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Abstract

In this paper we describe a statistical method for the
integration of an unlimited number of cues within a de-
formable model framework. We treat each cue as a ran-
dom variable, each of which is the sum of a large number
of local contributions with unknown probability distribution
functions. Under the assumption that these distributions are
independent, the overall distributions of the generalized cue
forces can be approximated with multidimensional Gaus-
sians, as per the central limit theorem.

Estimating the covariance matrix of these Gaussian dis-
tributions, however, is difficult, because the probability dis-
tributions of the local contributions are unknown. We use
affine arithmetic as a novel approach toward overcoming
these difficulties. It lets us track and integrate the support
of bounded distributions without having to know their ac-
tual probability distributions, and without having to make
assumptions about their properties. We present a method
for converting the resulting affine forms into the estimated
Gaussian distributions of the generalized cue forces. This
method scales well with the number of cues.

We apply a Kalman filter as a maximum likelihood es-
timator to merge all Gaussian estimates of the cues into a
single best fit Gaussian. Its mean is the deterministic re-
sult of the algorithm, and its covariance matrix provides a
measure of the confidence in the result. We demonstrate in
experiments how to apply this framework to improve the re-
sults of a face tracking system.

1. Introduction

Deformable models are an important technique in com-
puter vision for robust tracking tracking nonrigid motion,
such as human faces, and full human body movements.
These types of motions have important applications partic-
ularly in surveillance and human computer interaction, as

well as virtual environments.

The shape of a deformable model is characterized by its
parameterization. Each point on the surface of a model is
uniquely determined by this parameterization. As long as
this surface is C-differentiable with respect to the model
parameters, it is possible to determine what effect moving
a point on the surface has on the model parameters. Typi-
cally, deformable model frameworks take advantage of this
fact by using various low-level computer vision cues, such
as edge tracking and optical flow, to act on points or regions
of the deformable model, and consequently on the model
parameters based on Lagrangian dynamics. Cues provide
information on how the shape and the position of the de-
formable model change over time.

As long as only one cue is used at a time, estimation
of the model parameters is a straightforward process. The
picture changes dramatically, however, when multiple cues
act on a model at the same time. Due to the noise inherent
in most low-level computer vision cues, different cues will
exhibit different degrees of reliability at different points on
the model surface. Even worse, often the distribution of the
noise is unknown, thus making it difficult to capture it with a
probability distribution. As a result, the optimal integration
of cues to yield the best possible parameter estimate of the
model is a difficult and open research problem.

Previous approaches integrated the cues either by using
a direct sum of the cues, or through the design of hard con-
straints [4] that subjugate some cues to others. A direct sum
ignores that some cues may be more reliable than others at a
given point in time, whereas a hard constraint causes prob-
lems if the dominant cue is unreliable or changes over time.
In this paper we describe a new method for combining the
cues dynamically in an optimal manner within a statistical
framework.

In the deformable model framework, the cues are
mapped into parameter space as generalized forces that act
on and change the model parameters. The cues, in turn,
typically are the sum of a large number of local image con-
tributions, such as the positions of various edges from an



edge tracker. If we model these underlying contributions
as random variables, the cues, and hence the generalized
forces, will also be random variables. We present a way to
estimate these generalized forces’ probability distributions
without any prior knowledge about the cues’ and local con-
tributions’ probability distributions.

Since computer vision deals with discrete domains, it is
reasonable to assume that the values of the local contribu-
tions lie in bounded regions [15, 12]. These regions provide
the support of each contribution’s probability distribution.
We use these regions to represent the contributions, instead
of representing them with normal numbers. To describe the
regions mathematically we use affine forms. Affine arith-
metic defines the normal algebraic operations, such as sums
and multiplications, over these affine forms (Sec. 3), which
allow us to obtain the multidimensional affine forms of the
generalized forces from the affine forms of the individual
contributions (see Sec. 2 and Eq. 2).

Because the number of independent contributions to a
cue is typically very large, we can apply the central limit
theorem, which states that the distribution of the sum can
be represented as a Gaussian distribution. We show in this
paper how to estimate the parameters of this Gaussian dis-
tribution from the generalized forces expressed as multidi-
mensional affine forms.

The mean of the Gaussian distribution is the most likely
estimate of that cue, whereas the covariance matrix de-
scribes the confidence of the cue. This description leads to
a seamless integration into a Kalman filter framework as a
maximum likelihood estimator of the combined generalized
force from all cues.

