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Detailed land use/land cover classification at ecotope level is important for environmental evaluation. In this
study, we investigate the possibility of using airborne hyperspectral imagery for the classification of ecotopes.
In particular, we assess two tree-based ensemble classification algorithms: Adaboost and Random Forest,
based on standard classification accuracy, training time and classification stability. Our results show that
Adaboost and Random Forest attain almost the same overall accuracy (close to 70%) with less than 1%
difference, and both outperform a neural network classifier (63.7%). Random Forest, however, is faster in
training and more stable. Both ensemble classifiers are considered effective in dealing with hyperspectral
data. Furthermore, two feature selection methods, the out-of-bag strategy and a wrapper approach feature
subset selection using the best-first search method are applied. A majority of bands chosen by both methods
concentrate between 1.4 and 1.8 μm at the early shortwave infrared region. Our band subset analyses also
include the 22 optimal bands between 0.4 and 2.5 μm suggested in Thenkabail et al. [Thenkabail, P.S., Enclona,
E.A., Ashton, M.S., and Van Der Meer, B. (2004). Accuracy assessments of hyperspectral waveband
performance for vegetation analysis applications. Remote Sensing of Environment, 91, 354–376.] due to
similarity of the target classes. All of the three band subsets considered in this study work well with both
classifiers as inmost cases the overall accuracy dropped only by less than 1%. A subset of 53 bands is created by
combining all feature subsets and comparing to using the entire set the overall accuracy is the same with
Adaboost, and with Random Forest, a 0.2% improvement. The strategy to use a basket of band selection
methods works better. Ecotopes belonging to the tree classes are in general classified better than the grass
classes. Small adaptations of the classification scheme are recommended to improve the applicability of
remote sensing method for detailed ecotope mapping.

© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Land use/land cover classification is a generic tool for environ-
mental monitoring. To measure subtle changes in the ecosystem, a
land use/land cover classification at ecotope level with definitive
biological and ecological characteristics is needed. Ecotopes are
distinct ecological landscape features that provide information
concerning biodiversity and environmental quality. In order to have
adequate reference to the large variety of ecological conditions, the
classification scheme of ecotopes is usually detailed and elaborate.
While for decades remote sensing imagery has been used to generate
land use/land cover maps, it will be a challenge to map ecotopes using
conventional broadband multi-spectral data with coarse spatial
resolution (Ellis et al., 2006). A better option will be hyperspectral
images which provide a fuller spectral description with up to
hundreds of narrow bands. Hyperspectral data are reportedly

competent in achieving substantially higher classification accuracies
in the recognition of vegetation and agricultural crops (Bork et al.,
1999, Thenkabail et al., 2004), and might have the potential to
separate vegetation into taxonomic levels (Ustin et al., 2004). To
classify ecotopes using hyperspectral data, however, we are faced with
a classical problem of high dimensional inputs (hundred of bands) and
outputs (many classes). For this complex problem, we need powerful
algorithms for the classification and band selection methods that can
reduce input dimension.

Recent studies ondifficult classificationproblemsusingmulti-source
and hyperspectral data have pointed to the superiority of Random
Forest, a type of ensemble classification that uses decision tree as the
base classifier (Crawford et al., 2003; Gislason et al., 2006; Ham et al.,
2005, Lawrence et al., 2006). Ensemble classification represents a new
approach that uses not one, but many classifiers. Hundreds of classifiers
are built and their decisions combined usually by plurality vote. The
premise is that combining ensemble classifiers is often more accurate
than any one from the ensemble. Ensemble classifications can be
categorized into those based on several different learning algorithms
and those based on just one. In the former case, several classifiers can be
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generated using the same training set, each from a different learning
algorithm and their decisions are combined by simple voting, or more
sophisticated methods like consensus theory (Benediktsson & Swain,
1992) and stacking (Džeroski & Ženko, 2004). The drawback of this
ensemblemethod is to have to handle different learning algorithms and
that increases the complexity of processing. Combining methods can
sometimes be complicated too. Finally, its effectiveness relies verymuch
on the combining technique and an ensemble does not always give a
more accurate classification (Foody et al., 2007).

Another form of ensemble classification based on only one learning
algorithm and the ensemble is created by changing the training set.
Bagging (Breiman,1996), or bootstrap aggregating, andAdaboost (Freund
& Schapire, 1996), or adaptive reweighting boosting, are two popular
methods to generate new training sets. Both methods have been
thoroughly studied (Bauer & Kohavi, 1998; Dietterich, 2000) and have
been assessed with remote sensing data (Chan et al., 2001; DeFries &
Chan, 2000; Pal & Mather, 2003). While theoretically Adaboost and
bagging can be applied to any learning algorithms, they are originally
designed to boost the accuracy of “weak” learners such as decision trees
(Breiman, 2001). Implementations ofAdaboost usingdecision trees as the
base classifier showed that the results are comparable to support vector
machines (Chan et al., 2001) and a neural network (Pal & Mather, 2003).
Comparisons between bagging and Adaboost showed that Adaboost had
higher accuracies but baggingwasmore stable (Chan et al., 2001; DeFries
& Chan, 2000). But Adaboost was also described as susceptible to noise
and more costly in processing time (Briem et al., 2002).

Random Forest is a tree-based ensemble classifier that uses the
bagging technique to create new training sets. It includes two important
methods: random feature subspace and out-of-bag estimates. The
former enables a much faster construction of trees and the latter the
possibility of evaluating the relative importance of each input feature.
Breiman (2001) ran Random Forest on 20 data sets from different data
domains, and his results showed that theperformance of RandomForest
is superior to other learningalgorithms.WhencomparedwithAdaboost,
he concluded that Random Forest is “favorably” comparable, only that
Random Forest is cheaper in terms of computing time.

