
Power-Aware Storage Cache Management
Qingbo Zhu and Yuanyuan Zhou

Abstract—Reducing energy consumption is an important issue for data centers. Among the various components of a data center,

storage is one of the biggest energy consumers. Previous studies have shown that the average idle period for a server disk in a data

center is very small compared to the time taken to spin down and spin up. This significantly limits the effectiveness of disk power

management schemes. This article proposes several power-aware storage cache management algorithms that provide more

opportunities for the underlying disk power management schemes to save energy. More specifically, we present an offline energy-

optimal cache replacement algorithm using dynamic programming, which minimizes the disk energy consumption. We also present an

offline power-aware greedy algorithm that is more energy-efficient than Belady’s offline algorithm (which minimizes cache misses

only). We also propose two online power-aware algorithms, PA-LRU and PB-LRU. Simulation results with both a real system and

synthetic workloads show that, compared to LRU, our online algorithms can save up to 22 percent more disk energy and provide up to

64 percent better average response time. We have also investigated the effects of four storage cache write policies on disk energy

consumption.

Index Terms—Power management, disk storage, storage cache replacement, write policies.

�

1 INTRODUCTION

TRENDS in Internet infrastructure are driving a shift
toward service-based computing. Data centers are

playing a key role in this new architecture since they are
commonly used to provide a wide variety of services,
including Web hosting, application services, outsourced
storage, and other network services. Storage is one of the
biggest components in data centers. Storage demand is also
growing by 60 percent annually [36]. By 2008, data centers
will manage 10 times as much data as they do today.

The steady growth of data centers introduces a sig-
nificant problem: energy consumption. Data centers typically
have very high power requirements. According to EUN
(Energy User News) [35], today’s data centers have power
requirements that range from 75 W/ft2 for small to
medium-sized enterprises to 150-200 W/ft2 for typical
service providers. In the future, this is predicted to increase
to 200-300 W/ft2 [35]. These increasing power requirements
are driving energy costs up as much as 25 percent annually
and making it a growing consideration in the TCO (total
cost of ownership) for a data center [36]. High energy
consumption also prevents easy expansion and has nega-
tive environmental implications.

Among various components of a data center, storage is
one of the biggest consumers of energy. A recent industry
report [2] shows that storage devices account for almost
27 percent of the total energy consumed by a data center.
This problem is exacerbated by the availability of faster
disks with higher power needs as well as the increasing
shift from tape backups to disk backups for better
performance.

Although disk power management for mobile devices
has been well studied in the past, only a few recent studies
[8], [17], [16], [6], [40], [50], [51] have looked at power
management for the multiple-disk storage systems of data
centers. The large volume of activity on these servers keeps
the average idle period between requests too small to justify
the costs of spinning the disks up and down. Thus, the
potential for saving energy is very limited. To address this
problem, multiple-speed disks have been proposed by
Gurumurthi et al. [16] and Carrera et. al [6]. By introducing
intermediate power modes, the spin-up and spin-down
costs are reduced and more energy can be saved in spite of
the small idle periods [16].

Not all accesses to a storage system go to disks. A typical
architecture for a modern storage system is shown in Fig. 1.
Many modern storage systems use a large storage cache to
reduce the number of disk accesses and improve perfor-
mance. For example, the EMC Symmetrix storage system
with a capacity of 10-50 TBytes can be configured with up to
128 GB of nonvolatile memory as the storage cache [10]. The
IBM ESS system can also have up to 64 GB of storage cache
[1]. Different from those small (usually 1-4 MB) buffers on a
SCSI disk, which are mainly used for read-ahead purposes,
these large caches are used to cache blocks for future
accesses. Therefore, the cache replacement algorithm plays
a very important role in a storage system [49], [44], [34], [7].

The storage cache management policy influences the
sequence of requests that access disks. Different cache
management policies may generate different disk request
sequences, which directly affects disk energy consumption.
In other words, by changing the cache management scheme,
it is possible to change the average idle time between disk
requests, thus providing more opportunities for the disk
power management scheme to save energy. For example, if
the cache replacement algorithm can selectively keep some
blocks from a particular disk in the cache (without signifi-
cantly increasing the number of misses to other disks), that
disk can stay in a low power mode longer. Since storage
caches are critical to storage system performance, our study
assumes that storage caches are active all the time.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 5, MAY 2005 1

. The authors are with the Department of Computer Science, University of
Illinois at Urbana-Champaign, Urbana, IL 61801.
E-mail: {qzhu1, yyzhou}@uiuc.edu.

Manuscript received 4 Feb. 2004; revised 21 Oct. 2004; accepted 15 Nov.
2004; published online 16 Mar. 2005.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0038-0204.

0018-9340/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society

Besides disk energy consumption, I/O response time is
another concern. If underlying disks use power manage-
ment schemes, some requests can be significantly delayed
because it takes a long time (a few seconds) for a disk to
spin up from a low power mode to the active mode.
Consequently, if a cache replacement algorithm is only
designed to minimize the number of cache misses and
ignores the underlying disk power management schemes, it
can result in very high I/O response time. Therefore, it is
important to design cache management schemes that are
power-aware (aware of the underlying disk energy con-
sumption and power management schemes).

This paper studies the effects of storage cache manage-
ment schemes on disk energy consumption and proposes
power-aware cache management schemes. We look into both
cache management for read accesses and for write accesses.
Specifically:

. For read accesses, we first present an energy-optimal
offline cache replacement algorithm using dynamic
programming which minimizes the underlying disk
energy consumption.

. Since the energy-optimal algorithm is too compli-
cated to evaluate, we present a simple offline power-
aware greedy algorithm. Simulations show that the
greedy algorithm is more energy-efficient than
Belady’s offline algorithm while still providing
acceptable average response time.

. Based on the insights from our analysis of offline
algorithms, we propose two new online power-aware
replacement algorithms, PA-LRU and PB-LRU, that
are based on the same observation, but use very
different approaches. Our simulation results with
both real system and synthetic workloads show
that these two power aware algorithms can reduce
disk energy consumption by up to 22 percent
compared to LRU and also provide up to 64 percent
better average response time.

. For write accesses, we study the effects of storage
cache write policies on disk energy consumption.
Our results show that write-back can save up to
20 percent more energy compared to write-through.
Write-back with eager updates further reduces disk
energy consumption of write-back up to 45 percent.
We also propose a policy called write-through with
deferred updates that reduce energy consumption
up to 55 percent while still providing persistency
semantics comparable to write-through.

This paper is organized as follows: The next section
briefly describes the background. Section 3 discusses the
offline energy-optimal algorithm and the offline greedy

power-aware algorithm. Section 4 presents two online
power-aware algorithms. Section 5 describes our evaluation
methodology, followed by simulation results for power-
aware replacement algorithms in Section 6. Section 7
discusses the effects of four storage cache write policies
on energy consumption. Several related issues are dis-
cussed in Section 8. Section 9 summarizes related work.
Finally, Section 10 concludes this paper.

2 BACKGROUND

2.1 Disk Power Model

To reduce energy consumption, modern disks use multiple
power modes that include active, idle, standby, and other
intermediate modes. In active mode, the platters are
spinning and the head is seeking or the head is actively
reading or writing a sector. In idle mode, a disk is spinning
at its full speed, but no disk activity is taking place.
Therefore, staying in the idle mode when there is no disk
request provides the best possible access time since the disk
can immediately service requests, but it consumes the most
energy. To simplify discussion, we do not differentiate
active mode and idle mode since, in both modes, the disk is
operating at full power. In the standby mode, the disk
consumes much less energy, but, in order to service a
request, the disk has to incur significant energy and time to
spin up to active mode.

Recently, Gurumuthi et al. have proposed multispeed
disks to increase the amount of energy saved with data
center workloads [16]. Lower rotational speed modes
consume less energy compared to higher speed modes
and the energy and time costs to shift between different
rotational speeds are relatively small compared to the costs
for shifting from standby to active. Such multispeed disks
are still only a design on paper and there are no real
products yet. We, however, simulate and use multispeed
disks in our experiments because of their potential to save
more energy. A multispeed disk can be designed to either
serve requests at all rotational speeds or serve requests only
after a transition to the highest speed. We choose the second
option since it is a simple extension to the traditional
2-mode power model.

2.2 Disk Power Management

The goal of disk power management is to try and save
energy by switching disks to lower power modes whenever
possible without adversely affecting performance [8], [6],
[17], [16]. If the entire disk request sequence is known in
advance, the power management scheme can make perfect
decisions. This “Oracle”-based disk power management
scheme (Oracle DPM) [31] gives us an upper bound on the
energy that can be saved for a given request sequence,
assuming requests will not be prefetched or delayed. The
break-even time of a disk is defined as the minimum length of
idle period which would justify the energy cost of spinning
the disk down and up [6]. At the end of every request, the
Oracle DPM looks at the time till the next request, t. If t is
greater than the break-even time, then the disk is spun
down and later spun up just in time for the next request. If t
is less than the break-even time, the Oracle DPM decides
that it is better to keep the disk in idle mode.

This scheme can easily be extended to disk models with
multiple power modes. Let us assume that Pi ð0 � i � mÞ is

2 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 5, MAY 2005

Fig. 1. Modern storage architecture.

the power consumed in mode i and that Pi is greater than Pj

for all i < j. Once an idle interval starts, Oracle DPM has to
switch the disk to one of the m modes that minimizes
energy consumption. The disk must also be back in mode 0

when the next request arrives.
To get the minimum energy consumption, we plot lines

EiðtÞ ¼ Pi � ðt� TiÞ þ Ci as in Fig. 2 for each power mode i,
where Pi is the power dissipation in mode i and Ti and Ci

are the time and energy required to spin-down and spin-up
from mode i to 0 (T0 and C0 is 0). EiðtÞ is the energy
consumed if the disk spends the entire interval of length t in
mode i. Let us call the lower envelope of all of these lines
LEðtÞ ¼ minifPi � ðt� TiÞ þ Cig. This gives us the mini-
mum energy consumption possible for an interval of length
T . If the next request is time T away from the current
request, Oracle DPM can use LEðtÞ to determine which
power mode to switch the disk to: If the disk is switched to
the power mode j where LEðT Þ ¼ EjðT Þ, the energy
consumption during this interval is minimized.

