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Preface

Many designs for Integrated Services Packet Networks (1SPN) offer a bounded delay
packet delivery service to support real-time applications. Networks achieve bounded
delay by regulating their load and managing their resources. Admission control al-
gorithm is the tool networks use to regulate their load. Previous work on admission
control mainly focused on algorithms that compute the worst case theoretical queue-
ing delay to guarantee either an absolute delay bound for all packets or a probabilistic
bound on the statistical distribution tail of aggregate traffic. Since worst-case bounds
are computed from parameterized source models, we call such algorithms parameter-
based algorithms. Our own work proposes a measurement-based admission control
algorithm for predictive service. Instead of guaranteeing an absolute or a numerically
enforced probabilistic bound, predictive service promises a reliable bound. With the
more relaxed bound, an admission control algorithm can operate without requiring
a precise characterization of traffic; instead, it can use measured traffic characteris-
tics. The reliance of our admission control algorithm on measurement dictates that
it works well only when there is a high degree statistical multiplexing. Several re-
searchers have discovered that network traffic is long-range dependent which rises
and ebbs with possibly long ebb times. One dangerous implication of long-range
dependent traffic on any measurement-based admission control algorithm is that the
algorithm may allow too many new flows into the network during the ebb times,
resulting in prolonged delay bound violations during the ensuing tides. In our sim-
ulations, besides traditional source models, we also use source models that exhibit

long-range dependence, both in themselves and in their aggregation. As with most
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measurement-based control systems, there are several knobs that govern the degree
of conservativeness of the measured values and resulting decisions. We will explore
these and also look at some dynamic interactions between flows with different re-
source requirements. We will present results from a comparative study of several
measurement-based admission control algorithms, and finally conclude this disserta-

tion by pointing out several possible extensions to our work.
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Chapter 1
Introduction

The technical and regulatory developments of the past decade have created the pos-
sibility of merging digital telephony, multimedia transport, and data communication
services into a single Integrated Services Packet Network (1SPN). From an economic
perspective, an ISPN offering multiple service selections increases network’s total util-
ity by matching services closer to application needs [She95]|. Chief among the services
required by multimedia applications is bounded delay packet delivery. There have
been many proposals for supporting bounded delay delivery in packet networks; see
[OONS8S8, FV90, GAN91] for a few representative examples. The ability of bounded
delay services to achieve high utilization and also meet their service commitments
depends crucially on their admission control algorithm. Conversely, the ability of an
admission control algorithm to increase network utilization is ultimately constrained
by the service commitments the network makes. A service model is a service com-
mitments contract between the network and its users. Traditional real-time service
provides a hard or absolute bound on the delay of every packet; in [FV90, CSZ92],
this service model is called the guaranteed, or deterministic guaranteed, service. When
a flow requests real-time service, it must characterize its traffic so that the network
can make its admission control decision. Typically, sources are described by either
peak and average rates [FV90] or a filter like a token bucket [OONS8S]; these descrip-

tions provide upper bounds on the traffic that can be generated by the source. The



admission control algorithm for guaranteed service uses a priori characterizations of
sources to calculate the worst-case behavior of all the existing flows in addition to
the incoming one. Calculating the worst-case delays may be very complex, but the
underlying admission control principle is conceptually simple: does granting a new
request for service cause the worst-case behavior of the network to violate any delay
bound? (See [FV90] for an example of this approach.) Network utilization under
this model is low when sources are bursty. However, network utilization can be in-
creased if one can precisely characterize the offered traffic, such as when playing back
recorded data [GKT95, WKZL96]; when flows carry live, bursty data, however, their
traffic characterizations must necessarily be quite loose, in that the average behavior
of the flows is significantly less than the upper bound of the traffic descriptions, and
guaranteed service inevitably results in low utilization [ZF94].

A service model that promises a more relaxed delay bound than guaranteed service
allows its admission control algorithm to admit more flows and attain a higher level of
network utilization. There are many approaches to admission control that attempt to
achieve higher utilization by weakening the degree of reliability of the delay bound.
For instance, the probabilistic delay bound service described in [ZK94] does not
provide for the worst-case scenario, instead it guarantees a bound on the probability
of lost/late packets based on statistical characterization of traffic [VPV88]. In most
cases the a priori characterization of flows is based on a statistical model [Hui88,
SS91] or on a fluid flow approximation [GAN91, Kel91]). In this kind of approach,
each flow is allotted an equivalent bandwidth that is larger than its average rate but
less than its peak rate. If one can precisely characterize traffic a prior:, this approach
will increase network utilization. However, we think it will be quite difficult, if not
impossible, to provide accurate and tight statistical models for each individual flow.
For instance, the average bit rate produced by a given codec in a teleconference will
depend on the participant’s body movements. This can’t possibly be predicted in
advance with any degree of accuracy. Therefore the a priori traffic characterizations

handed to admission control will inevitably be fairly loose upper bounds.



For this reason, we think that measurement-based admission control will play a key
role in achieving high network utilization. The measurement-based admission control
approach advocated in [CSZ92, JSZ(C92] uses the a priori source characterizations
only for incoming flows (and those very recently admitted); it uses measurements to
characterize those flows that have been in place for a reasonable duration. Therefore,
network utilization does not suffer significantly if the traffic descriptions are not tight.
For instance, if a source describes itself as conforming to a token bucket with a rate
of 5 Mbps, but typically sends at an average rate of 1 Mbps, the measurement-based
admission control approach does not indefinitely continue to set aside 5 Mbps for
this flow, unlike the more traditional forms of admission control. Because it relies
on measurements, and source behavior is not static in general, the measurement-
based approach to admission control can never provide the completely reliable delay
bounds needed for guaranteed, or even probabilistic, service. However, many real-
time applications, such as wat, ivs, nv, and vic, have recently been developed for
packet-switched networks. These applications can adapt to actual packet delays and
are rather tolerant of delay bound violations; they do not need an absolutely reliable
bound. For these tolerant applications, references [CSZ92, SCZ93] propose predictive
service, which offers a fairly, but not absolutely, reliable bound on packet delivery
times. The ability to occasionally incur delay violations gives admission control a
great deal more flexibility, and is the chief advantage of predictive service. The
measurement-based approaches to admission control can only be used in the context
of predictive service and other more relaxed service commitments. Furthermore, when
there are only a few flows present, the unpredictability of individual flow’s behavior
dictates that these measurement-based approaches must be very conservative—by
using some worst-case calculation for example. Thus a measurement-based admission
control algorithm can deliver significant gain in utilization only when there is a high
degree of multiplexing.

The use of measurement in admission control algorithm has been mentioned in
the literature prior and subsequent to this work. The authors of [HLP93, GKK95],

for example, use measurements to determine admission, but the admission decisions



are pre-computed based on the assumption that all sources are exactly described by
one of a finite set of source models. This approach is clearly not applicable to a
large, heterogeneous, and ever-changing application base, and is very different from
our approach to admission control that is based on ongoing measurements. Using on-
going measurements of load in making admission decisions is suggested, but not fully
developed nor explored, in [OONS88]. Several recent papers, such as [SS91, AS94] use
measurement to learn the parameters of certain assumed traffic distributions. The
authors of [DJM96, Flo96a] use measurement of existing traffic in their calculation
of equivalent bandwidth. In references [Hir91, CLG95|, a neural network is used
for dynamic bandwidth allocation. In [LCH95], the authors use pre-computed low
frequency of flows to allocate bandwidth dynamically by renegotiation. Hardware
implementation of measurement mechanisms are studied in [CT91, WCKG94]. Inci-
dentally, the work presented in this dissertation has been extended in [DKPS95] to
support advance reservation. The authors of [DKPS95] have also replicated some of
our results on their independently developed network simulator.

Several service models offering even more lax contractual agreement between the
network and its users than predictive service have recently been proposed in the Inter-
net Engineering Task Force (IETF). The Controlled-load service described in reference
[Wro95] and Committed-rate service described in reference [BGK96] are examples of
such service models. The service they provide do not in general involved an adver-
tised quantitative service target such as loss rate or delay bound, rather they simply
ensure that flows are alloted some reserved resources and experience low queueing
delays. The minimal commitment made by these services makes them especially well
suited to the decentralized and heterogeneous Internet. Our measurement-based ad-
mission control algorithm can thus also be used in conjunction with these more lax
services.

In summary, when delay bound is strict, one can achieve high level of network
utilization only when one has a very precise characterization of offered traffic. By
relaxing the strictness of the delay bound, probabilistic service model can increase

network utilization without requiring the tightest traffic characterization. Predictive



service does not make any assumptions on source models and provides only reliable,
not guaranteed, delay bound. Several new service models have recently been pro-
posed that offer even more lax contractual agreement between the network and its
users. We show in this dissertation that when measurement-based admission control
algorithm is used in conjunction with services offering lax delay bound, and predic-
tive service in particular, it can, at times, deliver order of magnitude higher level of
network utilization than those achievable under parameter-based algorithm offering

guaranteed service and still maintain reliable delay bound. Earlier versions of this
work have been published as references [JSZC92, JDSZ95, JDSZ96|.



Chapter 2
Traditional Realtime Services

Under the synchronous transfer mode (STM), sources send data at a constant bit
rate (CBR). Sources with data rate higher than the constant bit rate must lower
their quality either by dropping data or queueing it for later transmission. Sources
with data rate less than the constant bit rate must pad their data. Constant bit
rate leads to varying service quality or low network utilization. With the advent
of asynchronous transfer mode (ATM), and on packet-switched networks such as the
Internet, sources can transmit at variable bit rate (VBR), delivering constant service
quality [VPV88|]. Integrated services packet networks built on top of ATM or Internet
technology allow packets from different types of VBR sources to be statistically mul-
tiplexed. Fig. 2.1 shows an example of an ISPN where packets from traditional data
sources are multiplexed with packets from audio and video sources. The figure also
shows a possible architecture of an 1ISPN switch, consisting of a realtime scheduler,
such as the unified scheduler proposed in reference [CSZ92], an admission control
algorithm, and a reservation protocol, such as the RSVP resource reservation protocol
proposed in [Z193]. By allowing statistical multiplexing, an ISPN can increase net-
work utilization; however, with statistical multiplexing, bursts of data could arrive
simultaneously at a switch, leading to long queue and packet losses. Whereas the
quality requirements of traditional data traffic are high throughput and short round-

trip delay, the service requirements of realtime traffic are short queueing delay and
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small loss rate. The goal of all admission control algorithms is to meet users’ qual-
ity of service requirements. In most cases, a secondary goal of an admission control
algorithm is to meet users’ requirements at as high a level of network utilization as
feasible. The ability of an admission control algorithm to increase network utilization
is ultimately constrained by the service commitments the network makes. We now
look at the commitments different service models entail and the ensuing constraints

put on the admission control algorithm.

2.1 Deterministic Bound

Traditional realtime service provides a hard or absolute bound on the delay of every
packet; in the literature, this service model is called the guaranteed service. A de-
terministic guaranteed service provides for the worst-case requirements of flows. The
worst-case requirements of flows are usually computed from parameterized models of
traffic sources. The source models used for this computation may be very complex,
but the underlying admission control principle is conceptually simple: does granting
a new request for service cause the worst-case behavior of the network to violate any
delay bound?

The admission control algorithms proposed in reference [KS85, KU93, OST88|
require sources to provide peak rate characterization of their traffic. The algorithms
then check that the sum of all peak rates is less than link capacity. If sources are
willing to tolerate queueing delay, they can use a token bucket filter, instead of peak
rate, to describe their traffic. The network ensures that the sum of all admitted
flows’ token rate is less than link bandwidth and the sum of all token bucket depths
is less than available buffer space. This approach is proposed in [LV93]. In [ZF94],
the authors presented an admission control algorithm for deterministic service based
on calculation of maximum number of bits 0* that can arrive from a source during

any interval 7'
-

b = min ([(r mod 1)p] , [1a]) + H la], (2.1)

L

'We assume negligible packet size.



where ¢ is the averaging interval for a, the source’s average rate, and p is the source’s

peak rate. Queueing delay per switch is then calculated as:

maxXy,>o {2 b (1) — p7}
M b)

D" =

(2.2)

i being the link bandwidth. The admission control checks that D* does not violate
any delay bounds. This algorithm performs better than those requiring peak rate
characterization and can achieve acceptable (> 50%) link utilization when sources
are not very bursty (peak-to-average ratio < 4) and the delay bound is not too
tight (> 60 ms, per switch); when flows are bursty, however, deterministic service
ultimately results in low utilization. In references [Gol91, RD91], the authors pro-
pose reshaping users’ traffic according to network resources available at call setup
time. While reshaping users’ traffic according to available resources may increase
network utilization, the reshaped traffic may not meet users’ end-to-end quality re-
quirements. Instead of imposing a traffic shaper at call setup time, authors of ref-
erences [GKT95, WKZL96| propose characterizing different segments of a realtime
stream and renegotiating the flow’s resource reservation prior to the transmission of
each segment. Renegotiation failure results in traffic from the next segment to be
reshaped according to reservations already in place for the flow. This scheme may be
applicable to video-on-demand application where the entire data stream is available

for a priori characterization prior to transmission.

2.2 Probabilistic Bound: Equivalent Bandwidth

Statistical multiplexing is the interleaving of packets from different sources where the
instantaneous degree of multiplexing is determined by the statistical characteristics
of the sources. Contrast this to slotted Time Division Multiplexing (TDM), for
example, where packets from a source is served for a certain duration at fixed intervals
and the degree of multiplexing is fixed by the number of sources that can be fited
into an interval. The probability density function (pdf) of statistically multiplexed

independent sources is the convolution of the individual pdfs; and the probability
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that the aggregate traffic will reach the sum of the peak rates is infinitesimally small
(1e-48), much smaller than the loss characteristics of physical links. ATM network,
for example, has a loss probability of 1e-8—in which case, guaranteeing a le-9 loss
rate at the upper layer is sufficient [VPV88]. Hence networks that support statistical
multiplexing can achieve higher level of utilization without sacrificing much on quality
of service.

Probabilistic guaranteed service exploits this statistical observation and does not
provide for the worst-case, sum of peak rates, scenario. Instead, using the statistical
characterization of the current and incoming traffic it guarantees a bound on the

probability of lost packets:
¢ > Prob(aggregate traffic > available bandwidth), (2.3)

where € is the desired loss rate. In environments where the available bandwidth is
a portion of link capacity alloted to realtime traffic and realtime traffic is allowed
to use the remaining bandwidth during overflow, € simply bounds the overflow rate.
We do not make the distinction between loss rate and overflow rate in the remainder
of this dissertation. The aggregate traffic of the statistically multiplexed sources
is called the equivalent bandwidth (or effective bandwidth or equivalent capacity) of
the sources [WKFR90, Rob93]. In Fig. 2.2 we show the statistical multiplexing of

the three flows, water, vinegar, and oil, and their bandwidth requirements according
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to peak rate allocation and equivalent bandwidth. Using the equivalent bandwidth
method to compute the bandwidth requirement of the three flows, we decide that
they can be served by a link with capacity . Whereas if we consider only peak rate
allocation, we would not have admitted all three flows into the network. For switches

with buffer, the probabilistic bound can be formulated as:
¢ > Prob((aggregate traffic - available bandwidth) 7 > buffer), (2.4)

where 7 is a time interval.

We now look at the different approaches used to compute equivalent bandwidth.
Let X;, be the instantaneous arrival rate of flow ¢ at time ¢. Assume that X;,’s are
independent, identically distributed. Let S; = >i'; X;,; be the instantaneous arrival

rate of n flows. We want S; such that:
¢ > Prob(S; > p) (2.5)

where p is the link bandwidth. S; can be computed directly from aggregate traffic, or
by summing up X;;,7 = 1...n. If the switch has buffer, we can define X; . to be the
instantaneous arrival rate of flow ¢ during time period 7. X, ;’s are again assumed
to be independent, identically distributed. Let S, = >7i_; X ; be the instantaneous

arrival rate of n flows. And we want S, such that:
¢ > Prob((S; — u)T > B), (2.6)

where B is the buffer size.

Bernoulli Trials. In references [RS90, SS91], the authors model X; , as Bernoulli

random variables. The aggregate arrival rate is then the convolution of the Bernoulli

variables. The bound on buffer overflow probability over 7 can be calculated as:
oK — pT) 07 % -+ x 07, (K)

€ > 2.7
Yoy KO x % 05 (K) (2.7)
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where k is the number of bits, Q;-(I{) is the probability that  bits arrived from source

7, x denotes convolution, and

p it k=pr,
oj(k) =3 1—p if k=0, (2.8)
0 otherwise.

Binomial Distribution. The number of arrivals in a sequence of Bernoulli trials
has a binomial distribution. Assuming sources are homogeneous two-state Markov
processes, the convolution in Eqn. 2.7 reduces to a binomial distribution [KS89,
RSKJ91, MSST91]|. The bound on buffer overflow probability becomes:

Yizjo+1 0(0) (10 — p)

nm

€ >

(2.9)

where o(7) is the binomially distributed probability that i sources are active:

o) = (1) o (210
and p is the probability of success in a Bernoulli trial. This computation results in
overestimation of actual bandwidth for sources with short burst period because the
buffer allows short bursts to be smoothed out and the approximation does not take
this smoothing effect into account [GANOI1]. In [ZK94], instead of a single binomial
random variable, the authors used a family of time-interval-dependent binomial ran-
dom variables, i.e. associated with each time interval is a binomial random variable
that is stochastically larger than the actual bit rate generated. This method of mod-
eling bit rate was first proposed by the author of reference [Kur92|. It allows a tighter
bound on S;. The main drawback of modeling S, with binomial distribution is the
cost of convoluting the arrival probabilities of heterogeneous sources. In [ZK94], for
example, the authors suggest using the Fast Fourier Transform (FFT) to calculate
the convolution. FFT has a complexity of ©(nBlog B), where n is the number of

sources and B the size of the largest burst from any source. Furthermore, when the

12



number of sources multiplexed is small, this approximation of equivalent bandwidth

underestimates the actual requirement [RSKJ91].