Ensemble classifications that build numerous classifiers are not an
intuitive choice for analyses of hyperspectral data since they naturally
add more computational burden to a procedure already complicated
by high dimensional inputs. However, since decision trees are ex-
tremely fast to build, the costs of training hundreds of them will still
be cheaper than training one artificial neural network, as demon-
strated in Pal and Mather (2003). While Random Forest, a tree-based
ensemble classifier, has been shown effective when applied to clas-
sification of hyperspectral data (Crawford et al., 2003; Ham et al.,
2005; Lawrence et al., 2006), there has not been adequate discussion
on Adaboost. Hence, it is natural to exploremore about the potential of
these two powerful algorithms in our specific application.

While hyperspectral data provides more spectral information, it
also brings new challenges such as the curse of dimensionality. Since
neighboring hyperspectral channels carry highly correlated informa-
tion, some spectral bands are redundant and some contain possible
noise. The importance of feature (band) selection is not only to reduce
input dimensionality which will subsequently alleviate processing
burden, but also to deepen our understanding of which spectral ranges
are most suitable for ecotope mapping. This knowledge of the best
wavebands might also aid future sensor designs dedicated for specific
applications. Many methods have been proposed for band selection
(Chang et al., 1999; Guo et al., 2006; Jia & Richards, 1994; Kaewpijit
et al., 2003, Lee & Landgrebe, 1997; Melgani & Bruzzone, 2004) but
some suggested using a basket of different methods instead of using
one method. In Bajcsy and Groves (2004), seven techniques for band
ranking were included in their regression model for soil electrical
conductivity. In Thenkabail et al. (2004), four assessment techniques
namely principal component analysis, lambda–lambda R2 models,
stepwise discriminant analysis, and derivative greenness vegetation

indices were employed to find the optimal wavebands for the clas-
sification of vegetation. The reason for using a basket of methods is
attributed to the no-free-lunch theorem which argues against the
possibility of a universally superior algorithm for all problems. This
echoeswith amachine learning concept that for any specific problems,
as many techniques and algorithms should be investigated as man-
ageably possible because there is no one method which has been
demonstrated to be superior for all problems (Kohavi et al., 1996).

In this paper, we assess two benchmark tree-based ensemble
classification algorithms: Adaboost and Random Forest, using the
criteria of standard classification accuracy, computing time and sta-
bility (DeFries & Chan, 2000). Two band selection algorithms are
tested: the out-of-bag method (Breiman, 2001) and a wrapper
approach feature subset selection (Kohavi & John, 1997) using the
best-first search method (Ginsberg, 1993). In Thenkabail et al. (2004),
hyperspectral data were gathered for shrubs, grasses, weeds, and
agricultural crop species from four ecoregions of African savannas;
after rigorous investigation with four assessment methods, they re-
commended 22 optimal bands. Due to the similarities of the target
classes and the studied spectral range (0.4–2.5 μm) between
Thenkabail et al.'s (2004) study and ours, we think there are reference
values to investigate the optimal bands suggested in their article.
Following the no-free-lunch theorem, we combine Thenkabail's
selection with the outcomes from the other two band selection
methods. All band subset selections are tested using both Adaboost
and Random Forest.

2. Study area and data

For this study, we have used the ecotope classification in Belgium,
locally known as the Biological Valuation Map (BVM), as a case study
(see www.inbo.be/bvm). Under the BVM, the entire land surface is
divided into 162 detailed classes according to soil conditions or
agricultural practices. The BVM is produced by field surveys. Experts
including biologists, agronomists and forest ecologists are sent to the
field and visually identify features that are ecologically distinct. The
map produced by the experts is treated as the groundtruth without
further accuracy assessment. Using four criteria namely rarity, vulne-
rability, naturalness, and replaceability, each BVM class is assigned a
qualitative biological value: very high biotic value, high biotic value
and little biotic value (De Blust et al., 1994). This information is
important to assess the state of the environment. Our study area is
situated east of the town Geraardsbergen in the province of East-
Flanders within the so called “South Flemish loamy hill district” of
Belgium (Fig. 1). The valley of the river Dender crosses the northern
part. Species rich improved grasslands dominate this valley, but also
semi-natural grasslands (called Calthion-grasslands), poplar planta-
tions, alluvial and oak forests are present. The central and southern
parts are also crossed by some other small valleys of rivulets and wet
depressions dominated by the same type of vegetation. The forests
area in the central part (the Moerbeke forests area) consists mostly of
oak forests, and the rest belongs to those of beech forests and
woodland of alluvial soils. The interfluves mostly consist of arable
land, with a few of species poor to species rich improved grasslands.
The area is particularly suitable for our study because of a recent and
detailed survey done by only one field researcher. This leads to a high
level of uniformity of the mapping.

An adapted classification scheme with thirty-two classes was used
(Wils et al., 2004). To allow a more realistic assessment of the
classification on vegetation types, water surface and built-up areas
(houses and roads) which are known to be spectrally distinct from
vegetation were masked out in our experiments. Sixteen classes were
found to be present in our study area (Table 1). The tree classes include
scrubs, orchard and woods. The grassland classes represent different
degrees of species richness. Higher biological values are attached to
grassland types that are comparatively richer in species. From high to
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low biological values, the grassland classes rank in the following
order: semi-natural grasslands (hpgh), species rich improved grass-
land (hpgs), grasslands with patches hp and either patches hpgs or
hpgh (hpv), species poor improved grassland (hp) and grass mono-
cultures (hx).

