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1. Introduction 

It is just to remember that “Pathophysiology” refers to the study of alterations in normal 
body function (physiology and biochemistry) which result in disease. E.g. changes in the 
normal thyroid hormone level causes either hyper or hypothyroidism. Changes in insulin 
level as a decrease in its blood level or a decrease in its action will cause hyperglycemia and 
finally diabetes mellitus.  
Scientists agreed that gestational diabetes mellitus (GDM) is a condition in which women 
without previously diagnosed diabetes exhibit high blood glucose levels during pregnancy. 
From our experience most women with GDM in the developing countries are not aware of 
the symptoms (i.e., the disease will be symptomless). While some of the women will have 
few symptoms and their GDM is most commonly diagnosed by routine blood examinations 
during pregnancy which detect inappropriate high level of glucose in their blood samples. 
GDM should be confirmed by doing fasting blood glucose and oral glucose tolerance test 
(OGTT), according to the WHO diagnostic criteria for diabetes. 
A decrease in insulin sensitivity (i.e. an increase in insulin resistance) is normally seen 
during pregnancy to spare the glucose for the fetus. This is attributed to the effects of 
placental hormones. In a few women the physiological changes during pregnancy result in 
impaired glucose tolerance which might develop diabetes mellitus (GDM). The prevalence 
of GDM ranges from 1% to 14% of all pregnancies depending on the population studied and 
the diagnostic tests used. Although the majority of women with GDM return to normal 
glucose tolerance immediately after delivery, a significant number will remain diabetic or 
continue to have impaired glucose tolerance (IGT).  
To understand how gestational diabetes occurs, it is necessary to understand the normal 
physiological metabolism of glucose during pregnancy and the physiological changes - 
mainly the endocrine changes during pregnancy in the feto-placental unit, which might 
explain the development of insulin resistance and GDM. 

1.1 Insulin 

Only about 1-2% of the pancreatic structure is endocrine tissues which are represented by the 
presence of 1-2 million islets of langerhans. These islets contain four main types of cells (A, B, 
D, and F cells). Insulin is secreted by B (beta) cells which constitute about 60-70% of the islets 
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cells. Insulin is a 51-amino acid polypeptide (small protein) hormone consist of A and B-chains 
connected together by disulphide bridges (Ganong, 2003; Guyton & Hall, 2006). 

1.2 Insulin Receptor (IR) 

The IR is a large heterotetrameric, transmembrane glycoprotein, having a molecular weight 
of about 300,000. Each receptor consists of two alpha (ǂ) subunit that lie outside the cell 
membrane and two beta (ǃ) subunits that penetrate the cell membrane protruding into the 
cytoplasm connected together by disulphide bridges in a ǃ-ǂ- ǂ-ǃ configuration. IR is 
assembled from a single polypeptide pro-receptor, by dimerization, proteolytic cleavage, 
and glycosylation within the cytoplasm and Golgi apparatus, before trafficking of the 
mature receptor to the plasma membrane. These insulin receptors have also been designated 
recently as CD220 (cluster of differentiation 220) (Ganong, 2003; Guyton & Hall, 2006; Ward 
& Lawrence, 2009).   

1.3 Insulin action 

Insulin has many metabolic functions such as enhancing cellular uptake of glucose, fatty 
acids, amino acids, and potassium ions. It also has an anabolic action by increasing cellular 
formation of glycogen, lipids, and protein. These physiological functions will be reversed if 
insulin action is decreased as seen with the increase in insulin resistance during pregnancy. 
The main function of insulin concerning gestational diabetes mellitus (GDM) is its action on 
glucose and lipid metabolism. 

1.3.1 Insulin effect on lipid metabolism 

Normally insulin stimulates the synthesis and release of lipoprotein lipase from the 
endothelial cells of blood vessels causing lipolysis of triglycerides in the blood and release of 
free fatty acids (FFA). Insulin enhances the transport of FFA to the fatty cells (adipocytes) to 
be stored as lipids. Furthermore, insulin inhibits lipoprotein lipase in adipose cells 
preventing lipolysis.  

1.3.2 Insulin effect on glucose metabolism 

Insulin enhances entrance of glucose to the cells through its action on the insulin receptors. 
Insulin receptor complex will stimulates mobilization of glucose carrier protein (GLUT- 4 
transporter) from the interior of the cell to the plasma membrane which will transport 
glucose inside the cell by the process of facilitated diffusion. Furthermore, insulin-receptor 
complex will activates the storage of some glucose as glycogen while others will be 
metabolized into pyruvate and then fatty acids which are stored as triglycerides (fat) 
(Ganong, 2003; Guyton & Hall, 2006).  

1.4 Insulin-receptor interaction 

To initiate insulin effects on target cells, it first binds with and activates a membrane 
receptor protein. [4] It is the activated receptor, not the insulin that causes the subsequent 
effects. The combination of insulin with the alpha subunits will induce autophosphorylation 
of the beta subunits which will activates a local tyrosine kinase [(phosphatidylinositol 3-
kinase (PI3-K)] , which in turn begins a cascade of cell phosphorylation that increase or 
decrease the activity of enzymes, including insulin receptor substrates (IRSs). There are 
different types of IRSs (IRS-1, IRS-2, and IRS-3) which are expressed in different tissues 
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which explain the diversity of insulin action, activating or inactivating certain enzymes to 
produce the desired effect on the cellular carbohydrate, fat, and protein metabolism (Zwick 
et al., 2001; Pawson, 1995; Hans-Georg,1995;  Perz & Torlińska, 2001). 
Within seconds after insulin binds with its membrane receptors, glucose transporters are 

moved to the cell membrane to facilitate glucose entry into the cell especially to the muscle 

and adipose tissues (Guyton & Hall, 2006; Sherwood, 2010). 

2. Physiology of pregnancy 

The endocrinology of human pregnancy involves endocrine and metabolic changes that 

result from physiological alterations at the boundary between mother and fetus, known as 

the feto-placental unit (FPU), this interface is a major site of protein and steroid hormone 

production and secretion. Many of the endocrine and metabolic changes that occur during 

pregnancy can be directly attributed to hormonal signals originating from the FPU (Ganong, 

2003; Guyton & Hall, 2006; Monga & Baker, 2006).  

