Efficient Online State Tracking Using Sensor Networks

M.Halkidi!, V.Kaogeraki?, D.Gunopulos?, D.Papadopoulos?, D.Zeinalipour-Yazti?, and M.VIachos!
L Athens U of Economics and Business, 2UC Riverside, 2U of Cyprus, IBM T.J. Watson R.C.
Email: {mhalkidi, vana, dg, dimirtis, csyiazti } @cs.ucr.edu, vlachos@us.ibm.com

Abstract

Sensor networks are being deployed for tracking events
of interest in many environmental or monitoring applica-
tions. Because of their distributed nature of operation, a
challenging issue is to identify the aggregate state of the
phenomenon that is being observed. This work presents
an online mechanism for efficiently determining the overall
network status, employing distributed operations that min-
imize the communication costs. Experiments on real data,
suggest that the proposed metholology can be a viable so-
lution for real world systems.

1 Introduction

Sensor networks consist of a large number of small, low-
cost, wireless devices (referred to as sensor nodes) that are
deployed over an area of interest. The nodes are equipped
with sensing, communicating and data processing capabili-
ties, which allow them to collect, exchange and process in-
formation about the monitored events in their environment
[1, 2]. Sensor networks have been used successfully for in-
formation collection, environmental monitoring and track-
ing events of interest in fields, such as surveillance, agricul-
ture, seismic activity detection, and healthcare.

We observe however that in many applications the user is
mostly interested in a macroscopic description of the con-
dition that the process or the phenomenon under observa-
tion is in, rather than the readings of the individual sensors.
Consider for example the case where a network of tempera-
ture sensors has been deployed to monitor a building for fire
hazard. Each room may contain more than one sensors, for
fault-tolerance. Assume that the sensors are connected in
a network forming a tree. A simple implementation would
have each sensor periodically send its reading to the root of
the tree (sink). When a sensor (or a set of sensors) sends
back high readings, an alarm is sound. Note that, in order
to make sure that a given sensor is not out of order, it has to
communicate periodically. Through this simple application
we begin to observe that not all transmitted information is
important. For the majority of time, the actual temperature
reading of any given sensor is not significant, as long as it

falls within a reasonable data interval. In fact, for each sen-
sor we can only have two important states, either there is fire
in the vicinity of the sensor, or not. This is true to a large
extend for the whole network. The status of the network
can be described as “Safe” if there is no fire, or “Alarm”
if there is. Similarly, we can add more states to describe
more accurately the status of the network if we need more
discrimination, such as “Alarm in Floor 3", etc.

In this paper we consider the problem of efficiently com-
puting an accurate aggregate picture of the condition of a
sensor network. We define the condition of the sensor net-
work to be the union of the conditions (that is, the readings)
of the individual sensors. Equivalently, we can represent
the condition of the network as a point in a K-dimensional
space where K is the number of sensors and each dimension
represents the reading of a sensor node. We use the notion
of network states to abstract the condition of the network.
We use a clustering process to put together similar sets of
readings; we consider each such cluster of readings as a dis-
tinct “state” of the network. The clustering results are then
used to define a partitioning of the multidimensional space
of sensor readings. Each sensor is then provided with the
projection of this partitioning to its dimension. This learn-
ing process is online and runs continuously to properly de-
fine (in the beginning) and update (later on) the states of the
sensors as more sensor readings arrive.

Then, the system runs an online monitoring process that
discovers the status of the observed phenomena by monitor-
ing the conditions of the individual sensor nodes. The sen-
sor nodes are organized in a hierarchical structure in which
the sensors inform each other about possible state changes.
These updates are propagated to the root using an efficient
aggregation procedure.

Once a new state has been detected in the whole (or parts
of the) network, the user can use additional querying mech-
anisms (e.g. TAG [3]) to retrieve more details from specific
sensor nodes. For example our mechanism can alert the user
that there is fire at North to Northwest. Then, the user can
query the local sensors to exactly pinpoint the fire.

Our approach has multiple benefits:

(1) We improve the scalability of the system over central-

ized approaches by making use of in-network processing to
identify the network state.

