serve this data. But since the last bit of session j's packet does not arriveduntil time �j, and � > rj, the delay seen by the last bit of session j's packet is onlya�ected by the size of the session's bucket size. Hence Eqn. 4.1.We now prove that Eqn. 4.1 is the maximal delay seen by all session j's packets.Case 2: If session j's queue is not empty at time t0, Some higher priority sessionmust have dumped their data before t0. Since rj < ��Pj�1i=1 ri, session j's queuecould not have been longer than the amount of higher priority packets served beforet0. Thus the �rst bit of session j's bucket will see service earlier than ts of Eqn. 4.2.Case 3: Some higher priority sessions dump their data before t0, and session j'squeue is empty at time t0. The �rst bit of session j's bucket will again see serviceearlier than ts of Eqn. 4.2. 27



Case 4: Some upper priority sessions dump their data after t0. This case reducestrivially to the case when all of them dump their data before or at t0, i.e. case 1 or 2above. 2The theorem says that the delay bound for class j is the one-time delay burst thataccrues if the aggregate bucket of all classes 1 through j ows are simultaneouslydumped into the switch and all classes 1 through j � 1 sources continue to send attheir reserved rates.We now use Eqn. 4.1 as the base equation to model the e�ect of admitting a newow � on existing predictive tra�c. First we approximate the tra�c from all owsbelonging to a predictive class j as a single ow conforming to a (�j; bj) token bucket�lter. A conservative value for �j would be the aggregate reserved rate of all owsbelonging to class j. Next, we recognize that there are three instances when thecomputed worst-case delay of a predictive class can change: (1) when a ow of thesame class is admitted, (2) when a ow of a higher priority class is admitted, and (3)when a guaranteed ow is admitted. The switch priority scheduling isolates higherpriority (< k) classes from a new ow of class k, so their worst-case delay need notbe re-evaluated when admitting a ow of class k. In the remainder of this chapter,we compute each of the three e�ects on predictive tra�c individually. At the endof these computations, we will observe that admitting a higher priority predictiveow \does more harm" to lower priority predictive tra�c than admitting either aguaranteed ow or a predictive ow of the same priority.In the equations below, we denote newly computed delay bound by D�0 . Wedenote the sum of guaranteed ows' reservation by �G. The link bandwidth availablefor serving predictive tra�c is the nominal link bandwidth minus those reserved byguaranteed ows: �� �G.1. E�ect of new predictive ow � on same priority tra�c. We can modelthe e�ect of admitting a new ow � of predictive class k by changing the class's28
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Figure 4.1: E�ect of new predictive ow on same priority tra�c.token bucket parameters to (�k + r�k ; bk + b�k ), where (r�k ; b�k ) are the token bucketparameters of the new ow:D�0k = Pk�1i=1 bi�� �G �Pk�1i=1 �i + bk + b�k�� �G �Pk�1i=1 �i= D�k + b�k�� �G �Pk�1i=1 �i : (4.4)We see that the delay of class k grows by a term that is proportional to ow �'sbucket size.Fig. 4.1 depicts a csz scheduler with n number of guaranteed ows and one class 2predictive ow. When the class 2 ow arrives, there is no other predictive ow in thesystem. Hence the worst-case delay seen by the new ow is the time it takes to drainthe its bucket full of data (b2P2) at rate ���nG, where �nG is the sum of the n guaranteedows' reserved rates. The new worst-case delay for class 2 is D�0P2 = b2P2=�� �nG.
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full of data (b1P1). Maximal delay of class 1 is D�0P1 = b1P1=�� �nG. Class 2 tra�c mustnow wait for the class 1 queue to drain before it sees service. Hence the worst-casedelay of class 2 tra�c becomes:D�0P2 = D�P2 �� �nG�� �nG � r1P1 + b1P1�� �nG � r1P1 : (4.6)3. E�ect of a guaranteed ow � on predictive tra�c. Again, we computethe new delay bound D�0 for all predictive classes directly from Eqn. 4.1, adding inthe reserved rate, r�G, of ow �.D�0j = Pji=1 bi�� �G �Pj�1i=1 �i � r�G= D�j �� �G �Pj�1i=1 �i�� �G �Pj�1i=1 �i � r�G ; 1 � j � K: (4.7)Notice how the new guaranteed ow simply squeezes the pipe, reducing the availablebandwidth for predictive ows; new guaranteed ows do not contribute any delaydue to their buckets because wfq smooths out their bursts. Also observe that the�rst term of Eqn. 4.5 is equivalent to Eqn. 4.7: the impact of a new guaranteed owis like adding a zero-size bucket, higher priority, predictive ow.Fig. 4.3 shows a new guaranteed ow added to the system in Fig. 4.2. The newguaranteed ow does not e�ect existing guaranteed ows nor is it itself e�ected byany other ows. However, it does a�ect the bandwidth available to predictive tra�c.The new maximal delay of class 1 and class 2 predictive services are respectively:D�0P1 = D�P1 �� �nG�� �nG � rn+1G ; andD�0P2 = D�P2 �� �nG � r1P1�� �nG � rn+1G � r1P1 : (4.8)Contrasting Eqns. 4.4, 4.5, and 4.7, we see that the experienced delay of lowerpriority predictive tra�c increases more when a higher priority predictive ow isadmitted than when a guaranteed ow or a same-priority predictive ow is admitted.31
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� is the utilization target (see Chapter 5.2 for a discussion on utilization target). Inaddition to protecting guaranteed ows from each other, wfq also isolates (protects)guaranteed ows from all predictive tra�c.4.4 Equivalent Token Bucket FilterThe equations above describe the aggregate tra�c of each predictive class with asingle token bucket �lter. How do we determine a class's token bucket parameters?A completely conservative approach would be to make them the sum of the param-eters of all the constituent ows; when data sources are bursty and ows declareconservative parameters that cover their worst-case bursts, using the sum of declaredparameters will result in low link utilization. Our algorithm is approximate andoptimistic: we take advantage of statistical multiplexing by using measured values,instead of providing for the worst possible case, to gain higher utilization, riskingthat some packets may occasionally miss their delay bounds. In essence, we describeexisting aggregate tra�c of each predictive class with an equivalent token bucket �lterwith parameters determined from tra�c measurement.The equations above can be equally described in terms of current delays andusage rates as in bucket depths and usage rates. Since it is easier to measure delaysthan to measure bucket depths, we do the former. Thus, the measured values fora predictive class j are the aggregate bandwidth utilization of the class, b�j, andthe experienced packet queueing delay for that class, cDj. For guaranteed service,we count the sum of all reserved rates, �G, and we measure the actual bandwidthutilization, b�G, of all guaranteed ows. Our approximation is based on substituting,in the above equations, the measured rates b�j and b�G for the reserved rates, andsubstituting the measured delays cDj; j = 1 : : :K for the maximal delays. We nowuse the previous computations and these measured values to formulate an admissioncontrol algorithm.
33



4.5 The Admission Control AlgorithmNew Predictive Flow. If an incoming ow � requests service at predictive classk, the admission control algorithm:1. Denies the request if the sum of the ow's requested rate, r�k , and current usagewould exceed target link utilization:�� > r�k + b�G + NXi=1 b�i; (4.9)2. Denies the request if admitting the new ow could violate the delay bound, Dk,of the same priority level:Dk > bDk + b�k�� b�G �Pk�1i=1 b�i ; (4.10)or could cause violation of lower priority classes' delay bound, Dj:Dj > bDj �� b�G �Pj�1i=1 b�i�� b�G �Pj�1i=1 b�i � r�k +b�k�� b�G �Pj�1i=1 b�i � r�k ; k < j � K: (4.11)New Guaranteed Flow. If an incoming ow � requests guaranteed service, theadmission control algorithm:1. Denies the request if either the bandwidth check in Eqn. 4.9 fails or if thereserved bandwidth of all guaranteed ows exceeds target link utilization:�� > r�G + �G: (4.12)
34



2. Denies the request if the delay bounds of predictive classes can be violated whenthe bandwidth available for predictive service is decreased by the new request:Dj > bDj �� b�G �Pj�1i=1 b�i�� b�G �Pj�1i=1 b�i � r�G ; 1 � j � K: (4.13)If the request satis�es all of these inequalities, the new ow is admitted.
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Chapter 5A Simple Time-windowMeasurement MechanismThe formulae described in the previous chapter rely on the measured values cDj,b�G, and b�j as inputs. We describe in this chapter the time-window measurementmechanism we use to measure these quantities. While we believe our admissioncontrol equations have some fundamental principles underlying them, we make nosuch claim for the measurement process. Our mechanism is extremely simple andcould be replaced by a number of other approaches. We consider the simplicity ofour approach an advantage in our study because it helps us isolate properties inherentto our admission control criteria from those induced by the measurement mechanism.Our measurement process uses the constants �; S, and T ; discussion of their roles asperformance tuning knobs follows our description of the measurement process.5.1 Measurement ProcessWe take two measurements: experienced delay and utilization. To estimate delay,we measure the queueing delay bd of every packet. To estimate utilization, we samplethe usage rate of guaranteed service, b�SG, and of each predictive class j, b�Sj , over asampling period of length S packet transmission units. Following we describe how36
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Measuring rate. The measurement variables b�G and b�j track the highest sampledaggregate rate of guaranteed ows and each predictive class respectively (heretofore,37
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5.2 Performance Tuning KnobsWe now look at the constants used in the algorithm.�: In a simple M=M=1 queue, the variance in delay diverges as the system ap-proaches full utilization. A measurement-based approach is doomed to fail whendelay variations are exceedingly large, which will occur at very high utilization. It isthus necessary to identify a utilization target and require that the admission controlalgorithm strive to keep link utilization below this level.The appropriate utilization target of any given link depends on the characteristicsof the tra�c owing through it. If each source's rate is small compared to link capacity(small grain size) and bursts are short, the link's utilization target can be set higher.Bursty sources with big, long bursts or long idle periods will require a lower linkutilization target. In this study, we set utilization target at 90% capacity.�: In our simulations, a single instance of packet delay above the current estimatetypically indicate that subsequent delays are likely to be even larger; so when apacket's queueing delay, bd, is higher than its class's estimated maximal delay cDj, weback o� our delay estimate to a much larger value, � bd. In this study, we use � = 2.S: The averaging period S in Eqn. 5.2 controls the sensitivity of our rate mea-surement. The smaller the averaging period, the more sensitive we are to bursts;the larger the averaging period, the smoother tra�c appears. An S that capturesindividual bursts may make the admission control more conservative than desired.In this study we use S of at least 100 packet transmission times.T : Once cD or b� is increased, their values stay high until the end of their respectivemeasurement window T . The size of T controls the adaptability of our measurementmechanism to drops in tra�c load. Smaller T means more adaptability, but largerT results in greater stability. The window size for load measurement should allowfor enough utilization samples, i.e. T should be several times S. The measurementwindows of the load and the delay can be maintained independently. When we admita new ow and add its worst case e�ect to the measured values, we also restart the39