During early pregnancy, glucose tolerance is normal or slightly improved and peripheral 

(muscle) sensitivity to insulin and hepatic basal glucose production is normal (Catalano et 

al., 1991; Catalano et al., 1992; Catalano et al., 1993). These could be caused by the increased 

maternal estrogen and progesterone in early pregnancy which increase and promote 

pancreatic ß-cell hyperplasia (Expansion of beta-cell mass in response to pregnancy) causing 

an increased insulin release (Carr & Gabbe, 1998; Rieck & Kaestner, 2010). This explains the 

rapid increase in insulin level in early pregnancy, in response to insulin resistance. In the 

second and third trimester, the continuous increase in the feto-placental factors will decrease 

maternal insulin sensitivity, and this will stimulate mother cells to use sources of fuels 

(energy) other than glucose as free fatty acids, and this will increase supply of glucose to the 

fetus (Catalano et al., 1991; Catalano et al., 1992; Ryan & Enns, 1988). In the normal 

physiological conditions, the fetal blood glucose is 10-20% less than maternal blood glucose 

allowing the transport of glucose in the placenta to the fetal blood by the process of simple 

diffusion and facilitated transport.  Therefore, glucose is the main fuel required by the 

developing fetus, whether as a source of energy for cellular metabolism or to provide energy 

for the synthesis of protein, lipids, and glycogen. 

During pregnancy, the insulin resistance of the whole body is increased to about three times 

the resistance in the non-pregnant state.  

In general, the resistance to insulin can be characterized as pre-receptor (insulin antibodies) 

as in autoimmune diseases, receptor (decreased number of receptors on the cell surface) as 

in obesity, or post-receptor (defects in the intracellular insulin signaling pathway). In 

pregnancy, the decreased insulin sensitivity is best characterized by a post-receptor defect 

resulting in the decreased ability of insulin to bring about SLC2A4 (GLUT4) mobilization 

from the interior of the cell to the cell surface (Catalano, 2010). This could be due to increase 

in the plasma levels of one or more of the pregnancy-associated hormones (Kühl, 1991; 

Hornns, 1985).  

Although, pregnancy is associated with increase in the beta-cell mass and increase in insulin 

level throughout pregnancy but certain pregnant women are unable to up-regulate insulin 

production relative to the degree of insulin resistance, and consequently become 

hyperglycemic, developing gestational diabetes (Kühl, 1991).  
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3. Diagnosis of gestational diabetes mellitus 

Gestational diabetes mellitus (GDM) is defined as any degree of glucose intolerance 
resulting in hyperglycemia of variable severity, with onset or first recognition during 
pregnancy. It does not exclude the possibility that unrecognized glucose intolerance may 
have antedated but has been previously unrecognized (Metzger, 1991; Definition and 
Diagnosis of Diabetes Mellitus and Intermediate Hyperglycemia World Health Organization 
[WHO], 2006). Women who become pregnant and who are known to have diabetes mellitus 
which antedates pregnancy do not have gestational diabetes but have "diabetes mellitus and 
pregnancy" and should be treated accordingly before, during, and after the pregnancy 
(WHO, 2006). 
Gestational diabetes generally has few symptoms and it is most commonly diagnosed by 
screening during pregnancy. Diagnostic tests detect inappropriately high levels of glucose in 
blood samples.  

3.1 WHO diagnostic criteria for hyperglycemia and GDM (2006)  
In the early part of pregnancy (e.g. first trimester and first half of second trimester) fasting 
and postprandial glucose concentrations are normally lower than in normal, non-pregnant 
women. Elevated fasting or postprandial plasma glucose levels at this time in pregnancy 
may well reflect the presence of diabetes which has antedated pregnancy. The occurrence of 
higher than usual plasma glucose levels at this time in pregnancy mandates careful 
management and may be an indication for carrying out an oral glucose tolerance test 
(OGTT). Nevertheless, normal glucose tolerance in the early part of pregnancy does not by 
itself establish that gestational diabetes will not develop later. 
It may be appropriate to screen pregnant women belonging to high-risk populations during the 
first trimester of pregnancy in order to detect previously undiagnosed diabetes mellitus. Formal 
systematic testing for gestational diabetes is usually done between 24 and 28 weeks of gestation. 
To determine if gestational diabetes is present in pregnant women, a standard OGTT should 
be performed after overnight fasting (8-14 hours) by giving 75 g anhydrous glucose in 250-
300 ml water. Plasma glucose is measured fasting and after 2 hours. Pregnant women who 
meet WHO criteria for diabetes mellitus or impaired glucose tolerance (IGT) are classified as 
having GDM. After the pregnancy ends, the woman should be re-classified as having either 
diabetes mellitus, or IGT, or normal glucose tolerance based on the results of a 75 g OGTT 
six weeks or more after delivery.  
The following table (table 1) summarizes the 2006 WHO recommendations for the 
diagnostic criteria for diabetes and intermediate hyperglycemia (WHO, 2006).  
 

Diabetes 
Fasting plasma glucose                  ≥7.0mmol/l (126mg/dl), or 
2–h plasma glucose *                      ≥11.1mmol/l (200mg/dl) 

Impaired Glucose Tolerance (IGT) 
Fasting plasma glucose                  <7.0mmol/l (126mg/dl) 
2–h plasma glucose*                       ≥7.8 and <11.1mmol/l  (140mg/dl and 00mg/dl) 

Impaired Fasting Glucose (IFG) 
Fasting plasma glucose                  6.1 to 6.9 mmol/L  (110mg/dl to 125 mg/dl)                        
2-h Plasma glucose*                       < 7.8 mmol/dl (140mg/dl) 

* Venous plasma 2-h after ingestion of 75gm oral glucose load (OGTT)  

Table 1. Diagnostic criteria for diabetes and intermediate hyperglycemia 
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3.2 Glycosylated hemoglobin (HbA1c) as a diagnostic test for GDM 
Since 1984, professor Alwan AAS and collaborators have adopted the measurement of 
HbA1c levels as another index for follow-up of pregnant diabetic patients, and reported a 
significant relationship between elevated levels of HbA1c late in the third trimester and feto-
maternal complications (Al-Dahwi et al., 1986; Al- Dahwi et al., 1987; Al-Dahwi et al., 1988; 
Al-Dahwi et al., 1989). Recently, the American Diabetic Association (2009) added that 
HbA1c ≥ 6.5% is another criterion for the diagnosis of diabetes (Nathan, 2009). Therefore we 
highly recommend the measurement of HbA1c during pregnancy, as an additional 
diagnostic criteria and to anticipate the maternal and fetal complications if it is abnormally 
elevated. 