Practical disk power management (Practical DPM)
schemes use thresholds to determine when to spin down
disks. In such schemes, after the disk remains idle at a
power mode for a certain threshold time, it is switched into
the next lower power mode. Irani et al. have shown if the
threshold values are determined by the intersection points
of the lines in Fig. 2, the power management scheme is
2-competitive to the Oracle scheme in terms of energy
consumption [23]. This scheme transitions the disk from
mode i to mode iþ 1 after time tiþ1, where tiþ1 is the time
corresponding to the intersection point of lines EiðtÞ and
Eiþ1ðtÞ, as shown in Fig. 2. We use thresholds obtained by
this method in our study.

3 POWER-AWARE OFFLINE CACHING ALGORITHMS

Offline caching algorithms have knowledge about the
future. Such algorithms are usually studied because they
provide upper and lower bounds for all online algorithms.
For example, Belady’s offline algorithm [4], [33], which
replaces the block with the longest future reference
distance, is used to derive a lower bound on the cache
miss rate. Since the study of offline algorithms is important
to gain insights into the problem, we first investigate offline
algorithms for power aware cache management. We will

describe two new online algorithms in Section 4 and discuss
the effects of write policies in Section 7.

3.1 Energy-Optimal Problem

The goal of a power-aware cache replacement algorithm is
to take a given request sequence as input and generate a

miss sequence for which the disks consume the least
energy. If we use S to denote an I/O request sequence, a

replacement algorithm A is a function that maps S and a
cache with k blocks into a miss request sequence S0, i.e.,

A : ðS; kÞ ! S0 or AðS; kÞ ¼ S0. Given a disk power manage-
ment scheme P and a disk request sequence X, let P ðXÞ be
the total energy consumed by the disks. Therefore, we have
the following definition of an energy-optimal replacement
algorithm:

Remark. Given an I/O request sequence S, a cache
replacement algorithm A, a cache with k blocks, and a

disk power management scheme P , the total disk energy
consumption is P ðAðS; kÞÞ.

Definition. A storage cache replacement algorithm A is energy-

optimal iff, for any other algorithm B, P ðAðS; kÞÞ �
P ðBðS; kÞÞ for any I/O request sequence S and any storage

cache size k.

The number of misses resulting from a storage cache
replacement algorithm obviously affects disk energy con-
sumption. One would expect that, if there are few cache
misses, the disks would consume little energy. However,
the energy consumption is also affected by the arrival
patterns of the cache misses. If misses are clustered together
leaving long idle periods, it would allow disks to stay in the
low power mode for longer periods of time. On the other
hand, if the misses arrive uniformly spaced, most idle
periods may be too small for a disk to save energy by going
to the low power mode or the disk may spin up and down
frequently, wasting a lot of energy in transitions. Further-
more, when there are multiple disks, it is better if misses are
directed to a cluster of disks rather than uniformly
distributed over all the disks. This allows the other disks
to be in standby mode more often and thus save energy.

There are two reasons why Belady’s algorithm is not
optimal for disk energy consumption. First, it onlyminimizes
thenumber ofmisses andpaysno attention to arrival patterns
of cache misses or how they are clustered. In other words, it
ignores all information about time. Below, we give an
example of this case. Second, it does not consider the number
and characteristics of disks in a multiple disk scenario.

Fig. 3 gives an example to show why Belady’s cache
replacement algorithm is not energy-optimal. In this exam-
ple, the storage cache has only four entries and the power
model is the simple 2-modemodel. For simplicity,we assume
that the disk can spin up and spin down instantaneously.We
also assume that the disk spins down after 10 units of idle
time. This disk power management scheme is a threshold-
based scheme (described in Section 2.2). The area of the
shaded region in the figure represents the energy consumed.
In this example, usingBelady’s algorithmresults inmoredisk
energy consumption than the alternative algorithm, even
though the alternative algorithm has two more misses than
Belady’s algorithm.

ZHU AND ZHOU: POWER-AWARE STORAGE CACHE MANAGEMENT 3

Fig. 2. Energy consumption for each mode in a 5-mode disk power

model and the lower envelope LEðtÞ function.

3.2 Energy-Optimal Algorithm

In this section, we present an energy-optimal cache

replacement algorithm using dynamic programming. For

simplicity, we will consider only two power modes and a

single disk with b blocks. Let the sequence S of disk

references be a0; a1; . . . an�1, where n is the input size. Let k

be the number of blocks in the cache. When a block is read

from the disk, it is to be stored in the cache. If the cache is

full, a cache block is replaced. The disk spends one unit of

energy per reference when it is switched on and does not

consume energy in standby mode. For simplicity, we also

assume that the disk is back to standby after m units of time

and I/O requests arrive uniformly at the rate of one per

time unit. For other arrival distributions, the optimal

algorithm can be modified slightly by inserting some fake

requests that will always hit in the cache (e.g., repeat the

last I/O request) at each idle time unit. Due to space

constraints, we do not go into the details of this extension.

The goal of an energy-optimal cache replacement algorithm

is to determine the sequence of cache replacement decisions

that minimizes disk energy consumption.
We can construct a DAG (directed acyclic graph) to

demonstrate a cache replacement algorithm. The state of the

cache can be represented by the tuple ðC; t; iÞ, which means

that the cache contains the blocks in set C after the first iþ 1

references a0; a1; . . . ai and the last t consecutive references

were cache hits. If the next reference aiþ1 is found in the

cache (aiþ1 2 C), the next state is ðC; tþ 1; iþ 1Þ. If aiþ1 62 C,

the next state could be one of several possible states

ðC0; 0; iþ 1Þ, where C0 is one of k possible sets that result

from replacing one block in C by aiþ1. Since the disk is

accessed due to a cache miss, t goes to 0.

AðC; t; iÞ ¼
maxt0;C0 ðAðC0; t0; i� 1Þj
C 2 replðC0; aiÞ ^ ai 62 C0 if ai 2 C ^ t ¼ 0

AðC; t� 1; i� 1Þ þ 1 if ai 2 C ^ t 6¼ 0 ^ t > m

AðC; t� 1; i� 1Þ if ai 2 C ^ t 6¼ 0 ^ t � m

1 if ai 62 C:

8>>>>>><
>>>>>>:

ð1Þ

In this model, minimal energy consumption corresponds

to the maximum time that the disk can spend in the standby

mode.WedefineAðC; t; iÞ as themaximum time that the disk

spends in standby mode until some appropriate sequence of

cache replacements result in state ðC; t; iÞ being reached.

AðC; t; iÞ can be obtained in a recursive manner as in (1).

replðC; aiÞ is the set of possible resulting caches after

replacing some block in C with ai. The equation can be

explained as follows: If t 6¼ 0, then, from the transition

diagram, it is clear that state ðC; t; iÞ can be reached only from

ðC; t� 1; i� 1Þ, where ai 2 C, hence the second and third

cases. The second case adds 1 since, if the disk is not accessed

for t > m references, the disk goes to standby mode. The

fourth case states that ðC; t; iÞ can never occur if ai 62 C since

every page reference has to be cached. However, ðC; 0; iÞ can
be reached from any of the states ðC0; t0; i� 1Þ such that ai 62
C0 andC can be obtained by replacing one block inC0with ai.

The first case maximizes over those possibilities. By comput-

ing AðC; t; iÞ in the lexical ordering of the pair ði; tÞ such that

t � i, we can ultimately arrive at maxC;tðAðC; t; n� 1ÞÞ,
which is the maximum time for which the disk can stay in

standby mode over the entire input sequence. The algorithm

is shown below.

1. for i ¼ 0 to n� 1 do

2. for t ¼ 0 to i do

4 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 5, MAY 2005

Fig. 3. An example showing that Belady’s algorithm is not energy-optimal.

3. for all C such that C is a set of b distinct disk blocks
do

4. if ai 2 C ^ t ¼ 0 then

5. AðC; t; iÞ maxt0;C0 ðAðC0; t0; i� 1ÞjC 2
replðC0; aiÞ ^ ai 62 C0Þ

6. else if ai 2 C ^ t 6¼ 0 ^ t > m then

7. AðC; t; iÞ AðC; t� 1; i� 1Þ þ 1

8. else if ai ^ t 6¼ 0 ^ t � m then

9. AðC; t; iÞ AðC; t� 1; i� 1Þ
10. else

11. AðC; t; iÞ 1
12. end if

13. end for

14. end for

15. Maximum Standby Time maxC;tðAðC; t; n� 1ÞÞ
16. end for

Now, we analyze the algorithm’s worst-case time
complexity. Let us assume that AðC0; t0; i0Þ values are known
for all C0, t0, and i0 < i. If t 6¼ 0, then, by the second and third
cases in (1), we need Oð1Þ time to find AðC; t; iÞ. If t ¼ 0,
then we will have to maximize, over all possible cache
configurations, C0 such that C 2 replðC0; aiÞ and t0 � i� 1.
The number of different C0 values is b, the number of
possible different blocks in the cache that ai can replace. The
number of different t0 values is i. Thus, the total number of
choices to be considered when computing AðC; 0; iÞ is i� b.
t can vary from 0 to i. Thus, time taken to compute AðC; t; iÞ
for all possible t � i is i� bþ i. This has to be done for bk

possible cache configurations. When summed over all i < n,
we get the time complexity as �ib

ki� ðbþ 1Þ, which is
Oðbkþ1n2Þ.

The above algorithm can be extended to work with
multiple disks with multiple power modes as well. After
representing the state as ðC; t1; t2; . . . ; tr; iÞ, a recursive
formula can be written for AðÞ, which would be the
maximum time that is spent in standby mode by putting
all the disks together. We do not go into the details due to
space constraints.

3.3 Offline Power-Aware Greedy Algorithm

Since the energy-optimal algorithm is too complex to
implement and evaluate, we propose a heuristic offline
power-aware greedy (OPG) algorithm that consumes less
energy than Belady’s algorithm for representative work-
loads. The main goal of the OPG algorithm is to minimize
energy consumption by taking advantage of information
about future bound-to-happen misses based on cache
content at some point in time. We will call the bound-to-
happen misses deterministic misses because they will happen
no matter what the replacement algorithm does later on.