Airborne HyMap data was acquired on 8th June, 2004. Pixel size is
4×4 m with 126 bands distributed between 0.4 and 2.5 μm. A level 2
product was generated after radiometric correction, geometric cor-
rection (ortho-rectified using bilinear resampling), atmospheric
correction and calibration. The image is geo-referenced in UTM with
WGS-84 Geodetic datum. Fig. 2 shows the overlay of the ecotope
classes over the airborne HyMap data. The dimension of the two
mosaic strips is 953×2330 pixels covering an area of approximately
35.5 km2. Field works were carried out during the day of the overpass
and the day after. A spectroradiometer ASD Fieldspec Pro FR (350 nm–

2500 nm) was used for ground measurements. Those measurements
were gathered to calibrate the airborne data as well as to assess the
data quality. To prepare the training and validation samples, the
groundtruth vector layer was first filtered by excluding the following
land covers: fallowed land, built-up area and water surface. Then,
samples were extracted manually and randomly divided into two
equal halves for training and validation (Table 2). The mean spectrum
of the grassland and the tree classes are presented in Fig. 3a and b,
respectively. The spectral profiles are artificially linked at the ab-
sorption regions around 1.35–1.4 μm and 1.8–1.95 μm, hence the
strange shapes.

3. Methods

In this section, we recapture some important properties of the
ensemble classification algorithms and band selection methods. But
first we will briefly describe the basic attributes of a decision tree
classifier. By applying certain statistical measures, a decision tree

recursively partitions the training data into more homogenous sub-
sets. A decision tree is composed of nodes at different levels: a root
node, a set of internal nodes (splits) and a set of terminal nodes
(leaves) (Fig. 4). The root node is formed from all of the training
samples. After a selected statistical measure is applied, the training
samples are split into two descendent nodes. The same procedure is

Table 1
Description of the ecotope classes

ID Category Class code Definitions

1 grassland b Arable land
2 grassland hp Species poor improved grassland

(normally more homogenous for the whole parcel)
3 grassland hpgh Semi-natural grassland
4 grassland hpgs Species rich improved grassland

(between hpgh and hp)
5 grassland hpv Grassland with patches hp and either

patches hpgs or hpgh
6 grassland hx Grass monocultures (equal to arable land sown

with grasses of one or more years)
7 tree/tall_veg f Deciduous forest, dominated by beech (Fagus sp.)
8 tree/tall_veg gml Plantation of deciduous tree species other

than beech, oak, alder and poplar
9 tree/tall_veg kj Tall tree orchard
10 tree/tall_veg kl Low tree orchard
11 tree/tall_veg lh Poplar plantation
12 tree/tall_veg p Conifer plantation
13 tree/tall_veg q Deciduous forest, dominated by oak trees

(Quercus sp.)
14 tree/tall_veg sc Scrubs of clearings and scrubs on

abandoned land
15 tree/tall_veg sp Thorn ticket
16 tree/tall_veg v Woodland of alluvial soil, fens and bogs

(mostly dominated by alder = Alnus sp.)

Fig.1. Study area. The background is an abstracted draft Biological ValuationMap covering the entire Flanders in Belgium. Ecotopes are assigned different degrees of biological values.
Locations of medium to high biological values are in green. White color represents less biological values and red areas are important for rare animal species (this layer is still under
construction). The zoom shows the coverage of the airborne HyMap image.
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then applied to the descendent nodes. This sequential applications of
the measure will form a tree-structured decision space with the
terminal nodes representing the assignment of classes. An unknown
pixel can be labeled by following the decision framework and is
assigned to the class the same as the leaf node which it finally falls
into. Different approaches can be used for tree construction. The more
frequently usedmeasures include the gini index (Breiman et al., 1984),
the information gain ratio (Quinlan,1993) and the chi-square measure
(Mingers, 1989a). These measures dictate how the data is split at each
node and also find the best thresholds for the splits. Furthermore, at
each node, the split can be based on either several bands or just only
one band. The tree is multivariate if each split is based on several
bands, or univariate if each split uses only one band. Multivariate trees
can have better performance when decision boundaries are better
described by a combination of features (bands), but they also
introduce complexity in calculations (Friedl & Brodley, 1997). In this
study, a univariate decision tree is used. Finally, a key element in tree
construction is to correct overfitting by pruning back the tree. Since
the tree is grown in a way such that all the training data are correctly
classified, if there are errors in the training set, an overfitting tree will
lead to poor performance in classifying data not used in the training.
Pruning can be done according to certain cost-complexity measures
which allow a split only if the contribution to accuracy improvement
has reached a predefined threshold. Some common pruning methods
are discussed in Quinlan (1987) and Mingers (1989b). As this paper
focuses more on ensemble classification, we refer the reader who is
interested in more detailed explanation about the construction of
decision trees to Pal and Mather (2003), Friedl and Brodley (1997), or
Quinlan (1993).

Decision tree classifiers have many advantages. Unlike most of the
conventional classifiers which derive a complex membership decision
using all the input bands at once, decision trees modulate a clas-
sification problem into a hierarchy of simple decisions with each
decision based on only one or several of the input bands. This strategy
makes the computing burden particularly light. A decision tree clas-

sifier is also non-parametric, so there is no requirement on data
distribution. The structure of the tree provides information about
which of the input bands have been used for classification. This helps
us to understand which bands are more important for our applica-
tions. However, decision trees are considered as ‘weak’ learners
meaning it is not the most accurate classification algorithm. Next we
introduce the two benchmark ensemble algorithms that are used for
boosting the accuracy of decision trees.

3.1. Random Forest and Adaboost

In Random Forest, the method to build an ensemble of classifiers is
to change the training set using the same strategy as bagging
(Breiman, 1996). Bagging creates new training sets by resampling
from the original data set n times, n being the number of samples in
the original training set, randomly with replacement. This means the
sample just being chosenwill not be removed from the data set in the
next draw. Hence, some of the training samples will be chosen more
than once while some others will not be chosen at all in a new set.
Bagging helps classification accuracy by decreasing the variance of the
classification errors. In another words, it taps on the instability of a
classifier. ‘Instability’ of a classifier means that a small change in the
training samples will result in comparatively big changes in accuracy.
The classifiers are combined by a majority vote and the vote of each
classifier carries the same weight. In the case of a tie, the decision can
be made randomly or by prescribed rules.