4. Pathophysiology of GDM 

In the pathophysiology of GDM we have to consider two main points.  
4.1 Role of feto-placental unit in GDM. 
4.2 Role of the adipose tissue in GDM. 

4.1 The role of feto-placental unit in the development of GDM 
The past; In the last century insulin resistance and the decrease in insulin sensitivity during 
pregnancy is mainly attributed to the increase in the levels of pregnancy-associated 
hormones as estrogen, progesterone, cortisol, and placental lactogen in the maternal 
circulation (Ryan, 1988; Hornns, 1985; Ahmed & Shalayel, 1999; Polderman et al., 1994; 
Barbour et al., 2002). Normally the insulin resistance of the whole body is increased to about 
three times that seen in the non-pregnant state (Kuhl, 1998; Catalano et al., 1999). The 
increased resistance is caused by post-insulin receptor events and is probably brought about 
by the cellular effects of the increased levels of one or all of the above hormones (Davis, 
1990). As pregnancy progresses and the placenta grow larger, hormone production also 
increases and so does the level of insulin resistance. This process usually starts between 20 
and 24 weeks of pregnancy. At birth, when the placenta is delivered, the hormone 
production stops and so does the condition, strongly suggesting that these hormones cause 
GDM (Ryan & Enns, 1988; Kuhl, 1975; Buchanan & Xiang, 2005). 

4.1.1 Feto-placental unit  
The placenta synthesizes pregnenolone and progesterone from cholesterol. Some of the 
progesterone enters the fetal circulation and provides the substrate for the formation of 
cortisol and corticosterone in the fetal adrenal glands. Some of the pregnenolone  
enters the fetus and, along with pregnenolone synthesized in the fetal liver, is  
the substrate for the formation of dehydroepiandrosterone sulfate (DHEAS) and  
16-hydroxydehydroepiandrosterone sulfate (16-OHDHEAS) in the fetal adrenal. Some  
16-hydroxylation also occurs in the fetal liver. DHEAS and 16-OHDHEAS are transported 
back to the placenta, where DHEAS forms estradiol and 16-OHDHEAS forms estriol. The 
principal estrogen formed is estriol, and since fetal 16-OHDHEAS is the principal substrate 
for the estrogens, the urinary estriol excretion of the mother can be monitored as an index of 
the state of the fetus (Ganong, 2003). 

4.1.2 Diabetic action of steroid hormones (cortisol, estrogen, and progesterone) 

These hormones are increased steadily with the advance of pregnancy. The anti-insulin 
action of these hormones is a well known fact since the last century (Ryan & Enns, 1988; 
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Barbour et al., 2002; Barbieri, 1999; Kirwan et al., 2002; Shalayel et al., 2010). The fetus and 
the placenta interact in the formation of these steroid hormones. It has been shown that the 
increase in cortisol level during pregnancy is considered as the main hormone which cause 
decrease in glucose tolerance in normal pregnancy (Hornns, 1985; Ahmed & Shalayel, 1999). 

While others considered that estrogen and progesterone which are elevated steadily during 
pregnancy are the main hormones  which influence beta cell function in early pregnancy 
and insulin resistance especially in late pregnancy (Ryan & Enns, 1988; Polderman et al., 
1994; Glass & Kase, 1984).  
Although some scientists have considered that human chorionic gonadotropin (HCG) may 
participates in the development of insulin resistance during pregnancy as it shows higher 
level in women with GDM in comparison with normal pregnancies (Merviel et al., 2001). 
But, as we know from the normal changes during pregnancy, the main increase of HCG 
occurs during the first trimester, and this period is associated with an increase in insulin 
sensitivity and improvement of glucose tolerance. Therefore, we consider that HCG has no 
direct role as a cause of GDM.  

4.1.3 Human placental lactogen (hPL), [human chorionic somatomammotropin (hCS)]  

It is a single polypeptide chain held together by disulphide bonds. It is about 96% similar to 
human growth hormone (HGH), but has only 3% of HGH activity. Its half life is short 
(15minutes); hence its appeal as an index of placental problems (Glass & Kase, 1984). HPL, 
which is the product of the HPL-A and HPL-B genes, is secreted into both the maternal and 
fetal circulations after the sixth week of pregnancy (Handwerger & Freemark, 2000). The 
level of HPL in the maternal circulation is correlated with fetal and placental weight, 
plateauing in the last 4 weeks of pregnancy. Therefore, measurement of HPL levels is used 
as a screening test for fetal distress and neonatal asphyxia (Glass & Kase, 1984; Letchworth 
& Chard, 1972).  

4.1.3.1 Physiologicalfunction of HPL  

During pregnancy the maternal level of HPL can be altered by changing the circulating level 
of glucose. HPL is elevated with hypoglycemia and depressed with hyperglycemia (Barbour 
et al., 2002; Kuhl, 1998). The metabolic role of HPL is to mobilize lipids and free fatty acids. 
In the fed state, there is abundant glucose available, leading to increased insulin level, 
lipogenesis, and glucose utilization. This is associated with decreased gluconeogenesis, and 
a decrease in the circulating free fatty acid levels, as the free fatty acids are utilized in the 
process of lipogenesis to deposit storage packets of triglycerides (Glass & Kase, 1984; Kim & 
Feling, 1971).  

