33.5

Energy Characterization of Filesystems for Diskless
Embedded Systems

Siddharth Choudhuri

University of California, Irvine
Irvine, CA

sid@ics.uci.edu

ABSTRACT

The need for low power, small form-factor, secondary stor-
age devices in embedded systems has led to the widespread
use of flash memory. Energy consumption due to processor
and flash for such devices is critical to embedded system
design. In this paper, we have proposed a quantitative ac-
count of energy consumption in both processor and flash
due to overhead of filesystem related system calls. A macro-
model for such energy consumption is derived using linear
regression analysis. The results describing filesystem energy
consumption have been obtained from Linux Kernel run-
ning Journaling Flash Filesystem 2 (JFFS2) and Extended
3 (Ext3) filesystems on StrongARM processor with flash as
secondary storage device. Armed with such a macromodel,
a designer can choose to partition filesystem, estimate the
application energy consumption (processor and flash) due to
filesystem during the early stage of system design.

Categories and Subject Descriptors

D.4 [Operating Systems]: System Program and Utilities;
1.6.5 [Simulation and Modeling]: Model Development

General Terms

Measurements

Keywords
Diskless, Flash, Macromodel

1. INTRODUCTION

Power aware design of embedded systems has emerged
as one of the key design issues. The design of embedded
operating system can greatly affect the performance of the
overall system both in terms of performance and energy
consumption. Embedded operating systems, unlike conven-
tional desktop operating systems have limited memory foot-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

DAC 2004, June 7-11, 2004, San Diego, California, USA.

Copyright 2004 ACM 1-58113-828-8/04/0006 ...$5.00.

566

Rabi N. Mahapatra
Texas A & M University
College Station, TX

rabi@cs.tamu.edu

print and functionalities depending on the underlying ar-
chitecture and application requirements. Though hard disk
drives are the de-facto standard for secondary storage in
conventional desktop systems, they do not fit in the realm
of embedded systems. This has lead to the widespread use
of a ROM, EEPROM or flash based devices as means of sec-
ondary storage. With the growth of embedded systems cou-
pled with the need for having increasingly larger amounts
of storage space, we are likely to see a significant growth
in the storage capacity of flash based systems. One of the
components in an operating system is the filesystem layer
that interacts with flash memory through flash-driver. The
flash-driver is responsible to initiate activities like flash read
or flash write and deals with the secondary storage. Thus,
an energy efficient design of filesystem for flash memory be-
comes imperative to reduce the energy consumption in such
devices. A study on filesystem energy consumption would
require an experimental setup that adds to the cost and time
to market. The aim of this work is to devise a quantitative
study of filesystems for flash based device and provide en-
ergy consumptions using quantitative macromodel.

2. RELATEDWORK AND OUR APPROACH

A recent study of energy management of virtual mem-
ory for diskless devices has been carried out in [1]. This
work concerns energy management for the main memory
and does not consider secondary storage. An energy con-
sumption simulation framework has been proposed in [5].
Flash-memory based filesystems were implemented in [2,
8]. The implementation in [8] is a flash based journaling
filesystem called JFFS2 and has been in widespread use.
However, energy characterization of such filesystem has not
yet been studied. Macromodeling of operating system en-
ergy consumption has been proposed in [3, 4] where, a linear
equation based model has been suggested to relate energy
consumption in processor to low level system calls. Energy
macromodel for various operating system related activities
like context switch, signal handling have been developed to
find a relation between various subsystems of an operat-
ing system to processor energy consumption. Our work is
motivated by these studies and extends to investigate file
systems which is an important component of today’s flash
based embedded systems. This work focuses on macromod-
eling filesystem energy consumption in terms of both energy
consumed by the processor and the secondary storage, hence
differs from [3].