Random Forest creates multiple trees using the impurity gini index
(Breiman et al., 1984). However, when constructing a tree, Random
Forest searches for only a random subset of the input features (bands) at
each splitting node and the tree is allowed to grow fully without
pruning. Since only a portion of the input features is used and no
pruning, the computational load of Random Forest is comparatively
light. The computing time is in the order of T

ffiffiffiffiffi

M
p

Nlog Nð Þwhere T is the
numberof trees,M is thenumberof bands used in each split, andN is the
number of training samples (Breiman, 2001). In addition, in case a
separate test set is not available, an out-of-bag method can be used. For
each new training set that is generated, one-third of the samples are
randomly left out, called the out-of-bag (OOB) samples. The remaining
(in-the-bag) samples are used for building a tree. For accuracy
estimation, votes for each sample are counted every time when it
belongs to OOB samples. A majority vote will determine the final label.
Only approximately one-third of the trees built will vote for each case.
These OOB error estimates are unbiased in many tests (Breiman, 2001).
The number of features for each split has to be defined by the user, but it
is insensitive to the algorithm. Majority vote is used to combine the

Table 2
Number of samples in training and testing

ID Classes Number of training Number of testing

1 b 3712 3711
2 hp 928 928
3 hpgh 939 939
4 hpgs 6277 6277
5 hpv 910 909
6 hx 286 285
7 f 1663 1662
8 gml 852 851
9 kj 369 369
10 kl 607 607
11 lh 2802 2802
12 p 320 319
13 q 4907 4906
14 sc 675 675
15 sp 361 360
16 v 1259 1259

Total 26,867 26,859

Fig. 2. Overlay of the recently updated Biological Valuation Map on top of the HyMap
image at the area of Dender.
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decisions of the ensemble classifiers. For a full detail of Random Forest,
the reader is referred to the manual (http://oz.berkeley.edu/~breiman/
RandomForests/cc_home.htm) or Breiman (2001). A very good sum-
mary can also be found in Gislason et al. (2006).

Adaboost (Freund & Schapire, 1996) changes the distribution of the
original training set in a different manner. If εt is the misclassification
rate at trial t, then the weights of misclassified samples in the training
set will be changed by the factor βt=(1−εt) /εt. The total sum of the
adjusted weights is normalized to 1. The classifiers C1,…,Ct are
combined according to the weighted voting where Ct is weighted by
log(βt). The trials will be terminated if εtN0.5 (which means the
classifier's accuracy is worst than a random guess) and trial T is altered
to t−1. If ɛt=0 (i.e.100% accuracy), then trial T becomes t. In so doing,
Adaboost forces the newly constructed ensemble classifiers to focus
on ‘harder’ cases. The voting for the final labels is weighted by the
accuracy of each classifier. In this study, Adaboost is implemented
using C5.0 where the trees are constructed using the information gain
ratio (Quinlan, 1993).

3.2. Band selection methods

The first method is the OOB method implemented in Random
Forest (Breiman, 2001). Though the structure of a decision tree
provides information concerning important features, such interpreta-
tion is rather impossible for hundreds of trees in an ensemble. One
additional feature of Random Forest is its ability to evaluate the
importance of each input feature by the internal OOB estimates. To
evaluate the importance of each feature (band), the values of the m
feature (band) of the OOB samples would be allowed to permute. The
perturbed OOB samples will run down on each tree again. The
differences in accuracy between the original and the perturbed OOB
samples over all the trees grown in the Random Forest are averaged.
This number will become the importance score of the m feature
(band) and is used as a ranking index. We will use the 25 highest
ranking bands from the OOB method.

The second band selection method we used is a wrapper method
using the best-first search as the search algorithm (Kohavi & John,1997).

Fig. 3. Mean spectrum of the (a) six grassland classes and (b) ten tree classes.
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Current feature selection techniques can be classified as either filter
approaches or wrapper approaches. A filter approach defines relevancy
of features based on the training data alone, and the feature subsets are
chosen independently of the learning algorithm. It is like a preproces-
sing step. Wrapper approaches, however, search for the best feature
subset using the learning algorithm as part of the evaluation function.
The feature subset with the highest accuracy is selected. Wrapper
approaches are reportedly producing superior results than filter
approaches (Kohavi & John, 1997). While wrapper approaches are
producing better accuracy, it is computationally heavy because it has to
call on the learning algorithm for the evaluation of each subset. Hence, a
faster search engine is needed. Conventional methods that exhaustively
search the entire search space (all feature combinations) are impractical
unless the number of feature is small. The best-first search is a method
that avoids searching the entire search space (Ginsberg, 1993). The idea
of best-first search is to jump to the most promising band subset which
is defined as the subset with the highest accuracy. Fig. 5 illustrates the
paths of the best-first search algorithmusing a scenariowith four bands.
Each bit within the square brackets shows the presence (1) or absence
(0) of a band. For example, [0,1, 0,1] represents a subsetwith the second
and the fourth bands. The number next to eachbracket is the accuracy of
that subset evaluated by the learning algorithm. The search starts with
no feature, hence [0, 0, 0, 0]. Then, it proceeds to turn on consecutively
each of the four bands. Since the first band attained the highest accuracy
(65%), the search continues to expand on its children which represent
new subsets that always have the first band present. The same logic
applied to the next expansionwhere adding the fourth band to the first
gives the highest accuracy. The search stopswhen the highest attainable
accuracy was achieved. Since it is not always possible to achieve 100%
accuracy in reality, the search is stopped when the estimated accuracy
no longer improves, and the feature subset at that search state re-
presents the optimal subset.

This method has been tested on 18 real-world datasets from the U.C.
Irvine machine learning repository in Kohavi and Sommerfield (1995),
and 14 datasets in Kohavi and John (1997). Their results showed that for
most data sets, the feature subsets increased accuracy. In rare cases, the
feature subsets would lower accuracy. When applied in remote sensing
data, the method generated a substantially smaller subset but the
accuracies were comparable with the entire feature set (Chan et al.,
2000). We applied this method using the Feature Subset Selection

routinewithin theMachine Learning Library in C++ (Kohavi et al., 1996).
The search is terminated if the last 5 expansions see no increase of
accuracy that is more than 0.001%.

