

 73

Neural Predictive Control for a Car-like Mobile Robot

Dongbing Gu and Huosheng Hu

Department of Computer Science, University of Essex

Wivenhoe Park, Colchester CO4 3SQ, UK

Fax: +44-1206-872788

Email: dgu@essex.ac.uk, hhu@essex.ac.uk

Abstract: This paper presents a new path-tracking scheme for a car-like mobile robot based on neural

predictive control. A multi-layer back-propagation neural network is employed to model non-linear

kinematics of the robot instead of a linear regression estimator in order to adapt the robot to a large

operating range. The neural predictive control for path tracking is a model-based predictive control

based on neural network modelling, which can generate its output in term of the robot kinematics and a

desired path. The desired path for the robot is produced by a polar polynomial with a simple closed

form. The multi-layer back-propagation neural network is constructed by a wavelet orthogonal

decomposition to form a wavelet neural network that can overcome the problem caused by the local

minima when training the neural network. The wavelet neural network has the advantage of using an

explicit way to determine the number of the hidden nodes and initial value of weights. Simulation

results for the modelling and control are provided to justify the proposed scheme.

Key words: Model predictive control, Wavelet neural network, Path tracking

1. INTRODUCTION

Car-like mobile robots are mainly used in industry, ports, planet exploration, nuclear waste cleanup,

agriculture and mining since they have the necessary loading capability. The control scheme for such

mobile robots is traditionally decomposed into three subtasks: trajectory generation, position estimation

and path tracking. Although behaviour-based approaches have been very popular since Brooks'

invention in 1980s[2], their sole implementation on these mobile robots for many complex applications

causes some difficulty. Instead, a behaviour-based approach can be incorporated with a traditional

planning-based system to form a hybrid system to deal with unexpected situations [1].

 The aim of trajectory generation is to generate a feasible path that allows the robots to move

smoothly. A path consisting of straight lines and circular arc segments is easy to generate, but may not

be suitable for a car-like mobile robot which has the non-holonomic constraint and its steering angles at

the line-arc transition points have discontinuous curvature. Although a Clothoid's trajectory [10] can

provide smooth transitions with a continuous curvature, its disadvantage is lack of the closed-form

expression. Nelson proposed a continuous-curvature polar polynomial for path generation [14], which

has a closed form expression and is easy to calculate. Pinchard improved Nelson's polar polynomial

with variable speeds, leading to a fifth-order polynomial for a continuous-curvature path [16].

 Position estimation plays a key role in path tracking. Many approaches have been proposed in terms

of the different sensors on robots. Odometry is simple, inexpensive, and easy to implement in real time,

but suffers from the unbounded accumulation of errors. The triangulation approach is appropriate for

initialising position, but is too sensitive to angle measurements when robots move around. Grid-based

position [12] is a successful method in dealing with sensory uncertainty, but is not suitable for model-

based predictive control due to the time it takes. A Kalman filter is a feasible estimation approach that

can fuse multiple sensory measurements to provide relatively accurate results.

 Path tracking for a car-like robot is in fact a feedback control problem to which model-based

predictive control (MPC) has been an effective mechanism [4][19]. Most MPC control applications are

based on linear models of dynamic systems to predict outputs over a certain horizon. Future sequences

International Journal of Robotics and Autonomous Systems, Vol. 39, No. 2-3, May, 2002

 74

of control signals are evaluated by minimising a cost index that takes account of the future output

prediction errors over a reference trajectory, as well as control efforts. However, when the systems are

non-linear and are operated over a large dynamic range, the use of linear models becomes impractical,

and the identification of non-linear models for control becomes absolutely necessary.

 A Neural network is an attractive tool to model complex non-linear systems due to its inherent ability

to approximate arbitrary continuous functions. Conclusive proofs were given that feed-forward neural

networks with one hidden layer are capable of approximating any continuous function on a compact set

in a very precise and satisfactory sense [8]. Some researchers have successful applied feed-forward

neural networks as system models to MPC, namely neural predictive control (NPC). For example, NPC

has been used in manipulator control [3][5][20][21], chemical process control [17][24], mobile robot

path tracking [18][28], and other applications [11][23]. In these research works, the control schemes of

NPC were changed into non-linear optimisation problems. The optimisation constraints were the system

dynamics represented by neural networks. The main drawbacks are undesirable local minima and slow

convergence of back-propagation learning. Moreover, the implementation of multiple feed-forward

neural networks suffers from the lack of efficient constructive approaches, both for determining

parameters of neurones and for choosing network structures. Other algorithms such as random search

techniques and genetic algorithms have been adopted to overcome the local minima caused by gradient

descent rules [11][18]. However, the computational cost of these algorithms will degrade the

performance of real-time control systems.