4.1.3.2 Diabetogenic action of HPL 

In the second half of pregnancy, HPL level rises approximately 10 folds. HPL stimulates 

lipolysis leading to an increase in circulating free fatty acids in order to provide a different 

fuel for the mother so that glucose and amino acids can be conserved for the fetus. The 

increase in free fatty acid levels, in turn directly interferes with insulin-directed entry of 

glucose into cells. Therefore, HPL is considered as a potent antagonist to insulin action 

during pregnancy (Glass & Kase, 1984; Mills et al., 1985). Furthermore, HPL and placental 

growth hormone act in concert in the mother to stimulate insulin-like growth factor (IGF) 

production and modulate intermediary metabolism, resulting in an increase in the 

availability of glucose and amino acids to the fetus (Handwerger & Freemark, 2000).  
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4.1.4 Placental growth hormone (PGH)    
PGH is the product of the GH-V gene specifically expressed in the syncytiotrophoblast layer 
of the human placenta. PGH (20-kDa HGH-V) differs from pituitary growth hormone by 13 
amino acids. It has high somatogenic and low lactogenic activities (Lacroix et al., 2002). PGH 
is produced by the placenta and found predominantly in the maternal circulation. It 
progressively replaces pituitary growth hormone (hGH) in the human maternal circulation 
from mid-gestation onwards, peaking towards term (Chellakooty et al., 2004). PGH appears 
to be an important potential regulator of maternal insulin resistance in human pregnancy 
and may influence fetal growth both by modifying substrate availability and through 
paracrine actions in the placental bed (McIntyre et al., 2009). 
Barbour et al (2004) demonstrated a unique mechanism of insulin resistance in non-pregnant 
transgenic mice and suggested that human placental growth hormone (hPGH) may 
contribute to the insulin resistance of normal pregnancy secondary to its effect on p85  
expression and its interference with PI 3-kinase activity in skeletal muscle.  
Nevertheless, in a recent experimental study by Vickers and Gilmour (2009), it was 
demonstrated that rats treated with HGH enhanced insulin sensitivity and suggested that 
HGH have an antidiabetic action. 
It seems that there is a controversy about the involvement of HGH with insulin resistance 
and GDM. 
In conclusion, considering the previously discussed hormones, HPL is considered as the 
main diabetogenic hormone synthesized and released from the feto-placental unit. But 
during pregnancy, there is another maternal hormone which is involved in insulin 
resistance which is prolactin. 

4.1.5 Prolactin 
Prolactin level begins to rise at 5-8 weeks of gestation, followed by a progressively increase 
in its level as pregnancy advances (Shalayel et al., 2010; Glass & Kase, 1984). The increase in 
prolactin secretion is due the increase in the size and number of maternal pituitary 
lactotrophs (Kuhl et al., 1985) and its secretion from the uterine decidual cells seems to be 
stimulated by progesterone and insulin (Ahmed & Shalayel, 1999;  Davis, 1990). 
Shalayel et al (2010) revealed that prolactin increases progressively as pregnancy advances, 
reaching a peak in the third trimester when many pregnant ladies may develop gestational 
diabetes due to the state of insulin resistance which may occur although there is no evidence 
that prolactin may be directly incorporated with the pathogenesis of glucose intolerance in 
pregnancy. A decline in insulin secretion may lead to a decline in prolactin since insulin 
stimulates both acute secretion and de novo synthesis of decidual prolactin. 
There were no significant differences in the level of plasma prolactin in normal or diabetic 
pregnancies; in fact its level might be lower in the pregnancies with GDM (Guyton & Hall, 
2006). Therefore, prolactin might have no effect on glucose intolerance during pregnancy 
(Milasinovic et al., 1997).  

4.2 The role of adipose tissue in the development of GDM 
4.2.1 Adipocytokines 

Historically, placental hormones have been considered as the primary mediators of insulin 
resistance during gestation. Over the past decade, adipose tissue has been shown to produce 
numerous factors (adipocytokines), most of them act as hormones. These adipocyte-derived 
hormones have been implicated in the regulation of maternal metabolism and gestational 
insulin resistance. Adipocytokines, including leptin, adiponectin, tumor necrosis factor 
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alpha, interleukin-6, as well as the newly discovered resistin, visfatin, and apelin, are also 
known to be produced within the intrauterine environment (Catalano, 2010; Briana & 
Malamitsi-Puchner, 2009; Henry & Clarke, 2008).  
Although human placental lactogen has often been cited as the cause of the decreased insulin 
sensitivity in pregnancy, because of its production from the placenta and increasing 
concentrations with advancing gestation as described previously (Ryan & Enns, 1988), more 
recently the role of adipocytokines and elevated lipid concentrations in pregnancy have been 
correlated with the longitudinal changes in insulin sensitivity in non-pregnant women 
(Hotamisligil et al., 1994) as well as in pregnant women (Kirwan et al., 2002; Hotamisligil et al., 
1996). Evidence suggests that one or more of these adipokines (as TNF-ǂ and leptin) could 
impair insulin signaling and cause insulin resistance (Briana & Malamitsi-Puchner, 2009; Xiang 
et al., 1999). TNF-ǂ in specific has a potential effect in decreasing insulin sensitivity (Catalano, 
2010). While other adipocytokines might increase insulin sensitivity as adiponectin which has 
been shown to be decreased especially in late pregnancy (Al-Noaemi & Shalayel, 2009).  

4.2.1.1 Adiponectin 

Adiponectin is a novel adipocyte secreting protein hormone discovered in 1995/1996 

(Scherer et al., 1995; Nakano et al., 1996; Maeda et al., 1996; Hu et al., 1996;  Tsao et al., 2002). 

Adiponectin is abundant in the circulation of humans, with plasma levels in the microgram 

per ml range, thus accounting for approximately 0.01% of total plasma protein. 
Chen et al. (2006) reported that the human placenta produces and secretes adiponectin and 

that adiponectin and its receptors are differentially regulated by cytokines and their 

expression altered in women with gestational diabetes mellitus, suggesting that adiponectin 

may play a role in adapting energy metabolism at the materno-fetal interface.  