If we know that there is a deterministic miss at a future
time t, the disk from which this missed block will be
accessed has to be active at t to service this request. For
convenience of description, for any access a, we call the
closest deterministic miss to the same disk but occurring
before a a’s leader. Similarly, we call the closest deterministic
miss to the same disk as a but occurring after a a’s follower.

If the disk power management uses the Oracle scheme,
the energy consumption for an idle period of length t is
LEðtÞ ¼ minfEiðtÞg, as described in Section 2.2 (see Fig. 2).

If the disks use the Practical DPM, the disk energy

consumption OLðtÞ during an idle period of length t can

be calculated as follows:
Pl�1

i¼0ðPi � ðtiþ1 � tiÞÞ þ Pl � � þ Cl,

where the disk goes to power mode i at time ti, tlð< tÞ is the
cross point closest to t, and � is the distance between t and

tl, i.e., t ¼ tl þ �; 0 � � < tlþ1 � tl (see Fig. 2).
The cache replacement algorithm uses energy penalties

to choose from all the resident blocks B1; � � � ; Bi; � � � ; Bk

when it needs to evict a block, where k is the number of

cache blocks. For any i, let bi represent the next access to Bi.

Suppose bi is, respectively, Li and Fi time apart from its

leader and its follower. If the algorithm evicts Bi, it will

cause a miss for bi, whose energy penalty is as follows:

LEðLiÞ þ LEðFiÞ � LEðLi þ FiÞ if Oracle DPM
OLðLiÞ þOLðFiÞ �OLðLi þ FiÞ if Practical DPM:

�

Intuitively, with the Oracle DPM, the energy cost for the

idle period between the leader and follower is LEðLi þ FiÞ if
bi is not a miss (therefore, there are no misses to this disk

between leader and follower based on the definitions of

leader and follower). If bi is a miss, the original idle period is

cut into two chunks whose aggregate energy cost is

LEðLiÞ þ LEðFiÞ. Thus, the energy penalty for evicting

block Bi is the difference between the two energy costs

LEðLiÞ þ LEðFiÞ � LEðLi þ FiÞ. The energy penalty with

the Practical DPM can be calculated in a similar way,

replacing LEðÞ by OLðÞ in the formula.
Once the algorithm calculates the energy penalty for

evicting every resident block, it evicts the block with the
minimum energy penalty. If multiple blocks have the same
energy penalty, it evicts the one with the largest forward
distance, i.e., whose next access is the furthest in the future.

Initially, the set of deterministic misses, S, only includes

all the cold misses. After each replacement, the algorithm

updates the set S. Suppose the currently accessed (missed)

block is B1 and the evicted block is B2. The algorithm

deletes B1 from the set S and adds the first future reference

to B2 into S. Then, the algorithm moves on to the next

request until all requests are processed. The time complex-

ity for a list of n requests is at most Oðn2Þ since the newly

inserted deterministic miss can become the leader or

follower of many block accesses and the energy penalties

of those blocks should thus be updated.
This algorithm is heuristic because it looks at only the

current set of deterministic misses when calculating the
energy penalty for evicting a block. Thus, it may not make
the best decision at a replacement. As we discussed in
Section 3.1, each cache miss leads to a disk access, which
costs additional energy. Hence, higher miss ratios would
increase the energy consumption. We use a simple mechan-
ism to consider both miss ratio and energy penalty for a
miss: not to differentiate among blocks whose energy
penalties are smaller than a threshold �. Any energy
penalty smaller than � is rounded up to �. Obviously,
when � is large enough, it is Belady’s algorithm; when
� ¼ 0, it is the pure OPG algorithm. This mechanism thus
subsumes Belady’s algorithm at one extreme and the pure
OPG algorithm at the other.

ZHU AND ZHOU: POWER-AWARE STORAGE CACHE MANAGEMENT 5

4 POWER-AWARE ONLINE CACHING ALGORITHMS

In practice, we do not have knowledge about future
accesses and thus cannot use the offline power-aware
greedy algorithm. However, it gives us some insights on
how to design a power-aware online algorithm that saves
energy. Such an algorithm should avoid evicting blocks
with larger energy penalties.

In this section, we present two new power-aware online
caching algorithms. Both are based on the above observa-
tion but use very different approaches. The first one,
PA-LRU, evicts blocks that have the largest estimated
energy penalties at replacement. The second one, PB-LRU,
divides the storage cache into different partitions (with one
for each disk) in a way to minimize energy consumption.

4.1 The First Algorithm: PA-LRU

PA-LRU is based on the observation that different disks
have different workload characteristics such as requests
interarrival time distribution, the number of cold misses.
These characteristics of a disk directly affect the energy cost
of an access to this disk.

We first investigate how the length of idle intervals
affects energy saving. Fig. 4 shows energy savings that can
be obtained by switching to lower power modes given an
idle interval. Similarly to Fig. 2, we plot lines ESiðtÞ ¼
E0ðtÞ � EiðtÞ for each power mode i, where ESi is the
energy saved by going into mode i (ES0 ¼ 0) and Ei is
defined in Section 2. The upper envelope of all of these
lines, UEðtÞ ¼ maxifESig, gives us the maximum energy
saved for an idle interval of length t.

The superlinear property of the upper envelope function,
UEðtÞ, indicates that even small increases in the idle
interval length of inactive disks can result in significant
energy savings. By keeping more blocks from inactive disks
in the cache, we can make the average interval length for
these disks larger. Then, these disks could stay in the low
power modes longer. Although the average interval lengths
for other active disks may be decreased due to an increased
number of misses, the energy penalty we pay for these other
disks is much smaller than the energy savings we gain from
the inactive disks. As shown in Fig. 4, even though the
average idle period of disk 0 is reduced from t2 to t1, it
results in the stretching of disk 1’s average interval from t3
to t4. Based on the superlinear property of UEðtÞ, the

amount of energy saving at disk 1 is more than the energy
cost at disk 0. Thus, overall energy saving is achieved.

However, average interval length is not the only factor
that affects the amount of energy that can be saved: 1) The
percentage of capacity misses (misses caused by previous
evictions) should be reasonably large since a cache replace-
ment algorithm cannot avoid any cold misses (misses due to
first-time accesses). If most of the accesses to a disk are cold
misses, we cannot do much to avoid expensive disk spin-
ups or make interval lengths longer. 2) The distribution of
accesses also affects the opportunities to save energy. For
example, for the same average interval length t2 in Fig. 4,
disks with larger deviation have more opportunities to save
energy than disks with uniform arrivals.

To keep track of the number of cold misses, we use a
Bloom Filter [5], [11] to identify cold misses. The idea is to
allocate a vector v of m bits, all set to 0 initially, and then
choose k independent hash functions, h1; h2; . . . ; hk, each
with range f1; . . . ;mg. Given an access for block a, we check
the bits at positions h1ðaÞ; h2ðaÞ; . . . ; hkðaÞ. If any of them is
0, a is definitely a cold miss. In this case, the bits at positions
h1ðaÞ; h2ðaÞ; . . . ; hkðaÞ in v are set to 1. Otherwise, we
conjecture that a is already in the set, which means it is
not a cold miss, though there is a certain probability that we
are wrong due to hash collisions. But, fortunately, the
probability of collisions is low if the bloom vector is
reasonably large. For example, if the system has 1:6M blocks
and the bloomfilter vector has 2M entries with seven hash
functions , the collision probability is only 0:0082.

To estimate the distribution of accesses for each disk,
instead of using mean and standard deviation, we employ a
simple but effective epoch-based histogram technique [46].
In each epoch, we keep track of the interval length between
two consecutive accesses for each disk. We obtain a
histogram as shown in Fig. 5. Let ni be the number of
intervals of length between ½ti; ti þ 1Þ and let n be the total
number of intervals. The height of each bin in Fig. 5 isPi

j¼0
nj

n , which approximates the cumulative probability of
the interval length being less than tiþ1. All the bins together
form a histogram, which approximates the cumulative
distribution function of interval length for a disk, i.e.,
F ðxÞ ¼ P ½X � x�, where X is a random variable that
represents the interval length for a disk.

PA-LRU is based on these observations. Its main idea is
to dynamically keep track of workload characteristics for
each disk, including the percentage of cold misses and the

6 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 5, MAY 2005

Fig. 4. Energy savings (not energy consumption) over mode 0 for each

mode in a 5-mode disk as a function of interval length.

Fig. 5. The histogram approximates the cumulative distribution function

of interval lengths.

cumulative distribution of interval lengths. Based on these
characteristics, PA classifies all disks into two categories,
regular and priority. Disks that exhibit 1) a small percentage
of cold misses and 2) large interval lengths with high
probability belong to the “priority” class and others belong
to the “regular” class. To adapt to workload changes, the
classification is epoch-based, adjusted periodically based on
the latest workload.

This idea can be combined with most existing storage
cache replacement algorithms to make them “power aware.”
This includes several recently proposed algorithms, such as
ARC [34], LIRS [24], DEMOTE [44], and MQ [49]. In this
paper,weuse the commonLRUalgorithmas an example and
refer it as the Power-Aware LRU algorithm (PA-LRU).

PA-LRU maintains two LRU stacks, LRU0, which keeps
blocks that belong to disks in the “regular” class, and LRU1,
which keeps blocks that belong to disks in the “priority”
class. When choosing a block to evict, PA-LRU always
evicts the bottom block of LRU0 if it is not empty. If LRU0 is
empty, PA-LRU evicts the bottom block from LRU1.

PA-LRU uses the request sequence’s characteristics
during the previous epoch for each disk. If the percentage
of cold misses is larger than a threshold �, blocks from this
disk go to LRU0 during the current epoch. As shown in
Fig. 5, given a cumulative probability p, we can easily
calculate the corresponding T based on the cumulative
distribution function, that is, P ðX � T Þ ¼ p. If T is less than
a threshold �, the blocks from this disk go to LRU0 as well.
Otherwise, blocks go to LRU1. �, �, p, and the length of the
epoch are tunable parameters.