(2) We provide an abstraction of the individual readings of
the sensors to a set of general states. This reduces the com-
munication and computation overhead: each sensor trans-
mits an update message less frequently, because small vari-
ations in its local values are not likely to change the overall
status of the network.

(3) We provide robustness by developing a mechanism that
can identify the correct network state even in the presence
of network faults.

2 Redated Work

There is a large body of research in distributed detection
and estimation, including the topic of multi-sensor fusion.
In [4] the binary detection problem with multi-message
communication is considered. Alhakem and Varshney [5]
study a distributed detection system with feedback and
memory. That is, each sensor not only uses its present in-
put and the previous decision from the fusion center, but
it also uses its own previous inputs. Swaszek and Willet
propose a more extensive feedback approach [6]. The ba-
sic idea is that each sensor makes an initial binary decision
which is then distributed to all the other sensors. The goal
is to achieve a consensus on the given hypothesis through
multiple iterations. There is currently significant work in
the sensor networks’ field that aims to address the prob-
lem of efficient management of the data in the network. In
the context of the COUGAR project [7] an architecture of a
distributed data management system in sensor networks is
proposed. Issues related to the distributed in-network pro-
cessing, query optimization and query languages are also
addressed. Another related system is TinyDB [8] which im-
plements the TAG framework [3]. It is a query processing
system for extracting information from a network of motes.

In [9] a distributed monitoring mechanism for sensor
networks is proposed. This approach aims to detect if the
sensors are alive as well as potential failures in the network.
Also [10] presents techniques for reliable transmission of
data from nodes to base station. Compression techniques
for transmitting data are also proposed.

Our work improves such general techniques by using
a learning phase designed to optimize the system perfor-
mance while minimizing the load on the sensor network re-
sources. It aggregates the individual sensors’ knowledge
about network status.We also consider the effects of lost
or corrupted messages on the performance of the detec-
tion/estimation algorithm.

3 Sensor Network Architecture

We assume a sensor network that has been deployed to
observe a process or a phenomenon, and in which the nodes

communicate with a wireless network. There is a base sta-
tion (further referred to as sink) which monitors the status
of the process, and periodically issues a query to discover
the current state. The sink broadcasts a query in the net-
work and organizes the sensor nodes into a tree or a Di-
rected Acyclic Graph (DAG, similar to [11]) in which the
root is the sink. This operation can be done for each query,
using the following simple mechanism: The query message
has a counter that is incremented with each retransmission
and counts the hop distance from the root. Thus, each node
is assigned to a level equal to the node’s hop distance from
the root. Each node selects some of its neighbors that have a
smaller hop distance from the sink (root) to be its parents in
the tree. The number of parents selected is a user specified
parameter. When the choice is a large number, the expected
accuracy of our mechanism for a given number of failures
improves, at the cost of using more resources in the form of
more messages transmitted.

Each leaf node in the tree produces a message with its
state estimates and forwards this message to its parents. The
non-leaf nodes receive the state messages of their children
and combine them based on an aggregation function. Then,
they submit the new partial results into their own parents.
This process runs continuously until the total result arrives
at the root where the final decision for the overall system
state is made. The sink of the network does not need to be
static but periodically a new node can be considered to be
the sink.

4 Network Status Monitoring

Our technique consists of two processes, summarized as
follows:

1. Learning Process. This process runs continuously as
new sensor data arrives in form of streams. The goal
is to define the states of the network and update them
properly as new measurements arrive. It uses the fol-
lowing two online mechanisms:

a) Clustering sensors’ readings using user constraints
to define the sensor network states.

b) Extracting rules that describe the state of the net-
work given the readings of the sensors.

2. Status Monitoring Process. This is an on-line process
at which the sensor nodes are collaborating to update
the status of the overall network by applying the rules
to the readings of the individual sensors.

4.1 Defining the states of a sensor network

The definition of the states of the sensor network is done
by the learning process of our approach. In some cases we
can assume that the states are predefined or a domain expert
has given the information about the states of interest based
on the sensor readings. However, there may be patterns in

the sensors’ readings that are not previously known or the
user ignores, and thus an automated process is necessary.
A straightforward approach would be to use historical (pre-
viously collected) data from the sensor network, and to try
to identify segments in the sensor reading space that show
similar behavior. Such an approach, which reduces the state
discovery problem to a simple clustering problem, has a
number of problems: (1) the discovered clusters may have
no physical meaning, or intuitive description, (2) the clus-
ters may not correspond to the user’s idea on what the net-
work states should be, (3) since we have no control on the
data used for the clustering, some situations may be under-
represented, or not represented at all, forcing the clustering
algorithm to miss the corresponding states altogether.