measurement windows to give the measurement mechanism one whole window togather information on the new ow.
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Chapter 6SimulationsAdmission control algorithms for guaranteed service can be veri�ed by formal proof.Measurement based admission control algorithms can only be veri�ed through exper-iments on either real networks or a simulator. We have tested our algorithm throughsimulations on a wide variety of network topologies and driven with various sourcemodels; we describe a few of these simulations in the following chapters. In eachcase, we were able to achieve a reasonable degree of utilization (when compared toguaranteed service) and a low delay bound violation rate (we try to be very conser-vative here and always aim for no delay bound violation over the course of all oursimulations). Before we present the results from our simulations, we �rst present thetopologies and source models used in these simulations.6.1 Simulated TopologiesWe run our simulations on four topologies: the One-Link, Two-Link, Four-Link,and TBone topologies depicted in Figs. 6.1(a), (b), (c), and 6.2 respectively. In the�rst three topologies, each host is connected to a switch by an in�nite bandwidth link.The connection between switches in these three topologies are all 10 Mbps links, within�nite bu�ers. In the One-Link topology, tra�c ows from HostA to HostB. Inthe Two-Link case, tra�c ows between three host pairs (in source{destinationorder): HostA{HostB, HostB{HostC, HostA{HostC. Flows are assigned to one of41
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Table 6.1: Forty-�ve Host Pairs on TBoneSource Destination(s) Source Destination(s)H1 H5, H7, H11, H14 H23 and H25H12, H14, and H26 H15 H11 and H17H2 H10 and H25 H16 H5 and H9H3 H4 and H19 H17 H12H4 H18 H18 H5, H6, and H11H5 H14 and H25 H19 H5H6 H18 H20 H5H7 H17 H21 H9H8 H4, H5, H26 H22 H6H9 H3 and H19 H24 H12 and H17H10 H3 and H18 H25 H6 and H14H12 H4 H26 H9 and H14H13 H17 H27 H4studies ([LTWW94, DMRW94, PF94, KM94, GW94, BSTW95]) have shown thatnetwork tra�c often exhibits long-range dependence (lrd), with the implicationsthat congested periods can be quite long and a slight increase in the number of activeconnections can result in large increase in packet loss rate [PF94]. The authorsof reference [PF94, Flo96a] further call attention to the possibly damaging e�ectlong-range dependent tra�c might have on measurement-based admission controlalgorithms. To investigate this and other lrd related questions, we augment oursimulator with two lrd source models.EXP Model. Our �rst model is an on/off model with exponentially distributedon and off times. During each on period, an exponentially distributed randomnumber of packets, with average N , are generated at �xed rate p packet/sec. LetI milliseconds be the average of the exponentially distributed off times, then theaverage packet generation rate a is given by 1=a = I=N + 1=p. The exp1 modeldescribed in the next section is a model for packetized voice encoded using adpcmat 32 Kbps. 44
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LRD: Fractional arima. We use each number generated by the fractional au-toregressive integrated moving average (farima) process ([HR89]) as the number of�xed-size packets to be sent back to back in each on period. Interarrivals of on pe-riods are of �xed length. For practical programming reasons, we generate a series of15,000 farima data points at the beginning of each simulation. Each farima sourcethen picks a uniformly distributed number between 1 and 15,000 to be used as itsindex into that series. On reaching the end of the series, the source wraps around tothe beginning. This method is similar to the one used by the authors of [GW94] tosimulate data from several sources using one variable bit rate (vbr) video trace.Let fXtg denote data points from a time-series. An arma(p; q) process has theform:Xt = �1Xt�1 + �2Xt2 + : : :+ �pXt�p + �t � �1�t�1 � �2�t�2 � : : :� �q�t�q; (6.1)where the �t are uncorrelated Gaussian noise, the �j; j = 1 : : : p, are the autore-gressive weights and the �j; j = 1 : : : q, are the moving average weights. The armaprocess is stationary if �1=2 < �1 < 1=2 ([BJ76], p. 76). Next de�ne a lag operator Bas Xt�1 = BXt, and the di�erence operator r as (Xt �Xt�1) = rXt; hence rXt =(1�B)Xt. Let �(B) = (1� �1B � : : :� �pBp) and �(B) = (1� �1B � : : :� �qBq).Then an arima(p; d; q) process is de�ned as:�(B)rdXt = �(B)�t: (6.2)A fractional arima process has a d of fractional value. A farima(p; d; q) processwith 0 < d < 1=2 generates long-range dependent series with Hurst parameter H =d + 1=2 [Hos81, LTWW94]. Hence the farima model takes three parameters: theautoregressive process order with the corresponding set of weights, the degree ofintegration, and the moving average process order with the corresponding set ofweights, it also requires an innovation with a Gaussian marginal distribution. Themarginal distribution of a farima generated series is also Gaussian; whereas vbrvideo traces exhibit low average with high peaks. Thus we can not use the farima46



output to model tra�c from a single vbr video source. Nevertheless, simulationresults in [GW94] indicate that aggregation of farima generated series may wellmodel aggregate vbr video tra�c|such as that coming from a subnetwork. In oursimulations, we �rst generate a normally distributed innovation with mean N andstandard deviation s packets. If the minimum of the farima output is less thanzero, we shift the whole series by adding the absolute value of its minimum to everynumber in the series. This way of obtaining non-negative series is also used in [AM95].Note that this shifting process constrains the maximum value of the generated seriesto be always twice its average. The Whittle maximum likelihood estimator [Ber94]con�rms that our shifting, cropping, and overlaying of the farima generated seriesdo not destroy its long-range dependent characteristic.To ease discussion on the e�ect of di�erent source models on tra�c characteristics,it is useful to de�ne the following additional notations and concepts: let � be aow's density (the ratio of its average to peak rates, a=p), R its grain size (the ratioof its peak rate to link bandwidth, p=�), and 1=� its burstiness. Aggregation ofows with � � 1 results in smooth tra�c and reliable measurement. Bursty owswith short bursts (� � 1; N=� � Dj) will have their bursts smoothed out by theswitch's bu�er, resulting, again, in reliable measurement values. Bursty ows withlarge bursts, e.g. Pareto distributed on time, but small grain size (� � 1; N=� �Dj; and R � 0:1�) still allow for large degree of statistical multiplexing. Howeverbursty ows with long burst and large grain size (�� 1; N=�� Dj; and R > 0:1�)might best be alloted their own guaranteed bandwidth.In addition to each source's characteristics of density and grain size, networktra�c dynamics is also shaped by the arrival pattern and duration of ows. Oursimulator allows us to drive each simulation with a number of ow generators; foreach generator, we can specify its start and stop times, the average ow interarrivaltime, the maximum number of concurrently active ows, and the mix of transportprotocol, source model, token bucket �lter, and service request ascribed to each ow.We give exponentially distributed lifetimes to the exp model, following [Mol27].The duration of for lrd sources, however, are taken from a lognormal distribution,47
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Table 6.2: Six Instantiations of the Three Source ModelsModel's Parameters Token Bucket Parameters Bound (ms)Model Name p pkt/ I N p=a r tkn/ b cut maxsec msec pkts sec tkns rate qlen D� Djexp1 64 325 20 2 64 1 0 0 16 16exp2 1024 90 10 10 320 50 2.1e-3 17 160 160exp3 1 684 9 1 512 80 9.4e-5 1 160 160�poo1 64 2925 20 1.2 64 1 0 0 16 16poo2 256 360 10 1.9 240 60 4.5e-5 220 256 160sfarima(f0.75g, 0.15, -) 1 125 8 13 1024 100 1.1e-2 34 100 160
been dropped by each ow's token bucket �lter over the total number of packets sentby the ow, had the data queue length been 0 (i.e. packets are immediately droppedupon arriving at an empty token bucket). Column 9, labeled max qlen, shows themaximum data queue length a ow can expect to see if the data queue has in�nitelength. We assign each ow a data queue with in�nite length in all our simulations(i.e. packets that arrive at an empty token bucket are always queued, and the queuenever overows). Recall that in this study we use �xed packet size and each of ourtoken is worth 1 Kbits of data, which is also our packet size.The shape parameter of the Pareto distributed on time (�) of the Pareto-on/offsources are selected following the observations in [WTSW95]. According to the samereference, the shape parameter of the Pareto distributed off time () stays mostlybelow 1.5; in this study we use  = 1:1 for all poo sources. For the poo1 model,we use a token bucket rate equals to the source's peak rate such that the tokenbucket �lter does not reshape the tra�c. For the poo2 model, some of the generatedpackets were queued; this means during some of the source's alleged \off" times, itmay actually still be draining its data queue onto the network. Thus for the poo2model, the tra�c seen on the wire may not be Pareto-on/off. 49



When a ow with token bucket parameters (r; b) requests guaranteed service, themaximal queueing delay (ignoring terms proportional to a single packet time) is givenby b=r [Par92]. Column 10 of the table, labeled D�, lists the guaranteed delay boundfor each source given its assigned token bucket �lter. Column 11, labeled Dj, liststhe predictive delay bound assigned to each source. We simulate only two classesof predictive service. A predictive bound of 16 msecs. means �rst class predictiveservice, 160 msecs. second class. We have chosen the token bucket parameters so that,in most cases, the delay bounds given to a ow by predictive and guaranteed servicesare the same. This facilitates comparison between the utilization levels achievedwith predictive and guaranteed services. In the few cases where the delays are notthe same, such as in the poo2 and farima cases, the utilization comparison is lessmeaningful. In the poo2 case, for example, the predictive delay bound is smallerthan the guaranteed bound, so the utilization gain we �nd here understates the truegain.For the farima source, we use an autoregressive process of order 1 (with weight0.75) and degree of integration 0.15 (resulting in a generated series with Hurst param-eter 0.65). The �rst order autoregressive process with weight 0.75 means our farimatra�c also has strong short-range dependence. The interarrival time between onperiods is 1/8th of a second. The Gaussian innovation fed to the farima process hasa mean of 8 packets with standard deviation 13.Except for simulations on the TBone topology, ow interarrival times are expo-nentially distributed with an average of 400 milliseconds. Because of system memorylimitation, we set the average ow interarrivals of simulations on the TBone topol-ogy to 5 seconds. The average holding time of all exp sources is 300 seconds. Thepoo and farima sources have lognormal distributed holding times with median 300seconds and shape parameter 2.5. We run simulations with Markov-on/off (exp)sources for 3000 seconds simulated time. The data presented are obtained from thelater half of each simulation. By visual inspection, we determined that 1500 simu-lated seconds is su�cient time for the simulations to warm up. Simulations involvingPareto-on/off sources require a longer warmup period and a longer simulation time50



for the lrd e�ect to be seen, thus we run them for 5.5 hours simulation time, withreported data taken from the later 10000 seconds.
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Chapter 7On the Viability of the AlgorithmIn this chapter, we show that measurement-based admission control algorithm, whenused with predictive service, indeed yields higher level of link utilization than thatachieveable under parameter-based algorithms with guaranteed service. We providesupporting evidence from results of simulations with both homogeneous and hetero-geneous tra�c sources, on both single-hop and multi-hop networks. Depending ontra�c burstiness, the utilization gain ranges from twice to order of magnitude.7.1 Homogeneous Sources: The Single-hop CaseBy homogeneous sources we mean sources that not only employ just one kind oftra�c model, but also ask for only one kind of service. For this and all subsequentsingle-hop simulations, we use the topology depicted in Fig. 6.1(a). For each source,we run two kinds of simulation. The �rst has all sources requesting guaranteedservice. The second has all sources requesting predictive service. The results of thesimulations are shown in Table 7.1. The column labeled \%Util" contains the linkutilization of the bottleneck link, L3. The \#Actv" column contains a snapshotof the average number of active ows concurrently running on that bottleneck link.The \ddje" column contains the maximum experienced delay of predictive class jpackets. The \L=T" column lists the ratio of average ow duration to measurementwindow used with each source model. We repeat the predictive service simulations52