4.2.1.1.1 Functions of Adiponectin   

Although the physiological role of adiponectin is not yet fully determined, but it has been 
shown that there are a variety of physiological functions induced by adiponectin such as: 

4.2.1.1.1.A General functions 

i. Anti-atherosclerotic action: By inhibiting lipid-laden foam cell formation (Ouchi et al., 

2001), and inhibiting the inflammatory adipokine, tumor necrosis factor-ǂ (TNF-ǂ) 

(Ouchi et al., 2000).  

ii. Anti-inflammatory action: By inhibiting the phagocytic activity of macrophages and 

inhibiting the production of TNF-ǂ by these macrophages (Yokota et al., 2000).  

iii. Anti-oxidant action: By stimulating the endothelial cells to produce nitric oxide (NO) 

(Ouchi et al., 1999). 

iv.  Anti-tumor action: There is a significant inverse association of adiponectin with 

postmenopausal endometrial and breast cancer (Mantzoros et al., 2004; Petridou et al., 

2003).  

4.2.1.1.1.B Specific anti-diabetic functions such as its actions on glucose and lipid 
metabolism 

i. Effects of adiponectin on insulin and glucose metabolism: Adiponectin has insulin-

sensitizing effects. Replenishment of a physiological dose of recombinant adiponectin to 

lipoatrophic mice significantly ameliorated insulin resistance. Moreover, insulin 

resistance in lipoatrophic mice was completely reversed by the combination of 

physiological doses of adiponectin and leptin (Hotta et al., 2000; Berg et al., 2001). In 
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addition to that, adiponectin has indirect insulin-sensitizing effect by decreasing tissue 

triglyceride (TG) content (Shulman, 2000). It is well known that tissue triglycerides 

interfere with insulin-stimulated phosphatidylinositol (PI) 3-kinase activation and 

subsequent glucose transporter 4 (GLUT-4) translocations and glucose uptake, leading 

to insulin resistance (Shulman, 2000; Godoy-Matos et al., 2010). Thus, decreased tissue 

TG content in muscle may contribute to the improved insulin signal transduction. 

Interestingly, in skeletal muscle, adiponectin increases expression of molecules 

involved in fatty acid transport such as CD36, in combustion of fatty-acid such as acyl-

coenzyme-A oxidase, and in energy dissipation such as uncoupling protein 2. These 

changes led to decreased tissue TG content in skeletal muscle whether in experimental 

animals or in human (Godoy-Matos et al., 2010; Yamauchi et al., 2001; Thamer et al., 

2002). 

ii. Effect of adiponectin on glucose metabolism: It has been reported that an acute increase 
in circulating adiponectin levels triggers a transient decrease in basal glucose levels by 
inhibiting both the expression of hepatic gluconeogenic enzymes and the rate of 
endogenous glucose production in both wild-type mice and a type 2 diabetic mouse 
model (Berg et al., 2001; Combs et al., 2001). Furthermore, Kubota et al (2002) provided 
the first direct evidence that adiponectin plays a protective role against insulin 
resistance by generating adiponectin-deficient mice. Adiponectin improves insulin 
resistance and glucose tolerance in both heterozygous (+/-) and homozygous (-/-) 
adiponectin-deficient mice.   

iii. Effects of adiponectin on lipid metabolism: Adiponectin activates AMP-Kinase (AMPK) 

and peroxisome proliferator-actvated receptor (PPAR ǂ) in the liver and muscle, 

thereby stimulating fatty-acid oxidation and decreasing tissue TG content in the liver 

and muscle (Thamer et al., 2002; Fruebis et al., 2001; Yamauchi et al., 2003a). 

Furthermore, adiponectin decreases lipid synthesis and glucose production in the liver 

and causes a decrease in glucose and fatty acid concentration in the blood (Meier & 

Gressner, 2004; Yool et al., 2006).  

4.2.1.1.2 Adiponectin and the pathophysiology of obesity and diabetes  

Many studies have shown that plasma adiponectin concentration is negatively correlated 

with body mass index (BMI) and accordingly, lower in obese than in lean subjects (Ouchi et 

al., 1999; Hotta et al., 2000; Pena et al., 2009). Furthermore, scientists extended these finding 

by demonstrating that plasma adiponectin concentrations are inversely related to 

percentage of body fat, a direct measure of adiposity. And that is consistent across different 

ethnic groups. These results thus confirm that adiponectin is the main adipose-specific 

protein known to date that despite its excusive production in white adipose tissue, is 

negatively regulated in obesity (Hu et al., 1996; Weyer et al., 2001; Statnick et al., 2000). 

These scientific data suggest that adiponectin may have a role in the pathogenesis of obesity. 

As obesity is a predisposing factor for the development of diabetes mellitus in general and 

GDM in specific, this might explain the indirect involvement of a decreased adiponectin in 

the pathogenesis of diabetes mellitus. It has also been shown that in pregnant women there 

is a decrease in adiponectin which is associated with an increase in insulin resistance in the 

third trimester and a further decrease in women with IGT or GDM compared to pregnant 

women with normal glucose tolerance test, even after adjustment for varying degree of 

adiposity. Hypoadiponectinemia was also found in women with GDM independently of 
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their body fat mass compared to women with normal glucose tolerance during and after 

pregnancy (Yamauchi et al., 2003; Weyer et al., 2001; Kadowaki & Yamaushi, 2005).  

On experimental animal studies, it was shown that adiponectin causes glucose-lowering 

effects and ameliorates insulin resistance in mice (Yamauchi et al., 2003b). Thus, decreased 

plasma adiponectin concentrations (hypoadiponectinemia) could be involved in the 

pathophysiology of pregnancy-driven insulin resistance and in the pathogenesis of GDM 

and Diabetes mellitus type 2 (DM2).   