We introduce a macromodel that relates the processor and
flash energy consumption as a function of system calls. To

our knowledge, this is a first step towards filesystem related
energy characterization of flash based devices. Further, we
have derived macromodels for two of the popular filesys-
tems Ext3 and JFFS2 [9, 8]. An embedded systems de-
veloper can use the macromodel early in the design phase
to 1. Choose between different filesystems. 2. Estimate
the energy consumption of applications due to the filesys-
tem activities. 3. Tune the file transfer activities to reduce
the power consumption in a system. The macromodel can
be used without actually having energy measurement setup.
Also, splitting the energy consumption due to filesystem ac-
tivity into processor and flash shall provide opportunity for
an in-depth analysis and trade offs for the designer.

3. EXPERIMENTAL SETUP

Our experimental setup consists of a LART board [6]
based system with Intel StrongARM SA1100 processor and
Linux 2.4.18 as the OS. A PCI based data acquisition sys-
tem integrated with Lab-view serves as the power measure-
ment system for the processor. In order to profile the energy
consumption, GPIO signals are sent using a driver that is
implemented as a /proc/trigger interface in the kernel. This
signal serves to start and stop the energy measurements dur-
ing filesystem activities. The processor energy consumption
measured between the start and stop intervals (separated by
the two triggers), is given by the following equation

TRIGSMP Vsense (t)
Ecpu = —_— X% Vdd dt
TRIGStaTt RSG’!LSS

(1)

The energy consumption of flash is calculated using traces
taken from flash memory accesses. We added code to the
existing flash driver that calculates the energy consumption
depending on the mode and access time of the flash mem-
ory. A new kernel data structure consisting of linked list is
introduced, that has per process flash read and flash write
energy consumption information. The energy consumption
per process is calculated using the following equation

(2)

The value of I,,04e is obtained from [7] depending on what
kind of operation is being done (read/write/program/erase).
The flash access duration, tgccess is calculated using the
timer function provided by the kernel. Whenever a process
accesses flash, the energy consumption is automatically cal-
culated by the kernel using Equation (2). This data is logged
in a /proc interface based on a per process energy consump-
tion. There are two separate proc entries /proc/witrace and
/proc/rtrace that log the write and read energy consumption
respectively. The overall procedure for profiling the flash en-
ergy consumption is given in Figure 1. The Virtual Filesys-
tem (VFS) layer converts the “generic” filesystem related
system calls into filesystem “specific” calls and delegates it
to the appropriate filesystem layer below it. The profiler
layer on top of the flash driver profiles the write and read
requests separately and outputs information on two differ-
ent files in /proc (for read and write). The data is used for
generating macromodel for flash energy consumption. The
4 MB of NOR flash on the LART board has three partitions
for boot-loader (128 KB), Linux kernel (896 KB) and a 3MB
partition for the filesystem under study to be profiled. The
root partition is mounted by the kernel as a ramfs filesystem
in the DRAM. The reason is that the root partition writes a

Eflash = Via * Imode * taccess

567

Applications

USER SPACE

| System Call Interface |

Iproc/wtrace

VFS

KERNEL SPACE

1
| Do 1

£
’

Writes

| ramfs || jffs2

/proc/rtrace

flash driver

Reads

Regression Ahalysis
Macromodel
Figure 1: Profiling flash accesses

number of files in /tmp and /var directories. If the root par-
tition was to be mounted on flash, these writes and reads
would interfere with the actual read and write operations
being measured.

4. MACROMODELING

A mathematical macromodel for the energy consumption
analysis is developed as follows. Let Ecp,(x) = Energy con-
sumption of CPU due to x bytes of data in a filesystem op-
eration. Similarly, we have Ey,(z) and Ef.(z) as the write
and read energy respectively. Since the energy consumption
of the processor and the flash are directly proportional to
the number of bytes that are written to or read from the
file, we have the following linear relation between Energy
and bytes:

E(z) = Az+B (3)

Specifically, we will have three such equations corresponding
to CPU, write and read operations. In order to solve the
above equations, we need to establish the values of constants
{(Ai, B;)} using variable z. If we have a set of n values
{(eo, z0), (€1, z1), (e2, x2), ..., (én, Tn)} that relate the
energy consumption e; to bytes z;, using standard results
from regression analysis [10], the relation can be expressed
in the form of a general matrix relation

o 1 €0
r1 1 A €1

: * =1 (4)
In 1 €n

5. PROFILINGFILESYSTEM ACTIVITIES

This section gives a description of the process adopted to
profile filesystem activities. The following steps illustrate
the methodology

STEP 1 The macros are written such that they highlight
the required filesystem activity.