 Recently, wavelet decomposition emerged as a new powerful tool for function approximation in a

manner that readily reveals properties of the arbitrary L
2
 function (energy-finite and continuous or

discontinuous). Combining wavelets and neural networks can result in wavelet neural networks with

efficient constructive approaches [15][25]. Because wavelet neural networks can approximate arbitrary

functions belonging to L
2
 space, they have results in a wide variety of application areas, like speech

recognition [22] and digital communication [6]. They were also applied in robot applications where

robot kinematics is a continuous function and operates in a bounded range [20]. The wavelet neural

networks can further result in a convex cost index to which simple iterative solutions such as gradient

descent rules are justifiable and are not in danger of being trapped in local minima when choosing the

orthogonal wavelets as the activation functions of nodes in neural networks [25].

 Figure 1 A car-like mobile robot

 The rest of this paper is organised as follows. A car-like mobile robot being modelled in this research

is outlined in section 2, including a brief explanation of robot kinematics, trajectory generation based on

a polar polynomial, and position estimation by a Kalman filter. Section 3 investigates the wavelet neural

network modelling of robot kinematics. Neural predictive control for path tracking is described in

x

y 



X

Y

H

O

R

 75

section 4. The simulation results for the proposed control scheme are given in section 5, including

modelling results and control results. Finally, section 6 presents a brief conclusion and future work.

2. A CAR-LIKE MOBILE ROBOT

The robot considered in this research is a car-like mobile robot with four pneumatic tyre wheels. Two

front wheels serve for steering and two rear wheels serve for tracking, as shown in figure 1.

 The robot has a modular structure such that it can be readily extended and easily configured to allow

the use of a range of sensor modules or actuator modules. Two 500 count/revolution rotary encoders are

fixed onto two motor shafts for position servo control by a PID controller. Another two 500

count/revolution rotary encoders have been connected to the rear axes near the rear wheels using 3:1

ratio pulley and belts. The reason we use these two extra encoders is to compensate for the position

errors caused by inaccuracy of the steering angle. The robot has a weight of 100 Kg and a maximum

speed of 1 m/s. Sensors include optical encoders, a sonar array, a laser scanner, an infra-red proximity,

and a stereo head [7].

2.1 Robot kinematics

Assume that the midpoint of the rear axis of the mobile robot is a reference point (R as shown in figure

1) in the global frame XOY. A state vector x(k) =[x(k), y(k), (k)]
T
 is used to represent the position (x, y)

and the orientation () of the robot. Its discrete kinematics equation can be described as follows:

















































Hktkvk

kktkvky

kktkvkx

k

ky

kx

k

/))(sin()()(

))(cos())(sin()()(

))(cos())(cos()()(

)1(

)1(

)1(

)1(









x (1)

where Tkαkvk)](),([)(u is the control vector for motion tracking, t is the sample period and H is the

wheelbase between front and rear axes. The two control variables are the speed of robot ()(kv) and the

steer angle ()(kα).

 Such a non-linear system is open loop controllable, which can be linearised in order to use traditional

linear feedback control to regulate the robot. But if the robot operates over a large range in its state

space, especially when the robot turns around corners, the linearisation of the kinematics will lead to the

loss of controllability. Since the MPC’s models are based on linear regressions, they are not suitable to

non-linear robotic systems. Furthermore, the kinematics is difficult to model precisely because there

exist many physical sources of uncertainty, for example backlash, friction, load, and pneumatic tyres.

Adaptive control should be employed to deal with the uncertainty.

2.2 Position estimation

Two kinds of sensors are used to estimate the robot state in this research. The optical encoders mounted

on two rear wheels are used for odometry calculation. The problems for odometry are (i) surface

roughness and undulation may cause the distance to be over-estimated. (ii) wheel slippage can cause

distance to be under-estimated. (iii) variations in load can distort the odometry wheels and introduce

additional errors. Because odometry leads to unbounded accumulation of the errors, it is clear that

absolute position estimation would be necessary. Another kind of sensors is the laser scanner on the

robot interacting with artificial beacons mounted around the operating space, which can be used for the

absolute position estimation. A priori information about the beacons can be viewed as a form of world

model. With this model, the state of the robot is determined by integrating odometry with the bearing of

the beacons measured by the laser scanner. To do this, an Extended Kalman Filter (EKF) is used to

estimate the state based on information from the odometry and the laser scanner under the assumption

that the errors of measurement follow a Gaussian distribution [7].

 76

2.3 Path Generation

A path consisting of straight lines and circular arc segments is easy to generate, but may not be suitable

for a car-like mobile robot which has non-holonomic constraints and its steering angles at the line-arc

transition points can generate discontinuities of the trajectory curvatures. A Clothoid's trajectory [10]

provides smooth transitions with a continuous curvature. Its disadvantage is lack of closed-form position

expression. Nelson proposed a continuous-curvature polar polynomial for path generation [14], which is

a closed form expression and easy to calculate.