Fluid-flow Approximation. A fluid-flow model characterizes traffic as a Markov
modulated continuous stream of bits with peak and mean rates. Let ¢ be the equiv-
alent bandwidth of a source, as seen by a switch, computed using the fluid-flow

approximation. In [GAN91], ¢ is computed using:

an(1 = p)p = B+ /lan(1 = p)p — B + 4Banp(1 — p)p
2an(1 — p) ’

¢~

(2.11)

where p is the source’s utilization (average/peak), p the source’s peak rate, a =
In(1/€), and B the switch’s buffer size. This approximation assumes flows are not
very bursty and have short average burst period.?2. When flows do not conform to
this assumption the bandwidth requirement is overestimated [GAN91]. Equivalent
bandwidth for more general source models have also be computed; see for example
references [AMS82, Mit88, EM93, Kel91, KWC93, MP90]. Computing the equiva-
lent bandwidth of a source using this method depends only on the flow’s fluid-flow
characteristics and not on the number nor characteristics of other existing flows. The
computation of equivalent bandwidth for general sources, however, is computationally

expensive (O(n?) is quoted in [Mit88], where n is the number of sources).

Gaussian Distribution. In references [VPV88, LPP90, GANOI1, Sai92, AS94,
SRLLY94|, S, is approximated with a Gaussian distribution. Let C¢ be the equiv-
alent capacity of the aggregate traffic. Given a desired loss rate, reference [GAN91]
computes Cq using:

Co=v+do (2.12)

where, o/ = \/—2111(6) —In(27), v = ¥, a;, and 0* = Y1, 07, where v and o?

are the average and variance of the aggregate traffic respectively and a; and o} are

2The length of a burst is measured relative to the buffer size of a switch.
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those of each source. Hence the C; bounds the right tail of the Gaussian distri-
bution. This approximation tracks the actual bandwidth requirement well when
there is a large number of sources (e.g. more than 10 homogeneous sources) with
long burst period. When only a small number of sources are multiplexed, this ap-
proximation overestimates the required bandwidth. It also overestimates required
bandwidth when sources have short bursts because short bursts are smoothed out by
the switch buffer and the approximation does not take this into account. The authors
of reference [GG93| use the minimum of the fluid-flow and Gaussian approximations,

C =min{v + a'0,3." ; ¢}, in making admission control decisions.

Large Deviation Approximation. Originally proposed by the author of reference
[Hui88|, an approximation based on the theory of large deviation was later generalized
in reference [Kel91] to handle resource with buffer. The theory of large deviation
bounds the probability of rare events occuring. In this case, the rare event is S; > pu.
The approximationn in references [Hui88, Kel91] are based on the Chernoft’s bound,
while the one in [Flo96a] is based on the Hoeffding’s bound. The Hoeffding’s bound
does not require that X;; be independent of X; 5. Equivalent bandwidth computed
using the Hoeffding’s bound is given by:

In(1/e€) 27 (pi)?
5 ;

(2.13)

CH(Va {pi}lgign, 6) =v+ \/

where v is the average arrival rate of the aggregate traffic and p; source i’s peak rate.

Further approaches to admission control based on the theory of large deviation are
presented in references [{VKW95, CT95, EMW95].

Poisson Distribution. The above approximations of equivalent bandwidth all as-
sume high enough degree of statistical multiplexing. When the degree of statis-
tical multiplexing is low, or when buffer space is small, approximations based on
Gaussian distribution and theory of large deviation overestimate required bandwidth
[GANO1, AS94, Flo96a], while approximations using both fluid-flow characterization
and binomial distribution underestimate it [Fil89, NRSV91, RSKJ91]. In such cases,
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the authors of references [RSKJ91, Fil89] suggest calculating equivalent bandwidth

by solving for an M/D/1/B queue, assuming Poisson arrivals.

Measurement-based. Each approach to compute equivalent bandwidth above can
be approximated by using measurement to determine the values of some of the pa-
rameters used. In reference [SS91], the authors proposes measuring the convolution

of arrival probabilities used in Eqn. 2.7 instead of computing them:

Z;‘?io(k - Nt)@\* QZ+1(I‘5)

€ > —
Yoo ko* 054y (k)

(2.14)

where g is the measured arrival probabilities of existing traffic and gy, the arrival
probability of the prospective source. The authors of reference [dVKW95] propose
measuring the effective bandwidth of each source; while the authors of references
[AS94, DIM96] propose measuring the mean and variance of traffic, assuming it has
a Gaussian distribution. Given the unreliable nature of measurement, the authors of
reference [DJMO96] further provide an estimate of the measurement errors. In reference
[Flo96a|, the author proposes using measured arrival rates in the computation of

equivalent bandwidth based on the Hoeffding’s bound:

CA'H(ﬁa {piti<i<n.€) =0+ (2.15)

\/m(l/e) ()
2

In reference [LCH95], the authors propose measuring the spectral density of traf-
fic. Bandwidth is provisioned according to the low frequency of traffic and buffer
space according to the high frequency. The authors further suggest using a resource
renegotiation method similar to the one mentioned in Section 2.1 to increase network
utilization. This approach is appealing, however it is not clear what should the cut-off
frequency be and how traffic spectral density can be computed on-line.

Two other methods to estimate equivalent bandwidth are specifically suited to
measurement-based approach. The first is based on the Bayesian Estimation method.
From a given initial load, and a set of recursive equations, one can estimate fu-

ture load from successive measurements. This approach is presented in references
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[WCKG94, GKK95]. The authors of reference [WCKG94| further describe a hardware
implementation of the measurement mechanism. The second method is a table-driven
method. An admissible region is a region of space within which service commitments
are satisfied. The space is defined by the number of admitted flows from a finite set
of flow types. The first approach to compute an admissible region uses simulation
[DTVV90, HLP93, DLM93]. For a given number of flows from each flow type, sim-
ulate how many more flows of each type can be admitted without violating service
commitments. Running such simulations repeatedly with a different set of initial flow
mix, one eventually maps out the admissible region for the given flow types. The
admissible region is encoded as a table and down-loaded to the switches. When a
prospective flow makes a reservation, the admission control algorithm looks up the
table to determine whether admittance of this flow will cause the network to operate
outside the admissible region; if not, the flow is admitted. The major drawbacks of
this method for doing admission control are: (1) it supports only a finite number
of flow types, and (2) the simulation process can be computationally intensive. The
authors of reference [GKK95] use a Bayesian method to pre-compute an admissible
region for a set of flow types. The admissible threshold is chosen to maximize the
reward of increased utilization against the penalty of lost packet. The computation
assumes knowledge of link bandwidth, size of switch buffer space, flows’ token bucket
filter parameters, flows’ burstiness, and the desired loss rate; it also assumes Poisson
call arrival process and independent, exponentially distributed call holding times.
However, the authors of [GKK95] claim that this algorithm is robust against fluctu-
ations in the value of the assumed parameters. The measurement-based version of
this algorithm ensures that the measured instantaneous load plus the peak rate of a
new flow is below the admissible region. The authors of references [Hir91, CLG95]
use a neural-network to learn the admissible region for a given set of flow types. In
Chapter 10 we present a comparative study of a couple of the measurement-based

admission control algorithms presented in this section next to our own.
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Chapter 3
Relaxed Realtime Services

Traditional realtime service models have been designed on two assumptions: first,
traffic sources can be well characterized by Markov chains, and second, receivers re-
quire rigid delay bound. Recent studies show that network traffic exhibits long-range
dependence, a phenomenon not consistent with the first assumption. Long-range
dependence has been observed in 1SDN traffic [MH"91], telephone traffic  DMRW94],
local-area ethernet traffic LTWW94], wide-area Internet traffic [PF94, KM94], world-
wide-web traffic [CB96], video traffic [BSTW95, GW94], and audio traffic [Flo96a].
Long-range dependent traffic has been shown to effect queue behavior and loss rate
[LW91, ENW96, GBI6] and its cause has been traced back to source processes with
heavy-tailed ON and/or OFF times distributions [WTSW95, PKC94, Flo96a]. As to
the second assumption, recent realtime applications specifically designed for the In-
ternet, such as the vat, vs, nv, and vic teleconferencing programs, can buffer received
packets and adjust their playback point to adapt to experienced delay. Given such
adaptive playback applications, the network is not required to provide absolute delay
bound. This relaxation of delay bound enables the network to further increase uti-
lization. Recognizing the above two trends and the heterogeneous and decentralized
nature of the Internet, several “relaxed” realtime service models have been proposed

in the literature. We review them in the remainder of this chapter.
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3.1 Against Delay Bound

There is only one service model available on the current Internet: the best-effort ser-
vice model. Under this model, neither packet delivery time nor loss rate is bounded.
Some researchers believe that there will be such abundance of network bandwidth
in the future that this service model will be sufficient to support realtime traffic.
Without adding extra mechanism that will only slow down packet transmission, the
network can attain high level of utilization by admitting all offered flows; users dis-
satisfied with network performance can leave the network, resulting in better perfor-
mance for those who remain [WC93]. Where network bandwidth is not in abundance,
applications should be written to adapt to available bandwidth. Applications that
can gracefully adapt to heterogeneous environment are more robust and will survive
those that cannot [Hui95]. Aside from the ability of video sources to adapt their com-
pression ratio to available bandwidth [Cha86, GG91, YH91, GV93, WC93, KMR93,
VC94], video sources can also be hierarchically encoded into separate levels. In ref-
erences [MJV96, HS96], each level of the hierarchically encoded data is transmitted
as a separate flow under the control of receivers. Depending on available bandwidth
and receiver interest, more or fewer levels are actually transmitted. The ability of
applications to adapt to available bandwidth thus further obviate the need for the
network to guarantee a delay bound.

Next we question the meaning of a delay bound. Given the heterogeneous, decen-
tralized, and non-deterministic nature of the Internet, is it even realistic to expect
the network to guarantee a delay bound? If a flow is routed through a portion of
the Internet that does not support delay bound, the guarantees provided by the rest
of the path becomes contractually unenforceable. Such routing could happen either
at flow setup time or during the flow’s lifetime. Furthermore, how should the delay
bound at each switch be chosen? Assuming “appropriate” per-hop bounds, one still
has to determine the end-to-end delay bound; is this to be a simple sum of the per-
hop bounds? Finally, if network traffic is indeed long-range dependent, traffic tides
happen when sources burst simultaneously; at which time, the most effective control

is to ensure sufficient bandwidth, lack of which will result in buffer overflow, for any
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reasonable buffer sizes. The purpose of buffer space in switches is merely to hold
packets that arrive simultaneously because they were “jostled” a bit in upstream
switches, not to reshape traffic tide [Flo96a, LCH95]. Except on networks where
flows are isolated from each other, by means of a weighted fair queue for example,
and buffer space is allocated for worst-case requirements, delay bound is inherently
unenforceable.

Related to the question of how to provision for long-range dependent traffic, is how
to choose the token bucket filter parameters to characterize a source. If long-range
dependence in aggregate traffic is caused by ON/OFF sources with infinite variance
ON times, for all bucket depths one chooses, there is a longer ON time than what the
chosen bucket depth can accommodate. Furthermore, unless one is willing to tolerate
long queues at the token bucket filters, flows must be assigned token rates very close
to their peak rates. If flows are reserved bandwidth close to their peak rates, there

will not be long queueing delay anyway.

3.2 Unadvertised Bound

While assuming infinite bandwith gives us a simple network architecture that is very
appealing, it is still to be determined whether there really will be such abundance of
bandwidth in the future. A more conservative version of the above model allow users
to reserve a minimum bandwidth for each flow; traffic exceeding this minimum rate
competes for the remaining capacity. The admission control algorithm checks that the
sum of bandwidth requested does not exceed link capacity. Each flow may increase
its transmission rate until it receives congestion feedback from the network. Upon
congestion, the flow throttles back its offered load accordingly, down to the minimum
bandwidth reserved [KMR93, WC93]. Alternatively, one could make reservations to
ensure that the base level of an hierarchically encoded stream will be successfully
transmitted. The service models discussed in this section recognizes the need of
even adaptive applications to sometimes have some resources reserved. Conceding
the difficulty of guaranteeing delay bound as raised in the previous section, however,

they do not provide a contractually strict delay bound.

19



The controlled-load service model defined in reference [Wro95] “tightly approxi-
mates the behavior visible to applications receiving best-effort service under unloaded
conditions” over the same path. Furthermore, applications requesting controlled-
load service may assume that its packet loss rate is on the order of the transmission
medium’s error rate and that its typical experienced delay should be on the order
of the path’s transmission and propagation delays. More specifically, average packet
queueing delay should be no greater than the flow’s “burst time” and there should
be minimal loss rate averaged over time-scales larger than “burst time”—where the
“burst time” is defined as the time required to serve a flow’s maximum burst at the
flow’s reserved rate. For a flow described by a token bucket filter, the “burst time”
is b/r, where b is the token bucket depth and r its replenishment rate. Switches
ensures adequate resources by doing admission control. While the specification of
controlled-load service does not dictate specific quantitative values for service param-
eters such as delay bound or loss rate, operationally the admission control decisions
must still be computed and evaluated based on meeting one or both of these con-
straints. In Chapter 10 we investigate five admission control algorithms that could
support controlled-load service.

The committed rate service model described in reference [BGK96] provides re-
source reservation as in guaranteed service but without any delay or loss guaran-
tee nor the ability to pre-compute end-to-end delay. Committed-rate differs from
controlled-load service in that it allows for traffic policing and re-shaping, thereby

more closely emulates a dedicated circuit.

3.3 Predictive Service

Adaptive playback applications do not require an absolute delay bound; however,
they may still prefer an upper bound on the tail of their delay distributions. Even
if the delay distribution has a very small median, it may be useful to some applica-
tions to have a bounded worst-case. A small dynamic range of a parameter should
not be confused with the uselessness of that parameter. Furthermore, applications

using the networks may have different levels of delay bound tolerance; by providing
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different levels of realtime service with order of magnitude difference in delay bound,
a network can increase its portion of realtime traffic. While the heterogeneous and
decentralized nature of the Internet does pose an implementation problem for services
providing delay bound, predictive service can nevertheless be implemented on private
internetworks or commercial portions of the Internet.

Unlike the controlled-load and committed-rate service models, predictive service
offers a delay bound. Nevertheless, predictive service differs in two important ways
from traditional guaranteed service: (1) the service commitment is somewhat less
reliable, (2) while predictive service requires that sources be characterized by token
bucket filters at admission time, the behavior of existing flows is determined by mea-
surement rather than by a priori characterizations. It is important to keep these two
differences distinct because while the first is commonplace, the second, i.e. the use
of measurement-based admission control, is more novel. On the reliability of service
commitment, we note that the definition of predictive service itself does not specify
an acceptable level of delay violations. This is for two reasons. First, it is not par-
ticularly meaningful to specify a failure rate to a flow with a short duration [NK92].
Second, reliably ensuring that the failure rate never exceeds a particular level leads
to the same worst-case calculations that predictive service was designed to avoid. In-
stead, the csz approach proposes that the level of reliability be a contractual matter
between a network provider and its customers—not something specified on a per-flow
basis. We presume that these contracts would only specify the level of violations over
some large time scale (e.g. days or weeks) rather than over a few hundred packet
times.! Hence the bound offered by predictive service is not a probabilistic bound.
Probabilistic bounds, as discussed in Section 2.2, are based on the statistical charac-
terizations of the traffic. Under probabilistic service, a flow can request any amount
of bandwidth and thereby flexibly tune its resultant delay bound or statistical “loss”
rate. In contrast, the delay bounds for predictive service are less flexible; each switch

has a few predictive service classes which have pre-established target delay bounds.

'A network provider might promise to give its customers their money back if delay violations
exceed some level over the duration of their flow, no matter how short the flow; however we contend
that the provider cannot realistically assure that excessive violations will never occur.
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These bounds will typically be chosen to be roughly an order of magnitude apart.
Prospective flows can choose which class of predictive service they desire based on
the delay bound they can tolerate. The validity of these bounds are assessed when
making admission control decisions, based on actual measured characteristics of traf-
fic, rather than the theoretical worst-case behavior. Since our measurement-based
admission control algorithm does not rely on pre-existing measurements or computa-
tions, such as the ones in Section 2.2, predictive service is not limited to serve only

a small and well-characterized set of traffic sources.
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Chapter 4

Measurement-based Admission

Control

Our admission control algorithm consists of two logically distinct aspects. The first
aspect is the set of criteria controlling whether to admit a new flow; these are based
on an approximate model of traffic lows and use measured quantities as inputs. The
second aspect is the measurement process itself, which we will describe in Chapter 5.
In this chapter we present the analytical underpinnings of our admission control

criteria.