4.2 The Second Algorithm: PB-LRU

Although the PA-LRU algorithm is more energy-efficient
than LRU, as shown in Section 6, it requires some parameter
tuning to set the values of �, �, p, and the length of the
epoch. In this section, we present the second online power-
aware algorithm, called PB-LRU, that requires little para-
meter tuning.

4.2.1 Main Idea

Similarly to PA-LRU, PB-LRU (Partition-Based LRU) also
differentiates disks with different characteristics. But, it
does it in a very different way. PB-LRU differentiates disks
by dynamically controlling the number of cache blocks
allocated to each disk. It divides the entire cache into
separate partitions, one for each disk. The partitions are
divided in a way to minimize the total storage subsystem
energy consumption. The partition sizes are adjusted
periodically at every epoch to adapt to workload changes.
Within an epoch, each partition is managed independently
using the original replacement algorithm (e.g., LRU). The
epoch length is the only parameter. But, our results show
relative insensitiveness of PB-LRU’s results to this para-
meter (see Section 6.2.2).

In order to find an energy-optimal partitioning, we first
estimate, for each disk, the energy that would be consumed
with different partition sizes. Symbolically, if we have n
disks f1 . . .ng, we estimate the energy, Eði; sÞ, that would
be consumed by disk i if it had a partition of size s. These
estimates are then used to find a partitioning that will
minimize the total energy consumption of all disks. Of
course, the sum of each partition size cannot exceed the
total cache size S.

Let us first formalize the problem. Suppose there are
m possible partition sizes: 0 < p1 < p2 < . . . < pm � S. Let
xij indicate whether disk i has a partition of size j (1 means
“yes” and 0 means “no”). Obviously, each disk can only
have one partition size, so we have

Pm
j¼1 xij ¼ 1. For disk i,

its partition size Si would be
Pm

j¼1 pjxij. Therefore, we have
the following:

minimize
Xn
i¼1

Eði; SiÞ

subject to
Xn
i¼1

Si � S; Si ¼
Xm
j¼1

pjxij

Xm
j¼1

xij ¼ 1; xij ¼ 0 or 1:

This problem is a form of the Multiple Choice Knapsack
Problem (MCKP) [32], a variant of the famous 0-1 knapsack
problem. To solve this, PB-LRU needs to address two issues:
1) accurate estimation of the energy, Eði; sÞ, that would be
consumedbydisk i if it hadapartition size sand2) solving the
MCKP which has been proven to be NP-hard [32].

4.2.2 Runtime Energy Estimation for Different Partition

Sizes

In this subsection, we describe a technique to dynamically
determine the energy that each disk would consume with
various possible partition sizes. A disk’s energy consump-
tion depends on the sequence of cache misses and the time
of each miss. Since we must estimate energy for various
possible partition sizes at runtime, it is infeasible to conduct
a real measurement on the energy consumption with each
different partition size using real organizations.

Instead, PB-LRU uses a much more elegant technique to
do the estimation. Essentially, we expect to obtain a curve
showing energy consumption as a function of partition size,
for each disk, at runtime. This is similar to the miss ratio
versus cache size curve, which has been dynamically
obtained in several previous studies [26], [39] using the
Mattson’s Stack algorithm. To our knowledge, our study is
the first to dynamically estimate how energy consumption
varies with cache (partition) size.

Mattson’s Stack algorithm was initially proposed by
Mattson et al. in 1970 [33] to reduce trace-driven processor
cache simulation time. It can determine the hit ratio of all
processor cache sizes with a single pass through the trace
file. It was later extended by Hill and Smith [21], [20] and
Wang and Baer [42] to provide efficient trace simulations
for set-associative caches. The main idea of this algorithm is
to take advantage of the inclusion property in many cache/
memory replacement algorithms [33] including the com-
monly used Least Recently Used (LRU) algorithm, the Least
Frequently Used (LFU) algorithm, and the offline Belady’s
algorithm. The inclusion property states that, at any given
time, the contents of a cache of k blocks is a subset of the
contents of a cache of kþ 1 blocks for the same sequence of
accesses. Therefore, if we maintain a “stack” (e.g., an LRU
stack), an access to a block at depth i in the stack would lead
to a miss in caches with size smaller than i and a hit in
others. Since the stack records only addresses of blocks and
not their data, the space overhead of the stack is small.

Unfortunately, the Mattson’s stack algorithm only gives
us the correlation between cache size and cache miss ratio.

ZHU AND ZHOU: POWER-AWARE STORAGE CACHE MANAGEMENT 7

Our goal is to minimize total disk energy consumption, not
the cache miss ratio. Even though the miss ratio for two
partition sizes may be significantly different, the resulting
disk energy consumption can still be similar because extra
misses may not cause any disk spin-ups.

We extend Mattson’s Stack algorithm to dynamically
track the variation of energy-consumption with possible
partition sizes for each disk. PB-LRU first uses the
Mattson’s Stack algorithm to determine whether a request
would result in a cache hit or miss for different partition
sizes. If a request is a miss in a partition of size p (and all
smaller sizes), the request will access the corresponding
disk. If we know the last access time to this disk (with
partition size p), we can estimate the energy consumption
from the last access to the current one based on the
underlying power management scheme. For example, if
Practical DPM is used, we can decide what the current disk
power mode is and thus calculate how much idle energy is
consumed during this idle period (including the spin-up
energy). The idle period is obtained from the current and
previous disk access times. To get the active energy, we first
measured the average disk access time on an IBM
Ultrastar36Z15 disk and used this value (10ms) in our
simulation. As shown in Section 6, our energy estimation is
very accurate with an error of at most 1.8 percent.

Therefore, for each disk and each possible partition size,
PB-LRU maintains the last access time to the disk (i.e.,
previous cache miss time) and its energy consumption. In
our experiments, we set the basic allocation unit to be 1MB.
Thus, if the total cache size is 128MB, for each disk, we
maintain 128 energy estimates and last access times
corresponding to partition sizes of 1; 2; 3; . . . ; 128MB. At
each access, besides changing the real cache to service this
access based on the replacement algorithm, we also

1. Search the requested block number in the stack of
the appropriate disk. If it is found to be the
ith element from the top of the stack, its depth is i.
If it is not found, its depth is 1.

2. For all partition sizes less than the depth, increment
the energy estimates. Update the previous miss time
to the current access time.

3. Update the stack using the same replacement policy
as the real cache, e.g., PB-LRU brings the requested
block number to the top of the stack.

Fig. 6 illustrates the process of energy estimation for a
disk with PB-LRU. Since the first five accesses are cold
misses, at time T5, the prev_miss_time is T5 and the energy
consumed is E5, for all partition sizes. At time T6, block 4 is
accessed, which has a depth of 4 in the stack. For the
partition sizes less than 4, a miss would occur. So, the
prev_miss_time for those sizes is set to T6 and the total
energy consumption is incremented by the sum of idle
energy consumed during the last idle period and the active
energy, which is EðT6� T5Þ þ 10ms �ActivePower (calcu-
lated based on the underlying DPM). However, if the
partition for this disk has size of 4 or 5 blocks, there would
have been a hit and no change is needed. Finally, both the
stack and the real cache are updated based on LRU.

Although, in our study, we use LRU as the basic
replacement algorithm, the methodology of partitioning
described above is applicable to all policies that exhibit the
property of inclusion, such as LFU, 2Q [25], and MQ [49].

4.2.3 Solving the MCKP Problem

The Multiple-Choice Knapsack Problem has been proven to
be NP-hard [32]. However, it can be solved in pseudopoly-
nomial time by dynamic programming, as described below.
The time complexity of the solution isOðnm2Þ, where n is the
number of disks and m is the number of potential partition
sizes. Let Kði; sÞ (s 2 fp1; p2; . . . ; pmg, 0 < p1 < . . . < pm � S)
be the energy consumed by idiskswhen a total cache size of s
is partitioned among those disks.K� gives theminimum total
energy consumption when a storage cache of size S is
partitioned among all n disks.

Kð0; sÞ ¼
0 if s ¼ 0

1 otherwise

�

Kði; sÞ ¼
minfjj0<pj�sgfKði� 1; s� pjÞ þEði; pjÞg

if s > 0

1 otherwise

8><
>:

K� ¼ minfsj0�s�SgfKðn; sÞg:

As results will demonstrate, this technique has a
tendency to increase the size assigned to relatively inactive
disks and give only small sizes to active disks. This is
because the energy penalty incurred by reducing the
partition size of an active disk is small, whereas the energy
saved by increasing the partition size of a relatively inactive
disk is large.

5 EVALUATION METHODOLOGY

5.1 Test Bed

We simulate a complete storage system to evaluate our
power-aware cache management schemes. We have en-
hanced the widely used DiskSim simulator [12] and
augmented it with a disk power model. The power model
we use is similar to that used by Gurumurthi et al. [16] for
multispeed disks. We have also developed a storage cache
simulator, CacheSim, and we use it together with DiskSim
to simulate a complete storage system. CacheSim imple-
ments several cache management policies. Accesses to the
simulated disks first go through the simulated storage
cache. The simulator reports the energy consumed by each
disk in every power mode and the energy consumed in

8 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 5, MAY 2005

Fig. 6. An example of energy estimate in PB-LRU for a disk.

servicing requests (energy to perform seek, rotation, and
transfer). Therefore, if a power-aware replacement algo-
rithm introduces extra misses, the disk energy consumed in
servicing those extra misses is also reported.

The specifications for the disk used in our study are
similar to that of the IBM Ultrastar 36Z15. The parameters
are taken from the disk’s data sheet [22], [6]. Some of these
parameters are shown in Table 1.

Other than active and standby, we use four low-speed
power modes: 12k RPM, 9k RPM, 6k RPM, and 3k RPM. For
convenience of description, we call themNAPmodes:NAP1,
NAP2, NAP3, and NAP4. To calculate the parameters for
each NAP mode, we use the linear power and time models
proposed in [16]. We use the 2-competitive thresholds
described in Section 2 for Practical DPM. For PA-LRU, we
use an epoch length of 15 minutes. Other parameters are
� ¼ 50%, p ¼ 80%, and � ¼ 5seconds. �; �; p are described in
Section 4. � is set to be the same as the break-even time for
NAP1mode. All PB-LRU results are achievedwith the epoch
lengthas16; 000 requests. Section6.2.2will showthatPB-LRU
results are insensitive to the epoch length as long as it is long
enough for the cache to “warm-up” after the repartitioning.