Table 7.1: Single-hop Homogeneous Sources Simulation ResultsModel Guaranteed PredictiveName %Util #Actv %Util #Actv ddje L=Texp1 46 144 79 250 3 60exp2 28 28 75 75 42 300exp3 2 18 54 406 33 600poo1 7 144 78 1539 8 60poo2 3 38 72 965 8 60farima 55 9 81 13 72 60nine times, each time with a di�erent random seed, to obtain con�dence intervals.We �nd the con�dence interval for the all the numbers to be very tight, less than oneleast signi�cant digit in most cases.As mentioned in Chapter 6.2, we consider the performance of our admission con-trol algorithm \good" if there is no delay bound violation during a simulation run.Even with this very restrictive requirement, one can see from Table 7.1 that pre-dictive service consistently allows the network to achieve higher level of utilizationthan guaranteed service does. The utilization gain is not large when sources aresmooth. For instance, the source model exp1 has a peak rate that is only twice itsaverage rate. Consequently, the data only shows an increase in utilization from 46%to 80%. (One can argue that the theoretical upper bound in the utilization increaseis the peak to average ratio.) In contrast, bursty sources allow predictive service toachieve several orders of magnitude higher utilization compared to that achievableunder guaranteed service. Source model exp3, for example, is a very bursty source;it has an in�nite peak rate (i.e. sends out packets back to back) and has a tokenbucket of size 80. The exp3 ows request reservations of 512 Kbps, corresponding tothe token bucket rate at the sources. Under guaranteed service, only 18 ows can beadmitted to the 10 Mbps bottleneck link (with 90% utilization target). The actual
53



link utilization is only 2%.1 Under predictive service, 406 ows are served on theaverage, resulting in actual link utilization of 54%.In this homogeneous scenario with only one class of predictive service and con-stantly oversubscribed link, our measurement-based admission control algorithm eas-ily adapts to lrd tra�c between the coming and going of ows. The utilizationincreased from 7% to 78% and from 3% to 72% for the poo1 and poo2 sources re-spectively. The utilization gain for the farima sources was more modest, from 55%to 81%. This is most probably because the source's maximum on time is at mosttwice its average (an artifact of the shifting we do, as discussed in Chapter 6.2, toobtain non-negative values from the farima generated series). In all cases, we areable to achieve high levels of utilization without incurring delay violations. To furthertest the e�ect of long off times on our measurement-based algorithm, we simulatedpoo1 sources with in�nite duration. With utilization target of 90% link capacity, wedo see a rather high percentage of packets missing their delay bound. Lowering theutilization target to 70%, however, provide us enough room to accommodate tra�cbursts. Thus for these scenarios, we see no reason to conclude that lrd tra�c posesspecial challenges to our measurement-based approach.7.2 Homogeneous Sources: The Multi-hop CaseNext we run simulations on multi-hop topologies depicted in Figs. 6.1(b) and (c). Thetop half of Table 7.2 shows results from simulations on the Two-Link topology. Theutilization numbers are those of the two links connecting the switches in the topology.The source models employed here are the exp1, exp3, and poo2 models, one persimulation. The bottom half of Table 7.2 shows the results from simulating sourcemodels exp2, poo1, and farima on the Four-Link topology. For each sourcemodel, we again run one simulation where all sources request guaranteed service, andanother one where all sources request one class of predictive service.1Parameter-based admission control algorithms may not need to set a utilization target and thuscan achieve a somewhat higher utilization; for the scenario simulated here, two more guaranteedows could have been admitted. 54



Table 7.2: Multi-hop Homogeneous Sources Link UtilizationLink Model Guaranteed PredictiveTopology Name Name %Util %Util ddjeexp1 45 67 2L4 exp3 2 44 20poo2 3 59 7Two-Link exp1 46 78 3L5 exp3 2 58 30poo2 3 70 17exp2 17 42 6L6 poo1 4 31 1farima 38 54 36exp2 28 71 31L7 poo1 7 66 2farima 55 77 40Four-Link exp2 28 72 24L8 poo1 8 75 7farima 53 74 29exp2 28 71 31L9 poo1 8 59 2farima 53 80 44
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The most important result to note is that, once again, predictive service yieldsreasonable levels of utilization without incurring any delay violations. The utiliza-tion levels, and the utilization gains compared to guaranteed service, are roughlycomparable to those achieved in the single hop case.7.3 Heterogeneous Sources: The Single-hop CaseWe now look at simulations with heterogeneous sources. For each of the simulation,we use two of our six source model instantiations. Each source is given the sametoken bucket as listed in Table 6.2 and, when requesting predictive service, requeststhe same delay bound as listed in the said table. We run three kinds of simulation withheterogeneous sources: (1) single source model requesting multiple levels of predictiveservice, (2) multiple source models requesting a single class of predictive service, and(3) multiple source models requesting multiple levels of predictive service. In all cases,we compare the achieved utilization with those achieved under guaranteed service.For the �rst and third cases, we also experiment with sources that request bothguaranteed and predictive services. When multiple source and/or service models areinvolved, each model is given an equal probability of being assigned to the next newow. In all these simulations, the experience delays are all within their respectivebounds.Table 7.3 shows the utilization achieved when ows with the same source modelrequest: two classes of predictive service (PP), guaranteed and one predictive class(GP), and guaranteed and two predictive classes (GPP). In the GP case, ows requestthe predictive class \assigned" to the source model under study (see Table 6.2). Inthe other cases, both predictive classes are requested. Compare the numbers in eachcolumn of Table 7.3 with those in the \%Util" column of Table 7.1 under guaranteedservice. The presence of predictive tra�c invariably increases network utilization.Next we look at the simulation results of multiple source models requesting asingle service model. Table 7.4 shows the utilization achieved for selected pairings ofthe models. The column headings name the source model pairs. The �rst row shows56



Table 7.3: Single-hop, Single Source Model, Multiple Predictive Services Link Uti-lization Model PP GP GPPexp1 77 77 {exp2 71 70 {exp3 31 31 {poo1 70 69 69poo2 60 57 {farima 79 79 78Table 7.4: Single-hop, Multiple Source Models, Single Service Link Utilizationexp1{ exp2{ exp2{ exp2{ exp3{ poo2{Service poo1 exp3 poo2 farima farima farimaGuaranteed 15 21 5 38 18 32Predictive 75 70 63 79 81 69the utilization achieved with guaranteed service, the second predictive service. Welet the numbers speak for themselves.Finally in Table 7.5 we show utilization numbers for ows with multiple sourcemodels requesting multiple service models. The �rst row shows the utilization achievedwhen all ows asked only for guaranteed service. The second row shows the utiliza-tion when half of the ows requests guaranteed service and the other half requeststhe predictive service suitable for its characteristics (see Table 6.2). And the last rowshows the utilization achieved when each source requests a predictive service suitableto its characteristics.7.4 Heterogeneous Sources: The Multi-hop CaseWe next run simulations with all six source models on all our topologies. In Table 7.6we show the utilization level of the bottleneck links of the di�erent topologies. Again,contrast the utilization achieved under guaranteed service alone with those under both57



Table 7.5: Single-hop, Multiple Source Models, Multiple Predictive Services LinkUtilization exp1{ exp1{ exp1{ exp2{ exp3{ poo1{Service exp2 farima poo2 poo1 poo1 farimaGuaranteed 43 50 29 10 7 23Guar./Pred. 73 74 65 61 51 65Predictive 75 78 65 62 60 65guaranteed and predictive services. The observed low predictive service utilizationon link L6 is not due to any constraint enforced by its own admission decisions, butrather is due to lack of tra�c ows caused by rejection of multi-hop ows by laterhops, as we will explain in Chapter 9. Utilization gains on the TBone topology arenot so pronounced as on the other topologies. This is partly because we are limitedby our simulation resources and cannot drive the simulations with higher o�eredload. Recall that ow interarrivals on simulations using the TBone topology havean average of 5 seconds, which is order of magnitude larger than the 400 millisecondsused on the other topologies.Our results so far indicate that a measurement-based admission control algo-rithm can provide reasonably reliable delay bounds at signi�cant utilization gains.These conclusions appear to hold not just for single hop topologies and smooth tra�csources, but also for multi-hop con�gurations and long-range dependent tra�c. Wecannot, within reasonable time, verify our approach in an exhaustive and compre-hensive way, but our simulation results are encouraging.
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Table 7.6: Single- and Multi-hop, All Source Models, All Services Link UtilizationTopology Link Guaranteed Guaranteed and PredictiveName Name %Util %Util dd1e dd2eOne-Link L3 24 66 3. 45.L4 15 72 2. 54.Two-Link L5 21 72 2. 41.L6 19 47 1. 36.L7 24 70 2. 46.Four-Link L8 20 72 2. 49.L9 18 75 1. 53.L2 9 14 0.02 0.15L10 17 31 0.15 5.35L11 27 32 0.37 21.9TBone L12 22 23 0.1 5.84L20 8 21 0.22 16.6L30 32 52 0.49 34.7

59



Chapter 8Practical Deployment IssuesIn this chapter we consider several practical issues related to deployment of ouralgorithm. In particular, we look at the e�ect of di�erent measurement window (T )settings on the behavior of the admission control algorithm. We show that a smallerT , relative to ow lifetime (L), yields higher utilization but less reliable delay bound,while a larger one provides more stable delay estimate at lower utilization. We alsopresent a few sample path snapshots illustrating the e�ect of T .8.1 Choosing a Window SizeVarying the measurement window size, T , has two related e�ects on the admissioncontrol algorithm. First, since T is the length of the measurement block used todetermine how long we keep the previous maximal packet delay and sampled utiliza-tion, increasing T makes these estimates more conservative, which in turn makes theadmission control algorithm itself more conservative. Thus, larger T means fewerdelay violations and lower link utilization. Second, T also controls how long we con-tinue to use our calculated estimate of the delay and utilization induced by a newlyadmitted ow. Recall that whenever a new ow is admitted, we arti�cially increasethe measured values to reect the worst-case expectations, and then restart the mea-surement window. Thus, we are using the calculated e�ects of new ows rather thanthe measured e�ects until we survive an entire T period without any new ow arrival.60