4.1 Framework

We have studied the behavior of our admission control algorithm mostly under the csz
scheduling discipline [CSZ92|, however we believe that the observations we made on
our measurement-based admission control algorithm, and our methodology for study-
ing such an algorithm, apply equally to other scheduling disciplines for example, in
Chapter 10 we apply our methodology and observations in studying several admis-
sion control algorithms for the controlled-load service model. While we believe that
most future realtime applications written for asynchronous packet switched networks

will be adaptive playback applications, we do not discount the need for guaranteed
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service. In the sz scheme, guaranteed service is provided by the weighted fair queue-
ing (WFQ) algorithm described in [DKS89] also known as the generalized processor
sharing (Gps) algorithm in [PG93]. WFQ assigns a share of link capacity to each
active flow; the admission control criterion is merely that the sum of the previously
assigned bandwidths plus the bandwidth requested by the prospective flow does not
exceed link capacity. The scheduling discipline for predictive service is a priority
queue, as described in [CSZ92]; the scheduler attempts to minimize the maximal
(minimax) delays actually experienced in each class, but does not guarantee an ab-
solute maximum delay bound. Because of the minimax scheduler, we expect that for
the same amount of bandwidth reserved, predictive service users will see lower delay
than guaranteed service users. Under the ¢Sz model, a switch can support multiple
levels of predictive service, each with its own delay bound. We envision that the delay
bounds of different level of predictive service will be on the order of magnitude apart.
In our scheme, the admission control algorithm at each switch enforces the queueing
delay bound at that switch, assuming infinite buffer space. We leave the satisfaction
of end-to-end delay requirements to the end systems. An end system could, for ex-
ample, use adaptive source routing, such as the one proposed in reference [Bre95], to
select a route that satisfies its end-to-end requirements. We also assume the existence
of a reservation protocol, such as the one in [Z793], which the end systems could use
to communicate their resource requirements to the network. We require that there
be compelling incentives, such as quality of service based pricing (e.g. [CESZ93]), for
users to always request the least costly quality of service satisfying their needs.
Sources requesting service must characterize the worst-case behavior of their flow.
In [CSZ92] this characterization is done with a token bucket filter. A token bucket
filter for a flow has two parameters: its token generation rate, r, and the depth of its
bucket, b, i.e. no more than b tokens can be accumulated. Each token represents a
single bit; sending a packet consumes as many tokens as there are bits in the packet.
Without loss of generality, in this study we assume packets are of fixed size and that
each token is worth a packet; sending a packet consumes one token. A flow is said to

conform to its token bucket filter if no packet arrives when the token bucket is empty.
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When the flow is idle or transmitting at a lower rate, tokens are accumulated up to
b tokens. Thus flows that have been idle for a sufficiently long period of time can
dump a whole bucket full of data back to back. For constant bit rate sources, one
can set the token rate, r, to the peak traffic generation rate and let the bucket depth,
b, be 1. In this case, the token-bucket filter precisely characterizes the traffic coming
out of the sender. Many non-constant bit rate sources do not naturally conform to a
token bucket filter with token rate less than their peak rates. The user, then, should
pick a token bucket filter which looks like a reasonable upper bound on its behavior.
It is conceivable that future real-time applications will have a module that can, over

time, learn a suitable r and b to bound their traffic.

When admitting a new flow, not only must the admission control algorithm
decide whether the flow can get the service requested, but it must also decide if ad-
mitting the flow will prevent the network from keeping its prior commitments. Let
us assume, for the moment, that admission control cannot allow any delay viola-
tions. Then, the admission control algorithm must analyze the worst-case impact
of the newly arriving flow on existing flows’ queueing delay. However, with bursty
sources, where the token bucket parameters are very conservative estimates of the
average traffic, delays rarely approach these worst-case bounds. To achieve a fairly
reliable bound that is less conservative, we approximate the maximal delay of pre-
dictive flows by replacing the worst-case parameters in the analytical models with
measured quantities. We call this approximation the equivalent token bucket filter.
This approximation yields a series of expressions for the expected maximal delay
that would result from the admission of a new flow. As mentioned above, in the csz
architecture, switches serve guaranteed traffic with the weighted fair queueing (WFQ)
scheduling discipline and serve predictive traffic with priority queueing. Hence, the
computation of worst-case queueing delay is different for guaranteed and predictive
services. In this chapter, we will first look at the worst-case delay computation of
predictive service, then that of guaranteed service. Following the worst-case delay

computations, we present the equivalent token bucket filter. We close this chapter
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by presenting the details of the admission control algorithm based on the equivalent

token bucket filter approximations.

4.2 Worst-case Delay: Predictive Service

To compute the effect of a new flow on existing predictive traffic, we first need a model
for the worst-case delay of priority queues. Cruz, in [Cru91], derived a tight bound
for the worst-case delay, D}, of priority queue level j. Our derivation follows Parekh’s
[Par92|, which is a simpler, but looser, bound for D7 that assumes small packet sizes,
i.e. the transmission time of each packet is sufficiently small (as compared to other
delays) and hence can be ignored. This assumption of small packet sizes further
allows us to ignore delays caused by the lack of preemption. Further, we assume

that the aggregate rate, aggregated over all traffic classes, is within the link capacity

(Xr < n).

Theorem 1 Parekh [Par92]: The worst-case class j delay, with FIFO discipline within

the class and assuming infinite peak rates for the sources, is

D* ZZ:l bl

’ K= ZL% i

for each class j. Further, this delay is achieved for a strict priority service discipline

under which class 7 has the least priority.

Proof: Let j be the session with the lowest priority at the first switch from the
source of j. Session j dumps a bucket full of data at time ¢,. We first prove that the
delay seen by the last bit of session j’s bucket is Eqn. 4.1. We then prove that this

delay is the worst-case delay.'

Case 1: All higher priority sessions also dump their bucket full of data at time
to. Session j’s queue is empty. After dumping their bucket full of data, the higher

priority sessions continue sending at their respective token rate, r;,0 < 7 < j — 1.

nterested readers may also refer to [Par92], Theorem 2.4 for an alternate proof.
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The first bit of data from session j’s bucket will be served only after all the packets
of higher priority sessions have been served. The number of accumulated higher
priority packets is Z{;ll b;; since all the higher priority sessions continue sending at
their respective rate after dumping their bucket full of packets, the bandwidth left to
serve Zf;l b; is p — Zf;l r;. Thus the first bit of session j’s bucket will be served at
time: .
Zle bi
j—1
K= 2s=1Ti

To determine the queueing delay experienced by the last bit of session j’s packet,

we first determine how long it takes to drain b; at the source. In the worst case
scenario, session j has infinite amount of data to transmit. The bucket drain rate is
then C;, the transmission rate of session j’s source. Since the bucket is replenished
at rate r;, it takes 7; time to drain the bucket. Note that we have accounted for the
bucket replenishment rate here.

During session j’s bucket draining time, it sends C;7; amount of data onto the

network. It takes
CjTj

) —1
H— Z?:l T

time to serve this data. But since the last bit of session j’s packet does not arrived

(4.3)

until time 7;, and pu > r;, the delay seen by the last bit of session j’s packet is only

affected by the size of the session’s bucket size. Hence Eqn. 4.1.

We now prove that Eqn. 4.1 is the maximal delay seen by all session j’s packets.

Case 2: If session j’s queue is not empty at time ¢y, Some higher priority session
must have dumped their data before #,. Since r; < p — Zf;l r;, session j’'s queue
could not have been longer than the amount of higher priority packets served before

to. Thus the first bit of session j’s bucket will see service earlier than ¢, of Eqn. 4.2.

Case 3: Some higher priority sessions dump their data before ¢y, and session j's
queue is empty at time t5. The first bit of session j’s bucket will again see service

earlier than £, of Eqn. 4.2.
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Case 4: Some upper priority sessions dump their data after ¢5. This case reduces
trivially to the case when all of them dump their data before or at ¢, i.e. case 1 or 2

above.

O

The theorem says that the delay bound for class j is the one-time delay burst that
accrues if the aggregate bucket of all classes 1 through j flows are simultaneously
dumped into the switch and all classes 1 through j — 1 sources continue to send at
their reserved rates.

We now use Eqn. 4.1 as the base equation to model the effect of admitting a new
flow « on existing predictive traffic. First we approximate the traffic from all flows
belonging to a predictive class j as a single flow conforming to a (v}, b;) token bucket
filter. A conservative value for v; would be the aggregate reserved rate of all flows
belonging to class j. Next, we recognize that there are three instances when the
computed worst-case delay of a predictive class can change: (1) when a flow of the
same class is admitted, (2) when a flow of a higher priority class is admitted, and (3)
when a guaranteed flow is admitted. The switch priority scheduling isolates higher
priority (< k) classes from a new flow of class k, so their worst-case delay need not
be re-evaluated when admitting a flow of class k. In the remainder of this chapter,
we compute each of the three effects on predictive traffic individually. At the end
of these computations, we will observe that admitting a higher priority predictive
flow “does more harm” to lower priority predictive traffic than admitting either a
guaranteed flow or a predictive flow of the same priority.

In the equations below, we denote newly computed delay bound by D*. We
denote the sum of guaranteed flows’ reservation by vq. The link bandwidth available
for serving predictive traffic is the nominal link bandwidth minus those reserved by

guaranteed flows: p — vg.

1. Effect of new predictive flow a on same priority traffic. We can model

the effect of admitting a new flow « of predictive class k£ by changing the class’s
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Figure 4.1: Effect of new predictive flow on same priority traffic.

token bucket parameters to (v + g, by + bY), where (rg, b3) are the token bucket

parameters of the new flow:

k—
D = Skl by, + b

k—1 k—1
N*VG*ZZ':1 v; M*VG*ZZ':1 Vi

(0}
bk
k—1 :
H—rvg — Zi:l Vi

= Di+ (4.4)
We see that the delay of class k& grows by a term that is proportional to flow a’s
bucket size.

Fig. 4.1 depicts a ¢sz scheduler with n number of guaranteed flows and one class 2
predictive flow. When the class 2 flow arrives, there is no other predictive flow in the
system. Hence the worst-case delay seen by the new flow is the time it takes to drain
the its bucket full of data (b%,) at rate u—v2, where v% is the sum of the n guaranteed

. I}
flows’ reserved rates. The new worst-case delay for class 2 is D, = b5y /pt — V3.
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Figure 4.2: Effect of new predictive flow on lower priority traffic.

2. Effect of predictive flow o on lower priority traffic. We compute the new
delay bound for class j, where j is greater than the requested class, k, directly from

Eqn. 4.1, adding in the bucket depth b and reserved rate rj of flow a.

k-1 «a J .
D’fl . ZZ’:1 bi + b + bk + Zi:k+1 bi
J = k—1 Jj—1
W—VG— D Vi—Vk— T — Zz’:kJrl Vi
j—1
M —rg — Zle vy

B—VG — D Vi — Tk
by )

J—1 o’ k< J < Ka (45)

U_VG_Zizl vi — T

where K is the number of predictive classes. The first term reflects a squeezing
of the pipe, in that the additional bandwidth required by the new flow reduces the
bandwidth available for lower priority flows. The second term is similar to the delay
calculated above, and reflects the effect of the new flow’s burstiness.

Fig. 4.2 adds a new class 1 flow to the system depicted in Fig. 4.1. The new flow
is the highest priority predictive flow and there is no other flow of the same priority

in service. The worst-case delay seen by this new flow is when it dumps its bucket
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full of data (bh,). Maximal delay of class 1 is D}, = bb,/u— v, Class 2 traffic must
now wait for the class 1 queue to drain before it sees service. Hence the worst-case
delay of class 2 traffic becomes:
— VA bl
. n ¢ 1 + nPl 1 -
H—=Vg—Tpr H—Vg—Tp

Dpy = Dp, (4.6)
3. Effect of a guaranteed flow « on predictive traffic. Again, we compute
the new delay bound D* for all predictive classes directly from Eqn. 4.1, adding in

the reserved rate, rg, of flow a.

b - e
M—VG—Zle Vi_rg
- D “7VG7§%jVi :
M*VG*Zle Vi*?"?‘;

1<j<K. (4.7)

Notice how the new guaranteed flow simply squeezes the pipe, reducing the available
bandwidth for predictive flows; new guaranteed flows do not contribute any delay
due to their buckets because WFQ smooths out their bursts. Also observe that the
first term of Eqn. 4.5 is equivalent to Eqn. 4.7: the impact of a new guaranteed flow
is like adding a zero-size bucket, higher priority, predictive flow.

Fig. 4.3 shows a new guaranteed flow added to the system in Fig. 4.2. The new
guaranteed flow does not effect existing guaranteed flows nor is it itself effected by
any other flows. However, it does affect the bandwidth available to predictive traffic.
The new maximal delay of class 1 and class 2 predictive services are respectively:

p—vg
p-vg =gt

L= Vg —Tp

n n+1 1 -
W—Vg—Tg —Tpi

* _ *
Dy, = Dpy and

D;;Q = Dfn (4-8)

Contrasting Eqns. 4.4, 4.5, and 4.7, we see that the experienced delay of lower

priority predictive traffic increases more when a higher priority predictive flow is

admitted than when a guaranteed flow or a same-priority predictive flow is admitted.
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Figure 4.3: Effect of a guaranteed flow on predictive traffic.

The WFQ scheduler isolates predictive flows from attempts by guaranteed flows to
dump their buckets into the network as bursts. In contrast, lower priority predictive
traffic sees both the rates and the buckets of higher priority predictive lows. A higher
priority predictive flow not only squeezes the pipe available to lower priority traffic,

but also preempts it.

4.3 Worst-case Delay: Guaranteed Service

In reference [Par92], the author proves that in a network with arbitrary topology,
the WFQ scheduling discipline provides guaranteed delay bounds that depend only
on flows’ reserved rates and bucket depths. Under wrQ, each guaranteed flow is
isolated from the others. This isolation means that, as long as the total reserved rate
of guaranteed flows is below the link bandwidth, new guaranteed flows cannot cause
existing ones to miss their delay bounds. Hence, when accepting a new guaranteed
flow, our admission control algorithm only needs to assure that (1) the new flow will
not cause predictive flows to miss their delay bound (see Eqn. 4.7 above), and that (2)

it will not over-subscribe the link: v + r2 < vp, where p is the link bandwidth and
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v is the utilization target (see Chapter 5.2 for a discussion on utilization target). In
addition to protecting guaranteed flows from each other, WrQ also isolates (protects)

guaranteed flows from all predictive traffic.

4.4 Equivalent Token Bucket Filter

The equations above describe the aggregate traffic of each predictive class with a
single token bucket filter. How do we determine a class’s token bucket parameters?
A completely conservative approach would be to make them the sum of the param-
eters of all the constituent flows; when data sources are bursty and flows declare
conservative parameters that cover their worst-case bursts, using the sum of declared
parameters will result in low link utilization. Our algorithm is approximate and
optimistic: we take advantage of statistical multiplexing by using measured values,
instead of providing for the worst possible case, to gain higher utilization, risking
that some packets may occasionally miss their delay bounds. In essence, we describe
existing aggregate traffic of each predictive class with an equivalent token bucket filter
with parameters determined from traffic measurement.

The equations above can be equally described in terms of current delays and
usage rates as in bucket depths and usage rates. Since it is easier to measure delays
than to measure bucket depths, we do the former. Thus, the measured values for
a predictive class j are the aggregate bandwidth utilization of the class, 7;, and
the experienced packet queueing delay for that class, Ej. For guaranteed service,
we count the sum of all reserved rates, v, and we measure the actual bandwidth
utilization, 7, of all guaranteed flows. Our approximation is based on substituting,
in the above equations, the measured rates 7; and 7 for the reserved rates, and
substituting the measured delays ﬁj,j = 1... K for the maximal delays. We now
use the previous computations and these measured values to formulate an admission

control algorithm.
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4.5 The Admission Control Algorithm

New Predictive Flow. If an incoming flow a requests service at predictive class

k, the admission control algorithm:

1. Denies the request if the sum of the flow’s requested rate, ri, and current usage

would exceed target link utilization:

N
op >y +vg —I—Zﬁi,
i=1

(4.9)

2. Denies the request if admitting the new flow could violate the delay bound, Dy,

of the same priority level:

i

PN k—1 ~ °
n—rvag _Zizl vy

Dk>ﬁk+

or could cause violation of lower priority classes” delay bound, D;:

~ -1 ~
a H—rvg — Zi:l Vi

D; > D;
J J =~ 1~
N—VG—Zfﬂ Vz'—T;‘c"
ba
k

= 71~ )
Bb—VG — i Vi —Th

+

k<j<K.

(4.10)

(4.11)

New Guaranteed Flow. If an incoming flow « requests guaranteed service, the

admission control algorithm:

1. Denies the request if either the bandwidth check in Eqn. 4.9 fails or if the

reserved bandwidth of all guaranteed flows exceeds target link utilization:

op > ré+vg.

(4.12)
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2. Denies the request if the delay bounds of predictive classes can be violated when

the bandwidth available for predictive service is decreased by the new request:

~ -1~
- U_VG_Zilei

D]'>D] — 1~ o
N*VG*Z¢:1V1'*7“G

1<j<K. (4.13)

If the request satisfies all of these inequalities, the new flow is admitted.
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Chapter 5

A Simple Time-window

Measurement Mechanism

The formulae described in the previous chapter rely on the measured values b\j,
Vg, and v as inputs. We describe in this chapter the time-window measurement
mechanism we use to measure these quantities. While we believe our admission
control equations have some fundamental principles underlying them, we make no
such claim for the measurement process. Our mechanism is extremely simple and
could be replaced by a number of other approaches. We consider the simplicity of
our approach an advantage in our study because it helps us isolate properties inherent
to our admission control criteria from those induced by the measurement mechanism.
Our measurement process uses the constants A, S, and 7T'; discussion of their roles as

performance tuning knobs follows our description of the measurement process.