5.2 Traces

Our experiments use two real system traces (OLTP and
Cello96) and two synthetic traces (Exponential and Pareto)
to evaluate the power-aware cache replacement algorithms.

The OLTP trace is an I/O trace collected on our
previously built VI-attached database storage system con-
nected to a Microsoft SQL Server via a storage area network.
The Microsoft SQL Server client connects to the Microsoft
SQL Server via Ethernet and runs the TPC-C benchmark
[28] for 2 hours. The OLTP trace includes all I/O accesses
from the Microsoft SQL server to the storage system. Writes
to log disks are not included in the trace. A more detailed
description of this trace can be found in our previous work
[49], [7]. OLTP trace has 21 disks (two volumes, each
organized as a 10-disk RAID0 and an additional single
disk). The other trace, Cello96, is obtained from HP and was
collected from the Cello File Server. This is a more recent
trace similar to the Cello92 trace [41]. The Cello file system

is used by a small group of researchers at Hewlett-Packard
Laboratories to do simulation, compilation, editing, and
mail. The Cello96 trace has 20 disks which include news
partitions, swap partitions, and other file system partitions.
In our experiments, we use the same disk layout as
specified in these traces. We use 128 MBytes as the storage
cache size for the OLTP trace and 32 MBytes for the Cello96
trace because its working set size is smaller than that of the
OLTP trace.

The two synthetic traces are generated based on storage
system workloads observed in previous studies [49], [7]. For
example, most workloads have an uneven distribution
among disks and also among blocks. To simulate these
characteristics, we use zipf distribution to distribute
requests among 24 different disks and also among blocks
in each disk. Moreover, as observed by previous studies
[49], requests to storage systems have poorer temporal
locality than those to first-level buffer caches and the reuse
distances are distributed in a “hill” shape or, theoretically
speaking, are log-normally distributed. Based on these
characteristics, we use a log normal distribution with mean
32,000 references to reflect temporal locality. Spatial locality is
controlled by the probabilities of sequential accesses, local
accesses, and random accesses. A sequential access starts at
the address immediately following the last address accessed
by the previously generated request. A spatially local request
begins some short distance (smaller than Maximum Local
Distance) away from the previous request’s starting address.

Similarly to [16], we consider two types of distributions
for interarrival time: Exponential and Pareto. Exponential
distribution models a Poisson process, which is almost
regular traffic without burstiness, while the Pareto distribu-
tion introduces burstiness in arrivals. The Pareto distribu-
tion is controlled by two parameters, Shape � and Scale �.
We use a Pareto distribution with a finite mean and infinite
variance. We call these two synthetic traces Exponential and
Pareto in the rest of this paper. The default parameters for
the trace generator are listed in Table 2.

6 EVALUATION OF POWER-AWARE CACHE

REPLACEMENT ALGORITHMS

6.1 Overall Results

We evaluate five cache replacement algorithms: OPG,
Belady, PA-LRU, PB-LRU, and LRU using the two real-

ZHU AND ZHOU: POWER-AWARE STORAGE CACHE MANAGEMENT 9

TABLE 1
Simulation Parameters

TABLE 2
Default Synthetic Trace Parameters

system traces and two synthetic traces. We have also
measured the disk energy consumption with an infinitely
large cache size, in which case, only cold misses go to disks.
This serves as a lower bound for the energy consumed as a
result of any cache replacement algorithm because no cache
replacement algorithm with a limited cache size can save
more energy if the underlying disks use the Oracle DPM.

With the Practical DPM, infinite storage cache size may
cause more energy consumption than limited cache sizes, so
it cannot serve as a theoretical lower bound. To give an
example, suppose the interarrival time between two
consecutive cold misses to the same disk is just slightly
larger than the idle threshold value. After the first cold
miss, the disk will transition into a low-power mode after
remaining idle for a threshold period of time. Then, it has to
immediately transit back to active in order to service the
second cold miss. So, it spends extra energy in disk spin-
down/spin-up. However, if a replacement algorithm can
introduce another miss in between these two cold misses, it
is possible to avoid the disk spin-down/spin-up.

Fig. 7 compares the disk energy consumption for all five
storage cache replacement algorithms and an infinite cache
with both Oracle DPM and Practical DPM. Fig. 8 shows the
average response time for the five storage cache replace-
ment algorithms with the Practical DPM. Since the Oracle
DPM can always spin up disks in time for the next request,
the average response time difference among the five
schemes is very small, which we do not present here.

Comparing two offline algorithms, though Belady’s
algorithm gives the optimal cache miss ratios, OPG can
consume up to 9.8 percent less energy than Belady’s
algorithm. With the Cello96 trace, OPG consumes 5.7 per-
cent less energy than Belady’s algorithm. For the OLTP
trace, OPG consumes 9.8 percent less energy than Belady’s
algorithm if disks use the Oracle scheme. With the Practical
DPM, OPG’s energy savings is smaller, only 1.4 percent. In
terms of average response time, OPG is 4.2 percent better
for OLTP, but 6.3 percent worse for Cello96. For two
synthetic traces, OPG can consume 5.3-9.3 percent less

energy than the Belady’s algorithm while providing 2.5-
3.5 percent better average response time.

For two online power-aware algorithms, Fig. 7 shows
they can save up to 22 percent more energy compared to
LRU. For the OLTP trace, PA-LRU consumes 14-16 percent
less and PB-LRU consumes 11-13 percent less energy than
LRU. For the Exponential trace, both PA-LRU and PB-LRU
can save 22 percent energy over LRU. PB-LRU performs
better than PA-LRU in other two traces: for the Pareto trace,
PB-LRU saves 16.6 percent more and PA-LRU saves
7.7 percent more energy than LRU; for the Cello96 trace,
PA-LRU saves less than 1 percent energy over LRU, while
PB-LRU is 7.6-7.7 percent more energy-efficient than LRU.

The reason why PA-LRU can only save less than
1 percent energy for Cello96 is because, in Cello96,
64 percent of accesses are cold misses. In other words,
64 percent of accesses will go to disk no matter what cache
replacement policy is used. In addition, the requests’
interarrival gap is very small, even for the cold miss
sequence, which does not allow PA-LRU to save much
energy. Even with the infinite-size cache, the largest
possible energy savings are only 12.4-12.6 percent. In this
sense, PB-LRU does a decent job.

In terms of average response time with Practical DPM,
Fig. 8 shows that PA-LRU and PB-LRU improve the average
response time by 62-64 percent for the Exponential trace, 40-
50 percent for the OLTP trace, and 7-13 percent for the
Pareto trace while, for Cello96, the improvements by both
are less than 1 percent. Again, the dominant cold misses in
Cello96 account for this.

6.2 Performance Analysis

In the next two subsections, we use the OLTP with Practical
DPM to understand why PA-LRU and PB-LRU can save
more energy and provide better response time.

6.2.1 Analyzing PA-LRU

Fig. 9a shows the percentage time breakdowns for two
representative disks. Each breakdown gives the percentage

10 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 5, MAY 2005

Fig. 7. Energy Consumption (normalized to LRU). (a) OLTP. (b) Cello96. (c) Exponential. (d) Pareto.

Fig. 8. Average Response Time (normalized to LRU). (a) OLTP and Cello96. (b) Synthetic traces.

of time consumed in each power mode and also during
spin-up/spin-downs. Disk 14 spends 59 percent of time in
standby mode with PA-LRU, whereas it spends only
16 percent of time in standby mode with LRU. Moreover,
PA-LRU significantly reduces time in performing spin-up/
downs from 25 percent to 13 percent. Even though PA-LRU
increases the percentage of time in active mode for other
disks, such as disk 4 from 78 percent to 84 percent, the
amount of increase is very small. PA-LRU also reduces the
time that disk 4 spends in spin-up/downs from 16 percent
to 6 percent. Also, because of the significantly fewer disk
spin-up/downs, PA-LRU has 50 percent lower average I/O
response time.

Fig. 9b shows the mean request interarrival time for the
same two representative disks (disk 4 and disk 14). The
mean request interarrival time shown is much larger than
the interarrival time in the original application I/O
sequence because requests are first filtered through a
128 MByte storage cache.

Since PA-LRU keeps blocks from disk 14 in the priority
LRU list, there are fewer accesses to disk 14. As a result, the
mean request interarrival time on disk 14 from a PA-LRU-
managed cache is three times as large as that from an LRU-
managed cache. With 40 second interarrival gaps, disk 14
has a lot of long idle periods to stay in low power modes
and, thus, saves significant amounts of energy.

To favor disk 14’s blocks, disk 4’s blocks aremore likely to
be evicted with PA-LRU than with LRU. Thus, the mean
request interarrival time on disk 4 with PA-LRU is a factor of
2.4 shorter than that with LRU, which explains why PA-LRU
causes disk 4 to stay in the active mode longer. Since the
original mean interarrival time with LRU is already smaller
than the threshold, disk 4 does not havemuch opportunity to
go to the low power modes. Thus, shortening the mean
interarrival time on disk 4 does not cause disk 4 to spend
significantly less time in low power modes.

6.2.2 Analyzing PB-LRU

Accuracy of Energy Estimation. Fig. 10a shows the
difference between energy actually consumed by real cache
and that estimated by PB-LRU for the same size, for each of
the 21 disks in a random epoch. We can see the largest
deviation of estimated energy from real energy is 1.8 per-
cent, suggesting that the energy estimation is accurate.

Assignment of Cache Sizes. Fig. 10b shows, in a random
epoch, the partition sizes which were assigned by the
MCKP solver. For the first 10 disks, the MCKP solver only
assigns 1MB to their caches while 11-12MB is given to the
next 10 disks. The OLTP workloads are such that the first
10 disks are active while the next 10 are relatively inactive.
The MCKP solver has a tendency to increase the size
assigned to relatively inactive disks and give only small
sizes to disks which remain active. This is because the
energy penalty incurred by reducing the cache size of a disk
that remains active is small, while large gains are made by
increasing the cache size of a relatively inactive disk, as
doing so allows it to remain in lower-power modes longer.
In this way, overall energy savings can be made.