To tackle the above problems we adopt an approach that

defines the potential states of the network not only using
historical data of the sensor network, but also by applying
the knowledge of the domain experts. Moreover since a
large volume of sensor data is arriving continuously, it is
either unnecessary or impractical to store the data in some
form of memory; we focus instead in giving an online state
discovery algorithm.
Satisfying User Constraints: The user inspects the results
of the clustering process and if the discovered clusters do
not match the states that the user wants, he or she attempts to
improve on the clustering by adding constraints that have to
be satisfied by the clustering. We adopt constraints of very
simple form, making the constraint-setting process easier
and more intuitive.

We assume we have a set of K-dimensional sensor net-
work conditions X = {z1,...,z,}. The user specifies a
set S of must-link constraints, and a set D of cannot-link
constraints:

S : (zi,z;) € X if z; and z; must belong to the same cluster
D : (z;,z;) € X if z; and z; cannot belong to the same cluster

Then the goal is to learn a distance metric between the
points in X such that when the data are clustered using
an existing clustering (K-Means in our case), the resulting
clustering satisfies the given constraints.

The problem of semi-supervised clustering comes up in
many domains, and has inspired many recently proposed
algorithms [12, 13]. In [14] we presented a framework for
incorporating user constraints to the clustering result. We
stress, however, that the choice of the clustering algorithm
used is orthogonal to the rest of our technique. Indeed, the
technique would work with any state discovery method, in-
cluding having the user define the states manually.

Our technique evaluates a clustering, C;, of a dataset in
terms of its accuracy with respect to the given constraints
and its validity based on well-defined cluster validity crite-
ria. It is given by the equation:

Q0Clonsir(Ci) = w- Accuracysep(C;) + (1+S_Dbw(C;)) ™"
1)

The first term of QoC.on st assesses how well the clus-
tering results satisfy the given constraints. It is the propor-
tion of the S&D constraints that are satisfied in the C; clus-
tering. The second term of QoC.op s, 1S based on a cluster
validity index, S_Dbw [15]. A more detailed discussion on
the quality measure QoC .oy s¢ 1S presented in [14].

The fundamental idea of our approach is to learn a
weighted Euclidean distance metric so that the user con-
straints are satisfied. Then a clustering algorithm (K-Means
in our case) using that metric is applied to the set of sensor
readings to define the clusters. Specifically, considering a
distance metric of the form,

da(e,y) =z~)" Az —y),
we aim to define the A matrix so that both the must-link and
cannot-link constraints are satisfied. Then the problem of
learning a distance measure to respect a set of constraints
(as defined above) is reduced to solving an optimization
problem [12].

4.1.1 Online Clustering based on user constraints

As we discussed above the readings of sensors arrive in the
form of a data stream and it is therefore impractical to store
all the sensor data in memory. We propose to use a novel
two step approach for clustering data streams while utilizing
user constraints.

The first step of our approach can be considered as a
preclustering process where we keep only a part of the
points that have arrived up to a given point. The goal is
to drop points that are similar to previous processed points,
thus producing a good representation of the data seen so far.
This goal is achieved by using a hierarchical stream cluster-
ing mechanism (inspired by the approach of [16]) that clus-
ters all the points we have seen so far into m clusters. The
size of m is a parameter in our technique, however there is
a trade-off since increasing m increases the accuracy of the
technique, but decreasing it improves the scalability and ef-
ficiency of the next step. The outline of Step | is as follows:

1. Let X be the set of the current representatives, and S, D sets
of constraints on these representatives.

2. When a new set of points X’ arrives, if |[X| + |X’] < m,
X = X U X', otherwise:

(a) Use a clustering algorithm to cluster X U X’ (e.g. the
efficient hierarchical algorithm of [16]) into m clus-
ters.

i. Use the weighted Euclidean distance derived in
Step Il to compute distances.

ii. In the operation of the hierarchical algorithm do
not merge clusters that are in the same constraint
in D (dissimilarity constraint).

iii. When the hierarchical clustering algorithm
merges clusters, update the constraints in S, D
the original clusters appear in.

