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Abstract: This paper presents a new path-tracking scheme for a car-like mobile robot based on neural 

predictive control. A multi-layer back-propagation neural network is employed to model non-linear 

kinematics of the robot instead of a linear regression estimator in order to adapt the robot to a large 

operating range. The neural predictive control for path tracking is a model-based predictive control 

based on neural network modelling, which can generate its output in term of the robot kinematics and a 

desired path. The desired path for the robot is produced by a polar polynomial with a simple closed 

form. The multi-layer back-propagation neural network is constructed by a wavelet orthogonal 

decomposition to form a wavelet neural network that can overcome the problem caused by the local 

minima when training the neural network. The wavelet neural network has the advantage of using an 

explicit way to determine the number of the hidden nodes and initial value of weights. Simulation 

results for the modelling and control are provided to justify the proposed scheme. 
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1. INTRODUCTION 

Car-like mobile robots are mainly used in industry, ports, planet exploration, nuclear waste cleanup, 

agriculture and mining since they have the necessary loading capability. The control scheme for such 

mobile robots is traditionally decomposed into three subtasks: trajectory generation, position estimation 

and path tracking. Although behaviour-based approaches have been very popular since Brooks' 

invention in 1980s[2], their sole implementation on these mobile robots for many complex applications 

causes some difficulty. Instead, a behaviour-based approach can be incorporated with a traditional 

planning-based system to form a hybrid system to deal with unexpected situations [1].   

     The aim of trajectory generation is to generate a feasible path that allows the robots to move 

smoothly. A path consisting of straight lines and circular arc segments is easy to generate, but may not 

be suitable for a car-like mobile robot which has the non-holonomic constraint and its steering angles at 

the line-arc transition points have discontinuous curvature. Although a Clothoid's trajectory [10] can 

provide smooth transitions with a continuous curvature, its disadvantage is lack of the closed-form 

expression. Nelson proposed a continuous-curvature polar polynomial for path generation [14], which 

has a closed form expression and is easy to calculate. Pinchard improved Nelson's polar polynomial 

with variable speeds, leading to a fifth-order polynomial for a continuous-curvature path [16]. 

      Position estimation plays a key role in path tracking. Many approaches have been proposed in terms 

of the different sensors on robots. Odometry is simple, inexpensive, and easy to implement in real time, 

but suffers from the unbounded accumulation of errors. The triangulation approach is appropriate for 

initialising position, but is too sensitive to angle measurements when robots move around. Grid-based 

position [12] is a successful method in dealing with sensory uncertainty, but is not suitable for model-

based predictive control due to the time it takes. A Kalman filter is a feasible estimation approach that 

can fuse multiple sensory measurements to provide relatively accurate results.  

     Path tracking for a car-like robot is in fact a feedback control problem to which model-based 

predictive control (MPC) has been an effective mechanism [4][19]. Most MPC control applications are 

based on linear models of dynamic systems to predict outputs over a certain horizon. Future sequences 
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of control signals are evaluated by minimising a cost index that takes account of the future output 

prediction errors over a reference trajectory, as well as control efforts. However, when the systems are 

non-linear and are operated over a large dynamic range, the use of linear models becomes impractical, 

and the identification of non-linear models for control becomes absolutely necessary. 

     A Neural network is an attractive tool to model complex non-linear systems due to its inherent ability 

to approximate arbitrary continuous functions. Conclusive proofs were given that feed-forward neural 

networks with one hidden layer are capable of approximating any continuous function on a compact set 

in a very precise and satisfactory sense [8]. Some researchers have successful applied feed-forward 

neural networks as system models to MPC, namely neural predictive control (NPC). For example, NPC 

has been used in manipulator control [3][5][20][21], chemical process control [17][24], mobile robot 

path tracking [18][28], and other applications [11][23]. In these research works, the control schemes of 

NPC were changed into non-linear optimisation problems. The optimisation constraints were the system 

dynamics represented by neural networks. The main drawbacks are undesirable local minima and slow 

convergence of back-propagation learning. Moreover, the implementation of multiple feed-forward 

neural networks suffers from the lack of efficient constructive approaches, both for determining 

parameters of neurones and for choosing network structures. Other algorithms such as random search 

techniques and genetic algorithms have been adopted to overcome the local minima caused by gradient 

descent rules [11][18]. However, the computational cost of these algorithms will degrade the 

performance of real-time control systems. 