STEP 2 In this step the macro is run and the energy
consumption due to processor is obtained from the energy
measurement setup. The energy consumption due to flash is
obtained by reading the profiled data from the /proc/wtrace
and /proc/rtrace interface.

STEP 3 Steps 1-2 are repeated with ‘n’ different data
sizes. The size of data is varied from 4 bytes to 64KB in
increasing powers of two. This is done in order to ensure
that a new block is created in the inode to store the large
files. This size represents the variable z in Equation (3).
After repeating this for ‘n’ different data sizes, we have a
set of n values {(eo, z0), (€1, z1), (e2, x2), ..., (én, T»)} that
relate energy consumption to bytes.

STEP J The values of processor and flash energy con-
sumption is tabulated against varying values of z (from the
previous step). Solving Equation (3), we get the values of
Acpus Bepu, Afw, Bfr, Agr, Ay for each filesystem opera-
tion of Step 1.

STEP 5 The error due to such a model is given by

~1

P

FE,, = The measured energy using macromodel equations
E, = The actual energy from measurement or simulation

E’!?L - Ea

error =
E,

)? (®)

6. EXPERIMENTAL RESULTS

We considered two filesystems in our case studies, Journal-
ing Flash Filesystem (JFFS2) and Extensible Filesystem-3
(Ext3). JFFS2 is a log structured filesystem developed for
flash based devices [8]. Extensible filesystem-3 (Ext3) is a
journaling filesystem based on conventional EXT?2 filesystem
[9]. The reason for using Ext3 and JFFS2 was to study two
filesystems that have the same design goals of having journal
information available in the filesystem along with data and
meta-data in order to improve availability and robustness.

System Call JFFS2 Ext3

CPU Energy Err | CPU Energy | Err

creat 21750 0.09 18000 0.17
link 23750 0.09 17775 0.15
chown 20000 0.15 15750 0.02
mkdir 19750 0.02 19750 0.06
rmdir 23250 0.02 19500 0.05
mkfifo 21750 0.15 19000 0.13
write 12.67x + 48885 | 0.02 | 80x + 14320 | 0.06
rename 33500 0.01 18500 0.06
unlink 93x - 27755 0.40 | 1.8x + 14320 | 0.29
read 29x + 18976 0.06 | 46x + 12365 | 0.03

Table 1: Processor Energy (nJ): System Calls

System Call | Write Energy | Err | Read Energy | Err
creat 21211 0.12 2122 0.0
link 8984 0.24 169 0.31

chown 13258 0.12 1083 0.0
mkdir 21332 0.06 2068 0.0
rmdir 12187 0.07 166 0.05
mkfifo 21070 0.07 228 0.03
write 178x + 30496 | 0.06 | 0.03x 4 169 | 0.03
rename 18870 0.21 227 0.26
unlink 0.25x 4 11918 | 0.89 90 0.10
read 0.04x + 262 0.19 35x + 356 0.40

Table 2: JFFS2 Flash Energy(nJ) : System Call

Tables 1, 2 and 3 show the energy consumption macro-
model in terms of system calls. This is an important metric
as every user level filesystem related operation eventually