Let r be the average ow reservation rate, and � the link bandwidth (for convenience,assume we only perform bandwidth check (Eqn. 4.9) and � = 1), we will admit atmost A = �=r number of ows for every T . Thus at the end of its average lifetime,L, an average ow would have seen approximatelyF = A � L=T (8.1)number of ows. If the average rate of an average ow is br, ideally we want F � br,a link's stable utilization level, to be near �. However, ows also depart from thenetwork. The expected number of ow departures during the period T depends onthe number of admitted ows and their duration. If this number of departures issigni�cant, a ow will see a much smaller number of ows during its lifetime, i.e. thestable F � br becomes much smaller than �. For the same average reservation rate, r,and a given T , the size of the stable F is determined by the average ow duration,L. A shorter average ow duration means more departure per T . In the long run,we aim for F � br � �, or equivalently, L=T � r=br. If all ows use exactly what theyreserved, we have L=T = 1, meaning that we should not try to give away the ows'reservations.In other words, T has two related e�ects on the admission control algorithm:(1) too small a T results in more delay violations and lower link utilization, (2) toolong a T depresses utilization by keeping the arti�cially heighten measured valuesfor longer than necessary. While the �rst e�ect is linked to ow duration only if theow exhibits long-range dependence, the second e�ect is closely linked to the averageow duration in general. Note that when T is in�nite, we only use our computedvalues, which are conservative bounds, and ignore the measurements entirely. Thatis, we will never su�er any delay violations at a given hop if we use an in�nite valuefor T . Thus, the parameter T always provides us with a region of reliability. Wenow present some illustrative simulation results on the importance of the L=T ratio.These results are meant to be canonical illustrations, thus we do not provide the fulldetails of the simulations from which they are obtained. 61



Table 8.1: E�ect of T and L(a) Varying T , L = 300 secs.T %Util ddje1e4 82 255e4 81 221e5 77 152e5 75 135e5 68 5
(b) Varying L (secs)TL 1e4 1e5%Util ddje %Util ddje3000 86 48 82 24900 84 32 80 16300 82 25 77 15100 81 21 76 1130 78 15 69 7In Table 8.1(a) we show the average link utilization and maximum experienceddelay from simulations of ows with average duration of 300 seconds. We varied themeasurement window, T , from 1e4 packet times to 5e5 packet times. Notice howsmaller T yields higher utilization at higher experienced delay and larger T keepsmore reliable delay bounds at the expense of utilization level. Next we �xed T andvaried the average ow duration. Table 8.1(b) shows the average link utilization andmaximum experienced delay for di�erent values of average ow duration with T �xedat 1e4 and 1e5. We varied the average ow duration from 3000 seconds (practicallyin�nite, given our simulation duration of the same length) to 30 seconds. Notice howlonger lasting ows allow higher achieved link utilization while larger measurementperiods yield lower link utilization. Link utilization is at its highest when the L=Tratio is the largest and at its lowest when this ratio is the smallest. On the otherhand, the smaller L=T ratio means lower experienced delay and larger L=T meansthe opposite|thus lowering the L=T ratio is one way to decrease delay violation rate.In Figs. 8.1 and 8.2 we provide sample path snapshots showing the e�ect of T ondelay and link utilization. We note however, a T that yields arti�cially low utilizationwhen used in conjunction with one source model may yield appropriate utilizationwhen used with burstier sources or sources with longer burst time. 62
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(b) Larger TFigure 8.1: E�ect of T on Experienced Delay
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(b) Smaller TFigure 8.2: E�ect of T on Link Utilization
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8.2 Choosing a Utilization TargetImagine now that ows have in�nite duration; by Eqn. 8.1, the number of admissibleows would also be in�nite. In practice, this means ows will be admitted until thelink reaches 100% utilization. As we noted in Chapter 5, variance in delay divergesin a simple M=M=1 queue as the system approaches full utilization. Obviously, weneed to prevent the network from reaching such high load by instituting a maximumutilization target. Sources with small grain size and short bursts will allow an higherutilization target. High density sources with long bursts will require a lower utilizationtarget. In Chapter 10 we will study several attempts to set the utilization target,both formal and ad-hoc.8.3 Structural LimitationsAs we mentioned in Chapter 1, when there are only a few ows present, or when afew large-grain ows dominate the link bandwidth, the unpredictability of individualow's behavior dictates that a measurement-based admission control algorithm mustbe very conservative. One may need to rely less on measurements and more on theworst-case parameters furnished by the source, and perform the following bandwidthcheck instead of Eqn. 4.9: �� > e�G + KXi=1 e�i; (8.2)where, e�G = b�G + �(MAX(0; �G � b�G));e�j = b�j + �(MAX(0; �j � b�j)); j = 1 : : :K;�G is the sum of all reserved guaranteed rates, �j is the sum of all reserved ratesin class j, K is number of predictive classes, and � is a fraction between 0 and 1.
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For � = 1, we have the completely conservative case. Similarly, one could do thefollowing delay check: Dj = Pji=1 �P�2fig b�i�� ��G � �Pj�1i=1 �i : (8.3)for every predictive class j for which one needs to do a delay check as determined inChapter 4.5.Even with a high enough degree of statistical multiplexing, a ow might becomeidle for prolonged periods of time such that the measurement mechanism becomesoblivious to it. When the idle ow resumes transmission, delay bound violations couldensue. We recognize two kinds of idle of times: (1) those of time-scale larger thanthe average ow duration, (2) those that are some small multiples of T . Examplesof the �rst are ows with advance or dynamic reservations. This would require non-measurement based mechanism to accommodate them and is not part of our currentresearch. The second kind may be common in two-way conversations or databaselookup applications. One could either make a separate reservation for each burstof activity, risking admission control failure, or make some portion of each ow'sreservation not subject to the measurement process. The latter approach is adoptedin reference [C+91].We should also note that our measurement-based approach is vulnerable to spon-taneous correlation of sources, such as when all the tv channels air coverage of amajor event. Each source model used in this study has uncorrelated on and offtimes. The on and off times between sources are also not correlated. If all owssuddenly burst at the same time, delay violations will result. We are not aware ofany way to prevent this kind of delay violation, since the network cannot predict suchcorrelations beforehand. Instead, we rely on the uncorrelated nature of statisticallymultiplexed ows to render this possibility a very unlikely event.8.4 If Peak Rate is Incoming Link BandwidthEqn. 4.1 is an upper bound on the worst-case delay of a class, assuming in�nitesource rate. In reality, the peak rate of tra�c arriving at a switch is bounded by the65



bandwidth of the incoming link. In this section we consider the e�ect of incoming linkbandwidth on our algorithm. By expanding the last term of Eqn. 4.1 and applyingthe distributive law we get:D�j = Pj�1i=1 bi��Pj�1i=1 ri + Cj bjCj�rj��Pj�1i=1 ri � (��Pj�1i=1 ri) bjCj�rj��Pj�1i=1 ri= Pj�1i=1 bi��Pj�1i=1 ri + hCj � (��Pj�1i=1 ri)i bjCj�rj��Pj�1i=1 ri : (8.4)Substituting �in, the incoming link bandwidth, for Cj, the source's peak rate, andcombining the two terms, the equation becomes:D�j = Pj�1i=1 bi + �in�(��Pj�1i=1 ri)�in�rj bj��Pj�1i=1 ri : (8.5)As mentioned in the proof of Theorem 1, we require � > Pji=1 ri at all switches, hencerj < �in. If ��Pj�1i=1 ri � �in > rj, bj will not be queued. Hence the worst-casedelay for �in < � is: D�j = Pj�1i=1 bi + h�in�(��Pj�1i=1 ri)i+�in�rj bj��Pj�1i=1 ri ; (8.6)where: [x]+ = 8<: x; x > 0;0; x � 0:Applying Eqn. 8.6 to our admission control algorithm, a prospective predictive ow� of class k is denied admittance if the delay bound of the same priority tra�c, Dk,is violated: Dk > cDk + h�in�(�� b�G �Pk�1i=1 b�i)i+�in�rj b�k�� b�G �Pk�1i=1 b�i ; (8.7)
66



or if lower priority classes' delay bounds, Dj's, are violated:Dj > cDj �� b�G �Pj�1i=1 b�i�� b�G �Pj�1i=1 b�i � r�k+ h�in�(�� b�G �Pk�1i=1 b�i)i+�in�rj b�k�� b�G �Pj�1i=1 b�i � r�k ; k < j � K: (8.8)However, if �in > �, Eqn. 4.1 applies. Hence we do not use Eqns. 8.7 and 8.8 in ouradmission control algorithm.
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Chapter 9On Unequal Flow Rejection RatesMost of the admission control algorithms in the literature are based on the violationprevention paradigm: each switch decides to admit a ow if and only if the switchcan still meet all of its service commitments. In other words, the only criteria con-sidered by admission control algorithms based on the violation prevention paradigmis whether any service commitments will be violated as a result of a new admission.In this section we discuss some policy or allocation issues that arise when not allows are completely equivalent. When ows with di�erent characteristics|eitherdi�erent service requests, di�erent holding times, or di�erent path lengths|competefor admission, admission control algorithms based purely on violation prevention cansometimes produce equilibria with some categories of ows experiencing higher rejec-tion rate than other categories do. In particular, we identify two causes of unequalrejection rate: (1) ows traversing a larger number of hops have a higher chance ofbeing rejected by the network, and (2) ows requesting more resources are more likelyto be rejected by the network.9.1 E�ect of Hop Count on Rejection RatesAs expected, when the network is as loaded as in our simulations, multi-hop owsface an increased chance of being denied service by the network. For example, inour simulation with homogeneous sources on the Two-Link network, as reported in68