4. Experiments and results

We implemented the same procedures for Adaboost and Random
Forest. A hundred trees were built and the accuracy snapshots of each
additional ten trees were shown. Adaboost was run using C5.0 with a
default pruning of 25%. The only parameter with Random Forest is
the number of features (bands) used for each split. Following the
suggestion in the manual, this parameter was tried from 1 to 12
(square root of the number of input features) to build 10 and 20 trees.
The number that has the highest accuracy with the test set is chosen
(Table 3). In the case of using all 126 bands, this number is twelve. The
accuracy of Adaboost after 99 trials is 69.5%, a 9% increase compared to
a single C5.0 tree (60.2%). However, accuracy already reached 69% at
29 trials (Fig. 6). In the case of Random Forest, one tree produced an
accuracy of 57.1%, 3% lower than a C5.0 tree. Generating 70 or 90 trees
increased the accuracy to 68.6% which is comparable to Adaboost. The
accuracies of Random Forest and Adaboost are both higher than
conventional classifiers. With the same training and test samples, a

Fig. 5. An example showing the paths of the best-first search in a case with four bands.
Zeros and ones within the square brackets represent the absence and the presence,
respectively, of each band. Instead of exhaustively looking into all possible combina-
tions, the best-first search jumps to the most promising subset – the subset that has
achieved the highest accuracy so far, and expands on their children nodes.

Fig. 4. A hypothetical decision tree classifier with three input bands (b1, b2 and b3). At each of the root and internal nodes (splits), a statistical measure is applied. The values a, b, c
and d are thresholds for splitting. A data set is subdivided into smaller groups until the terminal nodes (leaves) which contain the class labels (A, B and C). This figure is adapted from
Fig. 1 in Friedl and Brodley (1997).
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multi-layer perceptron produced 63.7% accuracy and a Spectral Angle
Mapper is even lower, under 30%.

The selections from the OOB method under the Random Forest, and
thewrapper approachwith the best-first searchalgorithm (hereafterwe
use ‘best-first’ to represent this method) are listed in Table 4. In order to
have a comparison of the band distribution of different selection
methods, the OOB, the best-first, and the Thenkabail's subsets are
plotted in Fig. 7. The waveband regions are named following the
convention in Thenkabail et al. (2004): VIS=visible (0.450–0.750 μm);
NIR=near infrared (0.751–1.050 μm); FNIR=far near-infrared (1.051–
1.300 μm); ESWIR=early short-wave infrared (1.301–1.900 μm);
FSWIR=far short-wave infrared (1.901–2.500 μm). Thebest-firstmethod
selected 21 out of 126 bands. The OOB method in Random Forest has
ranked each feature according to their importance in accuracy. The first
25 bands are used and their scores are plotted in Fig. 7. The bands
selected by the best-first and the OOB methods have two similarities in
terms of the waveband regions. First, both have skipped almost the
entire spectral region at 0.8–1.2 μm which belongs to the NIR and the
FNIR. Second, both methods have a large number of bands located
within the SWIR, in particular the ESWIR. The best-first and the OOB
methods have selected respectively thirteen and seventeen bands from

theSWIR.Aclearconcentration is found in theESWIRwithnineof the25
OOB bands and eight of the 21 best-first bands.

Some clear differences can be found between the band distribu-
tions of the OOB and the best-first subsets and that of the Thenkabail's
subset. Thenkabail's bands are more evenly distributed and have
higher concentrations in the VIS, the NIR and the FNIR (0.4 to 1.3 μm).
The OOB and the best-first subsets, however, focus more on the ESWIR
and the FSWIR, especially between 1.3 and 1.9 μm. Previous studies
have shown that the SWIR has high correlation with water thickness
and plant moisture content (Hardisky et al., 1983; Yilmaz et al., 2008).
The importance of the SWIR for vegetation and cropland is well-
known (Thenkabail et al., 1994) and actually it was also the goal in
Thenkabail et al.'s (2004) study to explore the potential role of the
SWIR. Their results showed that FNIR bands were more effective than
SWIR bands in increasing accuracies. The importance of SWIR in our
study area is more apparent as illustrated by the results of the band
selection algorithms. It should be noted that climatic conditions in the
African savanna ecoregions are quite different from our study area due
to the latitudinal and geographical differences. For example, pre-
cipitation contrast between dry and wet seasons is high in African
savanna. Comparatively, precipitation in our study area of Belgium is

Fig. 6. Snapshots of overall accuracies at 10 trees interval for Adaboost and Random Forest using different band subsets. Their results are compared to using all the bands (Adaboost-
all and RF-all). The accuracies with only one tree are not shown in order to have a better visualization of different input scenarios.

Table 3
Accuracies for the out-of-bag estimates and the test set with five different band subsets

ALL First-Best Thenkabail RF_25 Combine_53

Trees 10 20 10 20 10 20 10 20 10 20

Split Out-
of-bag
acc.
(%)

Test
set
acc.
(%)

Out-
of-bag
acc.
(%)

Test
set
acc.
(%)

Out-
of-bag
acc.
(%)

Test
set
acc.
(%)

Out-
of-bag
acc.
(%)

Test
set
acc.
(%)

Out-
of-bag
acc.
(%)

Test
set
acc.
(%)

Out-
of-bag
acc.
(%)

Test
set
acc.
(%)

Out-
of-bag
acc.
(%)

Test
set
acc.
(%)

Out-
of-bag
acc.
(%)

Test
set
acc.
(%)

Out-
of-bag
acc.
(%)

Test
set
acc.
(%)

Out-
of-bag
acc.
(%)

Test
set
acc.
(%)