     Recently, wavelet decomposition emerged as a new powerful tool for function approximation in a 

manner that readily reveals properties of the arbitrary L
2
 function (energy-finite and continuous or 

discontinuous). Combining wavelets and neural networks can result in wavelet neural networks with 

efficient constructive approaches [15][25]. Because wavelet neural networks can approximate arbitrary 

functions belonging to L
2
 space, they have results in a wide variety of application areas, like speech 

recognition [22] and digital communication [6]. They were also applied in robot applications where 

robot kinematics is a continuous function and operates in a bounded range [20]. The wavelet neural 

networks can further result in a convex cost index to which simple iterative solutions such as gradient 

descent rules are justifiable and are not in danger of being trapped in local minima when choosing the 

orthogonal wavelets as the activation functions of nodes in neural networks [25].  

 Figure 1 A car-like mobile robot  

     The rest of this paper is organised as follows. A car-like mobile robot being modelled in this research 

is outlined in section 2, including a brief explanation of robot kinematics, trajectory generation based on 

a polar polynomial, and position estimation by a Kalman filter. Section 3 investigates the wavelet neural 

network modelling of robot kinematics. Neural predictive control for path tracking is described in 
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section 4. The simulation results for the proposed control scheme are given in section 5, including 

modelling results and control results. Finally, section 6 presents a brief conclusion and future work. 

2. A CAR-LIKE MOBILE ROBOT 

The robot considered in this research is a car-like mobile robot with four pneumatic tyre wheels. Two 

front wheels serve for steering and two rear wheels serve for tracking, as shown in figure 1.  

     The robot has a modular structure such that it can be readily extended and easily configured to allow 

the use of a range of sensor modules or actuator modules. Two 500 count/revolution rotary encoders are 

fixed onto two motor shafts for position servo control by a PID controller. Another two 500 

count/revolution rotary encoders have been connected to the rear axes near the rear wheels using 3:1 

ratio pulley and belts. The reason we use these two extra encoders is to compensate for the position 

errors caused by inaccuracy of the steering angle. The robot has a weight of 100 Kg and a maximum 

speed of 1 m/s. Sensors include optical encoders, a sonar array, a laser scanner, an infra-red proximity, 

and a stereo head [7]. 

2.1 Robot kinematics 

Assume that the midpoint of the rear axis of the mobile robot is a reference point (R as shown in figure 

1) in the global frame XOY. A state vector x(k) =[x(k), y(k), (k)]
T
 is used to represent the position (x, y) 

and the orientation ( ) of the robot. Its discrete kinematics equation can be described as follows: 
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where Tkαkvk )](),([)( u is the control vector for motion tracking, t is the sample period and H is the 

wheelbase between front and rear axes. The two control variables are the speed of robot ( )(kv ) and the 

steer angle ( )(kα ).  

     Such a non-linear system is open loop controllable, which can be linearised in order to use traditional 

linear feedback control to regulate the robot. But if the robot operates over a large range in its state 

space, especially when the robot turns around corners, the linearisation of the kinematics will lead to the 

loss of controllability. Since the MPC’s models are based on linear regressions, they are not suitable to 

non-linear robotic systems. Furthermore, the kinematics is difficult to model precisely because there 

exist many physical sources of uncertainty, for example backlash, friction, load, and pneumatic tyres. 

Adaptive control should be employed to deal with the uncertainty. 

2.2 Position estimation 

Two kinds of sensors are used to estimate the robot state in this research. The optical encoders mounted 

on two rear wheels are used for odometry calculation. The problems for odometry are (i) surface 

roughness and undulation may cause the distance to be over-estimated. (ii) wheel slippage can cause 

distance to be under-estimated. (iii) variations in load can distort the odometry wheels and introduce 

additional errors. Because odometry leads to unbounded accumulation of the errors, it is clear that 

absolute position estimation would be necessary. Another kind of sensors is the laser scanner on the 

robot interacting with artificial beacons mounted around the operating space, which can be used for the 

absolute position estimation. A priori information about the beacons can be viewed as a form of world 

model. With this model, the state of the robot is determined by integrating odometry with the bearing of 

the beacons measured by the laser scanner. To do this, an Extended Kalman Filter (EKF) is used to 

estimate the state based on information from the odometry and the laser scanner under the assumption 

that the errors of measurement follow a Gaussian distribution [7]. 
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2.3 Path Generation 

A path consisting of straight lines and circular arc segments is easy to generate, but may not be suitable 

for a car-like mobile robot which has non-holonomic constraints and its steering angles at the line-arc 

transition points can generate discontinuities of the trajectory curvatures. A Clothoid's trajectory [10] 

provides smooth transitions with a continuous curvature. Its disadvantage is lack of closed-form position 

expression. Nelson proposed a continuous-curvature polar polynomial for path generation [14], which is 

a closed form expression and easy to calculate.  