Table 7.2, more than 75% of the 700 new exp1 sources admitted under guaranteedservice are single-hop ows. This is true for both of the bottleneck links. A somewhatsmaller percentage of the more than 1000 ows admitted under predictive service aresingle-hop ows. This e�ect is even more pronounced for sources that request largeramount of resources, e.g. the poo2 or the farima sources. And it is exacerbated bysources with longer lifetimes: with fewer departures from the network, new ows seean even higher rejection rate.Aside from disparity in the kinds of ow present on the link, this phenomenonalso a�ects link utilization; upstream switches (switches closer to source hosts) couldyield lower utilization than downstream switches. We observe two causes to this: (1)switches that carry only multi-hop ows could be starved by admission rejectionsat downstream switches. The utilization numbers of link L6 in both Tables 7.2 and7.6 are consistently lower than the utilization of the other links in the Four-Linktopology. Notice that we set these simulations up with no single hop ow on linkL6. The low utilization is thus not due to the constraint put on by link L6's ownadmission decisions, but rather is due to multi-hop ows being rejected by down-stream switches. (2) Non-consummated reservations depress utilization at upstreamswitches; to illustrate: a ow admitted by an upstream switch is later rejected by adownstream switch; meanwhile, the upstream switch has increased its measurementestimates in anticipation of the new ow's tra�c, tra�c that never come. It takestime (to the expiration of the current measurement window) for the increased valuesto come back down. During this time, the switch cannot give the reserved resourcesaway to other ows. We can see this e�ect by comparing the utilization at the twobottleneck links of the Two-Link topology as reported in Table 7.2. Note, however,even with the presence of this phenomenon, the utilization achieved under predictiveservice with our measurement-based admission control algorithm still outperformsthose achieved under guaranteed service.
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9.2 E�ect of Resource Requirements on Rejection RatesSources that request smaller amount of resources can prevent those requesting largeramount of resources from entering the network. For example, in the simulation usingthe exp2{exp3 source pair reported in Table 7.4, 80% of the 577 new guaranteedows admitted after the simulation warmup period were exp2 ows, which are lessresource demanding. In contrast, 40% of ows admitted under predictive servicewith our measurement-based admission control algorithm were the more resourcedemanding exp3 ows. Another manifestation of this case is when there are sourceswith large bucket sizes trying to get into a high priority class. Because the delayof a lower priority class is a�ected by both the rate and bucket size of the higherpriority ow (as explained in Chapter 4.2), the admission control algorithm is morelikely to reject ows with a large bucket size and high priority than those with asmaller bucket size or low priority. We see this phenomenon in the simulation ofsource model exp3 reported in Table 7.3. When all sources request either of thetwo classes of predictive service with equal probability, of the 1162 ows admittedafter the simulation warmup period, 83% were of class 2. When sources requestguaranteed or second class predictive service, only 8% of the 1137 new ows endsup being guaranteed ows. In both of these scenarios, the link utilization achievedis 31%, which is lower than the 62% achieved when all ows request only class 2predictive service (see Table 7.1), but still order of magnitude higher than the 2%achieved when all ows request only guaranteed service (again, see Table 7.1).We consider the unequal rejection rate phenomenon a policy issue (or rather,several policy issues) because there is no delay violations and the network is stillmeeting all its service commitments (which is the original purpose of admission con-trol); the resulting allocation of bandwidth is, however, very uneven and might notmeet some policy requirements of the network. We want to stress that this unequalrejection rate phenomenon arises in all admission control algorithms based on theviolation prevention paradigm. In fact, our data shows that these uneven allocationsoccur in sharper contrast when all ows request guaranteed service, when admission70



control is a simple bandwidth check. In Chapter 10, we present further evidence thatthis phenomenon occurs under other admission control algorithms. Clearly, whenpossible service commitment violations is the only admission control criteria, onecannot ensure that policy goals will be met.9.3 A Quota MechanismOne possible approach to control the allocation of resources to ows of di�ering re-quirements is by instituting a quota policy. In this section we provide a simple mecha-nism by which quota policies may be implemented. We hasten to note, however, thatwe do not intend to study the fair allocation of resources by various quota policies.We refer the interested readers to references [KS85, KU93], in which the authorsstudy allocation strategies for two types of ows that reduce blocking probability,or to reference [DM96], in which the authors propose a game-theoretic approach toensure fairness to various supported ow types.Flow opportunity cost metric. To design a quota mechanism, we must �rstde�ne a ow opportunity cost metric that would allow us to compare the resourcerequirements of one ow to that of anoother. We require the following characteristicsof the metric: (1) it must be a function of the ow's token bucket parameters, (r; b),and the requested delay bound, D, (2) the metric of a ow must be independent ofexisting tra�c, and (3) the metric must support arbitrarily complex quota policies.On a switch with fifo scheduling discipline, we know from Eqn. 4.1 that the largestdemand a ow places on the switch is to serve its bucket full of data. To meet therequested delay bound, the switch must serve the ow at rate � b=D. Thus the worst-case rate required by a ow is: MAX(b=D; r). A simple opportunity cost metric isthe ratio between this rate and link bandwidth:� = MAX(b=D; r)� : (9.1)For example the � of exp1 source model de�ned in Section 6.3 on a 10 Mbps link is6.25e-3, and the � of poo2 source model is 3.75e-2. 71



Expressing quota policy. Once we have a metric to compare the resource re-quirement of various ows, we can use them in an expression of quota policy. Insteadof allocating bandwidth to speci�c � values, we specify quota policy for di�erent \�-classes." An �-class is a range of � values. �-classes should be set at least an orderof magnitude apart. Thus a simple sample quota policy could be:x%(� < 0:01) + y%(0:01 < � < 0:1) + z%(� > 0:1): (9.2)The above policy allots x% of capacity to ows with � values less than 0.01, y%capacity to � values between 0.01 and 0.1, and z% to � values larger than 0.1. Ona system with exp1 and poo2 sources, we could allocate 30% of link bandwidth toexp1 sources and 50% to poo2 sources by the following quota policy:30%(� < 0:01) + 50%(0:01 < � < 0:1): (9.3)The remaining 20% of link bandwidth will be allocated to various ows at the dis-cretion of the admission control algorithm.A worst-case quota mechanism. A straight forward implementation of a quotapolicy would be to partition link capacity according to the percentages expressed inthe quota policy and to assign each portion to the corresponding �-class. Availablebandwidth of each �-class is adjusted upon the arrival and departure of ows ofthat class. When an �-class exhausts its available bandwidth, no more ow of thatclass will be admitted until more bandwidth becomes available. The accounting ofavailable bandwidth may be done fractionally according to the declared worst-caserequirements of each ow.A measurement-based quota mechanism. A quota mechanism that enforcesquota conformance by the declared worst-case requirements of ows could result inlow utilization. A measurement-based extension of the above algorithm allows an�-class that has exhausted its worst-case quota allotment to borrow from the poolof measured available bandwidth. Borrowing is permitted as long as there is enough72



left-over bandwidth to support both the borrowed amount and the non-consummatedquotas of the other �-classes. The accounting of an �-class that borrows bandwidthshows a de�cit. When a ow of an �-class with de�cit leaves the network, the quotacount of that class is incremented as usual. As long as an �-class is in de�cit, owadmittance to that class must ensure enough provisioning for the non-consummatedquotas of the other classes.Simulation results. We run some simulations to evaluate the e�cacy of the abovetwo quota mechanisms. In our evaluation we test our ability to control the result-ing mixture of a link's tra�c such that ows requesting large amount of resourcesare not unintentionally discriminated. We further require that our quota mechanismdoes not unduly lower link utilization. All the results reported here are from simu-lations on the One-Link topology of Fig. 6.1(a). In the tables below, the nq rowscontain results from simulations with no quota mechanism, the wq rows contain re-sults from the worst-case quota mechanism, and the mq rows contain results fromthe measurement-based quota mechanism. In all scenarios that implement a quotamechanism, there are two �-classes. The tuple following wq or mq contains the per-centages of bandwidth that constitute the quota policy for the two classes. For eachsimulation, we report the number of concurrently active ows in each �-class afterthe warmup period. The second column of all the tables show the number of concur-rently running ows in the �rst �-class, the third column the second. On all tables,the \%Util" column shows the average link utilization after the warmup period.For the �rst set of simulations, we use source models exp1 and farima. Table 9.1shows the simulation results. On the 10 Mbps bottleneck link of the One-linktopology, the � of farima sources is 0.1. This �-class is alloted 80% of the utilizationtarget (or 90% of link bandwidth), which allows accommodation of 7 farima ows.The table shows that this quota is honored in both wq and mq cases, and that thereare more farima ows when quota is instituted. Thewq case shows low utilization, aspredicted, and the measurement extension does increase utilization back to the levelachieved without quota. For this particular source models, the utilization gain of themeasurement-based quota mechanism bene�ts only the exp1 sources; nevertheless,73



Table 9.1: E�cacy of Quota MechanismsScheme exp1 farima %Utilnq 184 3 78.23wq(20, 80) 28 7 51.58mq(20, 80) 121 7 79.26Table 9.2: Bene�ts of Measurement-based Quota MechanismScheme exp1 exp3 %Utilnq 190 43 67.86wq(50, 50) 71 8 23.57wq(10, 90) 58 10 19.37mq(50, 50) 204 44 68.63mq(20, 80) 198 49 68.mq(10, 90) 189 60 68.35the quota policy is met. In simulations with the exp1 and exp3 source models, bothkinds of sources bene�t from the measurement-based quota mechanism, as shown inTable 9.2.From the simulation results, we conclude that given a metric with which to com-pare the resource requirement of various ows, we can implement a quota mecha-nism to regulate the tra�c mix of a link. A quota policy can then be instituted ontop of this mechanism to prevent the exclusion of resource demanding ows. Themeasurement-based quota mechanism restore the achievable link utilization loweredby the worst-case quota mechanism.
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Chapter 10Comparison of Admission ControlAlgorithmsIn this chapter, we report on a comparative study of �ve admission control algorithmsto support the controlled-load service model described in Chapter 3. Since the role ofadmission control is to ensure that service commitments are not violated, the maincriterion used in evaluating any admission control algorithm must be how well itful�lls this role. The simplest way to ensure complete conformance to commitmentsmade is to give each ow enough resources to meet its worst-case requirements. Forbursty sources, however, this scheme ultimately results in low network utilization.Hence, the second evaluation criterion is how high a level of network utilization anadmission control algorithm can achieve while still meeting its service commitments.The third evaluation criterion is the implementation and operational costs of analgorithm. An algorithm that can achieve high level of utilization without violatingany service commitments would not be useful if it cannot be implemented in a coste�ective manner, or if it cannot drive a fast link. We only consider the �rst twocriteria in this study. Since admission control is a session-level, not packet-level,control mechanism, we do not expect its implementation or operational cost to bea prohibitive factor. On the other hand, doing measurement could be operationallyexpensive. 75