5.1 Measurement Process

We take two measurements: experienced delay and utilization. To estimate delay,
we measure the queueing delay d of every packet. To estimate utilization, we sample
the usage rate of guaranteed service, 72, and of each predictive class 7, ﬁf, over a

sampling period of length S packet transmission units. Following we describe how
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Figure 5.1: Measuring delay.

these measurements are used to compute the estimated maximal delay lA)j and the

estimated utilization g and 7;.

Measuring delay. The measurement variable lA)j tracks the estimated maximum
queueing delay for class j. We use a measurement window of 7" packet transmission
units as our basic measurement block. As shown in Fig. 5.1, the value of 5]- is
updated on three occasions. At the end of the measurement block, we update lA)j to
reflect the maximal packet delay seen in the previous block. Whenever an individual
delay measurement exceeds this estimated maximum queueing delay, we know our
estimate is wrong and immediately update lA)j to be A times this sampled delay. The
parameter A allows us to be more conservative by increasing Ej to a value higher than
the actual sampled delay. Finally, we update lA)j whenever a new flow is admitted,
to the value of projected delay from our admission control equations. Algebraically,

the updating of @ is as follows:

( MAX(dA), of past T measurement window,
M, if d > D;,
ﬁ; =9 Right side of when adding a new flow, depending (5.1)
Eqgn. 4.10, 4.11, on the service and class requested by
L or 4.13, the flow.

Measuring rate. The measurement variables 7 and 7; track the highest sampled

aggregate rate of guaranteed flows and each predictive class respectively (heretofore,
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Figure 5.2: Measuring rate.
we will use “0” as a shorthand for “Dg and/or v;,” and “v°” for “vg and/or v.”)

As shown in Fig. 5.2, the value of 7 is updated on three occasions. At the end of
the measurement block, we update v to reflect the maximal sampled utilization seen
in the previous block. Whenever an individual utilization measurement exceeds v,
we immediately update 7 with the new sampled value. Finally, we update v upon

admission of new flows. Algebraically, the updating of v is as follows:

MAX(D%), of past T" measurement window,
o 03, if 75 > D, where 0 is the average rate (5.2)
over S averaging period,

v+ re, when adding a new flow «.

The measured rate of guaranteed traffic is capped at the sum of guaranteed reserved
rate (/V\IG = M]N(Z/)(;, V(;)).

When a flow leaves the network, we do not explicitly adjust the measured
values; instead we allow the measurement mechanism to adapt to the observed traffic
automatically. We do, however, subtract the reserved rate of a departing guaranteed

flow from the sum of all guaranteed reserved rate, vq.
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5.2 Performance Tuning Knobs

We now look at the constants used in the algorithm.

v: In a simple M/M/1 queue, the variance in delay diverges as the system ap-
proaches full utilization. A measurement-based approach is doomed to fail when
delay variations are exceedingly large, which will occur at very high utilization. It is
thus necessary to identify a utilization target and require that the admission control
algorithm strive to keep link utilization below this level.

The appropriate utilization target of any given link depends on the characteristics
of the traffic flowing through it. If each source’s rate is small compared to link capacity
(small grain size) and bursts are short, the link’s utilization target can be set higher.
Bursty sources with big, long bursts or long idle periods will require a lower link

utilization target. In this study, we set utilization target at 90% capacity.

A: In our simulations, a single instance of packet delay above the current estimate
typically indicate that subsequent delays are likely to be even larger; so when a
packet’s queueing delay, cf, is higher than its class’s estimated maximal delay @, we

back off our delay estimate to a much larger value, Ad. In this study, we use A = 2.

S:  The averaging period S in Eqn. 5.2 controls the sensitivity of our rate mea-
surement. The smaller the averaging period, the more sensitive we are to bursts;
the larger the averaging period, the smoother traffic appears. An S that captures
individual bursts may make the admission control more conservative than desired.

In this study we use S of at least 100 packet transmission times.

T: Once D or v is increased, their values stay high until the end of their respective
measurement window 7T'. The size of T' controls the adaptability of our measurement
mechanism to drops in traffic load. Smaller 7" means more adaptability, but larger
T results in greater stability. The window size for load measurement should allow
for enough utilization samples, i.e. T should be several times S. The measurement
windows of the load and the delay can be maintained independently. When we admit

a new flow and add its worst case effect to the measured values, we also restart the
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measurement windows to give the measurement mechanism one whole window to

gather information on the new flow.
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Chapter 6
Simulations

Admission control algorithms for guaranteed service can be verified by formal proof.
Measurement based admission control algorithms can only be verified through exper-
iments on either real networks or a simulator. We have tested our algorithm through
simulations on a wide variety of network topologies and driven with various source
models; we describe a few of these simulations in the following chapters. In each
case, we were able to achieve a reasonable degree of utilization (when compared to
guaranteed service) and a low delay bound violation rate (we try to be very conser-
vative here and always aim for no delay bound violation over the course of all our
simulations). Before we present the results from our simulations, we first present the

topologies and source models used in these simulations.

6.1 Simulated Topologies

We run our simulations on four topologies: the ONE-LINK, TWO-LINK, FOUR-LINK,
and TBONE topologies depicted in Figs. 6.1(a), (b), (¢), and 6.2 respectively. In the
first three topologies, each host is connected to a switch by an infinite bandwidth link.
The connection between switches in these three topologies are all 10 Mbps links, with
infinite buffers. In the ONE-LINK topology, traffic flows from HostA to HostB. In
the TwO-LINK case, traffic flows between three host pairs (in source—destination

order): HostA HostB, HostB HostC, HostA HostC. Flows are assigned to one of
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Figure 6.1: The ONE-LINK, TWwoO-LINK and FOUR-LINK topologies

these three host pairs with uniform probability. In the FOUR-LINK topologies, traffic
flows between six host pairs: HostA—HostC, HostB-HostD, HostC—HostE, HostA—
HostD, HostB-HostE, HostD-HostE; again, flows are distributed among the six host
pairs with uniform probability. In Fig. 6.1, these host pairs and the paths their
packets traverse are indicated by the directed curve lines.

The TBONE topology consists of 10, 45, and 100 Mbps links as depicted in
Fig. 6.2(a). Traffic flows between 45 host-pairs following four major “currents” as
shown in Fig. 6.2(b): the numbers 1, 2, 3, 4 next to each directed edge in the figure
denote the “current” present on that edge. The 45 host-pairs are listed in Table 6.1.
Flows between these host-pairs ride on only one current, for example flows from host
H1 to H26 ride on current 4. In Fig. 6.2(a), a checkered box on a switch indicates
that we have instrumented the switch to study traffic lowing out of that switch onto
the link adjacent to the checkered box.

6.2 Source Models

We currently use three kinds of source model in our simulations. All of them are
ON/OFF processes. They differ in the distribution of their ON and OFF times and
call holding time (CHT, which we will also call “flow duration” or “flow lifetime”).

One of these is the two-state Markov process used widely in the literature. Recent
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Table 6.1: Forty-five Host Pairs on TBONE

Source | Destination(s) | Source | Destination(s)

H1 H5, H7, H11, Hi4 | H23 and H25
H12, H14, and H26 || H15 | H11 and H17

H2 H10 and H25 H16 H5 and H9

H3 H4 and H19 H17 H12

H4 H18 H18 | H5, H6, and H11

H5 H14 and H25 H19 H5

H6 H18 H20 H5

H7 H17 H21 H9

HS H4, H5, H26 H22 | H6

H9 H3 and H19 H24 H12 and H17

H10 H3 and H18 H25 H6 and H14

H12 H4 H26 H9 and H14

H13 H17 H27 H4

studies ([LTWW94, DMRWO94, PF94, KM94, GW94, BSTW95]) have shown that
network traffic often exhibits long-range dependence (LRD), with the implications
that congested periods can be quite long and a slight increase in the number of active
connections can result in large increase in packet loss rate [PF94]. The authors
of reference [PF94, Flo96a] further call attention to the possibly damaging effect
long-range dependent traffic might have on measurement-based admission control
algorithms. To investigate this and other LRD related questions, we augment our

simulator with two LRD source models.

EXP Model. Our first model is an ON/OFF model with exponentially distributed
ON and OFF times. During each ON period, an exponentially distributed random
number of packets, with average N, are generated at fixed rate p packet/sec. Let
I milliseconds be the average of the exponentially distributed OFF times, then the
average packet generation rate a is given by 1/a = I/N + 1/p. The ExpP1 model
described in the next section is a model for packetized voice encoded using ADPCM

at 32 Kbps.
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Figure 6.3: Experienced delay of EXP and POO sources.

LRD: Pareto-ON/OFF. Our next model is an ON/OFF process with Pareto dis-
tributed ON and OFF times (for ease of reference, we call this the Pareto-ON/OFF
model). During each ON period, a Pareto distributed number of packets, with mean
N and Pareto shape parameter (3, are generated at peak rate p packet/sec. The OFF
times are also Pareto distributed with mean I milliseconds and shape parameter -.
Pareto shape parameter less than 1 gives data with infinite mean; shape parameter
less than 2 results in data with infinite variance. The Pareto location parameter is
mean * (shape — 1)/shape. Each Pareto-ON/OFF source by itself does not generate
LRD series. However, the aggregation of them does [WTSW95]. The Hurst parameter
that reflects the degree of long-range dependency of a time-series is determined by
the heavier tailed of the ON or OFF time distribution. If 3 is the shape parameter of
the heavier tailed Pareto distribution, the Hurst parameter of the aggregate traffic is
H = (3-p)/2 [CBY6].

Fig. 6.3 shows the experienced delay of 250 EXP sources and 330 POO sources at
the bottleneck link of the ONE-LINK topology. Both source models have a peak rate
of 64 Kbps, average idle time of 325 msec., and average burst length of 20 packets.
We can see that even though both source models have peak to average rate of 2, the

delay distribution of POO sources has a much heavier tail.
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LRD: Fractional ARIMA. We use each number generated by the fractional au-
toregressive integrated moving average (fARIMA) process ([HR89]) as the number of
fixed-size packets to be sent back to back in each ON period. Interarrivals of ON pe-
riods are of fixed length. For practical programming reasons, we generate a series of
15,000 fARIMA data points at the beginning of each simulation. Each fARIMA source
then picks a uniformly distributed number between 1 and 15,000 to be used as its
index into that series. On reaching the end of the series, the source wraps around to
the beginning. This method is similar to the one used by the authors of [GW94] to
simulate data from several sources using one variable bit rate (VBR) video trace.
Let {X;} denote data points from a time-series. An ARMA(p, ¢q) process has the

form:
Xi=0 Xi 1+ 02X+ ..+ 0, X+ — Oy — Ohoyo — ... — gy, (6.1)

where the a; are uncorrelated Gaussian noise, the ¢;,7 = 1...p, are the autore-
gressive weights and the 0;,j = 1...¢, are the moving average weights. The ARMA
process is stationary if —1/2 < ¢y < 1/2 ([BJ76], p. 76). Next define a lag operator B
as X; 1 = BXj, and the difference operator V as (X; — X; 1) = VX;; hence VX, =
(1-B)X;. Let ®(B)=(1—¢B—...—¢,B?) and O(B) = (1 -6, B — ... —6,B9).

Then an ARIMA(p, d, q) process is defined as:
®(B)VIX, = O(B)ay. (6.2)

A fractional ARIMA process has a d of fractional value. A fARIMA(p,d, q) process
with 0 < d < 1/2 generates long-range dependent series with Hurst parameter H =
d +1/2 [Hos81, LTWW94]. Hence the fARIMA model takes three parameters: the
autoregressive process order with the corresponding set of weights, the degree of
integration, and the moving average process order with the corresponding set of
weights, it also requires an innovation with a Gaussian marginal distribution. The
marginal distribution of a fARIMA generated series is also Gaussian; whereas VBR

video traces exhibit low average with high peaks. Thus we can not use the fARIMA
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output to model traffic from a single VBR video source. Nevertheless, simulation
results in [GW94] indicate that aggregation of fARIMA generated series may well
model aggregate VBR video traffic such as that coming from a subnetwork. In our
simulations, we first generate a normally distributed innovation with mean N and
standard deviation s packets. If the minimum of the fARIMA output is less than
zero, we shift the whole series by adding the absolute value of its minimum to every
number in the series. This way of obtaining non-negative series is also used in [AM95].
Note that this shifting process constrains the maximum value of the generated series
to be always twice its average. The Whittle maximum likelihood estimator [Ber94|
confirms that our shifting, cropping, and overlaying of the fARIMA generated series

do not destroy its long-range dependent characteristic.

To ease discussion on the effect of different source models on traffic characteristics,
it is useful to define the following additional notations and concepts: let p be a
flow’s density (the ratio of its average to peak rates, a/p), R its grain size (the ratio
of its peak rate to link bandwidth, p/u), and 1/p its burstiness. Aggregation of
flows with p & 1 results in smooth traffic and reliable measurement. Bursty flows
with short bursts (p < 1, N/u < D;) will have their bursts smoothed out by the
switch’s buffer, resulting, again, in reliable measurement values. Bursty flows with
large bursts, e.g. Pareto distributed ON time, but small grain size (p < 1, N/u >
Dj;,and R < 0.1pu) still allow for large degree of statistical multiplexing. However
bursty flows with long burst and large grain size (p < 1, N/p > D;,and R > 0.1p)
might best be alloted their own guaranteed bandwidth.

In addition to each source’s characteristics of density and grain size, network
traffic dynamics is also shaped by the arrival pattern and duration of flows. Our
simulator allows us to drive each simulation with a number of flow generators; for
each generator, we can specify its start and stop times, the average flow interarrival
time, the maximum number of concurrently active flows, and the mix of transport
protocol, source model, token bucket filter, and service request ascribed to each flow.
We give exponentially distributed lifetimes to the EXP model, following [Mol27].

The duration of for LRD sources, however, are taken from a lognormal distribution,
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Figure 6.4: ON/OFF traffic model with token-bucket filter

following [Bol94, DMRW94]. The interarrival times of all flows are exponentially
distributed [PF94].

6.3 Parameter Choices

Fig. 6.4 shows a packet-arrival depiction of an ON/OFF source in the context of a
host with token-bucket filter. To make a given traffic generation source conform to a
particular token bucket filter, a host can queue packets arriving at an empty bucket
until more tokens are available. If the data queue length (Q) is 0, packets that arrive
at an empty token bucket are immediately dropped. We chose six instantiations of
the above three source models, as summarized in Table 6.2. In the table, p = oo
means that after each OFF time, packets for the next ON period are transmitted back
to back. (On real networks, packets are sent back to back when the applications
generate traffic faster than the network can transmit it.) In the same table, we also
list the settings of the token bucket parameters assigned to each source. Column 8 of

the table, labeled cut rate, indicates the average number of packets that would have
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Table 6.2: Six Instantiations of the Three Source Models

Model’s Parameters | Token Bucket Parameters || Bound (ms)
Model Name ppkt/| I | N |p/a|rtkn/| b | cut | max
sec | msec|pkts sec |tkns| rate | glen D™\ D
EXP1 64| 325 20| 2 64 1 0 Ol 16 16
EXP2 1024] 90| 10| 10 320 50(2.1e-3 17160 160
EXP3 oo| 684 9] o 512| 80(9.4e-5 1]160 160
p
POO1 642925 20| 1.2 64 1 0 O 16 16
POO2 256 360 10| 1.9 240| 60|4.5e-5| 2201256 160
s
fARIMA oo| 125 8| 13| 1024| 100|1.1e-2 341100 160
({0.75}, 0.15, -)

been dropped by each flow’s token bucket filter over the total number of packets sent
by the flow, had the data queue length been 0 (i.e. packets are immediately dropped
upon arriving at an empty token bucket). Column 9, labeled maz glen, shows the
maximum data queue length a flow can expect to see if the data queue has infinite
length. We assign each flow a data queue with infinite length in all our simulations
(i.e. packets that arrive at an empty token bucket are always queued, and the queue
never overflows). Recall that in this study we use fixed packet size and each of our
token is worth 1 Kbits of data, which is also our packet size.

The shape parameter of the Pareto distributed ON time (/) of the Pareto-ON/OFF
sources are selected following the observations in [WTSW95]. According to the same
reference, the shape parameter of the Pareto distributed OFF time () stays mostly
below 1.5; in this study we use v = 1.1 for all POO sources. For the POO1 model,
we use a token bucket rate equals to the source’s peak rate such that the token
bucket filter does not reshape the traffic. For the POO2 model, some of the generated
packets were queued; this means during some of the source’s alleged “OFF” times, it
may actually still be draining its data queue onto the network. Thus for the POO2

model, the traffic seen on the wire may not be Pareto-ON/OFF.
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When a flow with token bucket parameters (r,b) requests guaranteed service, the
maximal queueing delay (ignoring terms proportional to a single packet time) is given
by b/r [Par92]. Column 10 of the table, labeled D*, lists the guaranteed delay bound
for each source given its assigned token bucket filter. Column 11, labeled D;, lists
the predictive delay bound assigned to each source. We simulate only two classes
of predictive service. A predictive bound of 16 msecs. means first class predictive
service, 160 msecs. second class. We have chosen the token bucket parameters so that,
in most cases, the delay bounds given to a flow by predictive and guaranteed services
are the same. This facilitates comparison between the utilization levels achieved
with predictive and guaranteed services. In the few cases where the delays are not
the same, such as in the POO2 and fARIMA cases, the utilization comparison is less
meaningful. In the POO2 case, for example, the predictive delay bound is smaller
than the guaranteed bound, so the utilization gain we find here understates the true
gain.