     Pinchard [16] improved the Nelson's polar polynomial with variable speeds, leading to a fifth-order 

polynomial for a continuous-curvature path, which is used here for trajectory generation. The position, 

tangent and curvature constraints yield a fifth-order polynomial for a continuous-curvature path. Its 

general form is: 
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where r is the polar radius and  the polar angle shown in figure 2. The initial and final conditions of the 

transition between paths are: 

r=R1, r'=0, c=0,   at  = 0 

r=R2, r'=0, c=0,  at  =  

where c is curvature.   is the angle the robot will turn. R1 and R2 are the initial and final radii. v1 and v2 

are the initial and final velocities. With these conditions, the coefficients of a general polar polynomial 

can be given as follows: 

5

2
2

2
121

5

4

2
2

2
121

4

3

2
2

2
121

3

12110

2

1212

2

233030

2

32020

2/,0,


















RRRR
a

RRRR
a

RRRR
a

RaaRa

                                                     (3) 

r





v1

v2

R1

R2

X

Y

O

(x1, y1)

(x2, y2)

 
Figure 2 Path generation 

2.4 NPC Path tracking scheme 

To control a robot to track a path, the desired path and the measured path are two basic information 

sources used for a controller. The trajectory generation module shown in figure 3 produced a desired 

path represented by a set of states xr(k)=[xr(k), yr(k), r(k)]
T
. The controller, either MPC controller or 

PID controller shown in figure 3, yields the control vector u(k) =[v(k), (k)]
 T

. The motor movement 

leads to position changes that are estimated by an EKF, based on the sensory information. The current 
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state of the robot obtained from the position estimation module is estimated as xm(k)=[xm(k), ym(k), 

m(k)]
T
. PID control is a simple and feasible choice. It uses the state errors (xr(k)- xm(k)) as feedback 

signals, which are further decomposed into tangential and normal errors. The dash line loop, which is in 

parallel with a MPC controller in figure 3, shows the PID control scheme. More details for the PID 

control scheme in path tracking can be found in our previous paper [7]. 

     MPC is based on an assumed model of the robot kinematics and on an assumed scenario for the 

future control signals. The solid line parts in figure 3 show the MPC control scheme. With the desired 

trajectory and measured path mentioned above, it could produce a sequence of control signals. Only the 

first one is applied to the robot. Due to the reasons in modelling kinematics discussed in subsection 2.1, 

a neural network is employed to model the kinematics expressed in (1). It uses the measurement states 

xm(k) and control variables u(k) to produce an adaptive kinematics model that provides a substrate for 

the MPC controller. Section 4 will present the details about the algorithm. 

     The neural network used to model the kinematics is trained according to u(k) and xm(k). Initially, the 

PID controller controls the robot to track the path in order to produce the training data for neural 

network learning. During the training stage, the MPC controller is replaced with the PID controller 

shown as a dash line in figure 3. Once the neural network has been trained, it can be used for the MPC 

controller and will be adapted during the path tracking process.   

Trajectory
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Position
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Neural
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Controller

 
Figure 3 NPC for path tracking 

3. MODELLING ROBOT KINEMATICS 

Due to the similarity between wavelet decomposition and hidden layers in neural networks, wavelet 

neural networks were proposed by combining wavelet and neural networks in [25]. These wavelet 

neural networks can remedy the weakness of a large dimension of wavelet decomposition and the 

constructive problem of neural networks. In this section, the way to model the robot kinematics by using 

wavelet neural networks is proposed.  