 Pinchard [16] improved the Nelson's polar polynomial with variable speeds, leading to a fifth-order

polynomial for a continuous-curvature path, which is used here for trajectory generation. The position,

tangent and curvature constraints yield a fifth-order polynomial for a continuous-curvature path. Its

general form is:
5

5
4

4
3

3
2

210)( aaaaaar  (2)

where r is the polar radius and  the polar angle shown in figure 2. The initial and final conditions of the

transition between paths are:

r=R1, r'=0, c=0, at  = 0

r=R2, r'=0, c=0, at  = 

where c is curvature.  is the angle the robot will turn. R1 and R2 are the initial and final radii. v1 and v2

are the initial and final velocities. With these conditions, the coefficients of a general polar polynomial

can be given as follows:

5

2
2

2
121

5

4

2
2

2
121

4

3

2
2

2
121

3

12110

2

1212

2

233030

2

32020

2/,0,


















RRRR
a

RRRR
a

RRRR
a

RaaRa

 (3)

r





v1

v2

R1

R2

X

Y

O

(x1, y1)

(x2, y2)

Figure 2 Path generation

2.4 NPC Path tracking scheme

To control a robot to track a path, the desired path and the measured path are two basic information

sources used for a controller. The trajectory generation module shown in figure 3 produced a desired

path represented by a set of states xr(k)=[xr(k), yr(k), r(k)]
T
. The controller, either MPC controller or

PID controller shown in figure 3, yields the control vector u(k) =[v(k), (k)]
 T

. The motor movement

leads to position changes that are estimated by an EKF, based on the sensory information. The current

 77

state of the robot obtained from the position estimation module is estimated as xm(k)=[xm(k), ym(k),

m(k)]
T
. PID control is a simple and feasible choice. It uses the state errors (xr(k)- xm(k)) as feedback

signals, which are further decomposed into tangential and normal errors. The dash line loop, which is in

parallel with a MPC controller in figure 3, shows the PID control scheme. More details for the PID

control scheme in path tracking can be found in our previous paper [7].

 MPC is based on an assumed model of the robot kinematics and on an assumed scenario for the

future control signals. The solid line parts in figure 3 show the MPC control scheme. With the desired

trajectory and measured path mentioned above, it could produce a sequence of control signals. Only the

first one is applied to the robot. Due to the reasons in modelling kinematics discussed in subsection 2.1,

a neural network is employed to model the kinematics expressed in (1). It uses the measurement states

xm(k) and control variables u(k) to produce an adaptive kinematics model that provides a substrate for

the MPC controller. Section 4 will present the details about the algorithm.

 The neural network used to model the kinematics is trained according to u(k) and xm(k). Initially, the

PID controller controls the robot to track the path in order to produce the training data for neural

network learning. During the training stage, the MPC controller is replaced with the PID controller

shown as a dash line in figure 3. Once the neural network has been trained, it can be used for the MPC

controller and will be adapted during the path tracking process.

Trajectory

Generation

Robot

Driving

Position

Estimation

Neural

Network

MPC

Controller

PID

Controller

Figure 3 NPC for path tracking

3. MODELLING ROBOT KINEMATICS

Due to the similarity between wavelet decomposition and hidden layers in neural networks, wavelet

neural networks were proposed by combining wavelet and neural networks in [25]. These wavelet

neural networks can remedy the weakness of a large dimension of wavelet decomposition and the

constructive problem of neural networks. In this section, the way to model the robot kinematics by using

wavelet neural networks is proposed.

3.1 Wavelet neural network

In multi-resolution signal analysis, a square integral function f(t) in L
2
 space can be decomposed into a

summation of a series of weighted wavelet components[25]:


nm

nmnm tftf

,

,,)(,)( (4)

 78

where)2(2)(2/
, ntt mm
nm   is the orthogonal wavelet function. The weight in each wavelet

component is nmf ,, that denotes the inner product of function f(t) and wavelet nm, . The formula

(4) can be rewritten in the following form according to the wavelet theory:






nMm

nmnm

n

nMnM tftftf

,

,,,,)(,)(,)( (5)

where)(, tnM is called scaling function. Most of the physical functions used in engineering have

bounded energy and can be regarded as square integral functions. Therefore they can be decomposed

into an expression as shown in (5).

 What is more important for the function decomposition is that for a sufficiently large M, any square

integral function f(t) can be approximated arbitrarily closely by the first term of (5)[25]. That is for any

0

 
n

nMnM tftf)(,)(,,

 It shows that the function approximation for f(t) in (5) can be expressed by the truncated wavelet

decomposition as:

 

n

nMn

n

nMnM tCtftf)()(,)(,,,  (6)

 It means that some fine components (high frequency) that can be represented by a series of the

wavelet functions for the function f(t) are neglected and some coarse components (low frequency) that

can be represented by a series of the scaling function are preserved to approximate the originate

function under the M scale.