For the fARIMA source, we use an autoregressive process of order 1 (with weight
0.75) and degree of integration 0.15 (resulting in a generated series with Hurst param-
eter 0.65). The first order autoregressive process with weight 0.75 means our fARIMA
traffic also has strong short-range dependence. The interarrival time between ON
periods is 1/8th of a second. The Gaussian innovation fed to the fARIMA process has
a mean of 8 packets with standard deviation 13.

Except for simulations on the TBONE topology, flow interarrival times are expo-
nentially distributed with an average of 400 milliseconds. Because of system memory
limitation, we set the average flow interarrivals of simulations on the TBONE topol-
ogy to 5 seconds. The average holding time of all EXP sources is 300 seconds. The
POO and fARIMA sources have lognormal distributed holding times with median 300
seconds and shape parameter 2.5. We run simulations with Markov-ON/OFF (EXP)
sources for 3000 seconds simulated time. The data presented are obtained from the
later half of each simulation. By visual inspection, we determined that 1500 simu-
lated seconds is sufficient time for the simulations to warm up. Simulations involving

Pareto-ON/OFF sources require a longer warmup period and a longer simulation time
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for the LRD effect to be seen, thus we run them for 5.5 hours simulation time, with

reported data taken from the later 10000 seconds.
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Chapter 7

On the Viability of the Algorithm

In this chapter, we show that measurement-based admission control algorithm, when
used with predictive service, indeed yields higher level of link utilization than that
achieveable under parameter-based algorithms with guaranteed service. We provide
supporting evidence from results of simulations with both homogeneous and hetero-
geneous traffic sources, on both single-hop and multi-hop networks. Depending on

traffic burstiness, the utilization gain ranges from twice to order of magnitude.

7.1 Homogeneous Sources: The Single-hop Case

By homogeneous sources we mean sources that not only employ just one kind of
traffic model, but also ask for only one kind of service. For this and all subsequent
single-hop simulations, we use the topology depicted in Fig. 6.1(a). For each source,
we run two kinds of simulation. The first has all sources requesting guaranteed
service. The second has all sources requesting predictive service. The results of the
simulations are shown in Table 7.1. The column labeled “%Util” contains the link
utilization of the bottleneck link, L3. The “#Actv” column contains a snapshot
of the average number of active flows concurrently running on that bottleneck link.
The “[d;]” column contains the maximum experienced delay of predictive class j
packets. The “L/T” column lists the ratio of average flow duration to measurement

window used with each source model. We repeat the predictive service simulations
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Table 7.1: Single-hop Homogeneous Sources Simulation Results

Model Guaranteed Predictive

Name | %Util | #Actv || %Util | #Actv | [d;] | L/T
EXP1 46 144 79 250 3 60
EXP2 28 28 75 75 42 | 300
EXP3 2 18 54 406 33| 600
POO1 7 144 78 1539 8 60
POO2 3 38 72 965 8 60
fARIMA 55 9 81 13 72 60

nine times, each time with a different random seed, to obtain confidence intervals.
We find the confidence interval for the all the numbers to be very tight, less than one
least significant digit in most cases.

As mentioned in Chapter 6.2, we consider the performance of our admission con-
trol algorithm “good” if there is no delay bound violation during a simulation run.
Even with this very restrictive requirement, one can see from Table 7.1 that pre-
dictive service consistently allows the network to achieve higher level of utilization
than guaranteed service does. The utilization gain is not large when sources are
smooth. For instance, the source model EXP1 has a peak rate that is only twice its
average rate. Consequently, the data only shows an increase in utilization from 46%
to 80%. (One can argue that the theoretical upper bound in the utilization increase
is the peak to average ratio.) In contrast, bursty sources allow predictive service to
achieve several orders of magnitude higher utilization compared to that achievable
under guaranteed service. Source model EXP3, for example, is a very bursty source;
it has an infinite peak rate (i.e. sends out packets back to back) and has a token
bucket of size 80. The EXP3 flows request reservations of 512 Kbps, corresponding to
the token bucket rate at the sources. Under guaranteed service, only 18 flows can be

admitted to the 10 Mbps bottleneck link (with 90% utilization target). The actual
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link utilization is only 2%.! Under predictive service, 406 flows are served on the
average, resulting in actual link utilization of 54%.

In this homogeneous scenario with only one class of predictive service and con-
stantly oversubscribed link, our measurement-based admission control algorithm eas-
ily adapts to LRD traffic between the coming and going of flows. The utilization
increased from 7% to 78% and from 3% to 72% for the POO1 and POO2 sources re-
spectively. The utilization gain for the fARIMA sources was more modest, from 55%
to 81%. This is most probably because the source’s maximum ON time is at most
twice its average (an artifact of the shifting we do, as discussed in Chapter 6.2, to
obtain non-negative values from the fARIMA generated series). In all cases, we are
able to achieve high levels of utilization without incurring delay violations. To further
test the effect of long OFF times on our measurement-based algorithm, we simulated
POO1 sources with infinite duration. With utilization target of 90% link capacity, we
do see a rather high percentage of packets missing their delay bound. Lowering the
utilization target to 70%, however, provide us enough room to accommodate traffic
bursts. Thus for these scenarios, we see no reason to conclude that LRD traffic poses

special challenges to our measurement-based approach.

7.2 Homogeneous Sources: The Multi-hop Case

Next we run simulations on multi-hop topologies depicted in Figs. 6.1(b) and (c). The
top half of Table 7.2 shows results from simulations on the Two-LINK topology. The
utilization numbers are those of the two links connecting the switches in the topology.
The source models employed here are the ExP1, EXP3, and POO2 models, one per
simulation. The bottom half of Table 7.2 shows the results from simulating source
models EXP2, POO1, and fARIMA on the FOUR-LINK topology. For each source
model, we again run one simulation where all sources request guaranteed service, and

another one where all sources request one class of predictive service.

!Parameter-based admission control algorithms may not need to set a utilization target and thus
can achieve a somewhat higher utilization; for the scenario simulated here, two more guaranteed
flows could have been admitted.
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Table 7.2: Multi-hop Homogeneous Sources Link Utilization

Link Model Guaranteed | Predictive
Topology Name || Name %Util %Utl | [d;]
EXP1 45 67 2
L4 EXP3 2 44 20
POO2 3 59 7
Two-LiNk EXP1 16 8| 3
L5 EXP3 2 o8 30
POO2 3 70 17
EXP2 17 42 6
L6 POO1 4 31 1
fARIMA 38 54 36
EXP2 28 71 31
L7 POO1 7 66 2
fARIMA 55 77 40
FOUR-LINK EXP2 28 2 24
L8 POO1 8 75 7
fARIMA 53 74 29
EXP2 28 71 31
L9 POO1 8 59 2
fARIMA 53 80 44
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The most important result to note is that, once again, predictive service yields
reasonable levels of utilization without incurring any delay violations. The utiliza-
tion levels, and the utilization gains compared to guaranteed service, are roughly

comparable to those achieved in the single hop case.

7.3 Heterogeneous Sources: The Single-hop Case

We now look at simulations with heterogeneous sources. For each of the simulation,
we use two of our six source model instantiations. Each source is given the same
token bucket as listed in Table 6.2 and, when requesting predictive service, requests
the same delay bound as listed in the said table. We run three kinds of simulation with
heterogeneous sources: (1) single source model requesting multiple levels of predictive
service, (2) multiple source models requesting a single class of predictive service, and
(3) multiple source models requesting multiple levels of predictive service. In all cases,
we compare the achieved utilization with those achieved under guaranteed service.
For the first and third cases, we also experiment with sources that request both
guaranteed and predictive services. When multiple source and/or service models are
involved, each model is given an equal probability of being assigned to the next new
flow. In all these simulations, the experience delays are all within their respective
bounds.

Table 7.3 shows the utilization achieved when flows with the same source model
request: two classes of predictive service (PP), guaranteed and one predictive class
(GP), and guaranteed and two predictive classes (GPP). In the GP case, flows request
the predictive class “assigned” to the source model under study (see Table 6.2). In
the other cases, both predictive classes are requested. Compare the numbers in each
column of Table 7.3 with those in the “%Util” column of Table 7.1 under guaranteed
service. The presence of predictive traffic invariably increases network utilization.

Next we look at the simulation results of multiple source models requesting a
single service model. Table 7.4 shows the utilization achieved for selected pairings of

the models. The column headings name the source model pairs. The first row shows
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Table 7.3: Single-hop, Single Source Model, Multiple Predictive Services Link Uti-
lization

Model | PP || GP | GPP

EXP1 7T
EXP2 71 70
EXP3 31 31
POO1 70 | 69 69
POO2 60 || 57 -

fARIMA || 79| 79 78

Table 7.4: Single-hop, Multiple Source Models, Single Service Link Utilization

) EXP1-|EXP2- |EXP2—| EXP2— | EXP3— | POO2—
Service POO1 | EXP3 | POO2 |fARIMA [fARIMA |fARTMA
Guaranteed 15 21 5 38 18 32
Predictive ‘ 75 ‘ 70 ‘ 63 ‘ 79 ‘ 81 ‘ 69

the utilization achieved with guaranteed service, the second predictive service. We
let the numbers speak for themselves.

Finally in Table 7.5 we show utilization numbers for flows with multiple source
models requesting multiple service models. The first row shows the utilization achieved
when all flows asked only for guaranteed service. The second row shows the utiliza-
tion when half of the flows requests guaranteed service and the other half requests
the predictive service suitable for its characteristics (see Table 6.2). And the last row
shows the utilization achieved when each source requests a predictive service suitable

to its characteristics.

7.4 Heterogeneous Sources: The Multi-hop Case

We next run simulations with all six source models on all our topologies. In Table 7.6
we show the utilization level of the bottleneck links of the different topologies. Again,

contrast the utilization achieved under guaranteed service alone with those under both
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Table 7.5: Single-hop, Multiple Source Models, Multiple Predictive Services Link
Utilization

EXP1—| EXP1— |EXP1—|EXP2—|EXP3—| POO1—
EXP2 |fARIMA | POO2 | POO1 | POO1 [fARIMA
Guaranteed 43 50 29 10 7 23
Guar./Pred. 73 74 65 61 51 65
Predictive 75 78 65 62 60 65

Service

guaranteed and predictive services. The observed low predictive service utilization
on link L6 is not due to any constraint enforced by its own admission decisions, but
rather is due to lack of traffic lows caused by rejection of multi-hop flows by later
hops, as we will explain in Chapter 9. Utilization gains on the TBONE topology are
not so pronounced as on the other topologies. This is partly because we are limited
by our simulation resources and cannot drive the simulations with higher offered
load. Recall that flow interarrivals on simulations using the TBONE topology have
an average of 5 seconds, which is order of magnitude larger than the 400 milliseconds
used on the other topologies.

Our results so far indicate that a measurement-based admission control algo-
rithm can provide reasonably reliable delay bounds at significant utilization gains.
These conclusions appear to hold not just for single hop topologies and smooth traffic
sources, but also for multi-hop configurations and long-range dependent traffic. We
cannot, within reasonable time, verify our approach in an exhaustive and compre-

hensive way, but our simulation results are encouraging.
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Table 7.6: Single- and Multi-hop, All Source Models, All Services Link Utilization

Topology Link | Guaranteed || Guaranteed and Predictive
Name Name| %Util | %Util|[di]] [dy)
ONe-LiNnk [[L3 | 24 66[3. [45.

L4 5] 72[2. [54.
TWO-LINK |1 5 o1 72[2. |41.

L6 19 47[1. [36.

L7 24| 70|2. |46.
FOUR-LINK | 1 ¢ 20| 7202, |49.

L9 18 75[1. |53

L2 o 14]0.02] 0.15

L10 17| 3100.15| 5.35

L11 27|l 32]0.37(21.9
TBONE 179 22| 23]0.1 | 5.84

120 8 21]0.22|16.6

L30 32| 52(0.49(34.7
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Chapter 8
Practical Deployment Issues

In this chapter we consider several practical issues related to deployment of our
algorithm. In particular, we look at the effect of different measurement window (7')
settings on the behavior of the admission control algorithm. We show that a smaller
T, relative to flow lifetime (L), yields higher utilization but less reliable delay bound,
while a larger one provides more stable delay estimate at lower utilization. We also

present a few sample path snapshots illustrating the effect of 7.

8.1 Choosing a Window Size

Varying the measurement window size, T', has two related effects on the admission
control algorithm. First, since T' is the length of the measurement block used to
determine how long we keep the previous maximal packet delay and sampled utiliza-
tion, increasing 7" makes these estimates more conservative, which in turn makes the
admission control algorithm itself more conservative. Thus, larger T" means fewer
delay violations and lower link utilization. Second, T" also controls how long we con-
tinue to use our calculated estimate of the delay and utilization induced by a newly
admitted flow. Recall that whenever a new flow is admitted, we artificially increase
the measured values to reflect the worst-case expectations, and then restart the mea-
surement window. Thus, we are using the calculated effects of new flows rather than

the measured effects until we survive an entire 1" period without any new flow arrival.
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Let 7 be the average flow reservation rate, and p the link bandwidth (for convenience,
assume we only perform bandwidth check (Eqn. 4.9) and v = 1), we will admit at
most A = /T number of flows for every 7. Thus at the end of its average lifetime,

L, an average flow would have seen approximately
F=AxL/T (8.1)

number of flows. If the average rate of an average flow is 7, ideally we want F T,
a link’s stable utilization level, to be near u. However, flows also depart from the
network. The expected number of flow departures during the period 7" depends on
the number of admitted flows and their duration. If this number of departures is
significant, a flow will see a much smaller number of flows during its lifetime, i.e. the
stable F %7 becomes much smaller than p. For the same average reservation rate, 7,
and a given T, the size of the stable F' is determined by the average flow duration,
L. A shorter average flow duration means more departure per 7. In the long run,
we aim for F 7 & p, or equivalently, L/T ~ 7/7. If all flows use exactly what they
reserved, we have L/T = 1, meaning that we should not try to give away the flows’
reservations.

In other words, 7" has two related effects on the admission control algorithm:
(1) too small a T results in more delay violations and lower link utilization, (2) too
long a T depresses utilization by keeping the artificially heighten measured values
for longer than necessary. While the first effect is linked to flow duration only if the
flow exhibits long-range dependence, the second effect is closely linked to the average
flow duration in general. Note that when T is infinite, we only use our computed
values, which are conservative bounds, and ignore the measurements entirely. That
is, we will never suffer any delay violations at a given hop if we use an infinite value
for T'. Thus, the parameter 71" always provides us with a region of reliability. We
now present some illustrative simulation results on the importance of the L/T ratio.
These results are meant to be canonical illustrations, thus we do not provide the full

details of the simulations from which they are obtained.
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Table 8.1: Effect of T and L

(a) Varying T', L = 300 secs. (b) Varying L (secs)
T || %Util|[d;] B T
led 82| 25 L led led
ded| 811 22 %Util| [d;] | %Util | [d;]

led 7715
2ed 7 13
Jed 68 5

3000 86| 48 82| 24
900 84| 32 80| 16
300 82| 25 77| 15
100 81| 21 76| 11

30 78] 15 69 7

In Table 8.1(a) we show the average link utilization and maximum experienced
delay from simulations of flows with average duration of 300 seconds. We varied the
measurement window, 7', from le4 packet times to Hed packet times. Notice how
smaller T yields higher utilization at higher experienced delay and larger T keeps
more reliable delay bounds at the expense of utilization level. Next we fixed T" and
varied the average flow duration. Table 8.1(b) shows the average link utilization and
maximum experienced delay for different values of average flow duration with 7" fixed
at led and 1e5. We varied the average flow duration from 3000 seconds (practically
infinite, given our simulation duration of the same length) to 30 seconds. Notice how
longer lasting flows allow higher achieved link utilization while larger measurement
periods yield lower link utilization. Link utilization is at its highest when the L/T
ratio is the largest and at its lowest when this ratio is the smallest. On the other
hand, the smaller L/T ratio means lower experienced delay and larger L/T means

the opposite—thus lowering the L/T ratio is one way to decrease delay violation rate.

In Figs. 8.1 and 8.2 we provide sample path snapshots showing the effect of 1" on
delay and link utilization. We note however, a T" that yields artificially low utilization
when used in conjunction with one source model may yield appropriate utilization

when used with burstier sources or sources with longer burst time.

62



30

Delay (msecs.)
Actual/Measured

0 10

1

Utilization
Actual/ Measd

0

~3

85,

2 S

=

3T

20 *\_\—J—L
ﬁ% ﬂ { =l

; N, o ;%l I ML
2035 2050 2035 2050
Simulated Time (secs.) Simulated Time (secs.)
(a) Smaller T (b) Larger T

Figure 8.1: Effect of T on Experienced Delay

n N 0
85 ’:.L_ci
<7 **
N~ '8 -
3
= =
N
=3
-} So
1880 1940 2000 < 1880 1940 2000

Simulated Time (secs.) Simulated Time (secs.)