1 72.40 65.52 77.20 67.05 74.02 63.73 78.78 65.76 73.18 66.01 78.10 67.12 71.29 65.72 76.43 67.02 73.79 65.75 78.32 67.59
2 74.40 65.72 79.01 67.38 76.07 65.64 80.22 66.85 75.16 65.76 79.65 67.07 73.15 65.39 77.84 66.73 75.50 66.53 80.08 68.03
3 75.21 65.62 79.78 67.01 76.20 65.30 80.34 66.44 76.11 66.42 80.33 67.60 74.07 65.56 78.38 66.57 76.22 66.98 80.68 67.75
4 76.07 65.89 80.35 67.06 76.99 65.65 80.85 66.83 76.41 66.27 80.78 67.30 74.08 65.42 78.61 66.57 76.71 66.62 81.06 67.71
5 76.44 66.43 80.70 67.57 76.85 65.87 80.93 67.29 76.66 66.27 80.88 67.64 74.45 65.62 78.96 66.71 76.85 66.51 81.42 67.44
6 76.57 66.03 80.74 67.65 77.24 65.71 81.19 66.72 76.78 66.72 81.08 67.69 74.41 64.93 78.62 66.04 77.21 66.83 81.45 67.95
7 76.70 66.64 81.11 67.58 77.07 65.62 81.32 66.62 77.23 66.79 67.69 67.57 74.68 64.85 78.81 66.12 77.27 66.93 81.46 68.02
8 77.19 66.62 81.55 67.71 77.13 65.38 81.42 66.46 77.06 66.93 81.39 67.87 74.79 64.70 79.19 65.80 77.37 66.46 81.49 67.86
9 77.00 66.27 81.33 67.39 77.26 65.78 81.36 66.73 77.50 66.94 81.26 68.05 74.85 64.99 79.08 66.00 77.94 66.68 81.88 67.94
10 77.50 66.44 81.41 67.67 77.79 65.60 81.75 66.63 77.38 66.62 81.26 68.05 74.79 64.94 79.32 66.17 77.46 67.02 81.79 68.14
11 77.20 66.53 81.30 67.63 77.73 65.63 81.62 66.43 77.63 66.75 81.45 67.82 74.68 64.60 78.77 66.01 77.62 67.01 81.80 67.82
12 76.99 66.65 81.46 67.71 77.66 65.79 81.51 66.23 77.79 66.21 81.71 67.38 74.62 64.84 78.96 65.91 77.81 67.25 81.80 68.46

The numbers for the splitting is tried from 1 to 12 and 10 and 20 trees are built.
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constant and remains high throughout the year. These differences will
bring different phenologies and could contribute to the differences in
band selections.

We applied Adaboost and Random Forest using different feature
subsets. In the case of RandomForest, thenumberof features (bands) for
each split for the best-first subset and the Thenkabail's subset are 5 and
9, respectively (Table 3). For the OOB subset, there was a disagreement
between the results from 10 and 20 trees. An averagewas taken and the

number with the highest average accuracy rate from the test set was
chosen. The number for the split is one. The accuracies of Adaboost and
Random Forest on all different subsets are very comparable at around
68.5% (Table 5). The two worst cases are found to be Adaboost with the
OOB subset where the accuracy is 2.6% lower and Random Forest with
the best-first search subset, the accuracy is 0.8% lower. Comparatively,
Random Forest is slightly more robust than Adaboost with different
inputs because its accuracy almost does not change. Apparently, all
feature subset selection methods produce rather good results even
though the selected bands have rather different distributions.

The OOB is a data-driven method. It is like a leave-one-outmethod,
where each band is left out consecutively to check its influence on
accuracy, cleverly implemented in an ensemble scenario. It is much
faster than the best-first method which is heuristic and does not
search the entire search state, or all the combinations. The result of the
best-first is not considered optimal, or unique. However, it has a better
average accuracy over the two classifiers (Table 5).

A last experiment was performed combining all feature subsets. A
combined subset was formed with 53 bands (see its distribution in
Fig. 7). The number of split for Random Forest is found to be 12 (see
Table 3). The accuracies of Random Forest and Adaboost are 68.8% and
69.5%, respectively. Comparing to the entire set, the combined set has
attained the same accuracy with Adaboost and even a little higher
accuracy (+0.2%) with Random Forest.

Figs. 8 and 9 show the accuracy performance of different inputs at
class level for Random Forest and Adaboost. Random Forest has higher
accuracies with v, hpgh and hpgs, while Adaboost does better with hx, kj,
kl, lh, q and sc. In terms of input subsets, there is no evidence that any
feature subsets has absolute advantage over any individual classes.

Fig. 7. The distributions of selected bands from the best-first method (Best_First_21), the out-of-bag method (OOB_25) and the optimal wavebands from Thenkabail et al. (2004)
(Thenkabail_22). The scores of the 25 highest ranked features using OOB estimates are also shown.

Table 4
Selected bands from different methods

Best-first search
(21 features)

Thenkabail (2004)
(22 features)

Out-of-bag
(25 features)

Number
of
bands

Band
ID

Band centers Band
ID

Band centers Band
ID

Band centers

μm μm μm

1 5 0.497 5 0.497 2 0.452
2 7 0.528 9 0.558 4 0.482
3 9 0.558 15 0.650 19 0.711
4 14 0.635 17 0.680 20 0.725
5 15 0.650 19 0.711 21 0.740
6 18 0.695 21 0.740 22 0.756
7 19 0.711 31 0.879 24 0.786
8 55 1.244 33 0.912 25 0.801
9 66 1.448 38 0.991 63 1.405
10 67 1.462 44 1.084 64 1.420
11 70 1.504 47 1.129 65 1.434
12 74 1.558 53 1.216 66 1.448
13 77 1.597 55 1.244 67 1.462
14 78 1.610 57 1.273 71 1.517
15 89 1.747 66 1.448 74 1.558
16 94 1.806 84 1.685 82 1.661
17 100 2.047 87 1.722 87 1.722
18 108 2.188 97 1.991 96 1.972
19 112 2.257 99 2.028 97 1.991
20 118 2.356 111 2.24 109 2.205
21 119 2.372 113 2.274 110 2.223
22 116 2.323 112 2.257
23 113 2.274
24 124 2.451
25 126 2.467