(b) Find the m centroids of these clusters. Let X,e. be
the set of these centroids.

©) If | Xnew — X| < 0then X +— Xpew,
Else Go to Step Il.

Each time a new reading, p, arrives, we run Step 1. If the
result of Step I is a change in the set X', we apply Step II,
to find if and what changes have to be made to the current
clustering of sensor readings (i.e. sensor states). There are
two ways to incorporate a new point: (i) we can add the
new point to an existing cluster and change that cluster’s
description, or (ii) we have to assign the new point to a new
cluster. In this process, we possibly redraw some of the
original clusters, taking also into account all user’s input so
far. We note here that in practice Step Il can be run when
a larger number of updates in X’ have been identified, thus
running the update process in batches.

The result of Step Il is a clustering of the points in X
The state update process aims to tune the dimension weights
so that the data are transform to a new space where a cluster-
ing algorithm (here, K-Means) can find the “best’ clustering
in terms of i) the user preferences, and ii) objective cluster
validity criteria. The outline of the update algorithm (Step
I1) is given below:

1. Given a new point p in X, a current clustering C, and a user
parameter e.

2. If there is no cluster ¢; € C so that p falls in the boundaries
of ¢; then

(a) Assess the quality of the current clustering, C,
calculating the wvalue of the quality measure,
QoConstr(C), we have adopted.

(b) Assign p to the cluster with the closest centroid so that
the user constraints are not violated.

(c) Calculate the value of quality measure (QoCconstr)
for the new clustering let, C".

(d) lf (|QOCCOnSt'I‘(C) - roconstr(cl)l > 6) then
Check the following cases

i. Merge the closest pair of clusters, and add a new
cluster containing p. Evaluate the quality of the
new clustering, C.

ii. Create a new cluster that contains only p. Evalu-
ate the quality of the new clustering, Cs.

iii. Compare roconstr (Cl)r roconstr (Cl).
Q0Ceconstr(C2), and select the new clus-
tering to be the one that corresponds to
the best value of the quality measure, i.e.
C =Cy e {C' Cy,Cs}suchas

QOCconst'r (Ck) = max{QOCconstr(C’)y

roconstr (Cl), roconstr (02)}
(e) Present the currently selected clustering, C, to the user
(f) Whilethe user is not satisfied do

i. Letuser give feedback and update the set of must-
and cannot-link constraints (S&D).

ii. Tune the distance measure and redefine C' using
a semi-supervised clustering approach.

4.2 Converting clusters to states

Generally, the clustering technique contributes in com-
pressing the information included in sensor readings. We
use each cluster to define a region in the K-dimensional
space of sensor readings that represents a state. To cre-
ate state descriptions that can be applied to the readings of
individual sensors we find the minimum bounding hyper-
rectangle (with axis aligned hyperplane) for each cluster.
Now a range of values can represent a state, thus making the
state description more compact and allowing for a represen-
tation with a simple numbering scheme. Moreover, instead
of a sensor transmitting continuously its sensor readings,
only its current state needs to be transmitted, reducing the
communication bandwidth and ultimately leading to drastic
energy savings.

To compute the description of a state, we simply com-
pute the projection of the points in the cluster to the original
K dimensions, and in each dimension we find the minimal
interval that encompasses all the projections. The state is
then the intersection of the K one-dimensional intervals.

One problem we have to consider is that after we project
clusters to the original dimensions, we may get overlaps be-
tween the regions of different states (see Figure 1). To solve
this i) we find all the ambiguous regions which can eas-
ily be done using a R-tree [17] structure. Since we already
have rectangular representations of the clusters the R-tree
gives us the rectangular intersections, ii) each intersection
becomes a new state, iii) we ask the user to decide if these
new states can be merged with the existing ones.