(a) Larger T (b) Smaller T

Figure 8.2: Effect of 7" on Link Utilization

63



8.2 Choosing a Utilization Target

Imagine now that flows have infinite duration; by Eqn. 8.1, the number of admissible
flows would also be infinite. In practice, this means flows will be admitted until the
link reaches 100% utilization. As we noted in Chapter 5, variance in delay diverges
in a simple M/M/1 queue as the system approaches full utilization. Obviously, we
need to prevent the network from reaching such high load by instituting a maximum
utilization target. Sources with small grain size and short bursts will allow an higher
utilization target. High density sources with long bursts will require a lower utilization
target. In Chapter 10 we will study several attempts to set the utilization target,
both formal and ad-hoc.

8.3 Structural Limitations

As we mentioned in Chapter 1, when there are only a few flows present, or when a
few large-grain flows dominate the link bandwidth, the unpredictability of individual
flow’s behavior dictates that a measurement-based admission control algorithm must
be very conservative. One may need to rely less on measurements and more on the
worst-case parameters furnished by the source, and perform the following bandwidth

check instead of Eqn. 4.9: N
v > §G+Zﬂi, (8.2)

i=1

where,

ﬂG = I//\G—I-K,(MAX(O,V(;*I//\Gn,
v; = v;+kr(MAX(0,v, —7;)), j=1...K,

v is the sum of all reserved guaranteed rates, v; is the sum of all reserved rates

in class j, K is number of predictive classes, and k is a fraction between 0 and 1.
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For k = 1, we have the completely conservative case. Similarly, one could do the

following delay check: .
j e
Dj _ Zz:l K Zae{z};zl - (83)
p— KVg — KY 1 Vi

for every predictive class 7 for which one needs to do a delay check as determined in
Chapter 4.5.

Even with a high enough degree of statistical multiplexing, a flow might become
idle for prolonged periods of time such that the measurement mechanism becomes
oblivious to it. When the idle flow resumes transmission, delay bound violations could
ensue. We recognize two kinds of idle of times: (1) those of time-scale larger than
the average flow duration, (2) those that are some small multiples of 7. Examples
of the first are flows with advance or dynamic reservations. This would require non-
measurement based mechanism to accommodate them and is not part of our current
research. The second kind may be common in two-way conversations or database
lookup applications. One could either make a separate reservation for each burst
of activity, risking admission control failure, or make some portion of each flow’s
reservation not subject to the measurement process. The latter approach is adopted
in reference [C191].

We should also note that our measurement-based approach is vulnerable to spon-
taneous correlation of sources, such as when all the Tv channels air coverage of a
major event. Each source model used in this study has uncorrelated ON and OFF
times. The ON and OFF times between sources are also not correlated. If all flows
suddenly burst at the same time, delay violations will result. We are not aware of
any way to prevent this kind of delay violation, since the network cannot predict such
correlations beforehand. Instead, we rely on the uncorrelated nature of statistically

multiplexed flows to render this possibility a very unlikely event.

8.4 If Peak Rate is Incoming Link Bandwidth

Eqn. 4.1 is an upper bound on the worst-case delay of a class, assuming infinite

source rate. In reality, the peak rate of traffic arriving at a switch is bounded by the
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bandwidth of the incoming link. In this section we consider the effect of incoming link
bandwidth on our algorithm. By expanding the last term of Eqn. 4.1 and applying

the distributive law we get:

! n—= 25:1 T - Z] 1 Tz n—= 25:1 T
= ZH + {C (= 3] o (8.4)
Zjlrl N—Zg;l?"i . -

Substituting ji,, the incoming link bandwidth, for C}, the source’s peak rate, and

combining the two terms, the equation becomes:

: j—
Zz;ll b + Hin — 727; 1 /rZ ]
Dy = ‘“" : : (8.5)
W= Z 1 T

As mentioned in the proof of Theorem 1, we require p > Zj_l r; at all switches, hence
ri < fin- I p— Z 1 ri > fin > 75, bj will not be queued. Hence the worst-case
delay for p;, < p is:

Z] Hin — Z] 1 TZ b
D; — i=1 " Z /Jzn;r] ]’ (86)
=1 "1

where:

er:{.r, x>0,

0, z<0.

Applying Eqn. 8.6 to our admission control algorithm, a prospective predictive flow
« of class £ is denied admittance if the delay bound of the same priority traffic, Dy,

is violated:
+

~ k—1 ~
pin—(U — VG — 21':1 V) N
bk

D, > Dy + Hin T : 8.7
o n—e— il 5D

66



or if lower priority classes’ delay bounds, D;’s, are violated:

~ -1 ~
= p-P - Yo
D, > D, e
J J ~ Jj—1 ~ a
— Vg — Y5 Vi — T}
= k-1 -.1F
pin—(t — Vg — D1 Vi) N
bk

MHin—Tj

k<j<K. (8.8)

+ ;

= Jj—1 -~ «
M_VG_Z¢:1 Vi =T

However, if p;, > p, Eqn. 4.1 applies. Hence we do not use Eqns. 8.7 and 8.8 in our

admission control algorithm.
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Chapter 9
On Unequal Flow Rejection Rates

Most of the admission control algorithms in the literature are based on the wviolation
prevention paradigm: each switch decides to admit a flow if and only if the switch
can still meet all of its service commitments. In other words, the only criteria con-
sidered by admission control algorithms based on the violation prevention paradigm
is whether any service commitments will be violated as a result of a new admission.
In this section we discuss some policy or allocation issues that arise when not all
flows are completely equivalent. When flows with different characteristics—either
different service requests, different holding times, or different path lengths compete
for admission, admission control algorithms based purely on violation prevention can
sometimes produce equilibria with some categories of flows experiencing higher rejec-
tion rate than other categories do. In particular, we identify two causes of unequal
rejection rate: (1) flows traversing a larger number of hops have a higher chance of
being rejected by the network, and (2) flows requesting more resources are more likely

to be rejected by the network.

9.1 Effect of Hop Count on Rejection Rates

As expected, when the network is as loaded as in our simulations, multi-hop flows
face an increased chance of being denied service by the network. For example, in

our simulation with homogeneous sources on the Two-LINK network, as reported in
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Table 7.2, more than 75% of the 700 new EXP1 sources admitted under guaranteed
service are single-hop flows. This is true for both of the bottleneck links. A somewhat
smaller percentage of the more than 1000 flows admitted under predictive service are
single-hop flows. This effect is even more pronounced for sources that request larger
amount of resources, e.g. the POO2 or the fARIMA sources. And it is exacerbated by
sources with longer lifetimes: with fewer departures from the network, new flows see
an even higher rejection rate.

Aside from disparity in the kinds of flow present on the link, this phenomenon
also affects link utilization; upstream switches (switches closer to source hosts) could
yield lower utilization than downstream switches. We observe two causes to this: (1)
switches that carry only multi-hop flows could be starved by admission rejections
at downstream switches. The utilization numbers of link L6 in both Tables 7.2 and
7.6 are consistently lower than the utilization of the other links in the FOUR-LINK
topology. Notice that we set these simulations up with no single hop flow on link
LL6. The low utilization is thus not due to the constraint put on by link L6’s own
admission decisions, but rather is due to multi-hop flows being rejected by down-
stream switches. (2) Non-consummated reservations depress utilization at upstream
switches; to illustrate: a flow admitted by an upstream switch is later rejected by a
downstream switch; meanwhile, the upstream switch has increased its measurement
estimates in anticipation of the new flow’s traffic, traffic that never come. It takes
time (to the expiration of the current measurement window) for the increased values
to come back down. During this time, the switch cannot give the reserved resources
away to other flows. We can see this effect by comparing the utilization at the two
bottleneck links of the TwoO-LINK topology as reported in Table 7.2. Note, however,
even with the presence of this phenomenon, the utilization achieved under predictive
service with our measurement-based admission control algorithm still outperforms

those achieved under guaranteed service.
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9.2 Effect of Resource Requirements on Rejection Rates

Sources that request smaller amount of resources can prevent those requesting larger
amount of resources from entering the network. For example, in the simulation using
the EXP2 EXP3 source pair reported in Table 7.4, 80% of the 577 new guaranteed
flows admitted after the simulation warmup period were EXP2 flows, which are less
resource demanding. In contrast, 40% of flows admitted under predictive service
with our measurement-based admission control algorithm were the more resource
demanding EXP3 flows. Another manifestation of this case is when there are sources
with large bucket sizes trying to get into a high priority class. Because the delay
of a lower priority class is affected by both the rate and bucket size of the higher
priority flow (as explained in Chapter 4.2), the admission control algorithm is more
likely to reject flows with a large bucket size and high priority than those with a
smaller bucket size or low priority. We see this phenomenon in the simulation of
source model EXP3 reported in Table 7.3. When all sources request either of the
two classes of predictive service with equal probability, of the 1162 flows admitted
after the simulation warmup period, 83% were of class 2. When sources request
guaranteed or second class predictive service, only 8% of the 1137 new flows ends
up being guaranteed flows. In both of these scenarios, the link utilization achieved
is 31%, which is lower than the 62% achieved when all flows request only class 2
predictive service (see Table 7.1), but still order of magnitude higher than the 2%

achieved when all flows request only guaranteed service (again, see Table 7.1).

We consider the unequal rejection rate phenomenon a policy issue (or rather,
several policy issues) because there is no delay violations and the network is still
meeting all its service commitments (which is the original purpose of admission con-
trol); the resulting allocation of bandwidth is, however, very uneven and might not
meet some policy requirements of the network. We want to stress that this unequal
rejection rate phenomenon arises in all admission control algorithms based on the
violation prevention paradigm. In fact, our data shows that these uneven allocations

occur in sharper contrast when all flows request guaranteed service, when admission
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control is a simple bandwidth check. In Chapter 10, we present further evidence that
this phenomenon occurs under other admission control algorithms. Clearly, when
possible service commitment violations is the only admission control criteria, one

cannot ensure that policy goals will be met.

9.3 A Quota Mechanism

One possible approach to control the allocation of resources to flows of differing re-
quirements is by instituting a quota policy. In this section we provide a simple mecha-
nism by which quota policies may be implemented. We hasten to note, however, that
we do not intend to study the fair allocation of resources by various quota policies.
We refer the interested readers to references [KS85, KU93], in which the authors
study allocation strategies for two types of flows that reduce blocking probability,
or to reference [DM96], in which the authors propose a game-theoretic approach to

ensure fairness to various supported flow types.

Flow opportunity cost metric. To design a quota mechanism, we must first
define a flow opportunity cost metric that would allow us to compare the resource
requirements of one flow to that of anoother. We require the following characteristics
of the metric: (1) it must be a function of the flow’s token bucket parameters, (r,b),
and the requested delay bound, D, (2) the metric of a flow must be independent of
existing traffic, and (3) the metric must support arbitrarily complex quota policies.
On a switch with FIFO scheduling discipline, we know from Eqn. 4.1 that the largest
demand a flow places on the switch is to serve its bucket full of data. To meet the
requested delay bound, the switch must serve the flow at rate > 6/D. Thus the worst-
case rate required by a flow is: MAX(b/D,r). A simple opportunity cost metric is
the ratio between this rate and link bandwidth:

, = MAX(/D. 1)

; . (9.1)

For example the i of EXP1 source model defined in Section 6.3 on a 10 Mbps link is
6.25e-3, and the 1 of POO2 source model is 3.75e-2.
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Expressing quota policy. Once we have a metric to compare the resource re-
quirement of various flows, we can use them in an expression of quota policy. Instead
of allocating bandwidth to specific i values, we specify quota policy for different “n-
classes.” An n-class is a range of 1 values. n-classes should be set at least an order

of magnitude apart. Thus a simple sample quota policy could be:
2%(n < 0.01) + y%(0.01 < n < 0.1) + 2%(n > 0.1). (9.2)

The above policy allots 2% of capacity to flows with 7 values less than 0.01, y%
capacity to n values between 0.01 and 0.1, and z% to n values larger than 0.1. On
a system with EXP1 and POO2 sources, we could allocate 30% of link bandwidth to

EXP1 sources and 50% to POO2 sources by the following quota policy:
30%(n < 0.01) + 50%(0.01 < < 0.1). (9.3)

The remaining 20% of link bandwidth will be allocated to various flows at the dis-

cretion of the admission control algorithm.

A worst-case quota mechanism. A straight forward implementation of a quota
policy would be to partition link capacity according to the percentages expressed in
the quota policy and to assign each portion to the corresponding 7-class. Available
bandwidth of each n-class is adjusted upon the arrival and departure of flows of
that class. When an 7-class exhausts its available bandwidth, no more flow of that
class will be admitted until more bandwidth becomes available. The accounting of
available bandwidth may be done fractionally according to the declared worst-case

requirements of each flow.

A measurement-based quota mechanism. A quota mechanism that enforces
quota conformance by the declared worst-case requirements of flows could result in
low utilization. A measurement-based extension of the above algorithm allows an
n-class that has exhausted its worst-case quota allotment to borrow from the pool

of measured available bandwidth. Borrowing is permitted as long as there is enough
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left-over bandwidth to support both the borrowed amount and the non-consummated
quotas of the other n-classes. The accounting of an 7-class that borrows bandwidth
shows a deficit. When a flow of an 7-class with deficit leaves the network, the quota
count of that class is incremented as usual. As long as an n-class is in deficit, flow
admittance to that class must ensure enough provisioning for the non-consummated

quotas of the other classes.

Simulation results. We run some simulations to evaluate the efficacy of the above
two quota mechanisms. In our evaluation we test our ability to control the result-
ing mixture of a link’s traffic such that flows requesting large amount of resources
are not unintentionally discriminated. We further require that our quota mechanism
does not unduly lower link utilization. All the results reported here are from simu-
lations on the ONE-LINK topology of Fig. 6.1(a). In the tables below, the NQ rows
contain results from simulations with no quota mechanism, the wQ rows contain re-
sults from the worst-case quota mechanism, and the MQ rows contain results from
the measurement-based quota mechanism. In all scenarios that implement a quota
mechanism, there are two n-classes. The tuple following wQ or MQ contains the per-
centages of bandwidth that constitute the quota policy for the two classes. For each
simulation, we report the number of concurrently active flows in each 7-class after
the warmup period. The second column of all the tables show the number of concur-
rently running flows in the first n-class, the third column the second. On all tables,
the “%Util” column shows the average link utilization after the warmup period.

For the first set of simulations, we use source models EXP1 and fARIMA. Table 9.1
shows the simulation results. On the 10 Mbps bottleneck link of the ONE-LINK
topology, the n of fARIMA sources is 0.1. This n-class is alloted 80% of the utilization
target (or 90% of link bandwidth), which allows accommodation of 7 fARIMA flows.
The table shows that this quota is honored in both wQ and MQ cases, and that there
are more fARIMA flows when quota is instituted. The wQ case shows low utilization, as
predicted, and the measurement extension does increase utilization back to the level
achieved without quota. For this particular source models, the utilization gain of the

measurement-based quota mechanism benefits only the EXP1 sources; nevertheless,
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Table 9.1: Efficacy of Quota Mechanisms

Scheme H EXP1 \ fARIMA \ % Util
NQ 184 3| 78.23
wQ(20, 80) | 28 71 51.58
MQ(20, 80) | 121 71 79.26

Table 9.2: Benefits of Measurement-based Quota Mechanism

Scheme | Exp1 | EXP3 | %Util
NQ 190 43 | 67.86
wQ(50, 50 71 8| 23.57

( )

( ) 58 | 10| 19.37
MQ(50, 50) || 204 | 44 | 68.63
( )| 198 | 49| 68.

( )l 189 60| 68.35

the quota policy is met. In simulations with the EXP1 and EXP3 source models, both
kinds of sources benefit from the measurement-based quota mechanism, as shown in
Table 9.2.

From the simulation results, we conclude that given a metric with which to com-
pare the resource requirement of various flows, we can implement a quota mecha-
nism to regulate the traffic mix of a link. A quota policy can then be instituted on
top of this mechanism to prevent the exclusion of resource demanding flows. The
measurement-based quota mechanism restore the achievable link utilization lowered

by the worst-case quota mechanism.
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Chapter 10

Comparison of Admission Control

Algorithms

In this chapter, we report on a comparative study of five admission control algorithms
to support the controlled-load service model described in Chapter 3. Since the role of
admission control is to ensure that service commitments are not violated, the main
criterion used in evaluating any admission control algorithm must be how well it
fulfills this role. The simplest way to ensure complete conformance to commitments
made is to give each flow enough resources to meet its worst-case requirements. For
bursty sources, however, this scheme ultimately results in low network utilization.
Hence, the second evaluation criterion is how high a level of network utilization an
admission control algorithm can achieve while still meeting its service commitments.
The third evaluation criterion is the implementation and operational costs of an
algorithm. An algorithm that can achieve high level of utilization without violating
any service commitments would not be useful if it cannot be implemented in a cost
effective manner, or if it cannot drive a fast link. We only consider the first two
criteria in this study. Since admission control is a session-level, not packet-level,
control mechanism, we do not expect its implementation or operational cost to be
a prohibitive factor. On the other hand, doing measurement could be operationally

expensive.
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Our evaluation of the algorithms involve simulating them under various scenar-
ios. We have tried to make the simulation environments under which we investigate
the behavior of the various algorithms as comparable as possible, but this does not
mean the operating conditions would not be unfairly disadvantageous to any partic-
ular algorithm. In our evaluation of these algorithms we try to answer the question:
which algorithm provides the highest level of network utilization at the lowest packet
loss rate or experienced delay?” The main conclusion of our study is: To satisfy
controlled-load service commitments, the admission control algorithm must identify
a link utilization target conditioned upon the characteristics of observed traffic. For-
mal attempts to compute this utilization target, such as the ones found in references
[GKK95, Flo96a], that rely solely on peak rate and token bucket filter characteri-
zation of sources and do not take into account sources’ burst length and idle times
distributions can be either too optimistic or too conservative. In an environment
where best-effort traffic continues to constitute a large fraction of bandwidth, ad-hoc

methods of engineering the utilization target shall perform very well.