The rest of the paper is organized as follows: We discuss
related work, then provide the mathematical background for
deformable models and affine arithmetic. We then describe
our novel approach to converting a multidimensional affine
form into a Gaussian distribution that can be used in the
Kalman filter framework. We demonstrate in experiments
on synthetic images and real face tracking data that the sta-
tistical approach is more robust than the simple direct sum
of the cues.

1.1. Related Work

Deformable Models have been used in a variety of ar-
eas and applications. In computer vision for tracking and
shape estimation [8, 4, 24], in computer graphics for syn-
thesis and simulation [6] and in medical applications for
reconstruction, modeling and diagnosis [22, 2]. Most of
these approaches have been deterministic; that is, they did
not address the statistical uncertainties inherent in tracking
images, and in fitting the models to a particular shape or
image.

Throughout the years different statistical approaches

have been explored for computer vision applications.
Among others, there are Condensation [14, 11], and Kal-
man Filters for tracking and for predicting motion [3, 23].
Such approaches either do not scale well with the problem
size, or make assumptions about the shape and the charac-
teristics of the probability distribution functions. However,
often nothing is known about them except their bounds.

Interval arithmetic [19, 20] manipulates such bounds di-
rectly. It has been largely used in numerical analysis and
optimization [9], and computer graphics [25, 10]. This
approach suffers from overestimation of bounds, and the
complete loss of information on how bounds in multidi-
mensional intervals are correlated. More recently, affine
arithmetic has been developed to overcome these shortcom-
ings [1, 26]. It has previously been applied to numerical
optimization [5, 17, 13].

In this paper we apply affine arithmetic to embed de-
formable models within a statistical framework. This ap-
proach allows us to avoid making assumptions about the
probability distribution functions, unlike most previous sta-
tistical approaches to computer vision, and it scales well
with the number of parameters used in the deformable
model description.

2. Deformable Model Tracking

Fundamentally, a deformable model framework is a
Lagrangian dynamics system parameterized by a vector

q [18]:
q=F(q). 1)

As the tracking process evolves, we integrate q with the
Euler integration method.

We obtain the coordinates of each point on a deformable
model through a series of linear and non-linear operations
applied over its parameters q. We convert contributions
from a 2D visual cue ¢ applied to a point p; on the de-
formable model to generalized forces fgc’j , which act on the
model parameters. The conversion to generalized forces is
obtained through the application of the matrix B;, which is
the projection of the model Jacobian at point p; to image
space. The sum of these gives us the generalized force f .
for cue c:

fro=> foej=> B]f;, 2)
J

J

where f;; is the image force from cue c at point p; in
image space. If these image forces are independent random
variables, and the number of elements in this sum is large,
the central limit theorem [21] (CLT) states that a a multi-
dimensional Gaussian is a good representation of f; ., even



if the probability distributions of the image forces are un-
known.

— ;e—%(x—#c)j—f\c_l(x—#c) 3)

/A

where g, is the mean vector and A is the covariance ma-
trix. Usual proofs of the CLT require i.i.d. random vari-
ables, but if these variables’ distributions satisfy extra con-
ditions (third absolute moment bounded and |f;| < M),
then only independence is necessary [7]. In our application,
the domains of the distributions are bounded, which implies
that the third absolute moments are bounded. Even if we re-
lax the condition of the derivative on the distributions, it is
still possible to bound the error of the approximated Gaus-
sian distributions [7].

To integrate the contribution of the cues with the de-
formable model, we need to combine the f; . into the single
generalized force f; in the best possible way:

fg:f(fmlafg,?a“‘)- 4)

In a deterministic framework, F is simply a weighted sum
of the f; .. In a statistical framework, we use a maximum
likelihood estimator, as described in Sec. 5.

In the next section we describe the tools that will allow
us to estimate the mean vector pt,. and the covariance matrix
A that statistically describe each f; ..

3. Affine Arithmetic

To model the visual cues (point tracker, optical flow, etc.)
properly as random variables we need to know the proba-
bility distribution function of their values. In the general
case, this is a complicated problem that might need strong
knowledge of the application. The assumptions made while
estimating the distributions might not also translate well for
different applications.

To get around these problems we model only the region
of the values that the cue’s image forces take; that is, the
support of their probability distributions. Affine arithmetic
provides the framework to manipulate these regions. Cal-
culating the generalized forces operates on regions, instead
of real numbers.

The result of applying these operations to the cue’s im-
age forces is a region in the model parameter space rep-
resenting f; .. Because of the large number of individual
image forces, it is then possible to estimate the parameters
p, and A, of the Gaussian that represent f, . based on the
properties of this region, as described in Sec. 4.