3.1 Wavelet neural network 

In multi-resolution signal analysis, a square integral function f(t) in L
2
 space can be decomposed into a 

summation of a series of weighted wavelet components[25]: 
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where )2(2)( 2/
, ntt mm
nm    is the orthogonal wavelet function. The weight in each wavelet 

component is nmf ,,  that denotes the inner product of function f(t) and wavelet nm, . The formula 

(4) can be rewritten in the following form according to the wavelet theory: 
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where )(, tnM  is called scaling function. Most of the physical functions used in engineering have 

bounded energy and can be regarded as square integral functions. Therefore they can be decomposed 

into an expression as shown in (5).  

     What is more important for the function decomposition is that for a sufficiently large M, any square 

integral function f(t) can be approximated arbitrarily closely by the first term of (5)[25]. That is for any 

0  
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     It shows that the function approximation for f(t) in (5) can be expressed by the truncated wavelet 

decomposition as: 
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     It means that some fine components (high frequency) that can be represented by a series of the 

wavelet functions for the function f(t) are neglected and some coarse components (low frequency) that 

can be represented by a series of the scaling function are preserved to approximate the originate 

function under the M scale. 

     How to choose a wavelet function is very important in wavelet decomposition. Most orthogonal 

wavelets lack the finite support set that can guarantee good time resolution. Daubechies’ wavelets 

possess the finite support set, but are not sufficiently smooth to guarantee good frequency resolution. 

Lemarie-Meyer’s wavelets are orthogonal and posses good frequency and time resolution, but there is 

no simple closed form expression required by the real-time applications in this paper. Walter and Zhang 

in [27] found that two classes of wavelets can be represented by the simple closed form expressions and 

are orthogonal, which can be seen as the particular examples of Lemarie-Meyer’s wavelets. We choose 

one of them as the function approximation base in this paper. Its scaling function expression is 
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          Figure 4 shows its scaling function and its wavelet where =1/4. 

 
(a) Scaling function                         (b) Wavelet function 

Figure 4 Orthogonal wavelet 
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     The function approximation expression (6) has a similar structure with a 3-layer neural network as 

shown in figure 5. The number of hidden nodes is decided by wavelet translation n that depends on the 

support set of f(t). Here we can assume a positive integer N to form a range [-N, N] that can cover the 

support set of f(t). For a multiple dimension case, the scaling functions or wavelets are generated by 

tensor products of one-dimensional scaling functions or wavelets. 
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Figure 5 The wavelet neural network where nMn fC ,,  

3.2 Neural network modelling 

We use a one-step-ahead predictive model to describe the robot kinematics (1).  Thus, formula (1) can 

be rewritten as: 

x(k+1)=F(z(k))                                                                       (7) 

where z(k)=[v(k), (k), xm(k), ym(k), m(k)]
T
 and x(k)=[x(k), y(k), (k)]

T
. This predictive model can be 

represented by a wavelet neural network as shown in figure 6, where the input vector z(k) with its size 

p=5 consists of the control vector and the estimated state, and the output vector x(k) with its size q=3 is 

the predicted state. The activation function d(t) in the hidden layer is a multidimensional scaling 

function that is the tensor product of one-dimensional scaling functions. Other network parameters are: 

 the number of the hidden nodes r=2N+1; 

 the weight matrix from input to hidden layer is W1; 

 the weight matrix from input to hidden layer is W2. 
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Figure 6 Wavelet neural network for robot kinematics 
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     Based on wavelet neural networks, the robot kinematics can be represented by: 

 

x(k+1)= W2( W1z(k))                                                                (8) 

where =[d,…, d]
T
. The weight matrix W1 is invariable during the training cycle and expressed as 

follows in terms of the wavelet decomposition. 
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     Initial values of weight matrix W2 can also be generated by the wavelet decomposition: 
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     It can be further updated by a steepest-gradient-decent algorithm. 

W2(k+1)= W2(k)- e
T
                                                                  (11) 

 

where e =[xm(k)-x(k)] is the error between the estimated state from EKF and the predicted state from the 

wavelet neural network, and  is the update rate.  

4. PREDICTIVE CONTROL SCHEME  

A predictive controller is proposed here, based on the prediction model that predicts the future values of 

the robot state. The prediction model is constructed by the wavelet neural network shown in figure 6. 

The errors between predicted states and state estimates, combining with the control variations, are used 

to form a quadratic index. The process of minimising the quadratic index is to find an optimal control 

vector. At each control cycle during the path tracking, the wavelet neural network is first adapted based 

on the estimated state, and then optimisation control is executed. 