It is known that peroxisome proliferator-activated receptors (PPARs) are transcriptional 

factors involved in the regulation of insulin resistance, fat cell differentiation, and 

adipogenesis (Joosen et al., 2006; Schoonjans et al., 1996; Zeghari et al., 2000). It has been shown 

that adiponectin activates AMP-kinase and PPARǄ and ǂ which improves insulin resistance 

and reduces fasting glucose level (Tsuchida et al., 2005; Kadowaki & Yamauchi, 2005). Low 

plasma adiponectin correlates highly with insulin resistance in obesity, type 2 DM and GDM 

(Weyer et al., 2001; Worda et al., 2004; Cseh et al., 2004).  

Low adiponectin level in normal pregnancy and GDM could be due to the suppression 

effect of TNF-ǂ and other inflammatory factors on adiponectin transcription in adipocytes 

(Bruun et al., 2003; Fasshauer et al., 2003).  These data highly support the antidiabetic effect of 

adiponectin. 

4.2.1.2 Tumor necrosis factor-α (TNF-α) 

In 1975 Carswell et al discovered the so-called tumor necrosis factor (TNF) which is released 

from macrophages and induces tumor necrosis. Increased circulating TNF-ǂ levels have been 

associated with insulin resistance in obesity, aging, sepsis, muscle damage, and burn patients 

(Hotamisligil et al., 1996; del Aguila et al., 2000; Kirwan et al., 2001; Ling et al., 1994; Conrad et 

al., 1998). Obese animals and humans show a positive correlation between TNF-ǂ levels and 

BMI and hyperinsulinemia (Ling et al., 1994; Clapp & Kiess, 2000; Laham et al., 1994).  

Kirwan et al (2001) reported that TNF-ǂ is a significant predictor of insulin resistance during 

pregnancy. Together with a small additive contribution from leptin and cortisol, TNF-ǂ 

exerted a significant influence on insulin-mediated glucose disposal. Circulating TNF-ǂ 

showed a downward trend during early pregnancy and increased during the third trimester, 

thus mirroring insulin sensitivity changes during those periods. This observation is consistent 

with studies showing an increase in plasma TNF-ǂ in late pregnancy (Kirwan et al., 2002; 

Clapp & Kiess, 2000; Boyd et al., 2007). TNF-ǂ correlates inversely with insulin secretion in 

normal pregnancy and was significantly higher in GDM group (McLachlan et al., 2006).  

TNF-alpha mRNA and protein are present in human placenta and uterine cells at both early 

and late stages of gestation (Chen et al., 1991). In maternal obesity, the level of TNF-ǂ is 

increased in the placenta compared with the non-obese pregnant women (Denison et al., 

2010). Furthermore, it has been shown that placenta and subcutaneous adipose tissues 

obtained from women with GDM release greater amount of TNF-ǂ in response to high 

glucose compared with normal glucose. On the other hand, there was no stimulatory effect 

of high glucose on TNF-ǂ release by tissues obtained from normal pregnant women which 

suggests that TNF-ǂ might be involved in the pathogenesis and /or progression of GDM 

(Coughlan et al., 2001). These results could highly explain the increase in the level of TNF-ǂ 

throughout pregnancy. The increased TNF-ǂ levels in pregnancy fall rapidly after delivery 

(Kirwan et al., 2002; Uvena et al., 1999), which is consistent with the idea that the increase in 
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circulating TNF-ǂ during late pregnancy is mainly due to placental secretion. These findings 

may also help to explain the rapid reversal of insulin resistance after delivery, since 

maternal levels of TNF-ǂ decrease substantially after delivery of the placenta (Kirwan et al., 

2002; Coughlan et al., 2001). 

4.2.1.2.1 The Diabetogenic action of TNF-α 
In-vitro studies have described a direct role for TNF-ǂ in the pathophysiology of insulin 
resistance. TNF-ǂ downregulates insulin receptor signaling in cultured adipocytes (Catalano, 
2010), hepatocytes (Feinstein et al., 1993), and skeletal muscle (del Aguila et al., 1999). TNF-ǂ 
activates a pathway that increases sphingomyelinase and ceramides and appears to interfere 
with insulin receptor autophosphorylation (Catalano, 2010). Also it has been shown that TNF-
ǂ promotes serine phosphorylation of insulin receptor substrate (IRS)-1, thus impairing its 
association with the insulin receptor (Rui et al., 2001). In pregnancy, there is an evidence that 
insulin receptor and IRS-1 tyrosine phosphorylation are impaired, and serine phosphorylation 
is increased in late gestation in skeletal muscle (Friedman et al., 1999; Shao et al., 2000). 
Therefore, it seems that elevated levels of TNF-ǂ in late gestation could attenuate insulin 
signaling, thus causing the decreased insulin sensitivity observed in pregnancy. 
Barbour et al (2007) demonstrated that in skeletal muscle there is 40% decrease in glucose 
entrance in normal pregnant women and 65% decrease in GDM compared with obese 
pregnant women. Although there is no decrease in GLUT4 protein transporter in skeletal 
muscle (Garvey et al., 1992), the GLUT4 transporters are decreased in adipose tissue (Garvey 
& Birnbaum, 1993). The increase in circulating TNF-ǂ in women with GDM  is also 
associated with an increased TNF-ǂ in the skeletal muscle and the  impaired insulin 
signaling persist in obese women with gestational diabetes mellitus up to one year 
postpartum (Kirwan et al., 2004). 
TNF- ǂ is considered as one of the factors which suppress PPAR-Ǆ (Kirwan et al., 2002). 
Furthermore, it has been shown that TNF-ǂ downregulates PPAR-Ǆ expression in 3T3-L1 
cells and can inhibit adipose differentiation (Zhang et al., 1996).  
Catalano et al (2002) observed a decrease in steady-state PPARǄ mRNA and protein 
concentration in normal and GDM subjects during late gestation. Furthermore, it has been 
demonstrated that TNF-ǂ decreases adiponectin gene expression in human adipocytes 
(Kappes & Loffler, 2000), and 3t3-L1 adipocytes (Fasshauer et al., 2002). Whereas 
thiazolidinediones (synthetic PPAR-gamma ligand) significantly increases the plasma 
adiponectin concentrations in insulin resistant humans and rodents without affecting their 
body weight, suggesting that the anti TNF-ǂ will restore the adiponectin and improve the 
insulin sensitivity (Maeda et al., 2005). 
Thus the increase in TNF-ǂ whether in subjects with normal pregnancy or with GDM might 
explain the lower level of adiponectin (insulin-sensitizing hormone). The above data highly 
suggest the involvement of TNF-ǂ in the development of GDM. 