 How to choose a wavelet function is very important in wavelet decomposition. Most orthogonal

wavelets lack the finite support set that can guarantee good time resolution. Daubechies’ wavelets

possess the finite support set, but are not sufficiently smooth to guarantee good frequency resolution.

Lemarie-Meyer’s wavelets are orthogonal and posses good frequency and time resolution, but there is

no simple closed form expression required by the real-time applications in this paper. Walter and Zhang

in [27] found that two classes of wavelets can be represented by the simple closed form expressions and

are orthogonal, which can be seen as the particular examples of Lemarie-Meyer’s wavelets. We choose

one of them as the function approximation base in this paper. Its scaling function expression is

))4(1(

)1(cos4)1(sin
)(

2tt

ttt
t











 Figure 4 shows its scaling function and its wavelet where =1/4.

(a) Scaling function (b) Wavelet function

Figure 4 Orthogonal wavelet

 79

 The function approximation expression (6) has a similar structure with a 3-layer neural network as

shown in figure 5. The number of hidden nodes is decided by wavelet translation n that depends on the

support set of f(t). Here we can assume a positive integer N to form a range [-N, N] that can cover the

support set of f(t). For a multiple dimension case, the scaling functions or wavelets are generated by

tensor products of one-dimensional scaling functions or wavelets.


 t







2
M

n

1

n+1
Cn-1

Cn

Cn+1

f(t)











n-1

Figure 5 The wavelet neural network where nMn fC ,,

3.2 Neural network modelling

We use a one-step-ahead predictive model to describe the robot kinematics (1). Thus, formula (1) can

be rewritten as:

x(k+1)=F(z(k)) (7)

where z(k)=[v(k), (k), xm(k), ym(k), m(k)]
T
 and x(k)=[x(k), y(k), (k)]

T
. This predictive model can be

represented by a wavelet neural network as shown in figure 6, where the input vector z(k) with its size

p=5 consists of the control vector and the estimated state, and the output vector x(k) with its size q=3 is

the predicted state. The activation function d(t) in the hidden layer is a multidimensional scaling

function that is the tensor product of one-dimensional scaling functions. Other network parameters are:

 the number of the hidden nodes r=2N+1;

 the weight matrix from input to hidden layer is W1;

 the weight matrix from input to hidden layer is W2.



v(k-1)

d

d

d







d





(k-1)

xm(k-1)

ym(k-1)

m(k-1)

x(k)

y(k)

(k)

Figure 6 Wavelet neural network for robot kinematics

 80

 Based on wavelet neural networks, the robot kinematics can be represented by:

x(k+1)= W2(W1z(k)) (8)

where =[d,…, d]
T
. The weight matrix W1 is invariable during the training cycle and expressed as

follows in terms of the wavelet decomposition.

5)12(

1

22

22





















N

MM

MM

W







 (9)

 Initial values of weight matrix W2 can also be generated by the wavelet decomposition:

)12(3,31,3,3

,21,2,2

,11,1,1

2)0(

























NNNN

NNN

NNN

CCC

CCC

CCC

W






 (10)

 It can be further updated by a steepest-gradient-decent algorithm.

W2(k+1)= W2(k)- e
T
 (11)

where e =[xm(k)-x(k)] is the error between the estimated state from EKF and the predicted state from the

wavelet neural network, and  is the update rate.

4. PREDICTIVE CONTROL SCHEME

A predictive controller is proposed here, based on the prediction model that predicts the future values of

the robot state. The prediction model is constructed by the wavelet neural network shown in figure 6.

The errors between predicted states and state estimates, combining with the control variations, are used

to form a quadratic index. The process of minimising the quadratic index is to find an optimal control

vector. At each control cycle during the path tracking, the wavelet neural network is first adapted based

on the estimated state, and then optimisation control is executed.

4.1 MPC formation

The outputs of the neural network (8) presented in the previous section can be rewritten in the state

space form as follows:

)](),([)]([

))((

))((

))((

)1(

)1(

)1(

)1(

3

2

1

kkFkF

kf

kf

kf

k

ky

kx

k m uxz

z

z

z

x 













































 (12)

 The MPC controller is to optimise a cost index J(x(k), u(k)) under the constraints of formula (12):

))(),((min
)(

kkJ
k

ux
u

 The current control vector is chosen to minimise the state errors and control energy over several

steps in the future so that the path tracking of the robot is smooth and stable. Therefore, the cost index

can be expressed as






N

i

i

N

Ni

r dikikikJ

1

22
)(

2

1
)()(

2

1 2

1

uλxx (13)

 81

where (i) is a weighting matrix (2 by 2 positive definite symmetric), penalising the control effort. This

cost index reflects the desire to drive the next robot state x (k) close enough to the desired state xr(k)

generated by the fifth order polynomial introduced in section 2.3 without excessive expenditure of

control effort. The cost index is conditioned on data up to control cycle k, assuming no future

measurements are available. At each control cycle, an optimal control sequence is calculated, but only

the first one is applied to the robot. This process will be repeated at the next control cycle to form a

receding horizon optimisation procedure.