10.1 Five Admission Control Algorithms

Simple Sum. The first admission control algorithm simply ensures that the sum
of requested resources does not exceed link capacity. Let v be the sum of reserved
rates, p the link bandwidth, o the name of a flow requesting admission, and r* the
rate requested by flow a. This algorithm accepts the new flow if the following check
succeeds:

v+t < (10.1)

We call this the “Simple Sum” algorithm. This is the simplest admission control al-
gorithm and hence is being most widely implemented by switch and router vendors.
Often, to ensure low queueing delay called for by controlled-load service, an approx-
imation of the weighted fair queueing (WFQ) scheduling discipline is implemented
with this admission control algorithm. WFQ assigns each flow its own queue served
at its own reserved rate, thereby isolating flows from each other’s bursts. We use

WFQ with the “Simple Sum” admission control algorithm in this study incidentally,
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this setup also satisfies the committed rate service model described in [BGK96|. For
the other, measurement-based algorithms, we use first-in-first-out (FIFO) scheduling

discipline.

Measured Sum. Whereas the “Simple Sum” algorithm ensures that the sum of
existing reservations plus a newly incoming reservation does not exceed capacity, the
“Measured Sum” algorithm uses measurement to estimate the load of existing traffic.

This algorithm admits the new flow if the following test succeeds:
v+t <op, (10.2)

where v is a user-defined utilization target as explained in Chapter 5, and 7 the
measured load of existing traffic. We let v = 0.9 except otherwise noted. The
measurement mechanism is the time-window measurement mechanism described in

Chapter 5. Upon admission of a new flow, the load estimate is increased with:
vV=v+r" (10.3)

Admissible Region. The second measurement-based algorithm as proposed by
the authors of reference [GKK95] computes an admissible region that maximizes the
reward of utilization against the penalty of packet loss. Given link bandwidth, switch
buffer space, a flow’s token bucket filter parameters, the flow’s burstiness, and desired
probability of actual load exceeding bound, one can compute an admissible region for
a specific set of flow types, beyond which no more flow of those particular types should
be accepted. The computation of the admissible region assumes Poisson call arrival
process and independent, exponentially distributed call holding times. However, the
authors of [GKK95] claim that this algorithm is robust against fluctuations in the
value of the assumed parameters. We refer the interested readers to [GKK95] for
the computation of the admissible region. The measurement-based version of this
algorithm ensures that the measured instantaneous load plus the peak rate of a new

flow is below the admissible region. Even though reference [GKK95] does not specify
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adjusting measured load upon admittance of a new flow, we adjust the measured load
according to the admission check by adding the new flow’s peak rate (p®) to it upon
admitting a new flow a:

vV'=v+p" (10.4)

For flows described by a token bucket filter (r,b) but not peak rate, we derive their

peak rates (p) from the token bucket parameters using the equation:
p=r+0b/U, (10.5)

where U is a user-defined averaging period [Flo96a]. If a flow is rejected, the admission
control algorithm does not admit another flow until an existing one leaves the network.
In the remainder of this chapter, we use the terms “utilization target” and “utilization

threshold” interchangeably with “admissible region.”

Equivalent Bandwidth. The third measurement-based algorithm computes the
equivalent bandwidth for a set of flows using the Hoeffding bounds, as explained
in Section 2.2. To recapitulate, the equivalent bandwidth of a set of flows is the
bandwidth C(e) such that the stationary bandwidth requirement of the set of flows
exceeds this value with probability at most e. We call € the “loss rate” in the re-
mainder of the chapter; however, as pointed out in Section 2.2, in an environment
where large portion of traffic is best-effort traffic, realtime traffic rate exceeding its
equivalent bandwidth is not lost but simply encroaches upon best-effort traffic. In
such an environment, € is more appropriately called the “overflow rate.” We make
no such distinction in the remainder of this chapter. Following [GKK95], we use
€ = le-12, except otherwise noted. The admission control check when a new flow «
requests admission is:

Cu +p* < op, (10.6)

where Cy is defined in Eqn. 2.15. In reference [Flo96a], the author mentions that
instead of measuring average arrival rate, measuring average bandwidth actually used

would be sufficient. We use measured arrival rate in our study of this algorithm and
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measured actual bandwidth usage for the other algorithms. Upon admission of a new
flow, the load estimate is increased using Eqn. 10.4. Again, if a flow’s peak rate is
unknown, it is derived from its token bucket filter parameters (r,b) using Eqn. 10.5.
Similar to the algorithm in [GKK95], if a flow is denied admission, no other flow of

similar type will be admitted until an existing one departs.

Bounded Delay. The last measurement-based algorithm we consider is our own
algorithm. Whereas the previous four algorithms bound bandwidth usage in their
admission decisions, our algorithm bounds both bandwidth usage and experienced
delay. Since controlled-load service consists only of one service level, we use only a
subset of our algorithm: when a new flow « requests admission to the network, we
use the “Measured Sum” algorithm above to check that the bandwidth requirements
of admitted flows will be met; then we check that the delay bound (D) of existing
traffic will not be violated by the admittance of the new flow. Presumably the delay
bound of a flow is defined as D = b/r, where r and b are its token bucket parameters.

The flow «a is denied admission if it fails the following check:

e
D+ — <D, (10.7)

I
where D is the measured delay. Upon admittance of a new flow, we adjust both the
load measure (using Eqn. 10.3) and the delay measure, by adding 6*/u to the delay

estimate.

We would like to remind the readers that while the admission control algorithms
described here are based on meeting quality of service constraints of either loss rate
or delay bound, the specific values used by the admission control algorithms are not

advertised to the users of controlled-load service.

10.2 Exponential-Weighted Moving Average

We use the same time-window measurement mechanism described in Chapter 5 to

measure network load with all but the equivalent bandwidth based admission control
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algorithms. With the equivalent bandwidth based admission control algorithm, we
use an exponential-weighted moving average method to estimate the average arrival
rate as suggested in reference [Flo96a]. The average arrival rate (7°) is measured
once every S sampling period. The average arrival rate is then computed using an

infinite impulse response function with weight w, which we set to 2e-3 in this study:
V=1 —w)xD+wxD. (10.8)

If the traffic arrival rate changes abruptly from 0 to 1 and then remains at 1, a w
of 2e-3 allows the estimate to reach 75% of the new rate after 10 sampling periods.
A larger w makes the averaging process more adaptive to load changes; a smaller
w gives a smoother average by keeping a longer history. Recall that the equivalent
bandwidth based admission control algorithm requires peak rate policing and derives
a flow’s peak rate from its token bucket parameters using Eqn. 10.5 when the peak
rate is not explicitly specified. The author of [Flo96a] suggests that U should be set
smaller than S, the sampling period of the measurement mechanism [F1o96b]. In this
study, we let U = S to reflect the peak rate seen by the measurement mechanism.
A smaller S not only makes the measurement mechanism more sensitive to bursts,
it also makes the peak rate derivation more conservative. A larger S may result
in lower averages, however it also means that the measurement mechanism keeps a

longer history because the averaging process (Eqn. 10.8) is invoked less often.

10.3 Simulation Results

We run our simulations on the ONE-LINK and FOUR-LINK topologies, described in
Chapter 6, with the Exponential-ON/OFF (ExP) and Pareto-ON/OFF (POO) source
models. Table 10.1 summarizes the six instantiation of the two models. Sources EXP1,
EXP2, EXP3, POO1, and POO2 are the same ones we have been using throughout the
dissertation. Columns in Table 10.1 that have the same names as the ones in Table 6.2

have the same meaning. We refer the readers to Section 6.3 for their descriptions.
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Table 10.1: Six Instantiations of the Two Source Models

Model Parameters TB Filter Switch Parameters
Model ppkt/| I | N |p/a|rtkn/| b |max|| D* | D | ¥ | S |ppkt/
Name

sec |msec|pkts sec |tkns|qlen | msec|msec|(%)|ptt| sec
EXP1 64| 325| 20| 2 64 1 0 16 16| 97|5e3 -
EXP2 1024 90| 10| 10 3200 50| 17| 160| 160| 41|1e3 832
EXP3 oo| 684 9| o 512| 80 1] 160 160 — |5e2| 2150

p

Po00 64| 325 20| 1.2 64 1 0 16 16| 97|5e3 -
POO1 642925 20| 1.2 64 1 0 16 16| 97|5e3
POO2 256 360 10| 1.9 240 60| 220| 256| 160| 41 |5e3 363

The maximal delay for each source, listed in column 8, is also the “burst time” queue-
ing delay acceptable under the definition of controlled-load service, given its assigned
token bucket filter. Again, we have chosen the token bucket parameters such that,
in most cases, the delay bounds given to a flow will be the same as its “burst time”
queueing delay. This facilitates analyzing the performance of the algorithms under
controlled-load service. For each simulation with measurement-based admission con-
trol algorithm, we size the buffer at the switches with enough space to accommodate
the delay bound (D). For example, simulations with EXP1 source, given a link speed
of 10 Mbps, use a buffer size of 160 packets. In simulations with multiple source
models having different delay bound requirements, we use the maximum of the re-
quired buffer sizes; for example, in a simulation with both EXP1 and EXP2 models,
we use a buffer size of 1600 packets. Simulations with the parameter-based admis-
sion control algorithm assume infinite buffer size. Column 10, labeled 7, contains
the utilization threshold used when simulating each of the source model with the
admissible region based admission control algorithm. This should not be confused
with the utilization target used with the other measurement-based admission control

schemes, where the value is set to 90% link bandwidth. When we simulate more than
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Table 10.2: Single-hop Homogeneous Sources Simulation Results

Model | Simple Sum || Measured Sum Adm. Rgn. Eqv. Bw.

Name || %Util | #Actv || %Util | #£Actv | %Utl | #Actv | %Util | #Actv
EXP1 46 144 79 250 85 266 57 178
EXP2 28 28 75 74 19 18 8 8
EXPJ3 2 18 o4 406 - - 0.1 1
POO0 39 144 86 330 92 355 56 213
POO1 7 144 78 1539 83 1629 31 616
POO?2 3 38 72 965 26 347 1 13

one source models with the admissible region based admission control algorithm, we
use the most conservative of the utilization threshold. For example, in a simulation
with both EXP1 and EXP2 sources, we use a utilization threshold of 41%. The next
column, labeled S, gives the sampling period used with the measurement mechanisms
in packet transmission time (ptt). For the time-window mechanism, the window size
is 10xS. Both the equivalent bandwidth and admissible region based algorithms take
€ as a parameter in their admission computation. Following [GKK95], we use € =
le-12, except where otherwise noted. Both the equivalent bandwidth and admissible
region based algorithms also need to derive a flow’s peak rate using Eqn. 10.5 when
the flow’s token bucket depth is greater than 1. The last column, labeled p, contains
the derived peak rates. Note that for source PO02, the derived peak rate is larger
than the actual peak rate. We also look at using the token rate (r) as the peak rate in
our simulations of the equivalent bandwidth and admissible region based algorithms
below. Flow interarrival times, durations, and warmup periods are as explained in

Section 6.3.

The single-hop, homogeneous sources case. We now present simulation results
from simulations on the ONE-LINK topology. A summary of the results is presented
in Table 10.2. Each row of the table contains results from up to six simulations using

the source model named at the leftmost column and the admission control algorithm
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indicated at the head of the columns. The “%Util” columns list the average utilization
achieved at the bottleneck link of the ONE-LINK topology. The “#Active” columns
list the average number of concurrently running flows in steady state.

The first two columns of Table 10.2 show results from simulation using the “Simple
Sum” parameter-based admission control algorithm. There are no lost packets. The
second set of two columns show results from the “Measured Sum” algorithm. For the
scenarios simulated here where there is only a single-level of service and the delay
bounds are very loose, we do not see any discernible difference between results from
“Measured Sum” and those from bounded delay based algorithms, hence we do not
show results from the bounded delay algorithm. Except for the POOO cases, where
both the “Measured Sum” and bounded delay algorithms give a loss rate on the order
of 1e-7, simulations with other source models using these two algorithms do not result
in any loss. For both algorithms, we can achieve no loss with POOO sources if we
reduce the utilization target to 80% of link bandwidth; in which case, the average
link utilization achieved is 77% and the average number of concurrently served flows
is 297. Alternatively, we could also achieve no loss with POO0O sources under the
bounded delay algorithm by maintaining utilization target at 90% link bandwidth,
but reducing delay bound to 8 ms, keeping buffer space at 160 packets; in this case,
the achievable average link utilization is 80%, the average number of concurrently
active flows is 251.

The next two columns, under the heading “Adm. Rgn.” give the results of simu-
lations with the admissible region algorithm; here the peak rate of sources with token
bucket greater than 1 is derived from their token bucket parameters using Eqn. 10.5.
We do not study the performance of this algorithm for EXP3 source because the uti-
lization threshold for this model comes out to be 0 using the computation provided
in [GKK95]. The loss rate for sources POO0 and POO1 are le-4 and le-6 respec-
tively, much higher than € of 1le-12 used to compute the utilization targets. While
the performance of this algorithm is impressive for the EXP1 source, it results in too
many losses for the POO0O and POO1 sources. Since the EXP1 and POOO sources have

mostly the same characteristics except for the distribution of their ON and OFF times,
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we conclude that by not taking these into account, the admissible region algorithm
becomes overly optimistic when given sources with heavy-tailed ON and OFF times
distributions. As the grain size of flows, i.e. the ratio p/u, becomes larger, this algo-
rithm becomes more conservative. For the EXP2 and POO0O2 sources, the achievable
utilization is only 25% to 36% of the “Measured Sum” utilization; the same measure-
ment mechanism is used with both algorithms. We next consider the effect of peak
rate derivation on the performance of the algorithm. We run some simulations using
the admissible region algorithm where the peak rate is assumed to be the token bucket
rate, ignoring the bucket depth. The utilization thresholds used with the EXP2 and
POO2 sources in these simulations are maintained at 41% of link bandwidth, as in
the previous case. The performance of the algorithm using this more lax “peak rate”
does not improve much: for EXP2 model, the average number of concurrently served
flows becomes 25 at average link utilization of 25%, for PO0O2 model, the numbers
are 395 and 29% respectively. The limitation to the average number of admissible

flows is inherent in the computation of the utilization threshold.

Analysis of the equivalent bandwidth algorithm. The two columns of Ta-
ble 10.2 under the heading “Eqv. Bw.” show results from simulations using the equiv-
alent bandwidth based admission control algorithm; here the peak rate of sources with
token bucket depth greater than 1 is similarly derived using Eqn. 10.5. Comparing the
“Eqv. Bw.” columns against results from the other measurement-based algorithms,
one sees that even though it is measurement-based, the performance of this algo-
rithm is not much better than the parameter-based “Simple Sum” one. To better

understand the equivalent bandwidth algorithm, we take a closer look at Eqn. 2.15:

In(1/€) Sy (i)
2

CA'H(17, {piti<i<n.€) =7+ \/ (10.9)

One realizes that a smaller 7, i.e. an estimator that more closely tracks actual uti-
lization, will give a smaller estimated equivalent bandwidth, resulting in higher flow
admittance rate. Increasing the sampling frequency of the exponential averaging pro-

cess, i.e. using smaller S, makes the estimator more adaptive and gives us an estimate
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that is closer to actual utilization. Indeed in a simulation of EXP1 sources, using S
of 1e2, we see 182 concurrently active flows, achieving link utilization of 58%. Can
we do better with an even more accurate measurement mechanism? Notice that in
scenarios with homogeneous sources like we have here, knowing the peak (p) and av-
erage (a) rates of the sources, we can deterministically compute the average number
of flows admissible under the equivalent bandwidth method by solving for n in the

quadratic equation:

1 2
Cr = na + ﬁiggﬁﬁL_ (10.10)

The number of admissible flow is the n that also satisfies C'y; — na > 0. Achievable
utilization is then na/p. For the EXP1 source and C'y = 0.9-10Mbps, the admissible
number of flow is n = 186, with achievable utilization na/u = .58. This means
that independent of the accuracy of the measurement mechanism, the equivalent
bandwidth method cannot admit more than 186 flows. Even an off-line, post facto
re-run of the simulations using actual utilization as the “measured” average arrival
rate will not result in higher number of admitted flows.