Cache partition size also affects the response time. Since
the first 10disksare inactivemodes, accesses to thosedisksdo
not need towait several seconds for the disk to spin-upbefore
requests are serviced. Because of the greater partition space
given to the next 10 disks, the number of misses and,
consequently, the number of expensive spin-ups from low-
power to active mode, is reduced and, thus, response time
improves.

Effects of EpochLength.Onedrawback ofmanyprevious
studies [8], [16], [17], [6], including our PA-LRU, is that they
depend on multiple parameters. Tuning those parameters to
adapt to different characteristics of workloads is time-
consuming and hard. An important benefit of PB-LRU is that
it does not need much parameter tuning for different
workloads. The only parameter is the epoch length.

ZHU AND ZHOU: POWER-AWARE STORAGE CACHE MANAGEMENT 11

Fig. 9. (a) Percentage time breakdown and (b) mean request interarrival time for two representative disks in OLTP.

Fig. 10. Validation of PB-LRU in a random epoch for OLTP. (a) Real energy versus estimation. (b) Cache sizes assigned.

The epoch length cannot be too small or infinitely large.
Fortunately, our results indicate that, once it is large enough
to accommodate the “warm-up” period after repartitioning,
the results of PB-LRU are relatively insensitive to the epoch
length within a very large range, as shown in Fig. 11. The
results for the other traces are similar. In real systems, it is
not difficult to pick a large enough epoch length, especially
since most data center workloads are continuously running
for days or even months.

6.3 Effects of Spin-Up Cost

In our simulations, we use the spin-up cost of the IBM
Ultrastar 36Z15 (135J) from standby to active mode. In this
section, we discuss how spin-up cost affects the energy-
savings of PA-LRU and PB-LRU over LRU using the OLTP
trace. We vary spin-up costs as energy needed for
transitioning from standby to active mode. The spin-up
costs from other modes to active mode are still calculated
based on the linear power model described earlier.

Fig. 12 shows the percentage energy-savings for PA-LRU
and PB-LRU over LRU for the OLTP trace. Both algorithms
demonstrate the same effects. Between 67.5J and 270J, the
energy savings of PA-LRU and PB-LRU over LRU are fairly
stable. The spin-up costs of most current SCSI disks lie in this
range. At one extreme, with the increase of spin-up cost, the
break-even times increase. Therefore, the thresholds calcu-
lated based on the break-even times also increase. In this case,
due to the lack of long enough intervals, disks have fewer
opportunities to stay in low powermodes even using power-
aware algorithms such as PA-LRU and PB-LRU. At the other
extreme, if the spin-up cost decreases a lot and spin-up
becomes very cheap, the energy savings of PA-LRU and PB-

LRU decrease because, in this case, even with LRU, disks are
already in low-power modes most of the time.

Since both the energy and time cost of spin-down account
for only 1/10 of spin-up in the IBMUltrastar 36Z15, the effect
of considering both spin-up and spin-down cost is similar
to that of Fig. 12.

7 EFFECTS OF WRITE POLICIES ON DISK ENERGY

CONSUMPTION

In this section, we investigate the effects of four storage
cache write policies on energy consumption. The first two
policies, write-back and write-through, are commonly used
in caches. The write-back caching policy only writes a dirty
block to disks when the block is evicted from the cache. This
policy reduces the number of disk writes and enables fast
response to clients, but could compromise data persistency
if the cache is on volatile storage. The write-through caching
policy always writes dirty blocks to disk immediately and
does not tell clients that the writes are successful until the
data is committed to disks. The two other policies are
variations of the write-back and write-through policies.
“Write-back with eager update” (WBEU) does not wait for a
dirty block to be evicted from the cache before writing it to
the disk. The policy writes back dirty blocks of a disk
whenever that disk becomes active. “Write-through with
deferred update” (WTDU) temporarily writes dirty blocks
to a log instead of writing them to their true destinations if
the destination disks are in low power modes.

To evaluate the effects of write policies, we use the two
synthetic traces with varying write/read ratios. We use
LRU as the cache replacement algorithm in our simulation.

Write-Back (WB) versus Write-Through (WT). Intui-
tively,write-back ismore energy-efficient thanwrite-through
due to a reduced number ofwrites andpotentially longer idle
periods. However, few studies havemeasured the difference
in energy consumption quantitatively. Is the difference large
enough to justify trading persistency for energy?

Fig. 13a and Fig. 13d show the percentage energy savings
of write-back over write-through. Fig. 13a shows the results
for a mean interarrival time of 250ms and varying write
ratios from 0 percent to 100 percent. Fig. 13d shows the
results when the write ratio is 50 percent and the mean
interarrival time varies from 10ms to 10,000ms. The results
with Oracle DPM are similar to those with Practical DPM,
so we only present results with Practical DPM. For the
extremely small or large interarrival time, the differences
between write polices are small since disks are active or

12 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 5, MAY 2005

Fig. 11. The energy saving and average response time improvement (PB-LRU over LRU) for OLTP trace change with the increasing of epoch length.

(a) Energy consumption. (b) Average response time.

Fig. 12. Percentage energy-savings for PA-LRU and PB-LRU over LRU

versus spin-up cost (energy needed for transitioning from standby mode

to active mode) for the OLTP trace.

sleeping most of the time already. In a medium range, the
results exhibit the similar effects to those of 250ms. For
write ratio close to zero, write policies do not matter and,
thus, make no difference. However, the energy benefit over
write-through policy increases with write ratio. With
100 percent writes, write-back can save around 20 percent
energy compared to write-through. When fewer than
40 percent of the requests are writes, the percentage energy
savings of write-back over write-through is less than
5 percent. As shown in Fig. 13d, with a write ratio of 0.5,
the benefits of write-back peaks during 100ms to 1,000ms
mean interarrival time, but the benefits are always smaller
than 10 percent. The benefits of write-back over write-
through are slightly better in the traces with exponential
distributions than in the traces with Pareto distributions
because the latter has bursty requests, which can reduce the
number of disk spin-ups.

Write-Back with Eager Updates (WBEU). The energy
consumption with write-back can be further reduced by
eagerly flushing dirty blocks to disks when the correspond-
ing disks become active due to a read miss. In the extreme
case, if a disk D always stays in a low-power mode, the
storage cache will end up with a lot of D’s dirty blocks. To
avoid this scenario, if the number of such dirty blocks
reaches a certain threshold, D is forced to transition into
active mode and the storage cache flushes D’s dirty blocks.
This policy is similar to the ones used in [45], [37], [8]. The
advantage of this write policy is that writes avoid causing
energy-expensive disk spin-ups.

Fig. 13b and Fig. 13e show the percentage energy savings
ofWBEUoverwrite-through.WBEUcan significantly reduce
energy consumption. If 100 percent of the requests arewrites,
WBEU can save 60-65 percent more energy than write-
through. Therefore, when the percentage of writes is
significant in a workload, it is much more energy-efficient
to use WBEU if persistency is not a big concern.

For the traces with exponential distributions, WBEU is
more sensitive to the mean interarrival time. With a write
ratio of 0.5, if the mean interarrival time is large (10,000ms),
the benefits of WBEU are very small. This is because disks
are “sleeping” most of the time and requests only cause a
little energy consumption. If the mean interarrival time is
small (10ms), WBEU does not provide huge benefits either.
This is because disks are active most of the time due to fast
arriving read requests. Mean interarrival time has less effect
on WBEU’s benefits with Pareto traffic because disks have
longer idle periods and tend to stay in low power modes.

Write-Through with Deferred Update (WTDU). Since
write-through causes a lot of energy consumption, WTDU
defers updates using a persistent log to avoid spinning up a
disk in low power mode. This log can reside in any
persistent device such as NVRAM or a log disk that is likely
to be always active. In databases, log disks are usually
always active because databases rely on their performance
for fast transaction commits. With such a log, we can defer
energy-expensive updates in write-through.

To ensure persistency, we divide the log space into log
regions with one for each disk. The first block of a log
region keeps the timestamp for the corresponding disk. This
timestamp is also stored together with each block in the log
region. The storage cache also keeps a pointer for each disk
to remember the next free block in the corresponding log
region. When a write request arrives for an inactive disk D,
the blocks are first written to the corresponding log region
and each block is timestamped with D’s timestamp. The
cache copies of these blocks are marked as “logged.” When
D becomes active due to a read miss, all “logged” blocks are
flushed from the storage cache into D before servicing any
write requests. Then, the timestamp stored in the first block
of D’s log region is incremented by one. Finally, the
corresponding free block pointer is reset.

The timestamp is used to ensure consistent recovery
when the system crashes. After the system reboots, it first

ZHU AND ZHOU: POWER-AWARE STORAGE CACHE MANAGEMENT 13

Fig. 13. Effects of write policies on disk energy consumption. (All the numbers are percentage energy savings relative to the write-through policy. The

underlying disk uses the Practical DRM. Results with the Oracle DPM are similar.) Note that the X-asis is not uniform in (d)-(f). (a)-(c) Percentage

energy savings for different write ratios (interarrival time: 250 ms). (d)-(f) Percentage energy savings for different mean interarrival time (write ratio:

50 percent). (a) and (d) WB versus WT. (b) and (e) WBEU versus WT. (c) and (f) WTDU versus WT.

checks each log region to get the timestamps from its first
block. Suppose the timestamp for a region A is n. If the
timestamps of some blocks in the same region are also n, it
means some blocks may not have been written back to the
data disk. Thus, the recovery process will write all blocks
with the same timestamp back to the data disk. Otherwise,
all blocks are already written back and the recovery process
does not need to do anything for this log region and can
move on to the next log region.

Fig. 13c and Fig. 13f show the percentage energy savings
for WTDU over write-through. When we evaluate WTDU,
the extra energy consumption for writing to log regions is
included in WTDU’s results. If all accesses are writes,
WTDU can reduce the disk energy consumption by 55
percent compared to write-through, which indicates WTDU
is quite effective. Since this scheme can also provide
persistency, it is good for workloads which have a high
percentage of writes and require persistency semantics.