 The notations used for equation (13) are

 N1 and N2 are the minimum and maximum output horizons respectively;

 N is called the control horizon;

 u(k) is a set of control increments, u(k) =u(k) -u(k-1) and u(k+i)=0, if i>N-1;

 d is the dead-time of the system.

 In general, N2 is chosen to encompass all the responses that are significantly affected by the current

control. In practice, it is more typically set to approximate rise-time of the system. N1 is selected

according to dead time of the robot system, and is often taken as 1.

4.2 Optimisation algorithm

In each control cycle k, we need to compute a control increment matrix U(k) (U(k)=[u(k), …,

u(k+N -1)]
T
 that has K vectors and choose the first one as the actual control increments for outputs of

the controller. For the non-linear system presented in (12), there are no analytic expressions available.

We have to implement the non-linear optimal algorithm to find an optimal solution of a control vector

during the interval k and k+1 on the fly. It should be noticed that the constraints on the cost index (13)

are a convex expression shown in (8) due to the wavelet orthogonal decomposition. Therefore, these K

control increments can be calculated recursively from the steepest gradient decent algorithm during the

interval between k and k+1 without a local minimum.

 Let j be the iteration step for the optimisation (j=0, …, T) at the kth control cycle. T is the number of

the discrete times and decided by the optimal terminal conditions. Figure 7 shows the calculating cycle

relationship during the control and optimisation process where k is the current control cycle and the

total number of control cycles in the path tracking is S. In our tracking case, we choose:

N1 =1, N2 =L, d=1, N =K

0 k k+1 k+K-1 S-1

time

cyclej j+1 T-1

k+L-1

optimisation horizon

control horizon

output horizon

Figure 7 Time step for the predictive control

 The control increment U(k) can be obtained based on the cost index (13) according to the gradient

descent algorithm. Assume that  is the optimising rate. We have:
jj JUU  (14)

 The cost index change j
J U is caused by the control increment U(k) and the state change j

UX . It

can be represented in (15) by differentiating (13),
jjjj

J UΓEXUU   (15)

 82

where the state change j
UX is also caused by control increment U(k). The state-changing gain and

control-changing gain are j
E and Γ respectively. They can be expressed as:











































)1(

)(

)1(

)(
0

)(

)(

)(

)(

)(

)1(

Kk

Lk

Kk

Kk

k

Lk

k

Kk

k

k

j

j

j

j

j

j

j

j

j

j

j

u

x

u

x

u

x

u

x

u

x

XU







 Tj
r

j
r

j LkLkkk)()()1()1( xxxxE 

],,[1 Kdiag λλΓ 

 Substituting (15) into (14), control increments during one control cycle can be expressed as:

jjj I EXΓU U 1)( (16)

 At each optimisation step j, the predicted states x
j
(k+i1) (i1=1, ..., L) are produced by the neural

network based on the control vector u
j-1

(k+i2) (i2=0, ..., K-1). For the first optimisation step j=1,

u
0
(k+i2) is initialised as u

T
(k-1+i2) (the control vector at the last control cycle). After T iterations, an

optimal control increment U
*
(k) at the kth control cycle is produced. The main computation during this

optimising procedure is the matrix calculation
)(

)(

lk

ik





u

x
 (i=1, …, L; l=0, …, T-1). With reference to the

neural network model (8), one of the matrix elements is presented as:


























 






)1(0

)1(2

)()(

))1((

)(

)(

1

2

11

2

1

1

li

liw

lk

w

lk

ikf

lk

ikx
r

m

M

dm

r

m

dm









z
 (17)

 The optimal control vector can be obtained by choosing the first vector in U
*
(k):

u
*
(k)=u

*
(k-1)+[1, 0, …, 0]U

*
(k) (18)

5. SIMULATION RESULTS
1

A simulator based on the robot kinematics (1) is developed to validate the proposed approaches. The

Gaussian noise with zero mean value is added to the robot state to simulate the estimated state xm(k).

As the first stage, we need to collect data of the robot kinematics to train the wavelet neural network.