One could admit more flows into the network if actual aggregate utilization of
n flows is lower than na, where a is the sources’ declared average rate. Recall that
the POOO model has the same peak and average rates as EXP1 model but that it
has heavy tailed ON and OFF times distributions, which leads to burstier aggregate
traffic. Table 10.2 shows that the burstier aggregate traffic results in more POO0O
flows being admitted under all measurement-based algorithms when compared to the
number of admitted EXP1 flows. But notice also that for the equivalent bandwidth
case, even with the higher number of admitted flows, achievable utilization remains

below 58%. This can be explained by analyzing Eqn. 10.10. Let © be the second

term of Eqn. 10.10, i.e. 2 = w Since the admission algorithm requires

that C'y < vy, achievable utilization  is constrained by

D < vp— Q. (10.11)
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Hence admitting 213 POOO sources constrains link utilization to 56%, which is indeed
the utilization achieved for the simulation. Similarly for POO1 sources, admitting 616
flows constrains achievable utilization to below 32%.

Aside from lowering 7—either by using a better estimator or having sources send
aggregate traffic below the computed average, we could also increase admittance
rate by lowering €. The two variables in € are € and the sources’ peak rate (p).
By lowering € from le-12 to 1e-9, we can admit 192 EXP1 flows, achieving 61%
utilization, up from 182 and 58% respectively. These increases are in close agreement
with computation using Eqn. 10.10. For € = 1e-1, Eqn. 10.10 gives 254 Exp1 flows at
79% link utilization, which also applies to POO0 sources. For POO1 sources, similar
e, Eqn. 10.10 gives 68% link utilization for 1086 flows. A closer investigation of
Eqns. 10.10 and 10.11 reveals that achievable link utilization is bounded by v = na
when n is small and 7 = vy — 2 when n is large. For the EXP1 source, € = 1le-12, the
intersection of the two lines 7 = na and 7 = v — Q is at n = 187 and v = 59.8%,
meaning that we can never hope to admit more than 187 EXP1 flows or achieve
utilization higher than 59.8% link bandwidth, if we insist on € = le-12. In effect,
Q) acts as a safety zone to accommodate traffic that bursts beyond the measured
average.

In the case of simulations with ExXP2, EXP3 and POO2 sources, the flows’ peak
rates are derived from their token bucket parameters using the Eqn. 10.5. We showed
the derived peak rates for the three sources in Table 6.2 and pointed out that in the
POO2 case the derived peak rate is actually higher than the actual peak rate. In
reference [Flo96a], the author suggests that the token bucket parameters be set with
a small bucket depth and peak rate as token rate. The token bucket is thus only
intended to “accommodate small variations in packet delay that accumulate in the
network.” To see how a less conservative peak rate effects the performance of the
algorithm on the EXP2, EXP3, and POO2 sources, we simulate them with the token
bucket rate of each as its peak rate, ignoring the token bucket depths. With token rate
as peak rate, simulation with EXP2 sources achieve average link utilization of 57%,

serving 56 concurrent flows; for EXP3 sources, the achieved average link utilization
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is 3%, with 21 concurrent flows; and for POO3 sources, the numbers are 8% and
102 flows respectively. While the performance of the algorithm improves by order of
magnitude compared to the original case, they are scantly better compared to results
from the other measurement-based algorithms. Next we experiment with € = le-1,
using the token rate as peak rate, for sources EXP2 and Po02. For EXp2, Eqn. 10.10
gives 63 flows at 63% utilization; POO2 results in 213 flows at 53% utilization. Note
that these numbers are still lower than those achieved with the “Measured Sum”
algorithm and we cannot relax any parameters further to increase them. We conclude
that the equivalent bandwidth based method is inherently conservative. Incidentally,
this exercise also points out the difficulty of deriving peak rate from the token bucket
parameters. To be safe, the averaging period U in Eqn. 10.5 should be smaller than
or equal to S, the measurement sampling period; on the other hand, too small a U
could results in practically infinite peak rate when the bucket depth is large. Due
to its conservativeness, we never experience packet loss with any of the simulations
involving the equivalent bandwidth algorithm.

Our next attempt to improve the performance of the equivalent bandwidth algo-

rithm introduces a gambling factor to Eqn. 10.11:
v<wvp—(1—k)L (10.12)

For k = 0, we keep the original €2 safety zone. If, after an observation at time-scales
of days or weeks, we decide that our traffic is not that bursty and we can safely
increase link utilization, we can increase . For example, in a simulation with EXpP1
sources, € = le-12, setting k = 0.8, we are able to admit 254 flows, achieving 81%
link utilization with no lost packets. We hasten to add, however, introducing x to
the equivalent bandwidth equation destroys its rigorousness and makes it as ad-hoc

as setting the utilization target of the “Measured Sum” algorithm.

Analyzing the experienced queueing delay. Aside from achievable utilization

and loss rate, one might also be interested in packets’ experienced delay under the
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Figure 10.1: Distribution of experienced queueing delay of EXP1 sources.

various algorithms. In this section, we look at the distribution of experienced queue-

9

ing delay under the “Measured Sum,” admissible region, and equivalent bandwidth
algorithms.  Figs. 10.1, 10.2, and 10.3 show these distributions at the switch con-
nected to the bottleneck link in topology ONE-LINK, for sources EXp1l, POO0, and
POO1 respectively. Recall that under the definition of controlled-load service model,
the acceptable “average burst length” queueing delay for all three source models is
16 msecs. Comparing the experienced delay of ExP1 and POO0O under the admissible
region admission control algorithm, one can see from Figs. 10.1 and 10.2 that for the
same peak rate and degree of burstiness, POO0 sources must certainly be allowed a
smaller utilization target than that used with EXP1 sources. However, as we pointed
out earlier, the admissible region computation in [GKK95] does not take into account
the distributions of ON and OFF times, resulting in massive losses for POO0 and POO1
sources under that algorithm. The burstier POO1 source gives us a shorter delay tail;
note, however, that the distribution of POO1 experienced delays still exhibits a longer
tail than that of EXP1 sources, attesting to the LRD effect on experienced queueing
delay. Given the acceptable queueing delay of 16 ms, and the capability of the “Mea-
sured Sum” algorithm to exploit this bound to achieve a high level of link utilization
without experiencing any loss, we think that the equivalent bandwidth based algo-

rithm is too conservative. We mentioned earlier that even though we experience loss
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Figure 10.2: Distribution of experienced queueing delay of POOO sources.
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Figure 10.3: Distribution of experienced queueing delay of POO1 sources.
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Figure 10.4: Distribution of experienced queueing delay of POOO sources under the
“Measured Sum” and bounded delay algorithms for different utilization target (ut)
and delay bound (db).

Table 10.3: Multiple-hop All Sources Simulation Results

Link || Measured Sum || Adm. Rgn. 1 Adm. Rgn. 2 || Equivalent Bw.
%Util | #Actv || %Util | #Actv | %Util | #Actv || %Util | #Acty

L6 47 282 19 117 48 285 33 237
L7 79 485 30 198 81 470 o7 392
L8 7 469 29 189 79 454 60 404
L9 7 469 31 203 80 467 60 407

rate of 1e-7 for POOO sources with the “Measured Sum” algorithm when the utiliza-
tion target is set at 90% link bandwidth, we suffer no loss both when the utilization
target is set to 80% and when we use the bounded delay algorithm with delay bound
set to 8 ms. Fig. 10.4 shows the experienced delay of the three cases.

The multiple-hop, heterogeneous sources case. Table 10.3 contains the av-
erage link utilization and average number of connections of the four links in the
FOUR-LINK topology from simulations where we run all six sources, with the choice

of sources uniformly distributed. All the simulations use a sampling period of 1e3
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Table 10.4: Percentage Composition of Type of Admitted Flows

Algorithm EXP1 | EXP2 | EXP3 | POO( | POO1 | POO2
Measured Sum 21% 9 12 21 22 15
Admissible Rgn. 1 20 10 14 19 21 16
Admissible Rgn. 2 19 12 15 19 19 16
Equivalent Bw. 25 1 6 25 26 18

packet transmission times and buffer space for 1600 packets. For sources with token
bucket depth greater than 1, we use the token bucket rate as the peak rate, ignoring
the bucket depth. The table shows that the equivalent bandwidth based algorithm
is, again, rather conservative in this scenario. The “Adm. Rgn. 1”7 scenario uses a
utilization target of 41%, whereas the “Adm. Rgn. 2”7 scenario uses 97%. None of
the simulation suffers any packet loss. Link L6 consistently achieves lower utiliza-
tion than the other links. We called this the under-representation phenomenon in
Chapter 9, and attributed its cause to un-consummated reservations when multi-hop
flows admitted by the switch attached to L6 are rejected by one of the downstream
switches. To better understand why, when compared to the “Adm. Rgn. 2” numbers,
the larger number of flow counts under the “Measured Sum” algorithm results in
lower utilization, we investigate the mix of admitted flows. Again, we do not include
results from bounded delay algorithm because they are practically identical to the
“Measured Sum” results. Table 10.4 shows the composition of the type of admitted
flows, in percentages. We can immediately see that under “Admissible Rgn. 2,” more
flows with deeper bucket depth are admitted, resulting in higher utilization, even
at a lower flow count, compared to the numbers of “Measured Sum.” Table 10.4
also confirms our earlier observation that more resource demanding flows can suffer
from another form of under-representation, where they are discriminated against by
the network. This problem is even more pronounced in the “Equivalent Bw.” case
where the peak rates of all currently admitted flows are used in every admission de-
cision. While the performance of the admissible region algorithm is excellent when

the utilization threshold is 97%, the choice of this utilization threshold is not from
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computation in [GKK95|, rather it is a “best case,” though ad-hoc, choice for this
scenario hence does not allow the load estimation error to be quantified and assessed

any more more rigorously than under the “Measured Sum” method.

The “Measured Sum” method seems to work as well as the bounded delay algo-
rithm under the scenarios simulated here. The admissible region based algorithm
suggested by the authors of reference [GKKO95] is either too conservative when flows’
grain size is large, or too optimistic when the flows” have heavy-tailed ON and OFF
times distributions. The equivalent bandwidth based algorithm found in [Flo96a] is
inherently conservative. In general, while it is clear that admission control algorithm
for controlled-load service should have a utilization target, it is still not clear how
to compute this bound from observed traffic characteristics. Computing equivalent
bandwidth or admissible region, taking into account only the sources’ peak rate and
token bucket filter parameters, does not seem sufficient. One must also take into
account the sources’ burst lengths and idle times distributions. The “Simple Sum”
method used in conjunction with wrQ scheduling discipline favored by router ven-
dors for its implementation simplicity gives the worst performance in terms of link
utilization. However, we have not studied the implementation and operational costs
of the various admission control algorithms; when these are taken into account, one
might not be able to implement anything more complicated than the “Simple Sum”

algorithm, given current hardware technology.
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Chapter 11
Summary and Extensions

In this dissertation we presented a measurement-based admission control algorithm
that consists of two logically distinct pieces, the criteria and the estimator. The ad-
mission control criteria are based on an equivalent token bucket filter model, where
each predictive class aggregate traffic is modeled as conforming to a single token
bucket filter. This enables us to calculate worst case delays in a straightforward
manner. The estimator produces measured values we use in the equations repre-
senting our admission control criteria. We have shown that even with the simplest
measurement estimator, it is possible to provide a reliable delay bound for predic-
tive service using our measurement-based admission control algorithm. We have also
shown that our measurement-based admission control can be used with controlled-
load service to provide the illusion of lightly loaded network. Thus we conclude that
for those applications willing to tolerate delay violations, services with more relaxed
commitments than those provided by guaranteed service are viable alternatives. For
bursty sources, in particular, measurement-based admission control algorithm with
the more relaxed services can achieve a level of network utilization significantly higher
than those achievable under guaranteed service. Finally, we now identify three broad

categories of possible extensions to our work:
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11.1 A Better Estimator

It is essential for an admission control algorithm to set aside some slack bandwidth
to accommodate sudden increases in traffic flow. The amount of bandwidth set aside
for such purpose could be decided based on historical data such as we have done with
our utilization target. A less ad-hoc method would be to compute the equivalent
bandwidth of the aggregate traffic as proposed by the authors cited in Section 2.2.
Unfortunately, because of the assumptions made by the different approaches to com-
pute equivalent bandwidth, the resulting numbers are either too conservative for
certain types of flow or too optimistic for other types of low. Or the approach would
be too restrictive and support only specific types of flow. Recent works on spectral
analysis of network traffic, such as [LCH95|, have identified the low frequency of traf-
fic as a good indicator of bandwidth requirement, and the high frequency as indicator
of buffer space requirement. However, other researchers have also called into question
the reliability of traffic autocorrelation in predicting queueing behavior [HH96]. It is
interesting to pursue how and when one might be able to peruse the spectral density
of traffic in estimating adequate resource provisioning.

Another approach to a better estimator is to bound the error rates of the estimates.
Reference [DJM96] contains such an approach. Given the reliance of estimating error
rates on traffic characteristics, we doubt that this would be a promising approach. Of
more interest to us is a fast implementation of the estimator, either in hardware or in
software. References [CT91, WCKG94| contain possible hardware implementations
of the estimator. Finally, we would like to implement an higher order mechanism to

automatically tune the parameters of our algorithm over large time-scales.

11.2 Other Admission Criteria

In Chapter 9, we identify two kinds of flow under-representation problem: (1) flows
with large resource requirements are discriminated at admission time, and (2) flows
with multiple hops run a larger chance of being rejected by the network. The first
of these discriminations is local to the decision of a switch, the second requires coop-

eration between switches. We showed in Chapter 9 that these problems are always

94



present when service violation prevention is the only criterion used in making admis-
sion decisions, both parameter-based and measurement-based. To address the first
kind of discrimination, we adopted in Chapter 9 another criterion wherein different
kinds of flow are alloted their own quota. We also introduced a measurement-based
quota mechanism that allows network administrators to control the traffic mix on
their links. This mechanism relies on a flow opportunity cost metric to compare the
resource requirement, of one flow against that of others. Both a more accurate es-
timate of flows” actual opportunity cost and a more sophisticated quota mechanism
would be interesting extensions to our work. We have not begun to address the

second discrimination problem. To explore it is of of immediate interest to us.

11.3 Additional Issues

In this section we present three additional issues that could effect a measurement-

based admission control algorithm.

Stability of adaptive playback point. Guaranteed service provides an absolute
delay bound from which one can compute the bound on a packet’s end-to-end delay.
Predictive and controlled-load services do not provide such bound. While adaptive
applications can adjust their playback point to accommodate variations in packets’
end-to-end delay, one would still prefer a stable playback point. An interesting re-
search project would be to study the stability of playback points for applications
receiving predictive and controlled-load services. Would one be able to compute a
stable end-to-end delay distribution given delay distributions at the switches along a

flow’s path?

Link sharing. In references [FJ95, SCZ93], the authors identify the need to parti-
tion link bandwidth into portions that are then sold to separate entities. This service
is called link-sharing in the literature. To provide this service, the admission control
algorithm must ensure that realtime traffic from each entity does not overflow its al-
loted portion. As we mentioned in this dissertation, a measurement-based admission

control algorithm can deliver high degree of utilization gain only when there is an
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high degree of statistical multiplexing. The reliability of traffic estimates also depend
on high degree of statistical multiplexing. Link-sharing lowers the degree of statistical
multiplexing by segregating traffic into different partitions. One possible approach
to regain an higher degree of statistical multiplexing is for the scheduler and traffic
estimators to ignore link partitioning once a realtime flow has been determined by the
admission control algorithm to conform to its entity’s share. We plan to experiment

with this architecture.

Preemptible Service. In Chapter 3, we mentioned sources that can transmit at
variable bandwidth either by changing their compression ratio or by transmitting
fewer levels of their hierarchically encoded data. In reference [HS96], each level of hi-
erarchically encoded data is sent as a separate flow with resource reservation. To sup-
port variable bandwidth sources requires reconsideration of our measurement-based
admission control algorithm. In the case where a source can adjust its transmission
rate based on congestion feedback, our traffic estimates must ignore the extra traffic
generated by the source when network is not congested. In the case where sources re-
serve bandwidth for each of their hierarchically encoded data, and adjust the number
of levels they transmit based on congestion feedback, we must prioritize our drop-
ping policy. One possible solution is to give lower scheduling priorities to higher levels
traffic. However, this could cause massive packet reordering if the different levels of
priority are scheduled by strict priority. We think the right approach is to transmit
traffic from all hierarchies in the same level of scheduling priority and rely on packet
dropping policy to drop the highest layer traffic first.

To facilitate prioritized dropping policy, we intend to introduce a meta service
model: the preemptible service model. It is a meta service model in that it must
be used in conjunction with one of the other service models mentioned previously
(which we will call the base service). Packets of a preemptible flow will be dropped
first before packets from non-preemptible flows of the same scheduling priority. A
preemptible flow may also be completely dropped from service. We can support
multiple levels of preemptible service with decreasing dropping priorities. An extra

benefit of preemptible service is that one can admit preemptible flows that would
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otherwise be rejected because of quota or link share violation. Preemptible flows could
also be dropped upon sudden surges of traffic or arrivals of an advance reservation
start time. Note that when network is not congested, preemptible flows receive
the same service as non-preemptible flows requesting the same base service. Hence
preemptible service is not best-effort service. It is an interesting problem to study
how a measurement mechanism must be designed to support preemptible flows. Do
we include packets from preemptible flows in our measurement? If not, how shall
we subtract them out, especially when measuring delay? If so, how do we recognize
whether we can admit more non-preemptible flows given current load of preemptible

traffic?
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