4.1 MPC formation 

The outputs of the neural network (8) presented in the previous section can be rewritten in the state 

space form as follows: 
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     The MPC controller is to optimise a cost index J(x(k), u(k)) under the constraints of formula (12): 
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     The current control vector is chosen to minimise the state errors and control energy over several 

steps in the future so that the path tracking of the robot is smooth and stable. Therefore, the cost index 

can be expressed as 
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where (i) is a weighting matrix (2 by 2 positive definite symmetric), penalising the control effort. This 

cost index reflects the desire to drive the next robot state x (k) close enough to the desired state xr(k) 

generated by the fifth order polynomial introduced in section 2.3 without excessive expenditure of 

control effort. The cost index is conditioned on data up to control cycle k, assuming no future 

measurements are available. At each control cycle, an optimal control sequence is calculated, but only 

the first one is applied to the robot. This process will be repeated at the next control cycle to form a 

receding horizon optimisation procedure. 

     The notations used for equation (13) are 

 N1 and N2 are the minimum and maximum output horizons respectively; 

 N is called the control horizon; 

 u(k) is a set of control increments,   u(k) =u(k) -u(k-1) and u(k+i)=0, if i>N-1; 

 d is the dead-time of the system. 

     In general, N2 is chosen to encompass all the responses that are significantly affected by the current 

control. In practice, it is more typically set to approximate rise-time of the system. N1 is selected 

according to dead time of the robot system, and is often taken as 1. 

4.2 Optimisation algorithm 

In each control cycle k, we need to compute a control increment matrix U(k) (U(k)=[u(k), …, 

u(k+N -1) ]
T
 that has K vectors and choose the first one as the actual control increments for outputs of 

the controller. For the non-linear system presented in (12), there are no analytic expressions available. 

We have to implement the non-linear optimal algorithm to find an optimal solution of a control vector 

during the interval k and k+1 on the fly. It should be noticed that the constraints on the cost index (13) 

are a convex expression shown in (8) due to the wavelet orthogonal decomposition. Therefore, these K 

control increments can be calculated recursively from the steepest gradient decent algorithm during the 

interval between k and k+1 without a local minimum. 

     Let j be the iteration step for the optimisation (j=0, …, T) at the kth control cycle. T is the number of 

the discrete times and decided by the optimal terminal conditions. Figure 7 shows the calculating cycle 

relationship during the control and optimisation process where k is the current control cycle and the 

total number of control cycles in the path tracking is S. In our tracking case, we choose: 

N1 =1, N2 =L, d=1, N =K 

0 k k+1 k+K-1 S-1

time

cyclej j+1 T-1

k+L-1

optimisation horizon

control horizon

output horizon
 

Figure 7 Time step for the predictive control 

     The control increment U(k) can be obtained based on the cost index (13) according to the gradient 

descent algorithm. Assume that  is the optimising rate. We have: 
jj JUU                                                                          (14) 

     The cost index change j
J U  is caused by the control increment U(k) and the state change j

UX . It 

can be represented in (15) by differentiating (13),  
jjjj

J UΓEXUU                                             (15) 
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where the state change j
UX  is also caused by control increment U(k). The state-changing gain and 

control-changing gain are j
E  and Γ  respectively. They can be expressed as:
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     Substituting (15) into (14), control increments during one control cycle can be expressed as: 

jjj I EXΓU U 1)(                                                          (16) 

     At each optimisation step j, the predicted states x
j
(k+i1) (i1=1, ..., L) are produced by the neural 

network based on the control vector u
j-1

(k+i2) (i2=0, ..., K-1). For the first optimisation step j=1, 

u
0
(k+i2) is initialised as u

T
(k-1+i2) (the control vector at the last control cycle). After T iterations, an 

optimal control increment U
*
(k) at the kth control cycle is produced. The main computation during this 

optimising procedure is the matrix calculation 
)(
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lk

ik





u

x
 (i=1, …, L; l=0, …, T-1). With reference to the 

neural network model (8), one of the matrix elements is presented as:  
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     The optimal control vector can be obtained by choosing the first vector in U
*
(k): 

u
*
(k)=u

*
(k-1)+[1, 0, …, 0]U

*
(k)                                                     (18) 

 

5. SIMULATION RESULTS 
1
 

A simulator based on the robot kinematics (1) is developed to validate the proposed approaches. The 

Gaussian noise with zero mean value is added to the robot state to simulate the estimated state xm(k). 