This can be done by employing a PID controller to track the path (see figure 3). Previously a PID

control scheme has been used for the real robot in [7] where we estimated the position by an EKF and

used the same trajectory generation. With the tedious trials, PID can track the path. However, this

process has to be repeated when the robot travels on different road surface, or even on the same road at

1
 One important aspect in modelling is that the system has to be excited enough (the control signal has to be

persistently exciting). However, the training data is generated based on the PID controller without any additional
excitation noise. Because there is no drift term in the kinematics model (1), the lack of excitation is not a problem.
This only holds if a model similar to (1) represents the dynamics of the true robot. The motivation to model the robot
and not use (1) is to make the controller adaptable in case of changes in the system, such as increasing the load
of the robot. This will lead to an increase in inertia resulting in lower accelerations and decelerations. These effects
cannot be modelled in the kinematics model (which only deals with the speed). The modelling may try to
incorporate this in the model by introducing a drift term (which is possible according to the general kinematics
model in (7)). Without excitation noise, the model obtained along the PID trajectory may not be valid along the
generated path, because the model does not have to generalise over a "larger" part of the state space.

 83

different times for reasons of load change or tyre inflation. This is the main reason why we investigate

adaptive control for path tracking.

 Once the training data is collected, formula (11) is used to train the wavelet neural network until a

certain number of the training trials, or the errors between the network output and the simulated position

estimation are less than given thresholds. An initial kinematics is built up, which can be used for the

NPC control scheme. In the NPC control process, the PID controller is replaced with the NPC

controller. The control vector (18) output from the NPC controller is calculated at each control cycle,

while on-line training of the network and the optimisation of the cost index are executed within the

current control interval (see figure 7).

5.1 Wavelets

The scaling function is shown in figure 4. The dilation and translation of the scaling function M,n(t)=

2
M(2

 M
 t-n) are centred in n/2

 M
. We transform the input and output ranges of the network into [-1/2,

1/2]. So, the number of hidden nodes can be determined roughly as (2
 M

+1)
 p

 and p is the number of

inputs to the hidden nodes. For different outputs, p is selected according to the relationship between

inputs and outputs described by the kinematics (1). To choose a proper M, a trial and error approach is

used as follows [25]:

Step 1: Start from a small M.

Step 2: Computed the mean square error (MSE).

Step 3: Increase M by 1 and repeat from Step 1 if MSE is bigger than a threshold.

 The sparse data in our path tracking case can further decrease the support range N of the network

inputs, e.g. the steer angle is changed in a smaller region.

5.2 Modelling Validation

We implemented three path-tracking courses to collect the training data: straight line, turn right, and

turn left. 65 hidden nodes were used to cover the range of the robot state. Only the weights in an output

layer need to train (see figure 5). A path starting from (19000mm, 12600mm, 0rad) to (23000mm,

14600mm, /2rad) is used to validate the model of the kinematics. The results are shown in figure 8,

where the unit of x, y, and x error is mm and of  is radians. The number on the horizontal axis is

motion steps.

19000

21000

23000

25000

1 41 81 121 161 201

(a) A plot of x

 84

12500

13500

14500

15500

1 41 81 121 161 201 241

(b) A plot of y

-0.8

0

0.8

1.6

2.4

1 41 81 121 161 201 241

(c) A plot of 

-400

-200

0

200

400

1 41 81 121 161 201 241

(d) A plot of x error

Figure 8 Neural modelling: (a) x, (b)  , (c) y, and (d) x error.

 This desired path was produced by the trajectory generation part shown in figure 3, which consists of

two parts: a straight line starting from (19000mm, 12600mm, 0rad) to (21000mm, 12600mm, 0rad) and

a left turning starting from (21000mm, 12600mm, 0rad) to (23000mm, 14600mm, /2rad). The solid

lines shown in the figure 8 (a)(b)(c) are the results of PID controller, which start to turn left around

point (21400mm, 12600mm, 0rad) rather than (21000mm, 12600mm, 0rad) as desired since the PID

controller is not a perfect controller. It did not affect our simulation results since the collected data is

only used to train the wavelet neural network to model the kinematics. The dash lines in the figure 8

(a)(b)(c) are the modelling results of the wavelet neural network. The data shows that the results of the

 85

modelling can approximate to the dash lines. The approximate error of x is shown in the figure 8(d).

They fall within a range of (-200mm, 200mm). In the straight-line part, the modelling error of x is

relative large comparing with the errors of y and  since only x increased while y and  nearly kept

constant. In the left turning part, all three variables increased to achieve their desired values.

5.3 Path tracking
2

The trajectory generation produced a desired trajectory as shown in figure 9, which is the same as the

one used in the modelling validation. The PID controller was first implemented to make the robot track

this desired trajectory, namely “PID control” in figure 9. Based on the trained wavelet neural network

the NPC controller was then implemented and the tracking result was also shown in figure 9, namely

“NPC control”. In the NPC tracking, we use L=10, K=10, T=5.