8 DISCUSSIONS

In this section, we discuss several issues, such as the effects
of disk layout, how to apply our scheme to the other
multispeed power modesl which service requests in low-
power modes, how to solve disk contention due to a small
subset of active disks, and interaction with CPU energy.

8.1 Effects of Disk Layout

In our simulation, we use the same disk layouts as indicated
in the trace documents. However, it is true that if all disks
belong to the same striping group, all disks would have
similar characteristics and both PA-LRU and PB-LRU
would behave similarly to LRU.

Fortunately, in reality, most data center workloads run
on configurations with multiple striping groups for two
reasons: 1) Scalability limitation: Due to the throughput
limitation of RAID controllers, most commercial storage
systems usually configure only 20-40 disks to each RAID
controller, but, internally, a storage system is connected to
many such RAID controllers. 2) Reliability concern: Since
the multiple-disk failure rate grows quickly with the
number of disks in a striping group, it is much more
reliable to use multiple smaller striping groups than one
large group. Therefore, most users of high-end storage
systems (e.g., EMC Symmetrix) are recommended to
configure the system with multiple striping groups, all of
which share the storage cache and the storage processors
inside the storage box.

Therefore, both PA-LRU and PB-LRU would be useful to
partition the storage cache in a way according to the
different characteristics of each striping group. As a matter
of fact, our OLTP trace was collected on a real system that
the DBMS (Microsoft SQL Server) creates the TPC-C
database on two striping groups (this is specified by the
TPC-C benchmark kit, which was provided by Microsoft).

Recently, Pinheiro and Bianchini have proposed PDC
(Popular Data Concentration) [40] to employ energy-aware
disk layout. PDC keeps track of file popularity and
periodically migrates most popular files to the first disk,
the second most popular files to the second disk, and so on.
By concentrating loads to a small set of disks, other disks
can stay in a low power mode longer. Our power-aware
cache algorithms can be combined with their disk layout to

further reduce disk energy consumption.

8.2 Effects of the Multispeed Power Model

The multispeed disk architecture proposed by Gurumurthi
et al. [16] can be designed to either serve requests at all
rotational speeds or serve requests only after a transition to
the full-speed mode. We choose the second option because
it is a simple extension to the traditional 2-mode power
model. Recently, Pinheiro and Bianchini [40] have used the
first power model in designing energy-efficient disk layout.
Therefore, it is interesting to consider using our power-
aware cache algorithm with multispeed disks that serves
requests at low speeds.

The ideas of both PA-LRU and PB-LRU can be directly
applied to this type of multispeed disk. For example, by
selectively keeping blocks from certain disks or assigning
large cache partition size to them, those disks can serve
requests at a lower speed due to lighter load and thus save
energy. However, to make things work, significant changes
are needed because of its different underlying disk power
management scheme. For example, currently, both PA-LRU
and PB-LRU use the length of idle periods as an important
energy implication. Moreover, these two algorithms count
spinup/spindown cost as a major part of energy penalty.
Therefore, the modified PA-LRU and PB-LRU need to keep
track of the load (IO/s) instead and use a different method
to calculate energy penalty since spinup/spindown is not a
big issue any more. We plan to investigate more in this
direction in our future work.

8.3 Disk Contention

Both PA-LRU and PB-LRU might incur disk contention
because lots of requests are concentrated to a small set of
active disks. As a result, those requests might have larger
response times due to queuing delay. We have developed a
new technique that guarantees that performance will not be
degraded beyond a user-specified limit [30]. It dynamically
monitors the performance degradation at runtime and
forces it to shut down the power management scheme
when the degradation exceeds the specified limit. When this
method is combined with power-aware cache management,
it may turn off the energy-optimizing features of our
algorithm, for example, by switching from PA-LRU to
traditional LRU or preventing PB-LRU from assigning small
cache partition size to a certain disk.

8.4 Impacts on CPU Energy

A smarter cache management policy such as PA-LRU and
PB-LRU might incur more processor cycles and, thus, more
CPU energy. However, disk drives in data centers consume
more energy than processors because of their high volume.
For example, in Dell PowerEdge6650 reporting TPC-C
performance [3], which is equipped with four Intel Xeon
2.0GH processors (58W each) and 292 15K RPM hard disks
(15W each), hard disks consume 19 times as much energy as
processors. Moreover, our cache management can be
handled by those relatively slow but low-power processors
inside the storage system.

9 RELATED WORK

Modeling Disk Power Consumption. Modeling disk
energy consumption is important to designing effective

14 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 5, MAY 2005

power management schemes. Greenawalt, for example,

uses a purely analytical model which assumes requests
arrive according to a Poisson distribution [15]. Helmbold

et al. model disk power consumption in terms of seconds of

activity instead of using joules [19]. A recent study
conducted by Zedlewski et al. [47] presented a disk

simulator called Dempsey which can accurately model

energy consumption of a single disk for mobile devices.
Power Management for Mobile Devices. Most of the

previous research has focused on power management for

single disks in mobile devices such as laptops. These studies

can be roughly divided into two categories. The first one
does not change the timing for a given request sequence,

but tries to dynamically adapt thresholds used to switch to

low power modes based on these workloads. Many
adaptive schemes have been proposed to vary thresholds

[14], [9], [27], [19]. Li et al. [29] and Irani et al. [23] calculate

the threshold analytically. A recent study [13] uses program
counter-based techniques to predict the length of upcoming

idle periods.
The second category investigates ways to reorganize idle

periods in I/O request sequences by delaying or prefetch-

ing requests. Weissel et al. proposed a scheme called
Cooperative I/O to allow applications to specify deferrable

or abortable I/O operations which provide more flexibility

for underlying disk power management [43]. Heath et al.
considered application transformation to increase idle

periods and inform the operating system about the length
of each upcoming idle period [18]. Papathanasiou and Scott

suggested delaying asynchronous requests when the disk is

at low-power mode and prefetching some requests when
the disk is at full power mode [37], [38].

Our study also tries to reorganize idle periods in I/O
request sequences, however, it differs from other studies in

two aspects. First, our work uses the storage cache to

reorganize idle periods and does not require any modifica-
tions to applications. Second, our work focuses on multiple

disks with data center workloads instead of a single disk

with interactive I/O workloads.
Power Management for Data Centers. Some recent

studies [8], [16], [17], [6], [40] have looked into energy
management for high-end storage systems. A number of

them [6], [16], [17] have shown that the average idle period

between requests in server workloads is small compared to
the spin-up and spin-down cost of server disks, which limits

the possible energy saving. Gurumurthi et al. have proposed

multispeed disks to address this problem [16]. Carrera et al.
have studied a combination of laptop disks and server disks

and also suggested the use ofmultispeeddisks to save energy
[6]. These works motivate our study on power-aware cache

management.However, these studies do not look at the effect

of storage cache on disk energy consumption.
Colarelli and Grunwald [8] proposed a disk backup

organization called MAID that uses a small number of disks
as “cache drives” to save energy by reducing the spin-ups

of data drives. However, they rely on the traditional LRU

algorithm to manage the cache disks. Our algorithm can be
directly used for cache disks to further reduce energy

consumption.

10 CONCLUSIONS

In this paper, we show that power-aware storage cache
management policies can help the underlying disk energy
management scheme save more energy and provide better
I/O response time. More specifically, we present an offline
energy-optimal cache replacement algorithm using dy-
namic programming which minimizes the underlying disk
energy consumption. Moreover, we present an offline
power-aware greedy algorithm that is more energy-efficient
than Belady’s offline algorithm. We also propose two online
power-aware cache replacement algorithms. Our simula-
tion results in both real system and synthetic workloads
show that, compared to LRU, our online algorithms can
save up to 22 percent more disk energy and provide up to
64 percent better average response time. Even though
PA-LRU and PB-LRU are based on LRU, these techniques
can also be applied to other replacement algorithms such as
ARC [34] or MQ [49]. We also evaluate the effects of
different cache write policies on disk energy consumption.

Our study has some limitations that remain as our future
work. First, since our study focuses on high-end storage
systems, our power-aware online algorithms are designed
for multiple disks only. We are still in the process of
designing power-aware online algorithms that work for a
single disk. Second, we are in the process of adding a disk
power model to our previously built V3 storage system [48]
to emulate disk spin up/spin down. This will allow us to
measure energy consumption in a real storage system.
Third, we plan to combine the performance-guaranteed
techniques with our power-aware cache management and
evaluate its effectiveness. Fourth, it is also interesting to
investigate how to modify our algorithm to work with a
multispeed disk which services requests at low speeds.

REFERENCES

[1] IBM Enterprise Storage Server, www.storage.ibm.com/hardsoft/
products/ess/ess.htm, IBM Corp., 1999,

[2] “Power, Heat, and Sledgehammer,”white paper, Maximum
Institution Inc., www.max-t.com/downloads/whitepapers/
SledgehammerPowerHeat20411.pdf, 2002.

[3] “Dell Poweredge 6650 Executive Summary,” http://
www.tpc.org/results/individual-results/Dell/dell-6650-010603-
es.pdf, 2003.

[4] L.A. Belady, “A Study Of Replacement Algorithms for a Virtual-
Storage Computer,” IBM Systems J., vol. 5, no. 2, pp. 78-101, 1966.

[5] B.H. Bloom, “Space/Time Trade-Offs in Hash Coding with
Allowable Errors,” Comm. ACM, vol. 13, no. 7, pp. 422-426, 1970.

[6] E.V. Carrera, E. Pinheiro, and R. Bianchini, “Conserving Disk
Energy in Network Servers,” Proc. 17th Ann. Int’l Conf. Super-
computing, pp. 86-97, 2003.

[7] Z. Chen, Y. Zhou, and K. Li, “Eviction-Based Cache Placement for
Storage Caches,” Proc. USENIX Technical Conf., June 2003.

[8] D. Colarelli and D. Grunwald, “Massive Arrays of Idle Disks for
Storage Archives,” Proc. 2002 ACM/IEEE Conf. Supercomputing,
pp. 1-11, 2002.