4.2.1.3 Resistin 

Steppan et al. (2001) showed that adipocytes secrete a unique signalling molecule, which is 
considered as a hormone and named ‘resistin’ (for resistance to insulin). Resistin is a 114-
amino acid polypeptide hormone (Doshani & Konje, 2009).  
There is a great argument about the involvement of resistin in the pathogenesis of diabetes 

mellitus. Some scientists reported the involvement of resistin in the pathogenesis of diabetes 

mellitus relying on their studies that revealed strong correlations between resistin and obesity 

as serum resistin levels increased with increased adiposity (Steppan et al., 2001; Vendrell et al., 
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2004; Lee et al., 2005). Conversely, serum resistin levels have been found to decline with 

decreased adiposity following medical treatment (Valsamakis et al., 2004). This discovery is 

further authenticated by studies which confirmed a direct correlation between resistin levels 

and subjects with type 2DM (Steppan et al., 2001; Fujinami et al., 2004; McTernan et al., 2003). 

Nevertheless, this theory lacks support from the entire scientific community at large as an 

increasingly greater number of studies presenting contradictory evidences continue to emerge 

(Lee et al., 2003; Nagaev & Smith, 2001). Some studies found significant decreased serum 

concentrations of resistin with increased adiposity (Heilbronn et al., 2004; Way et al., 2001) 

suggesting that not only resistin is downregulated in obese subjects but that it also presents 

itself as an unlikely candidate for linking obesity to Type 2DM. Milan et al (2002) mentioned 

that a decrease of resistin mRNA after weight loss does not support the hypothesis that resistin 

may play a causative role in insulin resistance in obese rats.  

Many studies reported that in patients with type 2 diabetes or obesity, both resistin levels 

and resistin expression in fat cells are increased, correlating with hepatic, but not muscle, 

insulin resistance. In humans, the major source of resistin is the immune cells rather than the 

adipocytes, resistin being a potent inflammatory agent. Insulin inhibits resistin expression in 

adipocytes. Therefore, the elevated basal plasma resistin levels found in patients with type 2 

diabetes, despite increased insulin concentrations, may be the result of adipocyte insulin 

resistance. Resistin inhibits the phosphorylation of hepatic AMPK, decreasing ǃ oxidation 

and increasing fatty acid esterification in triglycerides, and eventually leading to lipid 

accumulation (Maiorana et al., 2007). 

4.2.1.4 Leptin 

It was discovered as an antiobesity hormone in ob/ob mice (Zhang et al., 1994). In human 

adult, the white adipose tissue is the main source of leptin, and its circulating concentration 

is positively correlated with body mass index and fat mass (Maffei et al., 1995; Hellstrom et 

al., 2000).  

Leptin has been detected in the placenta (Masuzaki et al., 1997), and shown to be increased 

in early pregnancy, remained elevated in late pregnancy (Kirwan et al., 2002; Highman et 

al., 1998), and was highest in the more obese GDM group (Kirwan et al., 2002). The 

increased leptin during pregnancy is not proportional with the change in adipose tissue 

mass, and it return to the normal level after delivery suggesting that leptin production by 

the placenta contributes to maternal leptinemia during pregnancy (Lepercq et al., 2001).  

In vitro study on muscle, Muoio et al (1997) demonstrated that leptin attenuated both the 

antioxidative and the lipogenic effects of insulin by 50%. Cseh K et al (2002) suggested that 

the increased TNF-alpha and leptin levels may contribute to insulin resistance in GDM and 

in the third trimester of normal pregnancy. Furthermore, Qiu et al (2004) demonstrated that 

Hyperleptinemia, independent of maternal adiposity, in early pregnancy appears to be 

predictive of an increased risk of GDM later in pregnancy. Kirwan et al (2002) reported that 

leptin was increased in all women in early pregnancy, remained elevated in late pregnancy, 

and was highest in the more obese GDM group. But to adjust for the possible confounding 

effect of obesity and increased fat mass on the relationship between leptin and insulin 

sensitivity, they covaried for body fat and found that the correlation was no longer 

significant, because the increased leptin per se was not predictive of insulin sensitivity. They 

interpreted that, in addition to insulin resistance, leptin resistance may also develop in late 

pregnancy. 
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Chen et al (2010) carried out a study in which twenty women with normal pregnancy and 20 
with GDM were recruited and blood samples were taken on the day of delivery and Days 1, 
3 and 5 after delivery. Serum leptin levels were significantly higher in women with GDM 
than in the controls before delivery and decreased significantly after delivery (p < 0.001). 
After delivery there were no significant differences in serum leptin concentrations between 
women with GDM and the controls. Serum soluble leptin receptor concentrations did not 
differ neither between the two groups, nor before or after delivery. Thus, they concluded 
that Leptin may play a role in GDM through a positive correlation with insulin resistance.  