Our evaluation of the algorithms involve simulating them under various scenar-ios. We have tried to make the simulation environments under which we investigatethe behavior of the various algorithms as comparable as possible, but this does notmean the operating conditions would not be unfairly disadvantageous to any partic-ular algorithm. In our evaluation of these algorithms we try to answer the question:which algorithm provides the highest level of network utilization at the lowest packetloss rate or experienced delay? The main conclusion of our study is: To satisfycontrolled-load service commitments, the admission control algorithm must identifya link utilization target conditioned upon the characteristics of observed tra�c. For-mal attempts to compute this utilization target, such as the ones found in references[GKK95, Flo96a], that rely solely on peak rate and token bucket �lter characteri-zation of sources and do not take into account sources' burst length and idle timesdistributions can be either too optimistic or too conservative. In an environmentwhere best-e�ort tra�c continues to constitute a large fraction of bandwidth, ad-hocmethods of engineering the utilization target shall perform very well.10.1 Five Admission Control AlgorithmsSimple Sum. The �rst admission control algorithm simply ensures that the sumof requested resources does not exceed link capacity. Let � be the sum of reservedrates, � the link bandwidth, � the name of a ow requesting admission, and r� therate requested by ow �. This algorithm accepts the new ow if the following checksucceeds: � + r� < �: (10.1)We call this the \Simple Sum" algorithm. This is the simplest admission control al-gorithm and hence is being most widely implemented by switch and router vendors.Often, to ensure low queueing delay called for by controlled-load service, an approx-imation of the weighted fair queueing (wfq) scheduling discipline is implementedwith this admission control algorithm. Wfq assigns each ow its own queue servedat its own reserved rate, thereby isolating ows from each other's bursts. We usewfq with the \Simple Sum" admission control algorithm in this study|incidentally,76



this setup also satis�es the committed rate service model described in [BGK96]. Forthe other, measurement-based algorithms, we use �rst-in-�rst-out (fifo) schedulingdiscipline.Measured Sum. Whereas the \Simple Sum" algorithm ensures that the sum ofexisting reservations plus a newly incoming reservation does not exceed capacity, the\Measured Sum" algorithm uses measurement to estimate the load of existing tra�c.This algorithm admits the new ow if the following test succeeds:b� + r� < ��; (10.2)where � is a user-de�ned utilization target as explained in Chapter 5, and b� themeasured load of existing tra�c. We let � = 0:9 except otherwise noted. Themeasurement mechanism is the time-window measurement mechanism described inChapter 5. Upon admission of a new ow, the load estimate is increased with:b� 0 = b� + r�: (10.3)Admissible Region. The second measurement-based algorithm as proposed bythe authors of reference [GKK95] computes an admissible region that maximizes thereward of utilization against the penalty of packet loss. Given link bandwidth, switchbu�er space, a ow's token bucket �lter parameters, the ow's burstiness, and desiredprobability of actual load exceeding bound, one can compute an admissible region fora speci�c set of ow types, beyond which no more ow of those particular types shouldbe accepted. The computation of the admissible region assumes Poisson call arrivalprocess and independent, exponentially distributed call holding times. However, theauthors of [GKK95] claim that this algorithm is robust against uctuations in thevalue of the assumed parameters. We refer the interested readers to [GKK95] forthe computation of the admissible region. The measurement-based version of thisalgorithm ensures that the measured instantaneous load plus the peak rate of a newow is below the admissible region. Even though reference [GKK95] does not specify77



adjusting measured load upon admittance of a new ow, we adjust the measured loadaccording to the admission check by adding the new ow's peak rate (p�) to it uponadmitting a new ow �: b� 0 = b� + p�: (10.4)For ows described by a token bucket �lter (r; b) but not peak rate, we derive theirpeak rates (bp) from the token bucket parameters using the equation:bp = r + b=U; (10.5)where U is a user-de�ned averaging period [Flo96a]. If a ow is rejected, the admissioncontrol algorithm does not admit another ow until an existing one leaves the network.In the remainder of this chapter, we use the terms \utilization target" and \utilizationthreshold" interchangeably with \admissible region."Equivalent Bandwidth. The third measurement-based algorithm computes theequivalent bandwidth for a set of ows using the Hoe�ding bounds, as explainedin Section 2.2. To recapitulate, the equivalent bandwidth of a set of ows is thebandwidth C(�) such that the stationary bandwidth requirement of the set of owsexceeds this value with probability at most �. We call � the \loss rate" in the re-mainder of the chapter; however, as pointed out in Section 2.2, in an environmentwhere large portion of tra�c is best-e�ort tra�c, realtime tra�c rate exceeding itsequivalent bandwidth is not lost but simply encroaches upon best-e�ort tra�c. Insuch an environment, � is more appropriately called the \overow rate." We makeno such distinction in the remainder of this chapter. Following [GKK95], we use� = 1e-12, except otherwise noted. The admission control check when a new ow �requests admission is: bCH + p� � ��; (10.6)where bCH is de�ned in Eqn. 2.15. In reference [Flo96a], the author mentions thatinstead of measuring average arrival rate, measuring average bandwidth actually usedwould be su�cient. We use measured arrival rate in our study of this algorithm and78



measured actual bandwidth usage for the other algorithms. Upon admission of a newow, the load estimate is increased using Eqn. 10.4. Again, if a ow's peak rate isunknown, it is derived from its token bucket �lter parameters (r; b) using Eqn. 10.5.Similar to the algorithm in [GKK95], if a ow is denied admission, no other ow ofsimilar type will be admitted until an existing one departs.Bounded Delay. The last measurement-based algorithm we consider is our ownalgorithm. Whereas the previous four algorithms bound bandwidth usage in theiradmission decisions, our algorithm bounds both bandwidth usage and experienceddelay. Since controlled-load service consists only of one service level, we use only asubset of our algorithm: when a new ow � requests admission to the network, weuse the \Measured Sum" algorithm above to check that the bandwidth requirementsof admitted ows will be met; then we check that the delay bound (D) of existingtra�c will not be violated by the admittance of the new ow. Presumably the delaybound of a ow is de�ned as D = b=r, where r and b are its token bucket parameters.The ow � is denied admission if it fails the following check:cD + b�� < D; (10.7)where cD is the measured delay. Upon admittance of a new ow, we adjust both theload measure (using Eqn. 10.3) and the delay measure, by adding b�=� to the delayestimate.We would like to remind the readers that while the admission control algorithmsdescribed here are based on meeting quality of service constraints of either loss rateor delay bound, the speci�c values used by the admission control algorithms are notadvertised to the users of controlled-load service.10.2 Exponential-Weighted Moving AverageWe use the same time-window measurement mechanism described in Chapter 5 tomeasure network load with all but the equivalent bandwidth based admission control79



algorithms. With the equivalent bandwidth based admission control algorithm, weuse an exponential-weighted moving average method to estimate the average arrivalrate as suggested in reference [Flo96a]. The average arrival rate (b�S) is measuredonce every S sampling period. The average arrival rate is then computed using anin�nite impulse response function with weight w, which we set to 2e-3 in this study:b� 0 = (1� w) � b� + w � b�S : (10.8)If the tra�c arrival rate changes abruptly from 0 to 1 and then remains at 1, a wof 2e-3 allows the estimate to reach 75% of the new rate after 10 sampling periods.A larger w makes the averaging process more adaptive to load changes; a smallerw gives a smoother average by keeping a longer history. Recall that the equivalentbandwidth based admission control algorithm requires peak rate policing and derivesa ow's peak rate from its token bucket parameters using Eqn. 10.5 when the peakrate is not explicitly speci�ed. The author of [Flo96a] suggests that U should be setsmaller than S, the sampling period of the measurement mechanism [Flo96b]. In thisstudy, we let U = S to reect the peak rate seen by the measurement mechanism.A smaller S not only makes the measurement mechanism more sensitive to bursts,it also makes the peak rate derivation more conservative. A larger S may resultin lower averages, however it also means that the measurement mechanism keeps alonger history because the averaging process (Eqn. 10.8) is invoked less often.10.3 Simulation ResultsWe run our simulations on the One-Link and Four-Link topologies, described inChapter 6, with the Exponential-on/off (exp) and Pareto-on/off (poo) sourcemodels. Table 10.1 summarizes the six instantiation of the two models. Sources exp1,exp2, exp3, poo1, and poo2 are the same ones we have been using throughout thedissertation. Columns in Table 10.1 that have the same names as the ones in Table 6.2have the same meaning. We refer the readers to Section 6.3 for their descriptions.
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Table 10.1: Six Instantiations of the Two Source ModelsModel Parameters TB Filter Switch ParametersModelName p pkt/ I N p=a r tkn/ b max D� D � S bp pkt/sec msec pkts sec tkns qlen msec msec (%) ptt secexp1 64 325 20 2 64 1 0 16 16 97 5e3 {exp2 1024 90 10 10 320 50 17 160 160 41 1e3 832exp3 1 684 9 1 512 80 1 160 160 { 5e2 2150�poo0 64 325 20 1.2 64 1 0 16 16 97 5e3 {poo1 64 2925 20 1.2 64 1 0 16 16 97 5e3 {poo2 256 360 10 1.9 240 60 220 256 160 41 5e3 363The maximal delay for each source, listed in column 8, is also the \burst time" queue-ing delay acceptable under the de�nition of controlled-load service, given its assignedtoken bucket �lter. Again, we have chosen the token bucket parameters such that,in most cases, the delay bounds given to a ow will be the same as its \burst time"queueing delay. This facilitates analyzing the performance of the algorithms undercontrolled-load service. For each simulation with measurement-based admission con-trol algorithm, we size the bu�er at the switches with enough space to accommodatethe delay bound (D). For example, simulations with exp1 source, given a link speedof 10 Mbps, use a bu�er size of 160 packets. In simulations with multiple sourcemodels having di�erent delay bound requirements, we use the maximum of the re-quired bu�er sizes; for example, in a simulation with both exp1 and exp2 models,we use a bu�er size of 1600 packets. Simulations with the parameter-based admis-sion control algorithm assume in�nite bu�er size. Column 10, labeled � , containsthe utilization threshold used when simulating each of the source model with theadmissible region based admission control algorithm. This should not be confusedwith the utilization target used with the other measurement-based admission controlschemes, where the value is set to 90% link bandwidth. When we simulate more than81



Table 10.2: Single-hop Homogeneous Sources Simulation ResultsModel Simple Sum Measured Sum Adm. Rgn. Eqv. Bw.Name %Util #Actv %Util #Actv %Util #Actv %Util #Actvexp1 46 144 79 250 85 266 57 178exp2 28 28 75 74 19 18 8 8exp3 2 18 54 406 { { 0.1 1poo0 39 144 86 330 92 355 56 213poo1 7 144 78 1539 83 1629 31 616poo2 3 38 72 965 26 347 1 13one source models with the admissible region based admission control algorithm, weuse the most conservative of the utilization threshold. For example, in a simulationwith both exp1 and exp2 sources, we use a utilization threshold of 41%. The nextcolumn, labeled S, gives the sampling period used with the measurement mechanismsin packet transmission time (ptt). For the time-window mechanism, the window sizeis 10�S. Both the equivalent bandwidth and admissible region based algorithms take� as a parameter in their admission computation. Following [GKK95], we use � =1e-12, except where otherwise noted. Both the equivalent bandwidth and admissibleregion based algorithms also need to derive a ow's peak rate using Eqn. 10.5 whenthe ow's token bucket depth is greater than 1. The last column, labeled bp, containsthe derived peak rates. Note that for source poo2, the derived peak rate is largerthan the actual peak rate. We also look at using the token rate (r) as the peak rate inour simulations of the equivalent bandwidth and admissible region based algorithmsbelow. Flow interarrival times, durations, and warmup periods are as explained inSection 6.3.The single-hop, homogeneous sources case. We now present simulation resultsfrom simulations on the One-link topology. A summary of the results is presentedin Table 10.2. Each row of the table contains results from up to six simulations usingthe source model named at the leftmost column and the admission control algorithm82