568

System Call | Write Energy | Err | Read Energy | Err
creat 262144 0.31 13745 0.24
link 169887 0.25 20608 0.21

chown 95572 0.12 13746 0.22
mkdir 195883 0.08 20548 0.00
rmdir 247599 1.06 27481 0.59
mkfifo 165325 0.10 20605 0.07
write 75x + 242850 | 0.56 20645 0.01
rename 247832 1.02 27487 0.50
unlink 5.2x + 24210 | 0.66 9550 0.16

read 8234 0.24 | 4.6x + 14016 | 0.45

Table 3: Ext3 Flash Energy(nJ) : System Call

Program | JFFS2 Processor Energy Ext3 Processor Energy
Actual Eval Err Actual Eval BErr

compress | 68254 69513 -1.8 62134 58341 7.0
ucbgsort | 210742 | 207561 1.5 124200 112320 | 9.5
v42 96600 96420 0 824000 798657 | 3.0
jpeg 159890 | 160896 0 5810000 | 6176320 | -6.3
adpcm 148000 | 148785 0 91500 92721 -1.3

Table 4: Benchmark Processor Energy (nJ)

maps to kernel level system calls. The equations from the
system call level can be used to develop a tool to profile
energy consumption due to higher level filesystem opera-
tions. As can be seen from the tables, the energy consump-
tion of flash due to JFFS2 filesystem is better than that of
Ext3. JFFS2 works directly with flash chip driver to issue
read/write requests of the required number of bytes. Ext3
on the other hand is a filesystem designed for block based
device. It sees the flash as a block device and uses a transla-
tion layer called mtdblock, to issue the requests to the flash
chip. Thus the read/write requests are made in multiples
of block size. This implies that Ext3 has a poor perfor-
mance on flash for small read/write requests. The energy
consumption due to processor however is higher in case of
JFFS2. This can be attributed to the fact that JFFS2 tries
to compress data being written into flash during a write
operation. While doing a read operation, it decompresses
the data on fly. The macros used to generate the macro-
model considered random data to create files, so that the
compression is not optimal and the equations give a worst
case bound on the energy consumption. Tables 4, 5 and 6
are used to validate the macromodel by profiling some of the
frequently used benchmark programs. The profiled results
were compared with the results from actual measurements
to estimate the errors. The percentage error shows the ac-
curacy of the macromodel based energy characterization of
filesystem.

7. ANALYSISOF MACROMODEL

The analysis of energy consumption due to processor is
shown in Figure 2. In order to analyse, we used a high
level filesystem operation of creating a new file (This would
use creat and write system calls) . Since JFFS2 compresses
data that is to be written to the secondary storage, two
cases are considered. The worst case performance is where
data stored is inherently random so that the compression
ratio is minimal. The second case is the average case. The
following results for processor energy consumption can be
summarized from Figure 2. 1. JFFS2 is not suited for small
file size (< 100 bytes) due to the fact that the overhead due

Program Flash Write Energy(nJ) Flash Read Energy (nJ)
Actual Eval Err | Actual | Eval BErr
compress 62011 59742 3.6 340 358 -5.2
ucbgsort 139693 147376 -5.2 335 358 -6.8
v42 372899 385900 -3.4 153 162 -7.0
jpeg 1282484 | 1314795 | -2.5 2420 2301 4.9
adpcm 85102 94190 -10.6 326 344 -5.5
Table 5: Benchmark Flash Energy (nJ) : JFFS2
Program | Flash Write Energy(nJ) | Flash Read Energy (nJ)
Actual Eval Err | Actual | Eval Err
compress | 267546 256370 4.1 39954 | 40496 -1.3
ucbgsort 209450 229706 9.6 1900 2321 2.2
v42 564550 570326 1.0 64250 | 66077 -2.8
jpeg 5808450 | 6002850 | -3.3 | 36500 | 34390 5.7
adpcm 285550 270950 5.1 42500 | 41684 1.9

Table 6: Benchmark Flash Energy (nJ) : Ext3

to compression is of the order of file size itself. For small
sizes Ext3 is better off by storing the data “as-is” without
compression. The advantages due to compression are sig-
nificant and visible as the file sizes increase. For large files,
the overhead due to compression is insignificant compared
to the actual data.