Table 5
Overall accuracy of using different band subsets

Number of bands Adaboost Random Forest

All bands 126 69.5% 68.6%
Thenkabail 22 68.5% 68.6%
Best-first 21 68.6% 67.8%
Out-of-bag 25 66.9% 68.5%
Combine all subsets 53 69.5% 68.8%
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As mentioned above, Random Forest uses only a portion of the
input features for each split which makes it computationally lighter.
Fig. 10 shows the differences in time between these two algorithms. It
is based on a Pentium IV machine at 3.4 GHz. For Adaboost, 100 trees
(or with 99 boosting trials) with 126 bands takes a bit more than
35 minutes, compared to 5 minutes with Random Forest. Using 22
bands to build a hundred trees, Random Forest will take one and a half
minutes compared to almost 5 minutes with Adaboost. This difference
in computational time will grow significantly larger with higher
number of bands. Naturally, this will become important only when the
classification has to be finished in a very short period of time, as in an
emergency situation, or it has to be repeated hundreds and thousands
of times. For the application in this study, the difference in elapsed
time of the two classifiers is insignificant.

Another important criterion in the operational context, other than
accuracy and computing time, is stability. An algorithm gives stable
results implies that it is not over-sensitive to variability in reflectances

caused by bidirectional effects, solar zenith angle, or other factors
unrelated to a change of land covers (DeFries & Chan, 2000). A minor
change in the trainingdata does not alter greatly the classification result.
We assess the stability of the two ensemble classifications using the
K-error diagram (Margineantu & Dietterich, 1997) which has been
applied in classification algorithms using remotely sensed data (Chan
et al., 2001, DeFries & Chan, 2000). This diagram helps to visualize the
relationship between stability and accuracy of an algorithm. The original
training set was randomly sampled 10% ten times, creating 10 new
training sets. This resampling approximates a minor change in the
training set. A degree-of-agreement statistic K is calculated for each pair
of classifications generated from each of the 10 training sets. A scatter
plot can then be createdwith each point representing a pair of classifiers.
The x coordinates is the stability value (K) and the y coordinates is the
average accuracy of the pair of classifiers. When K=0, the agreement
of the two classifications is entirely by chance; when K=1, the pair agree
on every sample. For a stable algorithm, the plot will produce a compact

Fig. 8. Class accuracies from Random Forest using different band subsets. RF-all represents the accuracies with all the 126 bands.

Fig. 9. Class accuracies from Adaboost using different band subsets. Adaboost-all represents the accuracies with all the 126 bands.
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cloud with similar values close to 1. If on a contrary the values of K are
spread out and farther away from the value 1, the algorithm is considered
less stable. Since the formula of the K statistic is quitewell-knownwithin
the remote sensing communities, we do not repeat here. Instead the
reader is referred to Margineantu and Dietterich (1997) or DeFries and
Chan (2000). Only to note that the conventional use of the kappa values
in accuracy assessment is to compare the classification result with the
groundtruth labels. For the purpose of stability assessment, it compares
theresults fromeachpairof theclassifiers. From10 trainingsets, a total of
10C2=45 pair values are created.We have plotted the K-error diagram for
each of the five input scenarios for both Random Forest and Adaboost
(Fig. 11). In all input scenarios, the K values (internal agreements) of
Random Forest are higher than those of Adaboost. This shows that the
former is a more stable algorithm. The coefficient of variation (c.v.) is
given for each plot tomeasure the degree of variation for each spread. In
all scenarios except the best-first subset, Adaboost has a higher c.v. value
than Random Forest, though the differences are small. In terms of
stability, Random Forest has outperformed Adaboost.

In summary, both Adaboost and Random Forest are powerful
learning algorithms. Though Adaboost has marginally higher accuracy
(b1%) when using all the bands, it is slightly less robust to different

feature subsets as compared to Random Forest. The latter is also more
stable and cheaper in terms of running time. All of the subsets worked
well. Comparable accuracies are obtained using roughly 17% (21 bands)
to 20% (25 bands) of the original feature set. Selections from the two
band selection methods, the OOB and the best-first, agree on the im-
portance of the SWIR, especially the ESWIR. The combination of dif-
ferent subset selection results has produced the best accuracies.
However, it should be noted that, like bagging, Adaboost is only an
algorithm to change the training set. It is not equippedwith the features
used in Random Forest such as the random feature subset for splitting
and theOOB estimates. Both features in theory can also be implemented
with Adaboost. Hence, a direct comparison between Adaboost and
Random Forest should be handled with care.

5. Applicability of hyperspectral data for ecotope mapping

To date, most ecotope mapping tasks are done manually. This
survey-driven approach is labor-intensive and time-consuming. If the
task can be partially replaced by automated procedure using remote
sensing methods, it will save a lot of resources. A classification of the
Biological Valuation Map based on the Adaboost classifier is shown in

Fig. 10. A comparison of computing burden between Adaboost and Random Forest using 126 and 22 bands.

Fig. 11. K-error diagram for all different input subsets with Adaboost and Random Forest (RF). Coefficient of variation (c.v.) for each band subset is shown in the legend.
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Fig. 12. In this section, we discuss the possibility of utilizing hyper-
spectral data for ecotope mapping by analyzing the confusion matrix.
We will focus on the confusion matrix of Adaboost using all the bands
(Table 6) which gives the highest overall accuracy at 69.5%.