3.1. Affine forms and the mathematical operations

The basic atom of the affine arithmetic is called an affine
form. An affine form & represents an interval and is repre-

sented as:
a=ag+aie1 + aes + -+ + @mém. (®)]

In R! the coefficients a; are real numbers, whereas in R"
they are n-dimensional vectors. The €; are symbolic real
variables whose values are unknown, but guaranteed to lie
in the interval [—1...1] with E[g;] = 0. The quantity ag
is called the central value (mean), and the ¢; are called the
noise symbols. Each noise symbol ¢; represents an indepen-
dent component of the total uncertainty. By scaling £; with
the a; from Eq. 5, it is possible to obtain arbitrarily large
intervals of uncertainty.

As an example, consider a two-dimensional vector de-
scribing a cue’s image force j from a visual cue c, f;. It
can be described as an affine form as follows:

o= ()~ (@) ()
¥ (3) e+ (‘1)) s + (—41) 9

This representation, shown in Figure 1, describes a vector
whose mean is at (10,20) . If f, and fy were independent,
their spanned intervals would be [6...14] and [12...28],
respectively (plotted as the light gray on Figure 1). How-
ever, because f, and f, share the noise symbols 1 and &4,
their variations are not independent. In fact, f.; has to lie in
the dark region of Figure 1.

(6)

;] I

Figure 1. Joint range of two partially depen-
dent quantities in AA.

Interval arithmetic [19] is another way to track inter-
vals; each interval is just represented as the pair [a...D].
Affine arithmetic has a significant advantage in that it pro-
vides tighter bounds. In addition, unlike interval arithmetic,
it preserves the information on the correlation between the
components of f .. In Figure 1 the light gray region shows



the best possible bound that could be represented by interval
arithmetic.

For each operation on real numbers we have to define a
counterpart for affine forms. Affine operations like

Z2=af+pY+C, @)

are calculated exactly, where

m m m
T=mx0+ E Ti€i Y=Y+ E Yi€i 2= 20+ E 2i€4,
i1 i=1 i=1

where Z, 4, and Z are affine forms, and «, 3, and ( are real
constants. The definition of this operation is

20 =awg+Pyo+¢ and z; = ax; +Py;.  (8)

Note that any operation defined on two affine forms also
defines this operation on an affine form and a scalar, because
a scalar s is trivially represented by the affine form ag =
s. For this reason, the operations necessary to convert an
image force to a generalized force in Eq. 2 are still valid
when the image forces are affine forms.

Non-affine operations require a more careful analysis.
For each operation we have to determine an affine approxi-
mation for the valid range. We then introduce an extra inde-
pendent noise symbol is to carry the introduced error, thus
keeping the interval valid. A thorough description on how to
do the appropriate operations (reciprocate, multiplications,
exponentials, trigonometric, etc.) can be found in [26].

We now show how to obtain the Gaussian parameters ft,,
and A, from an affine form describing the generalized cue
force f, ., so that we can use it in a maximum likelihood

g,C>
estimator (MLE).

4. Obtaining a Gaussian random variable from
an affine form

After using affine arithmetic on the image forces, we ob-
tain an affine form for the generalized cue force f; . from
Eq. 2, where

fg,c =ag+ Zaiei. )
i=1

Since we have summed many independent elements (i.e.,
the image forces), we know from the central limit theo-
rem that a Gaussian distribution will adequately approxi-
mate f; .. We need to estimate the mean vector p, and the
covariance matrix A, of this distribution.

The mean vector is

u.=E [ng,c] = Efao] + iE[aiai]

m (10)
=agp + Z aiE[si],
i=1

but since all noise symbols ¢; are equally distributed around
the origin,

p, = ag. (11)

We break the estimation of the covariance matrix A . into
two problems: to determine the eigenvectors and the eigen-
values of this matrix. The eigenvectors are the major axes
of the region defined by the affine form. The eigenvalues
are the variances of the affine form along these axes.

4.1. Eigenvectors of A

To find the eigenvectors of A, we look for the minimum-
volume hyperrectangle! bounding the solid described by the
affine form. This hyperrectangle can be represented by an
affine form with exactly n noise symbols (where n is also
the size of the deformable model’s parameter vector q), all
of which point along orthogonal direction vectors. In nor-
malized form these vectors are the desired eigenvectors.