Extracting Rules for sensor network states. Based on the
results of the clustering process we extract a set of rules
which describe the conditions based on which the states of
the network can be defined. The rules are sensor specific
and describe what the specific sensor can deduce about the
network state based on its local information (readings).
This is done by taking the projections of the clusters onto
each original dimension, and finding the intersections of
the projections. Given n clusters (states), this creates at
most 2n + 1 distinct, non-overlaping, intervals. We cre-
ate one rule for each interval. Since the intervals are non-
overlaping, the application of the rules is unambiguous: for
each reading one rule applies. The condition (left hand side
of the rule) refers to a range of sensor node readings while
the consequence (right hand side of the rule) contains the
set of possible states to which readings in this range corre-
spond to. Assume a sensor s; and a set of a network’s states
State = {state, ..., statey,} as defined by the previous

Sensor 2 values

New state

| . | ,
-10 8) -4 2 0 2 4 6 8 10
Sensor 1 values

Figure 1. State Clustering: Projec-
tion of clusters (states) in the original
space.

Sensor 3 values
|

State
N W A g o

L
150 200

or 1 values

Sens

Figure 2. Example of state bound-
aries for 3 sensors and 6 states. 200
new system readings that are to be
classified are shown as red filled

Figure 3. The 200 sensors read-
ings from figure 2 are classified in
the above 6 states.

dots.

clustering set. Let {v1,...,v,} be the set of intervals cre-
ated by projecting the descriptions of the clusters into the
domain of the readings of s;. The rules for the network
states will have the following form:

reading(s;) € v, — state(s;)
where reading(s;) denotes the reading of the sensor
s; at a specific time point and state(s;) is a set
{state;, ..., stater} C State. The meaning of the rule is
that if the reading of the sensor s; (reading(s;)) lies in the
interval v(p), the network can only be in one of the states
state;, . .., stateg.

4.3 The Monitoring Process: Finding the
state of a sensor network

As we have already mentioned in previous sections the
readings of each sensor can only partially define the state of
the network. Moreover, since the same readings of a single
sensor can correspond to different states of the network, a
sensor may not be able to define its state in relation to the
overall system and thus it is considered to be in more than
one state at a specific time point.

More specifically, the low level sensors send their state
estimates to their parent sensors (according to the defined
hierarchy). The parent sensors exploit the knowledge of
their children and based on a voting approach define the
current state of the respective subset of the network. Then
the root (sink) makes the final decision for the network state
taking the intersection of their children estimates for the net-
work state. Once the state of the network has been defined
the root of the network tree sends a message to all the sen-
sors in the network informing them for the current state of
the overall system.

Algorithm 1 summarizes the main steps of the procedure
for computing the state of a sensor network based on the

Algorithm 1 Compute-network-state
Input: Setof sensors, S = {s1,...,8n}
States of the network, State.
Sensor network hierarchy
Output: Network state.

1. Definition of the sensors’ state in the network tree
2. if s; is leaf then

3: s; propagates its state, state(s;), to its parents
4; else
5: s; receives the state of its children and computes

state(children(si)) = N, s child of s, State(sk)

6: computes s;’s new state wrt the network state
state(s;) = state(s;) N state(children(s;))
if state’(s;) <> {} then
propagate state’(s;)
dse
10: propagate (state(s;), s;), and for each child s, also
propagates (state(sk), Sk)-

© o N

11: end if
12: The root of the network tree returns the state of the overall
system.

state estimates of its nodes.

In Figure 2 and Figure 3 we give an example of how
our algorithm operates. For simplicity we assume only 3
sensors, and we plot 200 consecutive values of these sensors
in 3-D. In Figure 2 we show a clustering of the values in 6
clusters, and show the descriptions of the clusters. Figure 3
depicts how the state of the network changes over time.

We note here that although the network DAG assists with
the whole process of defining the network state, the state
processing and clustering steps are independent of the ac-
tual tree organization.

Being outside defined states: It is possible that the system
cannot converge to a specific state for the network. In other
words, the intersection of all sensor state estimates is empty,
and thus the root cannot find out the state of the network.
Essentially, this means that the current network situation is
not inside any of the regions that describe the defined states.
This can happen for a set of reasons. A sensor may be faulty,
or the network is seeing a situation not present in the current
set of states. For example the nodes can fail due to energy
depletion or their readings may drift due to environmental
interference. This results in a wide variety of state estimates
from the sensors and hence the system cannot define the
state of the whole network based on the intersection of the
sensors’ states.