2. JFFS2 with worst case compression and Ext3 consume
almost the same amount of processor energy for large file
sizes. JFFS2 consumes slightly higher in this case because
processor cycles are wasted in trying to compress data. How-
ever, this worst case upper bound is only for data that is so
random that it cannot be compressed and hence not likely
to occur frequently in normal filesystem activities.

The analysis for flash energy consumption for the same
activity to create a new file is shown in Figure 3. The fol-
lowing observations can be made from this figure.

1. Ext3 is expensive for small files (< 128K). This is
due to the fact that the requests sent to the flash chip are
in multiples of 128K. For small files, this would mean that
128K bytes of data is written, no matter what is the size of
request (if it happens to be less than 128K). For large files,
Ext3 is almost as good as JEFS2 with best case compression.

2. JFFS2 with worst case compression is always more
expensive than Ext3 for file sizes > 1K and JFFS2 with
average case. This is due to the extra overhead of keeping
the compression information along with the file itself when
the compression ratio is large. It is to be noted that some of
the filesystem related system calls have a constant amount
of energy consumption due to the fact that they change only
metadata and not actual filesystem data.

8. CONCLUSIONS

The mathematical model describing energy consumption
as a function of filesystem level system calls can be a pow-
erful tool for system designer while choosing filesystem of
choice from an energy consumption point of view. Such a
tool is also useful to estimate the energy consumption due
to filesystem for user applications. This could well fit into
embedded system design methodology, wherein a designer
is interested to estimate the energy consumption before the
actual product is developed. It is possible to partition the
flash chips based on apriori knowledge of per filesystem en-
ergy consumption.

569

qn — JFFS2 (worst case)
— JFFS2 (with compression)
- EXT3

Processor Energy Consumption (nJ)

File Size (Bytes)

Figure 2: Comparison of Processor Energy

— - JFFS2 worst case
— JFFS2 with compression
— EXT3

Flash Write Energy (nJ)
I
5,

File Size (Bytes)

Figure 3: Comparison of Flash Write Energy

9. ACKNOWLEDGMENTS

This work was done at Embedded Systems Co-design Lab-
oratory, Department of Computer Science, Texas A&M Uni-
versity and supported by funds from Ford Motor Foundation
& TEES

10. REFERENCES
(1

J. Hom and U. Kremer. Energy management of virtual
memory on diskless devices, 2001. in Proceedings of the
Workshop on Compilers and Operating Systems for Low
Power, September 2001.

Atsuo Kawaguchi, Shingo Nishioka, and Hiroshi Motoda. A
flash-memory based file system. In USENIX Winter, pages
155-164, 1995.

N. Jha T. K. Tan, A. Raghunathan. Embedded operating
system energy analysis and macro-modeling. In ICCD, 2002.
T. K. Tan, Anand Raghunathan, Ganesh Lakshminarayana,
and Niraj K. Jha, “High-level software energy
macro-modeling,” in Design Automation Conference, 2001, pp.
605-610.

N. Jha T. K. Tan, “EMSIM an energy simulation framework
for an embedded operating system,” in Proceedings of
International Symposium on Circuit and Systems, May 2002.
“The lart pages,” in http://www.lart.tudelft.nl/, May, 2003.
Website. Intel Fast Boot Block Flash Memory, 2000.
http://www.intel.com/design/flash

JFFS: The Journalling Flash File System. Ottawa Linux
Symposium, 2001. http://sources.redhat.com/jffs2/jffs2.pdf.
Stephen Tweedie. Journaling the Linux ext2fs filesystem. In
LinuxExpo 98, 1998.

Seber, G. A. F., Linear Regression Analysis, John Wiley,
Hoboken, NJ, 2nd edition, 2003.

2

(3]
(4]

5]
(6]
(7]
8]
19l

(10]

	Main
	DAC04
	Front Matter
	Table of Contents
	Author Index