Given an orthonormal basis {w;} of R”, there is an
affine form w that represents the hyperrectangle oriented
along the axes w;, and which contains the solid described
by £y .. Its description is

m
w =wg + Z Q; WiE;, (12)
i=1

where ¢ is the sum of the absolute values of the projections
of the a;,+ > 1 (from Eq. 5) over w;:

j=1

The problem is now reduced to finding {w;} that minimizes

We can rotate vectors wy, and w; by an angle 6 without
destroying the orthonormality of {w;}:

W), = Wy cosf — w;sinf (14)

W, = Wy, sin 6 + w; cos 6. (15)

'a higher-dimensional rectangle



This operation only changes ay and ;. To minimize the
volume along this rotation operation it is necessary to find
6 such that o, o (the a corresponding to w), and w;) is at a
minimum. Our algorithm is the application of this local op-
timization over all pairs of vectors starting from an arbitrary
orthonormal basis {e;}:
Initializes: {w;} < {e;}
for k=1 to n—1 do
for j=k+1 to n do
Find 6 that minimizes o/, oy
Rotate wy and w; by
Qg < Q). 0
end for
end for

4.2. Eigenvalues of A,

The eigenvalues \; of A, are the variances o7 along the
axes of the eigenvectors {wy; }:

Ai=E [((fg,c ) 'Wz')2] :

By plugging in Eqs. 9 and 11

m
)\i =F (Z Ww; - ajsj)2 s
Jj=1

but €; are by definition independent, so

I
NE

Ai E [(wi-aje;)’]
j=1
m (16)
=> (wi-a;)’E [¢]]
j=1
We can bound A; from above by
m
i < mjax(agj) Z(W’ -aj)2. a7
Jj=1

If all noise symbols €; are identically distributed (since
they are by definition independent, this would imply 1ID),
we can simplify Eq. 16 by noting that E[e;] = 0:

i = E[€7] Z(wi -aj)? =02 Z(WZ -a;)% (18)

Jj=1 7j=1
5. Merging the Cues

To obtain the probability distribution of the generalized
force q, we integrate the Gaussian distributions of the cues’

generalized forces that we obtained in the previous section
with a MLE. In the case of Gaussian distributions, the opti-
mal MLE is a simple, non-predictive Kalman filter[16]. Its
input are Gaussian distributions, and it yields another Gaus-
sian distribution whose mean g is the maximum likelihood
estimate of q, and whose covariance matrix A is an estimate
of its confidence.
Each cue is described by the mean vector p, and
the covariance matrix A.. We iteratively apply the
Kalman MLE over each one of the cues. After
each iteration the Kalman MLE holds the best esti-
mate of fi, and Ac for the cues already processed.
Initializes: f1; + p, Ay Ay
for c =2 to nc do {where nc = number of cues}
bc «— Acfl(j/&cfl + Ac)_l
lzl’c « p‘c—l + bAC(p‘c - p’c—l)
A (T—b)Ac—q

end for

l‘l‘ (_ l‘l‘nca A <_ Anc

6. Application and Experiments

As an application we augmented our deformable model
tracking system to use affine arithmetic inside the cue mod-
els, and then to convert it to Gaussians using the method
described in the previous sections. We represent the param-
eters of the deformable model as a vector of scalars, which
we integrate with the maximum likelihood estimate p of g
in the Lagrangian dynamic system, obtained by converting
the affine forms of the cues’ image forces to affine forms of
generalized forces, summing them up to form the cues’ gen-
eralized forces f; ., and converting them to Gaussian distri-
butions. Currently we do not use the confidence estimate
in the covariance matrix A during the integration process;
however, future work should make use of it.

In the next subsections we describe, for each cue, how
we have constructed the initial random variables that will
be propagated to the final Gaussians, and present the results
of our method.

6.1. Point Tracker

The point tracker tracks high-contrast points on the de-
formable model in image space. The criterion for choosing
a point’s position in the next frame is the minimum sum of
squared differences (SSD) over a patch within a small region
around the point’s position in the current frame. The distri-
bution of the SSDs in the region around the point provides
us with information on the confidence of the tracked point’s
position.

Intuitively, the smaller the difference between any two
SSDs, the higher is the uncertainty between the two pixels



pi and p; corresponding to these two SSDs. We express this
relationship in the affine form that describes the position of
the tracked point p; at pixel p; by extending its bounds in
the x and y directions in image space to cover both points.
Rather than choosing an arbitrary cutoff value for the dif-
ference between the SSDs to decide whether to extend the
bounds to include a point, we attenuate the magnitude of
the bounds with a decaying exponential function. We de-
scribe the position of p; with the affine form

N 1
p; = Pt; + b, (O) €1+ by ((1)> €a,

where Pt; is the point tracker’s estimate for p;, and b, and
b, are the bounds

bz A —8 . — .
(37) = maxtli P — bl gemstossspi-tosssmay,
19)

where SSD; is the SSD at the tracked point’s position,
SSDj is the ssD for point p; at image coordinates p;, and
¢ and s depend on the size of the patch used for computing
the SSD, and the region searched. The cue’s image force is
the difference between the affine form p; and the point p;’s
position in the previous frame.