To handle this problem, we assume that when a node is
not able to define the intersection of their children’s state
estimates (i.e. the intersection of their states is empty), it
propagates the set of their children ids and their respective
state estimates, instead of its intersection, to its own par-
ent(s) as shown in Algorithm 1, Line 10. This procedure
continues until all the state estimates reach the root.

It is important to note that although the root is not able
to define the specific state of the network, it can pinpoint
the region where the problem occurs. This is because the
root can use this information to identify, based on the set
of states that it receives, the range of the sensor readings in
the whole system. Using this information it can detect the
sensor or the set of sensors where the error has occurred.

We stress that our approach provides a mechanism for
monitoring the system even in case of network faults and/or
the presence of inadequate definitions of the network states:
whenever the state definitions do not provide an advantage,
our approach gracefully reverts to the case where no pro-
cessing is done in the network and values are propagated to
the root. In addition, our approach assists with pinpointing
the problem and the subsystem where it occurs.

Evolution of the system: Our approach considers the in-
tersection of the sensor states in order to define the state of
the overall system, hence each sensor needs to propagate its
state to its parents only if there is a change in relation to
its previous state estimate. Then if a non-leaf sensor does
not receive in a specific time period input from one of its
children it uses the state that it has cached for this sensor.
This reduces the number of messages sent among the sen-
sors, improves resource savings, and minimizes the energy
consumption and the workload in the network. However,
one can argue that the above assumption can result in out
of consensus state estimates since all the sensors do not
change their state at the same time. Even if at a specific
point in time it seems that there may not be a general con-
sensus among the sensors, the system will reach a steady
state when all new sensors states have been propagated to
the sink.

5 Experimental Evaluation

In our experimental evaluation we focus mainly on eval-
uating the scalability and the robustness of our approach.

Our simulation testbed uses basic modules from the
TAG [3] simulator (written in Java) in order to define the
network topology and the sensors’ communication. We im-
plemented new modules for computing the network status.

Our simulation scenario is the following. The nodes are

randomly placed on a square grid, with the sink placed in
the middle. The communication range was set to v/2. For
each run, the query is disseminated once from the sink at the
beginning of the simulation. The desired number of states
is also given as a parameter. To jumpstart the process each
sensor transmits 10% of its readings, and we execute our
clustering algorithm on this set of data. Once the states are
found and the rules are transmited back to the sensors, we
apply the online monitoring process on the remaining read-
ings.
Datasets: The synthetic collection of sensor readings
was created as follows. In order to generate datasets that
resemble the characteristics of natural phenomena, the
following approach was used. We assume a number of
widely distributed points represented as dots in Figure 4a
around which a set of sensors are distributed. These are
the points of influence that affect the values of the sensors.
On these points 2d Gaussian distributions are set. The
readings of a sensor are a function of its distance from
each point of influence: the circle drawn around the point
defines a range at which its influence is diminished by half.
As an example, the points of influence could designate
the existence of an interesting event, e.g. some source
emitting heat. Figures 4(b)-(c) present the distribution
of the values of different sensors (represented by their
location) at specific time points. The peaks and valleys
in these figures are indicative of the different clusters into
which the values of sensors can be organized, i.e. show
the sensor states based on their readings. Unless stated
otherwise, the default number of generated values for each
sensor is set to 500.

To test our framework under a realistic ap-
plication scenario we wused weather data, which
include temperature measurements from 32 sta-
tions from Washington and Oregon (http://www-
k12.atmos.washington.edu/k12/grayskies). Each one
of the 32 collections includes measurements on an hourly
basis, for 208 days between June 2003 and June 2004 (i.e.
has a length of 4990 values).