5.1. Grasslands and arable land

Even though some classes are poorly separated, it is observed that
some regrouping or merging of classes will immediately improve the
applicability of the method. It is clear that arable land (b) and grass
monocultures (hx) can be distinguished at high accuracies and that both
differ clearly from the permanent grasslands group (hp–hpv–hpgs–
hpgh). Though there are special interests in separating the permanent
grasslands group into more specific subgroups, our results suggest that
this will be rather difficult even with hyperspectral data. The major
confusions within the group can be attributed to the class descriptions
that are bydefinition rathermixed. Forexample, a lot of the semi-natural
grassland (hpgh) pixels are assigned to species rich improved grasslands
(hpgs) which is actually a transitional class between species poor im-
proved grassland (hp) and hpgh. A land parcel labeled as hpgs can in fact
consist of different proportion of hpgs, hpgh and hp. Furthermore, hpv
are grasslands with scattered nature values and within the study area
most of these grasslands are in fact a mosaic of hp and hpgs. Apparently,
they can not be separated. However, it would be already a valuable
application if we could producemaps representing three classes: arable
land (b), grass monocultures (hx) and permanent grassland (hp–hpv–
hpgs–hpgh). This is important for environmental policies as there are
some legislation rules concerning permanent grasslands (Wils &
Paelinckx, 2004). The remote sensing techniques can be used to reduce
the amount of field work to search and map these grasslands.

5.2. Tree classes

The results for deciduous forests (f and q class, respectively do-
minated by beech and oak) and for poplar and conifer plantations are
promising (Table 6). Also the accuracy for plantations of other deciduous
trees (gml) is not bad. In all cases it is possible that the degree of accuracy
is even higher because:

– Within the class of deciduous forests dominated by beech (f), most
“misclassifications” are assigned to the class of deciduous forests
dominated by oak (q) and vice versa. In fact the BVM legends f and
q reflect the dominant tree species, so it is possible that beech
occurs in an oak forests and vice versa.

– In the case of the class poplar plantation (lh), there is a high
commission error of lh to q. In reality, oak trees (q) can occur in
poplar plantation (lh). In such cases, this is not an error.

– For the class of plantations of deciduous tree species other than
beech, oak, alder and poplar (gml), there is a large amount of
misclassification to poplar plantation (lh) indicating real misclas-
sifications. However, the misclassification of gml to oak trees (q)
might in fact be oak trees within gml.

The reached accuracy to distinguish scrubs (sc) from other eco-
topes, and even to distinguish them from thorn tickets (sp) is pro-
mising. The accuracies for orchards kj and kl are good. Interestingly,
almost all “misclassifications” for the tall tree orchard (kj) are within
the class species rich improved grasslands (hpgs). This could be ex-
plained by the fact that the legend unit kj of the BVM represents a tree
coverage ranging from 20% to 100% and within the study area many of
these orchards have a hpgs vegetation underneath the trees.

Fig. 12. On the left is the ground truth image of the Biological Valuation Map. On the right is the Biological Valuation Map classification based on airborne hyperspectral data using 99
trials of Adaboost with 21 bands selected by the best-first search method. The black areas represent unclassified land covers that have been masked out.
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The accuracy of the woodland of alluvial soil, fens and bogs (v) is
poor at only 37% with Adaboost, but it is much higher with Random
Forest at 60% (compare Figs. 8 and 9). This higher accuracy with
Random Forest, though, implies tradeoffs in other classes. The reason
for the low accuracy of this class with Adaboost is related to the
algorithmic formation of C5.0 rather than the ineffectiveness of the
spectral information. More training pixels from more test sites might
improve the accuracy of class v. Nevertheless, as most misclassifica-
tions of v are placed in the classes of poplar (lh) and oak (q), these can
be also due to the fact that the dominant tree species (Alnus) are
shadowed by taller poplar and oak trees. The mixed nature of these
ecotopes makes them a challenge to classify.

6. Conclusions

In this study, we assess the utility of two tree-based ensemble
classifiers, Adaboost andRandomForest, for the classificationof detailed
ecotopes using hyperspectral data. Two feature subset selection
algorithms are also examined, together with the optimal wavebands
suggested in Thenkabail et al. (2004). Our evaluation criteria include
accuracy assessment, training time and also stability. In terms of accu-
racy performance, Random Forest and Adaboost are almost the same
and bothhave outperformed a neural network classifier. Training time is
shorter for Random Forest which is expected because it used only a
random subset for each split and applied no pruning. Random Forest
generated comparatively more stable results with higher internal
agreements as shown by the K-diagram plots. When provided with
different feature subsets, Random Forest is more robust than Adaboost,
though the differences are considered marginal. The highest overall
accuracy, nevertheless, is obtained from Adaboost. Due to relatively few
requirements forparameter settings, both algorithmsare easy touse and
their results are highly reproducible. We note that direct comparison
between these two classifiers needs to be careful as some features such
as the random feature subset andOOB strategy can also be implemented
with Adaboost. This study concludes that both classifiers are efficient in
handling hyperspectral data and either of them can be a good choice for
our application.

Both feature selection routines, the best-first search and the out-
of-bag ranking index under Random Forest, are successful in
identifying substantially smaller band subsets that attained almost
the same accuracy as all the bands. Thenkabail's bands worked equally
well. The use of a smaller feature set significantly reduces computing
time. This is more beneficial to Adaboost since Random Forest has

already rather light computing burden. One interesting finding is the
concentration of the selected bands, for both methods, in the early
shortwave infrared region (1.3–1.9 μm), and both have excluded pre-
sumably important wavebands at the near infrared and far infrared
regions between 0.5 and 1.3 μm. These results signal the importance of
SWIR for ecotope classification. However, more studies are needed for
more conclusive statements. The feature set which combined three
individually derived feature subsets with 53 bands have produced the
best accuracy. This supports the idea of using a basket of feature
selection methods, instead of just one.

Though the best overall accuracy of the 16 ecotopes is only 69.5%,
individual classes have much higher accuracies. Arable land (b) and
grass monocultures (hx) have over 90% accuracies. Five out of the ten
tree classes have attained accuracies over 80%. The mixed natural
of some grassland classes, however, have made separation impossible.
An adaptation of the classification scheme to create a class of
“permanent grassland”would enhance the applicability of the remote
sensing method.
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