4.2.1.5 Visfatin 

Fukuhara et al (2005) isolated a newly adipocytokine, named as ‘visfatin’, which is highly 
enriched in the visceral fat of both humans and mice and whose expression level in plasma 
increases during the development of obesity. Visfatin exerted insulin-mimetic effects in 
cultured cells and lowered plasma glucose levels in mice by binding and activating the 
insulin receptors. Suggesting that visfatin's physiological role may lead to new insights into 
glucose homeostasis and/or new therapies for metabolic disorders such as diabetes. 
According to some authors, plasma concentrations of visfatin are elevated in obesity (Berndt 
et al., 2005), type 2 diabetes (Chen et al., 2006) and the increase is typically observed in GDM 
(Krzyzanowska et al., 2006; Lewandowski et al., 2007), all of which are states characterized 
by insulin resistance. There are also, however, data pointing to possible lower visfatin levels 
in obese subjects (Pagano et al., 2006), similarly, Chan et al. (2006) have reported lower 
visfatin levels in women of Chinese origin with GDM. The precise reason for these 
differences is unclear.  
Shali et al (2009) reported that maternal GDM, as well as delivery of a large-for-gestational-
age (LGA) neonate were independently associated with higher maternal plasma visfatin 
concentrations. The linkage between increased maternal circulating visfatin and the 
presence of GDM or delivery of an LGA neonate supports the hypothesis that perturbation 
of adipokines homeostasis may play a role in the pathophysiology of GDM or excess fetal 
growth. 
The current data regarding the relationship between visfatin and insulin sensitivity in 

humans are conflicting. Some authors report a lack of correlation (Berndt et al., 2005; Pagano 

et al., 2006; Zhang et al., 2010), while others observed a significant correlation (Chen et al., 

2006; Lewandowski et al., 2007). 

The role of visfatin in human physiology and pathophysiology remains to be elucidated and 

further work is needed to establish the exact function of visfatin and its mode of action on 

insulin resistance during normal pregnancy and GDM. 

4.2.1.6 Apelin 

Tatemoto et al (1998) isolated an APJ receptor ligand, designated apelin, from bovine 

stomach extracts. The preproproteins consisted of 77 amino acid residues, and the apelin 

sequence was encoded in the C-terminal regions indicating that apelin is an endogenous 

ligand for the APJ receptor.  

Apelin has been described as an adipocyte-secreted factor (adipokine), that is up-regulated 

in obesity and the expression of apelin gene in adipose tissue is reported to increase by 

insulin and TNF-ǂ (Carpéné et al., 2007). Apelin synthesis in adipocytes is stimulated by 

insulin, and plasma apelin level markedly increases in obesity associated with insulin 

resistance and hyperinsulinemia (Bełtowski, 2006).   
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Dray et al (2010) reported that apelin is increased in adipose tissue in different mice models 
of obesity and in the type2 diabetic patients. They reported that apelin plasma levels were 
significantly increased in type 2 diabetic patients. They suggested that apelin and APJ 
expression in mice and humans are regulated in a tissue dependent manner and according 
to the severity of insulin resistance. But, Meral et al (2010) reported that no significant 
relation was found between apelin and BMI, glucose, lipids levels, and also insulin 
sensitivity. In addition, Telejko et al (2010) reported that there is no associations between 
circulating apelin or apelin/APJ mRNA expression and GDM and no indices of insulin 
resistance were noted in their study. Furthermore, Tapan et al (2010) recently reported a 
significant decrease in plasma apelin and adiponectin levels in pubertal obese children. 
More work is needed to establish the involvement/or not of apelin and insulin resistance in 
normal pregnancy and GDM. 

5. The future 

Every now and then, there will be a new factor, hormone, adipocytokine, etc. which is 
involved in the development of insulin resistance and GDM. But the precise 
pathophysiological mechanisms which make the women unable to balance insulin needs 
and develop GDM, remain unknown. However, a number of future studies could explain 
some of these mechanisms. 

5.1 Genotyping 

Genetic variants might be involved in the defect in B-cell function and/or subcellular insulin 
signaling which contribute to the development of GDM. Therefore, we suggest a screening 
genotyping test for a significant number of pregnant women, to identify any genetic 
variants in those who develop GDM. Extending this genotyping to involve familial studies, 
to demonstrate any involvement of these genetic variants and whether they run in families. 
Any positive result will help to give a special care to those women anticipated to develop 
GDM, and thus reducing the associated maternal or fetal complications. 

5.2 Subcellular studies 

Certain studies should be done to identify the exact subcellular reactions in the normal 

insulin resistance that develop during normal pregnancy compared with those subcellular 

changes that lead to glucose intolerance and GDM. The use of radioactive substances might 

help to identify the change in phosphorylation of serine instead of tyrosine residues, or in 

any other subcellular reaction change which occurs in GDM. 

5.3 Autoimmunity 

To study certain aspects of the immune system, which could demonstrate any B-cell 

dysfunction that develops GDM and is related to autoimmunity. Furthermore, if there is any 

interference of the immune system with insulin-receptor interaction, this might contribute to 

the development of GDM. 

5.4 Environmental and diet factors 

30-40 years ago or more, it has been reported that the percent of GDM range from 1-2%, 2-

3%  then the percent increased to 1-4%, 2-7%, 5-10%.  Until recently using 1-hour glucose 

www.intechopen.com



 
Pathophysiology of Gestational Diabetes Mellitus: The Past, the Present and the Future 

 

105 

challenge OGTT had demonstrated that up to 17% of pregnant women develop GDM. That 

means there is a significant increase in the development of GDM in these days. Could there 

be more in future? Environmental factors, changes in life style, and change of diet, such as 

decrease in using fresh diet while increase in using canned food, in addition to the use of 

high caloric diet and food with high glycemic index. All these factors, could highly 

participate in the development of GDM whether directly or indirectly by increasing the 

incidence of obesity.  

6. Conclusions 

The precise mechanisms causing GDM remain unknown. All the previously described 
maternal and feto-placental factors interact in an integrated manner in the development of 
insulin resistance and GDM. The most prominent factors, which are involved in the 
pathogenesis of GDM, are the increase in HPL and TNF-ǂ and the decrease in adiponectin 
during pregnancy.     
Most of the women reverting to normal after delivery, will suggest that the placenta is the 
major contributing organ in the development of GDM.  
The main cause of insulin resistance during GDM is post-cellular defect manifested by a 
decreased phosphorylation of tyrosine residues in insulin receptors and insulin receptor 
substrate-1, while serine phosphorylation is increased which inhibit insulin signaling from 
activating GLUT4 translocation. 
Finally, GDM is probably produced by a complex and variable interaction of all the 
previously mentioned factors - pregnancy-induced factors, genetic, diet, environmental, 
autoimmunity, etc.  
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