 Although the modelling of the wavelet neural network was based on the data collected from the

process of PID control, the NPC control has different performance with the PID control. There is not

much difference in the straight-line part where only x error is large (this can be seen from the starting of

the turning point). Then PID control turned the robot left with a larger angle than NPC control. This led

to the PID control trajectory diverging from the desired path than the NPC control trajectory at the

beginning of the turning. Later on, the deviation of the NPC trajectory from the desired path is caused

mainly by x error, while the PID control trajectory deviates from the desired path in all three variables.

12500

13000

13500

14000

14500

15000

18000 19000 20000 21000 22000 23000 24000

PID control

NPC control

Desired Trajectory

Figure 9 Path tracking

 PID NPC

Position (x,y) ASE 98.06 57.29

Orientation  ASE 0.167 0.168

Table 1 Comparison of ASE for PID AND NPC

2
 The general application domains of a MPC are slow systems such as process plants. The primary objective in

these cases is not the "optimality" of the control algorithm but the safety. The main advantage of a MPC is that it
can take into account arbitrary constraints. Not the first "optimal action" is applied, but the first optimal action that
does not violate the constraints within the prediction horizon is applied. In the mobile robot context we can say that
the robot is not a point as in the simulation, the true robot has a certain width. This would seem like a more natural
motivation for the use of a MPC for mobile robots. Take the trajectories in figure 9 as an example. Suppose that the
path is generated to make the robot turn around a corner. The PID result makes the robot move too much along the
inside of the trajectory, which may lead to a collision of the robot with the corner. In this case the NPC result did not
collide, but only because it followed the path very closely. The collision was not prevented by rejecting all actions
that may have resulted in a collision.

 86

 In NPC control, maximum errors in x and y are 118mm and 48mm respectively. In the PID tracking,

maximum errors in x and y are 300.48mm and 51mm. A numerical comparison between PID and NPC

controllers through the average squared error (ASE) with reference to the desired trajectory is shown in

table 1. The ASE is an average value for whole trajectory. The position (x,y) ASE is the root of sum of

squared error x and y. The position (x,y) ASEs in table 1 show that the NPC control trajectory is much

closer to the desired path than the PID control trajectory. The orientation ASEs show that average

orientation deviations of the two trajectories from the desired are nearly the same in this section of the

path.

6. CONCLUSIONS

The neural predictive control scheme proposed in this paper includes path generation, position

estimation, and a wavelet neural network based MPC. Benefits resulted from wavelet neural networks

will be the convex cost index without the local minima dilemma, appropriate initial value setting of

weights, and a constructive approach for the hidden layer of feed-forward neural networks. Simulation

results show the ability of approximation of wavelet neural networks to the non-linear kinematics and

adaptive path tracking by this wavelet neural network based predictive controller.

 This paper shows that adaptive neural network based MPC is one of the solutions for time-variable

non-linear systems. The aim is to provide a constructive way to build up the neural networks used for

modelling and limit the size of neural networks. Further research should be conducted to investigate the

structurally dynamic wavelet neural networks that exploit the properties of wavelet decomposition to

choose the wavelets on the fly. It is equivalent to dynamically choosing the hidden nodes in the neural

networks based on the measurement of robot states [20]. In this way, the identification of non-linear

systems can be preceded on both the model parameters and the model structure. The implementation of

this neural predictive control scheme on the real robot will be also conducted in the next stage.

Acknowledgement: The authors wish to thank the anonymous reviewers for their constructive

comments and suggestions which improved the quality of this paper.

REFERENCES

[1] R. C. Arkin, Behaviour-Based Robotics, The MIT Press, 1998.

[2] R. Brooks, A Robust Layered Control System for a Mobile Robot, IEEE Journal of Robotics and Automation,

Vol. RA-2, No. 1, pages 14-23, 1986.

[3] J. Canderle and D. Caldwell, Generalised Predictive Control of Pneumatic Muscle Actuator, European

Advanced Robotics Systems Master class and Conference-Robotics 2000, Salford, UK, April 2000.

[4] D. Clarke, C. Mohtadi, and P. Tuffs, Generalised Predictive Control-Part I. The Basic Algorithm, Automatica,

Vol. 23, No. 2, pages 137-148, 1987.

[5] J. A. Gangloff and M. F. Mathelin, High Speed Visual Servoing of a 6 DOF Manipulator Using MIMO

Predictive Control, Proc. of the 2000 IEEE Int. Conf. on Robotics and Automation, San Francisco, CA, April

2000, pages 3751-3756.

[6] R. Gomez-Sanchez and D. Andina, A Wavelet Neural Network for detection of Signals in Communications,

Proc. of SPIE, Vol. 3391, pages 265-272, 1998.