indicated at the head of the columns. The \%Util" columns list the average utilizationachieved at the bottleneck link of the One-link topology. The \#Active" columnslist the average number of concurrently running ows in steady state.The �rst two columns of Table 10.2 show results from simulation using the \SimpleSum" parameter-based admission control algorithm. There are no lost packets. Thesecond set of two columns show results from the \Measured Sum" algorithm. For thescenarios simulated here where there is only a single-level of service and the delaybounds are very loose, we do not see any discernible di�erence between results from\Measured Sum" and those from bounded delay based algorithms, hence we do notshow results from the bounded delay algorithm. Except for the poo0 cases, whereboth the \Measured Sum" and bounded delay algorithms give a loss rate on the orderof 1e-7, simulations with other source models using these two algorithms do not resultin any loss. For both algorithms, we can achieve no loss with poo0 sources if wereduce the utilization target to 80% of link bandwidth; in which case, the averagelink utilization achieved is 77% and the average number of concurrently served owsis 297. Alternatively, we could also achieve no loss with poo0 sources under thebounded delay algorithm by maintaining utilization target at 90% link bandwidth,but reducing delay bound to 8 ms, keeping bu�er space at 160 packets; in this case,the achievable average link utilization is 80%, the average number of concurrentlyactive ows is 251.The next two columns, under the heading \Adm. Rgn." give the results of simu-lations with the admissible region algorithm; here the peak rate of sources with tokenbucket greater than 1 is derived from their token bucket parameters using Eqn. 10.5.We do not study the performance of this algorithm for exp3 source because the uti-lization threshold for this model comes out to be 0 using the computation providedin [GKK95]. The loss rate for sources poo0 and poo1 are 1e-4 and 1e-6 respec-tively, much higher than � of 1e-12 used to compute the utilization targets. Whilethe performance of this algorithm is impressive for the exp1 source, it results in toomany losses for the poo0 and poo1 sources. Since the exp1 and poo0 sources havemostly the same characteristics except for the distribution of their on and off times,83



we conclude that by not taking these into account, the admissible region algorithmbecomes overly optimistic when given sources with heavy-tailed on and off timesdistributions. As the grain size of ows, i.e. the ratio p=�, becomes larger, this algo-rithm becomes more conservative. For the exp2 and poo2 sources, the achievableutilization is only 25% to 36% of the \Measured Sum" utilization; the same measure-ment mechanism is used with both algorithms. We next consider the e�ect of peakrate derivation on the performance of the algorithm. We run some simulations usingthe admissible region algorithmwhere the peak rate is assumed to be the token bucketrate, ignoring the bucket depth. The utilization thresholds used with the exp2 andpoo2 sources in these simulations are maintained at 41% of link bandwidth, as inthe previous case. The performance of the algorithm using this more lax \peak rate"does not improve much: for exp2 model, the average number of concurrently servedows becomes 25 at average link utilization of 25%, for poo2 model, the numbersare 395 and 29% respectively. The limitation to the average number of admissibleows is inherent in the computation of the utilization threshold.Analysis of the equivalent bandwidth algorithm. The two columns of Ta-ble 10.2 under the heading \Eqv. Bw." show results from simulations using the equiv-alent bandwidth based admission control algorithm; here the peak rate of sources withtoken bucket depth greater than 1 is similarly derived using Eqn. 10.5. Comparing the\Eqv. Bw." columns against results from the other measurement-based algorithms,one sees that even though it is measurement-based, the performance of this algo-rithm is not much better than the parameter-based \Simple Sum" one. To betterunderstand the equivalent bandwidth algorithm, we take a closer look at Eqn. 2.15:bCH(b�; fpig1�i�n; �) = b� +s ln(1=�)Pni=1(pi)22 : (10.9)One realizes that a smaller b�, i.e. an estimator that more closely tracks actual uti-lization, will give a smaller estimated equivalent bandwidth, resulting in higher owadmittance rate. Increasing the sampling frequency of the exponential averaging pro-cess, i.e. using smaller S, makes the estimator more adaptive and gives us an estimate84



that is closer to actual utilization. Indeed in a simulation of exp1 sources, using Sof 1e2, we see 182 concurrently active ows, achieving link utilization of 58%. Canwe do better with an even more accurate measurement mechanism? Notice that inscenarios with homogeneous sources like we have here, knowing the peak (p) and av-erage (a) rates of the sources, we can deterministically compute the average numberof ows admissible under the equivalent bandwidth method by solving for n in thequadratic equation: CH = na+s ln(1=�)np22 : (10.10)The number of admissible ow is the n that also satis�es CH � na > 0. Achievableutilization is then na=�. For the exp1 source and CH = 0:9 � 10Mbps, the admissiblenumber of ow is n = 186, with achievable utilization na=� = :58. This meansthat independent of the accuracy of the measurement mechanism, the equivalentbandwidth method cannot admit more than 186 ows. Even an o�-line, post factore-run of the simulations using actual utilization as the \measured" average arrivalrate will not result in higher number of admitted ows.One could admit more ows into the network if actual aggregate utilization ofn ows is lower than na, where a is the sources' declared average rate. Recall thatthe poo0 model has the same peak and average rates as exp1 model but that ithas heavy tailed on and off times distributions, which leads to burstier aggregatetra�c. Table 10.2 shows that the burstier aggregate tra�c results in more poo0ows being admitted under all measurement-based algorithms when compared to thenumber of admitted exp1 ows. But notice also that for the equivalent bandwidthcase, even with the higher number of admitted ows, achievable utilization remainsbelow 58%. This can be explained by analyzing Eqn. 10.10. Let 
 be the secondterm of Eqn. 10.10, i.e. 
 = r ln(1=�)Pni=1(pi)22 . Since the admission algorithm requiresthat bCH < ��, achievable utilization b� is constrained byb� � ��� 
: (10.11)
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Hence admitting 213 poo0 sources constrains link utilization to 56%, which is indeedthe utilization achieved for the simulation. Similarly for poo1 sources, admitting 616ows constrains achievable utilization to below 32%.Aside from lowering b�|either by using a better estimator or having sources sendaggregate tra�c below the computed average, we could also increase admittancerate by lowering 
. The two variables in 
 are � and the sources' peak rate (p).By lowering � from 1e-12 to 1e-9, we can admit 192 exp1 ows, achieving 61%utilization, up from 182 and 58% respectively. These increases are in close agreementwith computation using Eqn. 10.10. For � = 1e-1, Eqn. 10.10 gives 254 exp1 ows at79% link utilization, which also applies to poo0 sources. For poo1 sources, similar�, Eqn. 10.10 gives 68% link utilization for 1086 ows. A closer investigation ofEqns. 10.10 and 10.11 reveals that achievable link utilization is bounded by b� = nawhen n is small and b� = ���
 when n is large. For the exp1 source, � = 1e-12, theintersection of the two lines b� = na and b� = �� � 
 is at n = 187 and b� = 59:8%,meaning that we can never hope to admit more than 187 exp1 ows or achieveutilization higher than 59.8% link bandwidth, if we insist on � = 1e-12. In e�ect,
 acts as a safety zone to accommodate tra�c that bursts beyond the measuredaverage.In the case of simulations with exp2, exp3 and poo2 sources, the ows' peakrates are derived from their token bucket parameters using the Eqn. 10.5. We showedthe derived peak rates for the three sources in Table 6.2 and pointed out that in thepoo2 case the derived peak rate is actually higher than the actual peak rate. Inreference [Flo96a], the author suggests that the token bucket parameters be set witha small bucket depth and peak rate as token rate. The token bucket is thus onlyintended to \accommodate small variations in packet delay that accumulate in thenetwork." To see how a less conservative peak rate e�ects the performance of thealgorithm on the exp2, exp3, and poo2 sources, we simulate them with the tokenbucket rate of each as its peak rate, ignoring the token bucket depths. With token rateas peak rate, simulation with exp2 sources achieve average link utilization of 57%,serving 56 concurrent ows; for exp3 sources, the achieved average link utilization86



is 3%, with 21 concurrent ows; and for poo3 sources, the numbers are 8% and102 ows respectively. While the performance of the algorithm improves by order ofmagnitude compared to the original case, they are scantly better compared to resultsfrom the other measurement-based algorithms. Next we experiment with � = 1e-1,using the token rate as peak rate, for sources exp2 and poo2. For exp2, Eqn. 10.10gives 63 ows at 63% utilization; poo2 results in 213 ows at 53% utilization. Notethat these numbers are still lower than those achieved with the \Measured Sum"algorithm and we cannot relax any parameters further to increase them. We concludethat the equivalent bandwidth based method is inherently conservative. Incidentally,this exercise also points out the di�culty of deriving peak rate from the token bucketparameters. To be safe, the averaging period U in Eqn. 10.5 should be smaller thanor equal to S, the measurement sampling period; on the other hand, too small a Ucould results in practically in�nite peak rate when the bucket depth is large. Dueto its conservativeness, we never experience packet loss with any of the simulationsinvolving the equivalent bandwidth algorithm.Our next attempt to improve the performance of the equivalent bandwidth algo-rithm introduces a gambling factor to Eqn. 10.11:b� � ��� (1� �)
: (10.12)For � = 0, we keep the original 
 safety zone. If, after an observation at time-scalesof days or weeks, we decide that our tra�c is not that bursty and we can safelyincrease link utilization, we can increase �. For example, in a simulation with exp1sources, � = 1e-12, setting � = 0:8, we are able to admit 254 ows, achieving 81%link utilization with no lost packets. We hasten to add, however, introducing � tothe equivalent bandwidth equation destroys its rigorousness and makes it as ad-hocas setting the utilization target of the \Measured Sum" algorithm.Analyzing the experienced queueing delay. Aside from achievable utilizationand loss rate, one might also be interested in packets' experienced delay under the87
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Figure 10.1: Distribution of experienced queueing delay of exp1 sources.various algorithms. In this section, we look at the distribution of experienced queue-ing delay under the \Measured Sum," admissible region, and equivalent bandwidthalgorithms. Figs. 10.1, 10.2, and 10.3 show these distributions at the switch con-nected to the bottleneck link in topology One-link, for sources exp1, poo0, andpoo1 respectively. Recall that under the de�nition of controlled-load service model,the acceptable \average burst length" queueing delay for all three source models is16 msecs. Comparing the experienced delay of exp1 and poo0 under the admissibleregion admission control algorithm, one can see from Figs. 10.1 and 10.2 that for thesame peak rate and degree of burstiness, poo0 sources must certainly be allowed asmaller utilization target than that used with exp1 sources. However, as we pointedout earlier, the admissible region computation in [GKK95] does not take into accountthe distributions of on and off times, resulting in massive losses for poo0 and poo1sources under that algorithm. The burstier poo1 source gives us a shorter delay tail;note, however, that the distribution of poo1 experienced delays still exhibits a longertail than that of exp1 sources, attesting to the lrd e�ect on experienced queueingdelay. Given the acceptable queueing delay of 16 ms, and the capability of the \Mea-sured Sum" algorithm to exploit this bound to achieve a high level of link utilizationwithout experiencing any loss, we think that the equivalent bandwidth based algo-rithm is too conservative. We mentioned earlier that even though we experience loss88
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Figure 10.2: Distribution of experienced queueing delay of poo0 sources.
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Figure 10.4: Distribution of experienced queueing delay of poo0 sources under the\Measured Sum" and bounded delay algorithms for di�erent utilization target (ut)and delay bound (db).Table 10.3: Multiple-hop All Sources Simulation ResultsLink Measured Sum Adm. Rgn. 1 Adm. Rgn. 2 Equivalent Bw.%Util #Actv %Util #Actv %Util #Actv %Util #ActvL6 47 282 19 117 48 285 33 237L7 79 485 30 198 81 470 57 392L8 77 469 29 189 79 454 60 404L9 77 469 31 203 80 467 60 407rate of 1e-7 for poo0 sources with the \Measured Sum" algorithm when the utiliza-tion target is set at 90% link bandwidth, we su�er no loss both when the utilizationtarget is set to 80% and when we use the bounded delay algorithm with delay boundset to 8 ms. Fig. 10.4 shows the experienced delay of the three cases.The multiple-hop, heterogeneous sources case. Table 10.3 contains the av-erage link utilization and average number of connections of the four links in theFour-link topology from simulations where we run all six sources, with the choiceof sources uniformly distributed. All the simulations use a sampling period of 1e390