5.1 Experimental Results

Message transmission savings: The first set of experi-
ments investigates the savings in message transmissions that
our method introduces. The savings are expressed with re-

/ \\
T \
</ N e s
b / \ Ji
\ \ « /
PR BN S
\ <) ~
L\ = 3
. <
o]
~ N (%]
-
// x
/ x
/
“‘ L]
‘\
(@)

Time=300

(b)

Time=350

Sensor Value

Figure 4. Data Generation: (a) Distribution of sensors in the network, (b)-(c) Sensors’ readings at different time points: x, y give

the location of the sensor, z gives the reading

Temperature

@ Temperature

Mesg. Trans. reduction %

Avg. Network Status Estimation Error (%)

States 64

DAG routing, 10 states —+— DAG routing, 10 states —+—
tates - i M

Figure 5. Message transmission
reduction vs. the number of network
states using real data.

tion vs.
nodes

spect to the centralized strategy. We evaluate the perfor-
mance of our approach experimenting with the tempera-
ture dataset (we obtained similar results with the synthetic
datasets). For the experiments with the real datasets the
number of sensors is set to 32, i.e. equal to the number
of collections of temperature readings. Figure 5 shows the
reduction of number of messages sent versus the number of
states. We observe that there is significant reduction in the
number of messages sent when the hierarchical structure of
the network is used in order that the sensors propagate their
state to their parents. Also, as expected, the number of mes-
sages increases as the number of states increases, since the
more states we consider the higher the probability the read-
ings of a sensor to be assigned in different states during a
specific time period is.

Robustness wrt. failures: In another set of experiments
we explore the robustness of our approach with respect to
failures. We ran experiments introducing both standard link
losses and node failures. The link losses affect the network
operation momentarily and do not introduce major topology
changes. Those changes are inflicted by node failures. In
our simulation the node failures were modeled as follows.
During a run of a simulation we set a certain percentage of

20

Percentage of Failing Nodes

Figure 6. Network status estima-
the percentage of failing

2 30 35 o 5 10 15 20 2 30 35
Link Loss Rate (%)

Figure 7. Network status estimation
vs. the link loss rate

nodes to fail, which yields a total number of nodes f that
fail. These failures appear during the simulation uniformly
at random, i.e. if D is the length of the simulation, at each
time instant a failure may happen with probability %, and
then a node is chosen randomly and is disabled.

We tested the routing scheme that builds a directed
acyclic graph (DAG) on the network (i.e. nodes have multi-
ple parents) and the one that uses a spanning tree, i.e. each
node has a single parent. We attempt to measure the robust-
ness of our approach by reporting the average network sta-
tus estimation error (ANSEE), which is defined as follows.
We repeat each run 100 times, since random failures (link
losses and node failures) are introduced. We collect how
many times, say f;, during each repetition ¢ of the exper-
iment the estimated network status was different from the
actual status of the network, as reported without introduc-
ing any failures. We report the performance values averaged
over the 100 runs of each experiment.

Figures 6 and 7 show the ANSEE when node failures and
link losses were introduced, respectively. The results that
we report here were obtained using synthetic datasets on a
sensornet of 200 nodes, while monitoring 10 and 16 states.
Similar trends were observed using different configurations

(number of nodes and states), but we omit their presentation
due to space limitations. We observe that when we fix the
number of network states, the routing using a DAG always
yields significantly less error than the one using a spanning
tree, both for node failures and link losses. On the other
hand, there is no extra cost in terms of exchanged messages,
since a message going upstream toward the sink is broadcast
to the desired recipients (i.e. parents). The results in Fig-
ures 6 and 7 show that for a given routing scheme, monitor-
ing more states introduces more uncertainty and error in the
estimation, at the presence of communication failures. This
happens because as the number of states increases, the map-
ping of each sensor’s readings to the states is more volatile,
i.e. there are more frequent changes in the state that the
sensor reports. This is the cause for the need to report the
change of state more often. Thus, when failures occur, the
final network estimation is expected to include greater un-
certainty, which is expressed as our ANSEE metric.
Finally, the introduction of permanent node failures do
not severely adverse the network status computation. The
communication paths are broken momentarily and, even-
tually, are re-established. The nodes not having heard of
their parent(s) for a number of epochs, enter a parent search
mode. The issues involved here are orthogonal to our ap-
proach, since they relate to the routing scheme used. On the
other hand, link losses that may appear with the same rate at
each attempt for a transmission, inflict higher ANSEE, es-
pecially when a spanning-tree routing scheme is employed.