As the first stage, we need to collect data of the robot kinematics to train the wavelet neural network. 

This can be done by employing a PID controller to track the path (see figure 3). Previously a PID 

control scheme has been used for the real robot in [7] where we estimated the position by an EKF and 

used the same trajectory generation. With the tedious trials, PID can track the path. However, this 

process has to be repeated when the robot travels on different road surface, or even on the same road at 

                                                           
1
 One important aspect in modelling is that the system has to be excited enough (the control signal has to be 

persistently exciting). However, the training data is generated based on the PID controller without any additional 
excitation noise. Because there is no drift term in the kinematics model (1), the lack of excitation is not a problem. 
This only holds if a model similar to (1) represents the dynamics of the true robot. The motivation to model the robot 
and not use  (1) is to make the controller adaptable in case of changes in the system, such as increasing the load 
of the robot. This will lead to an increase in inertia resulting in lower accelerations and decelerations. These effects 
cannot be modelled in the kinematics model (which only deals with the speed). The modelling may try to 
incorporate this in the model by introducing a drift term (which is possible according to the general kinematics 
model in (7)). Without excitation noise, the model obtained along the PID trajectory may not be valid along the 
generated path, because the model does not have to generalise over a "larger" part of the state space. 
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different times for reasons of load change or tyre inflation. This is the main reason why we investigate 

adaptive control for path tracking. 

     Once the training data is collected, formula (11) is used to train the wavelet neural network until a 

certain number of the training trials, or the errors between the network output and the simulated position 

estimation are less than given thresholds. An initial kinematics is built up, which can be used for the 

NPC control scheme. In the NPC control process, the PID controller is replaced with the NPC 

controller. The control vector (18) output from the NPC controller is calculated at each control cycle, 

while on-line training of the network and the optimisation of the cost index are executed within the 

current control interval (see figure 7). 

5.1 Wavelets 

The scaling function is shown in figure 4. The dilation and translation of the scaling function M,n(t)= 

2
M(2

 M
 t-n)  are centred in n/2

 M
. We transform the input and output ranges of the network into [-1/2, 

1/2]. So, the number of hidden nodes can be determined roughly as (2
 M

+1)
 p

 and p is the number of 

inputs to the hidden nodes. For different outputs, p is selected according to the relationship between 

inputs and outputs described by the kinematics (1). To choose a proper M, a trial and error approach is 

used as follows [25]: 

Step 1: Start from a small M. 

Step 2: Computed the mean square error (MSE). 

Step 3: Increase M by 1 and repeat from Step 1 if MSE is bigger than a threshold. 
     

     The sparse data in our path tracking case can further decrease the support range N of the network 

inputs, e.g. the steer angle is changed in a smaller region. 

 

5.2 Modelling Validation 

We implemented three path-tracking courses to collect the training data: straight line, turn right, and 

turn left. 65 hidden nodes were used to cover the range of the robot state. Only the weights in an output 

layer need to train (see figure 5). A path starting from (19000mm, 12600mm, 0rad) to (23000mm, 

14600mm, /2rad) is used to validate the model of the kinematics. The results are shown in figure 8, 

where the unit of x, y, and x error is mm and of   is radians. The number on the horizontal axis is 

motion steps. 

19000

21000

23000

25000

1 41 81 121 161 201
 

(a) A plot of x 
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(b) A plot of y 
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(c) A plot of  
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(d) A plot of x error 

Figure 8 Neural modelling: (a) x, (b)  , (c) y, and (d) x error.  

 

     This desired path was produced by the trajectory generation part shown in figure 3, which consists of 

two parts: a straight line starting from (19000mm, 12600mm, 0rad) to (21000mm, 12600mm, 0rad) and 

a left turning starting from (21000mm, 12600mm, 0rad) to (23000mm, 14600mm, /2rad). The solid 

lines shown in the figure 8 (a)(b)(c) are the results of PID controller, which start to turn left around 

point (21400mm, 12600mm, 0rad) rather than (21000mm, 12600mm, 0rad) as desired since the PID 

controller is not a perfect controller. It did not affect our simulation results since the collected data is 

only used to train the wavelet neural network to model the kinematics. The dash lines in the figure 8 

(a)(b)(c) are the modelling results of the wavelet neural network. The data shows that the results of the 
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modelling can approximate to the dash lines. The approximate error of x is shown in the figure 8(d). 