Table 10.4: Percentage Composition of Type of Admitted FlowsAlgorithm exp1 exp2 exp3 poo0 poo1 poo2Measured Sum 21% 9 12 21 22 15Admissible Rgn. 1 20 10 14 19 21 16Admissible Rgn. 2 19 12 15 19 19 16Equivalent Bw. 25 1 6 25 26 18packet transmission times and bu�er space for 1600 packets. For sources with tokenbucket depth greater than 1, we use the token bucket rate as the peak rate, ignoringthe bucket depth. The table shows that the equivalent bandwidth based algorithmis, again, rather conservative in this scenario. The \Adm. Rgn. 1" scenario uses autilization target of 41%, whereas the \Adm. Rgn. 2" scenario uses 97%. None ofthe simulation su�ers any packet loss. Link L6 consistently achieves lower utiliza-tion than the other links. We called this the under-representation phenomenon inChapter 9, and attributed its cause to un-consummated reservations when multi-hopows admitted by the switch attached to L6 are rejected by one of the downstreamswitches. To better understand why, when compared to the \Adm. Rgn. 2" numbers,the larger number of ow counts under the \Measured Sum" algorithm results inlower utilization, we investigate the mix of admitted ows. Again, we do not includeresults from bounded delay algorithm because they are practically identical to the\Measured Sum" results. Table 10.4 shows the composition of the type of admittedows, in percentages. We can immediately see that under \Admissible Rgn. 2," moreows with deeper bucket depth are admitted, resulting in higher utilization, evenat a lower ow count, compared to the numbers of \Measured Sum." Table 10.4also con�rms our earlier observation that more resource demanding ows can su�erfrom another form of under-representation, where they are discriminated against bythe network. This problem is even more pronounced in the \Equivalent Bw." casewhere the peak rates of all currently admitted ows are used in every admission de-cision. While the performance of the admissible region algorithm is excellent whenthe utilization threshold is 97%, the choice of this utilization threshold is not from91



computation in [GKK95], rather it is a \best case," though ad-hoc, choice for thisscenario|hence does not allow the load estimation error to be quanti�ed and assessedany more more rigorously than under the \Measured Sum" method.The \Measured Sum" method seems to work as well as the bounded delay algo-rithm under the scenarios simulated here. The admissible region based algorithmsuggested by the authors of reference [GKK95] is either too conservative when ows'grain size is large, or too optimistic when the ows' have heavy-tailed on and offtimes distributions. The equivalent bandwidth based algorithm found in [Flo96a] isinherently conservative. In general, while it is clear that admission control algorithmfor controlled-load service should have a utilization target, it is still not clear howto compute this bound from observed tra�c characteristics. Computing equivalentbandwidth or admissible region, taking into account only the sources' peak rate andtoken bucket �lter parameters, does not seem su�cient. One must also take intoaccount the sources' burst lengths and idle times distributions. The \Simple Sum"method used in conjunction with wfq scheduling discipline favored by router ven-dors for its implementation simplicity gives the worst performance in terms of linkutilization. However, we have not studied the implementation and operational costsof the various admission control algorithms; when these are taken into account, onemight not be able to implement anything more complicated than the \Simple Sum"algorithm, given current hardware technology.
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Chapter 11Summary and ExtensionsIn this dissertation we presented a measurement-based admission control algorithmthat consists of two logically distinct pieces, the criteria and the estimator. The ad-mission control criteria are based on an equivalent token bucket �lter model, whereeach predictive class aggregate tra�c is modeled as conforming to a single tokenbucket �lter. This enables us to calculate worst case delays in a straightforwardmanner. The estimator produces measured values we use in the equations repre-senting our admission control criteria. We have shown that even with the simplestmeasurement estimator, it is possible to provide a reliable delay bound for predic-tive service using our measurement-based admission control algorithm. We have alsoshown that our measurement-based admission control can be used with controlled-load service to provide the illusion of lightly loaded network. Thus we conclude thatfor those applications willing to tolerate delay violations, services with more relaxedcommitments than those provided by guaranteed service are viable alternatives. Forbursty sources, in particular, measurement-based admission control algorithm withthe more relaxed services can achieve a level of network utilization signi�cantly higherthan those achievable under guaranteed service. Finally, we now identify three broadcategories of possible extensions to our work:
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11.1 A Better EstimatorIt is essential for an admission control algorithm to set aside some slack bandwidthto accommodate sudden increases in tra�c ow. The amount of bandwidth set asidefor such purpose could be decided based on historical data such as we have done withour utilization target. A less ad-hoc method would be to compute the equivalentbandwidth of the aggregate tra�c as proposed by the authors cited in Section 2.2.Unfortunately, because of the assumptions made by the di�erent approaches to com-pute equivalent bandwidth, the resulting numbers are either too conservative forcertain types of ow or too optimistic for other types of ow. Or the approach wouldbe too restrictive and support only speci�c types of ow. Recent works on spectralanalysis of network tra�c, such as [LCH95], have identi�ed the low frequency of traf-�c as a good indicator of bandwidth requirement, and the high frequency as indicatorof bu�er space requirement. However, other researchers have also called into questionthe reliability of tra�c autocorrelation in predicting queueing behavior [HH96]. It isinteresting to pursue how and when one might be able to peruse the spectral densityof tra�c in estimating adequate resource provisioning.Another approach to a better estimator is to bound the error rates of the estimates.Reference [DJM96] contains such an approach. Given the reliance of estimating errorrates on tra�c characteristics, we doubt that this would be a promising approach. Ofmore interest to us is a fast implementation of the estimator, either in hardware or insoftware. References [C+91, WCKG94] contain possible hardware implementationsof the estimator. Finally, we would like to implement an higher order mechanism toautomatically tune the parameters of our algorithm over large time-scales.11.2 Other Admission CriteriaIn Chapter 9, we identify two kinds of ow under-representation problem: (1) owswith large resource requirements are discriminated at admission time, and (2) owswith multiple hops run a larger chance of being rejected by the network. The �rstof these discriminations is local to the decision of a switch, the second requires coop-eration between switches. We showed in Chapter 9 that these problems are always94



present when service violation prevention is the only criterion used in making admis-sion decisions, both parameter-based and measurement-based. To address the �rstkind of discrimination, we adopted in Chapter 9 another criterion wherein di�erentkinds of ow are alloted their own quota. We also introduced a measurement-basedquota mechanism that allows network administrators to control the tra�c mix ontheir links. This mechanism relies on a ow opportunity cost metric to compare theresource requirement of one ow against that of others. Both a more accurate es-timate of ows' actual opportunity cost and a more sophisticated quota mechanismwould be interesting extensions to our work. We have not begun to address thesecond discrimination problem. To explore it is of of immediate interest to us.11.3 Additional IssuesIn this section we present three additional issues that could e�ect a measurement-based admission control algorithm.Stability of adaptive playback point. Guaranteed service provides an absolutedelay bound from which one can compute the bound on a packet's end-to-end delay.Predictive and controlled-load services do not provide such bound. While adaptiveapplications can adjust their playback point to accommodate variations in packets'end-to-end delay, one would still prefer a stable playback point. An interesting re-search project would be to study the stability of playback points for applicationsreceiving predictive and controlled-load services. Would one be able to compute astable end-to-end delay distribution given delay distributions at the switches along aow's path?Link sharing. In references [FJ95, SCZ93], the authors identify the need to parti-tion link bandwidth into portions that are then sold to separate entities. This serviceis called link-sharing in the literature. To provide this service, the admission controlalgorithm must ensure that realtime tra�c from each entity does not overow its al-loted portion. As we mentioned in this dissertation, a measurement-based admissioncontrol algorithm can deliver high degree of utilization gain only when there is an95



high degree of statistical multiplexing. The reliability of tra�c estimates also dependon high degree of statistical multiplexing. Link-sharing lowers the degree of statisticalmultiplexing by segregating tra�c into di�erent partitions. One possible approachto regain an higher degree of statistical multiplexing is for the scheduler and tra�cestimators to ignore link partitioning once a realtime ow has been determined by theadmission control algorithm to conform to its entity's share. We plan to experimentwith this architecture.Preemptible Service. In Chapter 3, we mentioned sources that can transmit atvariable bandwidth either by changing their compression ratio or by transmittingfewer levels of their hierarchically encoded data. In reference [HS96], each level of hi-erarchically encoded data is sent as a separate ow with resource reservation. To sup-port variable bandwidth sources requires reconsideration of our measurement-basedadmission control algorithm. In the case where a source can adjust its transmissionrate based on congestion feedback, our tra�c estimates must ignore the extra tra�cgenerated by the source when network is not congested. In the case where sources re-serve bandwidth for each of their hierarchically encoded data, and adjust the numberof levels they transmit based on congestion feedback, we must prioritize our drop-ping policy. One possible solution is to give lower scheduling priorities to higher levelstra�c. However, this could cause massive packet reordering if the di�erent levels ofpriority are scheduled by strict priority. We think the right approach is to transmittra�c from all hierarchies in the same level of scheduling priority and rely on packetdropping policy to drop the highest layer tra�c �rst.To facilitate prioritized dropping policy, we intend to introduce a meta servicemodel: the preemptible service model. It is a meta service model in that it mustbe used in conjunction with one of the other service models mentioned previously(which we will call the base service). Packets of a preemptible ow will be dropped�rst before packets from non-preemptible ows of the same scheduling priority. Apreemptible ow may also be completely dropped from service. We can supportmultiple levels of preemptible service with decreasing dropping priorities. An extrabene�t of preemptible service is that one can admit preemptible ows that would96



otherwise be rejected because of quota or link share violation. Preemptible ows couldalso be dropped upon sudden surges of tra�c or arrivals of an advance reservationstart time. Note that when network is not congested, preemptible ows receivethe same service as non-preemptible ows requesting the same base service. Hencepreemptible service is not best-e�ort service. It is an interesting problem to studyhow a measurement mechanism must be designed to support preemptible ows. Dowe include packets from preemptible ows in our measurement? If not, how shallwe subtract them out, especially when measuring delay? If so, how do we recognizewhether we can admit more non-preemptible ows given current load of preemptibletra�c?
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