[7] D. Gu, H. Hu, M. Brady, F. Li, Navigation System for Autonomous Mobile Robots at Oxford, Proceedings of

International Workshop on Recent Advances in Mobile Robots, Leicester, U.K., pages 24-33, 1-2 July 1997.

[8] S. Haykin, Neural Network - A Comprehensive Foundation, Prentice Hall, 1999.

[9] H. Hu, D. Gu, and M. Brady, A Modular Computing Architecture for Autonomous Robots, Int. Journal of

Microprocessors and Microsystems, Vol. 21, No. 6, pages 349-362, March 1998.

[10] Y. Kanayama, and N. Miyaki, Trajectory generation for mobile robots, Proc. of the IEEE Int. Conf. Robotics

and Automation, pages 333-340, France, 1985.

[11] M. Martinez, J. S. Senent, and X. Blasco, Generalised Predictive Control Using Genetic Algorithms

(GAGPC), Artificial Intelligence, Vol. 11, 1998, pages 355-367.

 87

[12] H. P. Moravec, Sensor Fusion in Certainty Grids for Mobile Robots, AI Magazine, 9(2), pages 61-74, 1988.

[13] K. S. Narendra and K. Parthasarathy, Identification and Control of Dynamical Systems, IEEE Trans. on

Neural Network, Vol. 1, No. 1, March 1990, pages 4-27.

[14] W. L., Nelson, Continuous-curvature Paths for Autonomous Vehicle, Proc. of the IEEE Int. Conf. Robotics

and Automation, pages 1260-1264, 1989.

[15] Y. C. Pati and P. S. Krishnaprasad, Analysis and Synthesis of Feedforward Neural Networks Using Discrete

Affine Wavelet Transformations, IEEE Trans. on Neural Network, Vol. 4, No. 1, Jan. 1993, pages 73-85.

[16] O. Pinchard, A. Liegeois, and F. Pougent, Generalised polar polynomials for vehicle path generation with

dynamic constraints, Proc. of the IEEE Int. Conf. Robotics and Automation, pages 915-920, Minneapolis,

Minnesota, 1996.

[17] S. Piche, et al, Non-linear Model Predictive Control Using Neural Networks, IEEE Control Systems

Magazine, Vol. 20, No. 3, June 2000, pages 53-62.

[18] D. Ramirez, et al, Non-linear MBPC for Mobile Robot Navigation Using Genetic Algorithms, Proceedings of

the 1999 IEEE Int. Conf. on Robotics & Automation, Detroit, Michigan, May 1999, pages 2452-2457.

[19] J. B. Rawlings, Tutorial Overview of Model Predictive Control, IEEE Control Systems Magazine, Vol. 20,

No. 3, June 2000, pages 38-52.

[20] R. M. Sanner and J. E. Slotine, Structurally Dynamic Wavelet Networks for the Adaptive Control of Uncertain

Robotic Systems, Proceedings of the 34
th

 Conf. on Decision & Control, New Orland, LA, Dec. 1995, pages

2460-2467.

[21] B. Song and A. Koivo, Neural Network Model Based Control of a Flexible Link Manipulator, Proc. of the

IEEE Int. Conf. on Robotics & Automation, Leuven, Belgium, May 1998, pages 812-817.

[22] H. H. Szu, B. Telfer, and S. Kadambe, Neural Network Adaptive Wavelets for Signal Representation and

Classification, Optical Engineering, Vol. 31, No. 9, September 1992, pages 1907-1916.

[23] Y. Tan and R. Keyser, Neural Network Based Adaptive Predictive Control, Advances in Model Based

Predictive Control, Edited by D. Clarke, pages 358-369, 1994.

[24] J. M. Zamarreno and P. Vega, Neural Predictive Control: Application to a Highly Non-linear System,

Artificial Intelligence, Vol. 12, 1999, pages 149-158.

[25] J. Zhang, G. Walter, Y. Miao, and W. Lee, Wavelet Neural Networks for Function Learning, IEEE Trans. on

Signal Processing, Vol. 43, No. 6, June 1995, pages 1485-1495.

[26] Q. Zhang, Using Wavelet Network in Non-parametric Estimation, IEEE Trans. on Neural Network, Vol. 8,

No. 2, March 1997, pages 227-236.

[27] G. Walter and J. Zhang, Orthonormal Wavelets with Simple Closed-Form Expressions, IEEE Trans. on Signal

Processing, Vol. 46, No. 8, 1998, pages 2248-2251.

[28] J. G. Ortega, and E. F. Camacho, Neural Network GPC for Mobile Robot Path Tracking, Robotics and

Computer-Integrated manufacturing, Vol. 11, pages 271-278, 1994.