6.2. Edge Tracker

For this paper, we have modeled a simple statistical edge
tracker. The mean of the force is obtained through the gra-
dient of a potential field provided by a smoothed edge de-
tector.

The affine form has two components, one along the di-
rection of the mean, and one perpendicular to it. The first
component is inversely proportional to the magnitude of the
gradient of the field — the lower the potential field values,
the lower is the confidence, and thus the higher the variance
has to be. The second component, in the direction perpen-
dicular to the gradient of the potential field, is k12 + ko,
where z is the first component, and k1 > 1 and k2 > 0 are
constants.

The rationale is that the uncertainty along the edge is al-
ways higher than the uncertainty perpendicular to the edge,
since there is no information on whether the edge moved
along this direction.

6.3. Optical Flow

We implemented a statistical version of a simple optical
flow [27]. Assuming a constant flow in a patch around the
desired point, the estimated optical flow v is a least squares
problem, and we solve it through the two-dimensional sys-
tem

ATW2Av=A"W?2b (20)

where

L Vziw? 3 VawiVy;

T _ i i
A WA= SN Vzw?Vy, Y Vyiw? ’

E Vm,wf Vtz-

T2 _ |5
AW b= ZVyiwthi

The magnitude of the spatial gradient is a good measure
of the reliability of the optical flow estimate at that point.
This magnitude can, through an inverse relation, determine
the how large is the confidence region in the direction of the
optical flow.

The eigenvalues of AT W?2 b have a direct relation with
the gradient; they tell us about the properties of that im-
age’s neighborhood, and how the aperture problem affects
the results. Two high eigenvalues mean a very good esti-
mate, two low eigenvalues mean that the optical flow is not
well defined, one high and one low eigenvalue mean that
we have a lower confidence in the direction perpendicular
to the estimated flow.

We use the higher eigenvalue to estimate one uncertainty
bound along the direction of the flow, which is inversely
proportional to the larger eigenvalue. We estimate another
uncertainty bound along the direction perpendicular to the
flow based on the ratio of the eigenvalues.

6.4. Results

In this section we show two examples, one synthetic and
one with real data. For the synthetic example we build a
model of a wedge, and rendered images from two differ-
ent points of view. We tracked these two images with two
different point trackers as described in Section 6.1, one for
each point of view. Because of the low amount of texture
in the images, these present as difficult a test for a point
tracker-based cue as can be. In figure 2(a) we show some
snapshots of one of the image sequences, as well as the plot
of the maximum error in pixels for each camera in both the
deterministic and statistic methods.

For the real example we have constructed a low reso-
lution face model that has 31 parameters defining the fa-
cial anthropomorphic proportions. These parameters are re-
sponsible for the fitting of the model to an individual. On
top of these we have added dynamic motion parameters to
capture the deformations from facial expressions. In Fig-
ures 6.4 and 6.4 we show two real tracking sequences ob-
tained from our system. Our method enabled us to track
over 300 frames in the face sequence with a single camera.
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Figure 2. Synthetic example. 2(a) Snapshots of one image sequence. 2(b) and 2(c) compare the
deterministic against the statistic for each one of the cameras.

Figure 4. Real images: Tracking of raising eyebrows with simultaneous head tilting with statistical
methods



7. Conclusions and Future Work

In this paper we introduced affine arithmetic to propa-
gate the boundaries of random variables. We can use this
method without prior knowledge of the probability distribu-
tion functions, as long as there is a way to obtain an estimate
of the random variable’s bounds.

Our framework for integration of cues is elegant and
adaptive. It allows the dynamic combination of cues that
have no interaction with one another; that is, they may come
from different cameras, or even different sources of data.
The framework scales well with the number of the cues
available.

There are still some important open problems to be ad-
dressed. If the initial affine form does not cover the entire
domain of the distribution of the random variable, part of
the probabilities will be discarded. On the other hand, if the
interval spanned by the affine form is too large, there will
be a loss of correlation information because non-affine op-
erations over affine forms are approximated by local affine
ones [26]. More work is required to understand the tradeoff
between too-large and too-small regions.

In the short term, integrating a shape from shading
cue [24] within the statistical framework should improve
the process for the initial fitting of deformable models. In
addition, using the Kalman MLE’s covariance estimate in a
predictive filter may further improve the tracking results.
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