6 Conclusions

In this paper, we address this problem proposing an
approach that determines the state of the network by
combining the partial knowledge of the individual sensor
nodes. It uses a learning phase that clusters the sensors’
readings on-line in order to define the states of the network.
The results of the clustering are used to define a mapping
from the multidimensional space of sensor readings to a
set of states. Using this mapping our approach provides
efficient cooperation of the sensors through an hierarchical
organization of the network to define the overall status
of the system. Our experimental results show that our
approach enables efficient communication among the sen-
sors, minimizing the number of the exchanged messages
while it also allows fault tolerance through a multi-path
communication among the sensors.

Acknowledgments.We would like to thank Samuel Mad-
den for providing us with the source code of the TAG simulator.
The work of Dr. M.Halkidi is funded by EU Commission(MOIF,
509920). The work of Dr. Kalogeraki and Dr. Gunopulos is
funded by NSF.

References

[1] W. Zhang and G. Cao, “Optimizing tree reconfiguration for
mobile target tracking in sensor networks.” in Proc. of IEEE

(2]

3]

[4]

5]

(6]

[7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

INFOCOM, Hong Kong, March 2004.

J. Aslam, Z. Butter, F. Constantin, V. Crespi, G. Cybenko,
and D. Rus., “Tracking a moving object with a binary sensor
network.” in Proc. of SenSys Conference, Nov. 2003.

S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong,
“Tag: atiny aggregation service for ad-hoc sensor networks,”
in Proc. of the 5th Annual Symposium on Operating Systems
Design and Implementation (OSDI), Dec. 2002.

Z.B. Tang, K. R. Pattipati, and D. L. Kleinman., “Optimiza-
tion of distributed detection networks: Part ii generalized tree
structures,” IEE Trans. Syst. MAn Cybern., vol. 23, pp. 211~
221, 1993.

S. Alhakeem and P. Varshney, “Decentralized bayesian hy-
pothesis testing with feedback.” IEE Trans. Syst. MAn Cy-
bern., vol. 26, pp. 503-513, 1996.

P. F. Swaszek and P. Willett, “Parley as an approach to
distributed detection,” IEE Trans. Aerospace Elect. Syst.,
vol. 31, pp. 447-457, 1995.

Y. Yao and J. Gehrke, “The cougar approach to in-network
query processing in networks,” SIGMOD Record, vol. 31,
no. 3, 2002.

S. Madden, W. Hong, J. M. Hellerstein, and M. Franklin,
“Tinydb web page. http://telegpah.cs.berkeley.edu/tinydb.”

C. Hsin and M. Liu, “A distributed monitoring mechanism
for wireless sensor networks,” in ACM Workshop on Wireless
Security (WiSe), 2002.

N. Xu, S. Rangwala, K. Chintalapudi, D. Ganesan, A. Broad,
R. Govindan, and D. Erstin, “A wireless sensor network for
structural monitoring,” in SenSys, November 2004.

J. Considine, F. Li, G.Kollios, and J. Byers, “Approximate
aggregation techniques for sensor databases,” in IEEE ICDE,
2004, pp. 449-460.

E. Xing, A. Ng, M. Jordan, and S. Russell, “Distance
metric learning, with application to clustering with side-
inforformation.” in Proc. of Advances in Neural Information
Processing Systems. (NIPS), 2002.

S. Basu, M. Bilenko, and R. Mooney, “A probabilistic frame-
work for semi-supervised clustering,” in ACM SIGKDD,
2004, pp. 59-68.

M. Halkidi, D. Gunopulos, N. Kumar, M. Vazirgiannis, and
C. Domeniconi, “A Framework for Semi-Supervised Learn-
ing based on Subjective and Objective Clustering Criteria,”
in IEEE ICDM, 2005.

M. Halkidi and M. Vazirgiannis, “Clustering validity assess-
ment: Finding the optimal partitioning of a data set,” in
ICDM, 2001.

S. Guha, A. Meyerson, N. Mishra, and R. Motwani, “Cluster-
ing data streams: Theory and practice,” IEEE Transactions
on Knowledge and Data Engineering, vol. 15, no. 3, 2003.

T. Brinkhoff, H.-P. Kriegel, and B. Seeger, “Efficient pro-
cessing of spatial joins using r-trees,” in Proc. of ACM SIG-
MOD Conference., 1993.