[9] F. Douglis, P. Krishnan, and B. Bershad, “Adaptive Disk Spin-
Down Policies for Mobile Computers,” Proc. Second USENIX
Symp. Mobile and Location-Independent Computing, 1995.

[10] EMC Corp., “Symmetrix 3000 and 5000 Enterprise Storage
Systems Product Description Guide,” 1999.

[11] L. Fan, P. Cao, J. Almeida, and A.Z. Broder, “Summary Cache: A
Scalable Wide-Area Web Cache Sharing Protocol,” IEEE/ACM
Trans. Networking, vol. 8, no. 3, pp. 281-293, 2000.

[12] G.R. Ganger, B.L. Worthington, and Y.N. Patt, “The DiskSim
Simulation Environment—Version 2.0 Reference Manual,”
citeseer.nj.nec.com/article/ganger99disksim.html, Dec. 1999.

[13] C. Gniady, Y.C. Hu, and Y.-H. Lu, “Program Counter Based
Techniques for Dynamic Power Management,” Proc. 10th Int’l
Symp. High Performance Computer Architecture, pp. 24-35, Feb. 2004.

ZHU AND ZHOU: POWER-AWARE STORAGE CACHE MANAGEMENT 15

[14] R.A. Golding, P. Bosch, C. Staelin, T. Sullivan, and J. Wilkes,
“Idleness Is Not Sloth,” Proc. USENIX Winter, 1995.

[15] P. Greenawalt, “Modeling Power Management for Hard Disks,”
Proc. Conf. Modeling, Analysis, and Simulation of Computer and
Telecomm. Systems, Jan. 1994.

[16] S. Gurumurthi, A. Sivasubramaniam, M. Kandemir, and H.
Franke, “DRPM: Dynamic Speed Control for Power Management
in Server Class Disks,” Proc. Int’l Symp. Computer Architecture,
pp. 169-179, June 2003.

[17] S. Gurumurthi, J. Zhang, A. Sivasubramaniam, M. Kandemir, H.
Franke, N. Vijaykrishnan, and M. Irwin, “Interplay of Energy and
Performance for Disk Arrays Running Transaction Processing
Workloads,” Proc. Int’l Symp. Performance Analysis of Systems and
Software, Mar. 2003.

[18] T. Heath, E. Pinheiro, J. Hom, U. Kremer, and R. Bianchini,
“Application Transformations for Energy and Performance-
Aware Device Management,” Proc. 11th Int’l Conf. Parallel
Architectures and Compilation Techniques, Sept. 2002.

[19] D.P. Helmbold, D.D.E. Long, T.L. Sconyers, and B. Sherrod,
“Adaptive Disk Spin-Down for Mobile Computers,” Mobile
Networks and Applications, vol. 5, no. 4, pp. 285-297, 2000.

[20] M.D. Hill, “Aspects of Cache Memory and Instruction Buffer
Performance,” PhD thesis, Univ. of California at Berkeley, 1987.

[21] M.D. Hill and A.J. Smith, “Evaluating Associativity in CPU
Caches,” IEEE Trans. Computers, vol. 38, no. 12, Dec. 1989.

[22] “IBM Hard Disk Drive—Ultrastar 36Z15,”http://www.hgst.com/
hdd/ultra/ul36z15.htm, Jan. 2003.

[23] S. Irani, S. Shukla, and R. Gupta, “Competitive Analysis of
Dynamic Power Management Strategies for Systems with Multi-
ple Power Saving States,” technical report, UCI-ICS, Sept. 2001.

[24] S. Jiang and X. Zhang, “LIRS: An Efficient Low Inter-Reference
Recency Set Replacement Policy to Improve Buffer Cache
Performance,” Proc. Int’l Conf. Measurement and Modeling of
Computer Systems (SIGMETRICS), pp. 31-42, 2002.

[25] T. Johnson and D. Shasha, “2Q: A Low Overhead High
Performance Buffer Management Replacement Algorithm,” Proc.
20th Int’l Conf. Very Large Databases, pp. 439-450, 1994.

[26] J. Kim, J. Choi, J. Kim, S. Noh, S. Min, Y. Cho, and C. Kim, “A
Low-Overhead High-Performance Unified Buffer Management
Scheme that Exploits Sequential and Looping References,” Proc.
Fourth Symp. Operating System Design and Implementation, 2000.

[27] P. Krishnan, P.M. Long, and J.S. Vitter, “Adaptive Disk Spindown
via Optimal Rent-to-Buy in Probabilistic Environments,” Proc.
12th Int’l Conf. Machine Learning, 1995.

[28] S.T. Leutenegger and D. Dias, “A Modeling Study of the TPC-C
Benchmark,” SIGMOD Record, vol. 22, no. 2, pp. 22-31, June 1993.

[29] K. Li, R. Kumpf, P. Horton, and T.E. Anderson, “A Quantitative
Analysis of Disk Drive Power Management in Portable Compu-
ters,” Proc. USENIX Winter, pp. 279-291, 1994.

[30] X. Li, Z. Li, F. David, P. Zhou, Y. Zhou, S. Adve, and S. Kumar,
“Performance-Directed Energy Management for Main Memory
and Disks,” Proc. 11th Int’l Conf. Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’04), Oct.
2004.

[31] Y.-H. Lu and G.D. Micheli, “Comparing System-Level Power
Management Policies,” IEEE Design and Test of Computers, vol. 18,
no. 2, pp. 10-19, Mar. 2001.

[32] S. Martello and P. Toth, Knapsack Problems: Algorithms and
Computer Implementations. J. Wiley, Ltd., 1990.

[33] R.L. Mattson, J. Gecsei, D. Slutz, and I.L. Traiger, “Evaluation
Techniques for Storage Hierarchies,” IBM Systems J., vol. 9, no. 2,
pp. 78-117, 1970.

[34] N. Megiddo and D.S. Modha, “ARC: A Self-Tuning, Low
Overhead Replacement Cache,” Proc. Second USENIX Conf. File
and Storage Technologies (FAST ’03), 2003.

[35] B. Moore, “Taking the Data Center Power and Cooling Chal-
lenge,” Energy User News, 27 Aug. 2002.

[36] F. Moore, “More Power Needed,” Energy User News, 25 Nov. 2002.
[37] A.E. Papathanasiou and M.L. Scott, “Increasing Disk Burstiness

for Energy Efficiency,” technical report, Univ. of Rochester, Nov.
2002.

[38] A.E. Papathanasiou and M.L. Scott, “Energy Efficient Prefetching
and Caching,” Proc. USENIX ’04 Ann. Technical Conf., June 2004.

[39] R.H. Patterson, G.A. Gibson, E. Ginting, D. Stodolsky, and J.
Zelenka, “Informed Prefetching and Caching,” Proc. 15th ACM
Symp. Operating Systems Principles, 1995.

[40] E. Pinheiro and R. Bianchini, “Energy Conservation Techniques
for Disk Array-Based Servers,” Proc. 18th Int’l Conf. Supercomput-
ing, June 2004.

[41] C. Ruemmler and J. Wilkes, “UNIX Disk Access Patterns,” Proc.
Winter 1993 USENIX Conf., 1993.

[42] W.-H. Wang and J.-L. Baer, “Efficient Trace-Driven Simulation
Method for Cache Performance Analysis,” Proc. 1990 ACM
SIGMETRICS Conf. Measurement and Modeling of Computer Systems,
pp. 27-36, 199.0

[43] A. Weissel, B. Beutel, and F. Bellosa, “Cooperative I/O: A Novel
I/O Semantics for Energy-Aware Applications,” Proc. Fifth Symp.
Operating Systems Design and Implementation (OSDI ’02), pp. 117-
129, Aug. 2002.

[44] T. Wong and J. Wilkes, “My Cache or Yours? Making Storage
More Exclusive,” Proc. Usenix Technical Conf., 2002.

[45] R. Youssef, “RAID for Mobile Computers,” master’s thesis,
Carnegie Mellon Univ., 1995.

[46] W. Yuan and K. Nahrstedt, “Energy-Efficient Soft Real-Time CPU
Scheduling for Mobile Multimedia Systems,” Proc. 19th ACM
Symp. Operating Systems Principles, pp. 149-163, 2003.

[47] J. Zedlewski, S. Sobti, N. Garg, F. Zheng, A. Krishnamurthy, and
R. Wang, “Modeling Hard-Disk Power Consumption,” Proc.
Second Conf. File and Storage Technologies (FAST ’03), pp. 217-230,
Mar. 2003.

[48] Y. Zhou, A. Bilas, S. Jagannathan, C. Dubnicki, J.F. Philbin, and K.
Li, “Experiences with VI Communication For Database Storage,”
Proc. Int’l Symp. Computer Architecture (ISCA ’02), May 2002.

[49] Y. Zhou, J.F. Philbin, and K. Li, “The Multi-Queue Replacement
Algorithm for Second Level Buffer Caches,” Proc. Usenix Technical
Conf., June 2001.

[50] Q. Zhu, F.M. David, C.F. Devaraj, Z. Li, Y. Zhou, and P. Cao,
“Reducing Energy Consumption of Disk Storage Using Power-
Aware Cache Management,” Proc. 10th Int’l Symp. High Perfor-
mance Computer Architecture (HPCA-10), Mar. 2004.

[51] Q. Zhu, A. Shankar, and Y. Zhou, “PB-LRU: A Self-Tuning Power
Aware Storage Cache Replacement Algorithm for Conserving
Disk Energy,” Proc. 18th Int’l Conf. Supercomputing, June 2004.

Qingbo Zhu received the BS and MS degrees
from Nanjing University, China, in 1999 and
2002, respectively. He is currently a PhD
candidate in the Department of Computer
Science, University of Illinois at Urbana-Cham-
paign (UIUC). His main research interests
include operating systems, database systems,
file and storage systems, and power-aware
storage systems.

Yuanyuan Zhou received the PhD and MA
degrees from Princeton University. She is
currently an assistant professor in the Depart-
ment of Computer Science, University of Illinois
at Urbana-Champaign (UIUC). Prior to UIUC,
she worked at NEC Research Institute as a
scientist from 2000 to 2002. Her main research
interests include database storage, architecture
and OS support for software debugging, power
management, and memory management.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

16 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 5, MAY 2005