They fall within a range of (-200mm, 200mm). In the straight-line part, the modelling error of x is 

relative large comparing with the errors of y and  since only x increased while y and  nearly kept 

constant. In the left turning part, all three variables increased to achieve their desired values.  

5.3 Path tracking
2
 

The trajectory generation produced a desired trajectory as shown in figure 9, which is the same as the 

one used in the modelling validation. The PID controller was first implemented to make the robot track 

this desired trajectory, namely “PID control” in figure 9.  Based on the trained wavelet neural network 

the NPC controller was then implemented and the tracking result was also shown in figure 9, namely 

“NPC control”. In the NPC tracking, we use L=10, K=10, T=5.  

     Although the modelling of the wavelet neural network was based on the data collected from the 

process of PID control, the NPC control has different performance with the PID control. There is not 

much difference in the straight-line part where only x error is large (this can be seen from the starting of 

the turning point). Then PID control turned the robot left with a larger angle than NPC control. This led 

to the PID control trajectory diverging from the desired path than the NPC control trajectory at the 

beginning of the turning. Later on, the deviation of the NPC trajectory from the desired path is caused 

mainly by x error, while the PID control trajectory deviates from the desired path in all three variables. 

12500

13000

13500

14000

14500

15000

18000 19000 20000 21000 22000 23000 24000

PID control

NPC control

Desired Trajectory

 
Figure 9 Path tracking 

 

 PID NPC 

Position (x,y)  ASE 98.06 57.29 

Orientation   ASE 0.167 0.168 

 

Table 1 Comparison of ASE for PID AND NPC 

                                                           
2
 The general application domains of a MPC are slow systems such as process plants. The primary objective in 

these cases is not the "optimality" of the control algorithm but the safety. The main advantage of a MPC is that it 
can take into account arbitrary constraints. Not the first "optimal action" is applied, but the first optimal action that 
does not violate the constraints within the prediction horizon is applied. In the mobile robot context we can say that 
the robot is not a point as in the simulation, the true robot has a certain width. This would seem like a more natural 
motivation for the use of a MPC for mobile robots. Take the trajectories in figure 9 as an example. Suppose that the 
path is generated to make the robot turn around a corner. The PID result makes the robot move too much along the 
inside of the trajectory, which may lead to a collision of the robot with the corner. In this case the NPC result did not 
collide, but only because it followed the path very closely. The collision was not prevented by rejecting all actions 
that may have resulted in a collision.  
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     In NPC control, maximum errors in x and y are 118mm and 48mm respectively. In the PID tracking, 

maximum errors in x and y are 300.48mm and 51mm. A numerical comparison between PID and NPC 

controllers through the average squared error (ASE) with reference to the desired trajectory is shown in 

table 1. The ASE is an average value for whole trajectory. The position (x,y) ASE is the root of sum of 

squared error x and y. The position (x,y) ASEs in table 1 show that the NPC control trajectory is much 

closer to the desired path than the PID control trajectory. The orientation ASEs show that average 

orientation deviations of the two trajectories from the desired are nearly the same in this section of the 

path. 

6. CONCLUSIONS 

The neural predictive control scheme proposed in this paper includes path generation, position 

estimation, and a wavelet neural network based MPC. Benefits resulted from wavelet neural networks 

will be the convex cost index without the local minima dilemma, appropriate initial value setting of 

weights, and a constructive approach for the hidden layer of feed-forward neural networks. Simulation 

results show the ability of approximation of wavelet neural networks to the non-linear kinematics and 

adaptive path tracking by this wavelet neural network based predictive controller. 

     This paper shows that adaptive neural network based MPC is one of the solutions for time-variable 

non-linear systems. The aim is to provide a constructive way to build up the neural networks used for 

modelling and limit the size of neural networks. Further research should be conducted to investigate the 

structurally dynamic wavelet neural networks that exploit the properties of wavelet decomposition to 

choose the wavelets on the fly. It is equivalent to dynamically choosing the hidden nodes in the neural 

networks based on the measurement of robot states [20]. In this way, the identification of non-linear 

systems can be preceded on both the model parameters and the model structure. The implementation of 

this neural predictive control scheme on the real robot will be also conducted in the next stage. 

 

Acknowledgement: The authors wish to thank the anonymous reviewers for their constructive 
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