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Ever since Christian Hülsmeyer showed in 1904 that one could use radio waves to detect metallic objects at
a distance (the range of the first apparatus was 3000 meters), the race has been on to tease out ever more
information from scattered waves. Within months of his first detection demonstration, Hülsmeyer devised
a way to determine the distance to the object. At that rate of improvement one might have extrapolated
to unimaginable twenty-first-century capabilities. Unfortunately, what has proved to be unimaginable is the
difficulty of doing much more than the original device had already accomplished. It would seem that some
forms of bionic vision have gone the way of rocket backpacks – that is, until recently.

The newest book by Andreas Kirsch with coauthor Natalia Grinberg, The Factorization Method for
Inverse Problems, collects over a decade of work by Kirsch and collaborators on a simple method for shape
identification in inverse scattering. This book belongs to the next generation of monographs on inverse
scattering following the now standard works of Colton and Kress [2] (Inverse Acoustic and Electromagnetic
Scattering Theory (1998)) and Isakov [7] (Inverse Problems for Partial Differential Equations).

Kirsch’s factorization method arose from experimentation with noniterative inverse scattering methods
that avoid the computational expense of calculating the solution to the forward problem at each itera-
tion. Noniterative methods attack head-on the inverse problem of determining the scatterer from measured
scattered fields by attempting, in principle, simply to invert the scattering operator. In most situations
of interest, however, the scattering operator is nonlinear and the inverse problem is ill-posed. Early ideas
focused on operator splitting techniques that decompose the scattering operator into a well-posed nonlinear
part and an ill-posed linear part, each of which can be inverted stably. Another class of noniterative methods
use indicator functions to detect the inconsistency or unsolvability of an easily computed auxiliary problem
parameterized by points in space. The shape and location of the object is then determined by those points
where the auxiliary problem is solvable. This latter generation of techniques, of which the factorization
method is one, is both stable and computationally fast. What separates the factorization method from
most of the other noniterative techniques is that it is mathematically complete: the computable criterion
for determining the shape and location of the scatterers is both sufficient and necessary while most other
techniques rely on only sufficient criteria.

The book consists of seven chapters treating the application of the factorization method for, respectively:
simplest cases (namely where the far field operator is normal), refinements for more complicated settings
(namely, where the far field operator is not normal), so-called mixed boundary value scattering problems,
scattering from inhomogeneous media, Maxwell’s equations, impedance tomography, and finally a short
survey of alternative and related methods.

The first chapter offers a concise introduction to the factorization method with some new insights. Of
particular interest is the characterization of the range of an operator B : X → Y (X and Y are reflexive
Banach spaces) in terms of an infimum of the mapping h(ψ) : Y ∗ → R ∪ {−∞,+∞} := |〈ψ, Fψ〉|, where
F := BAB∗ for A : X∗ → X coercive. The infimum is taken over ψ ∈ Y ∗ restricted to 〈ψ, φ〉 = 1 for a fixed
φ ∈ Y . For those readers familiar with convex analysis it can be shown that their infimal characterization is
closely related to the Fenchel conjugate, h∗, of h:

h∗(φ) := sup
ψ∈Y ∗

{〈φ, ψ〉 − h(ψ)}.

Indeed, the range of B is characterized by those points φ where the Fenchel conjugate of h is finite. In
convex analysis the theory of Fenchel conjugation is used to gain a deeper understanding of the necessary
conditions for the existence of Lagrange multipliers for inequality constrained convex programs. Kirsch and
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Grinberg’s introduction of the infimal characterization of the range of B opens the door to the possibility
of deeper investigations into solvability of a broader class of problems, but this is beyond the scope of the
book which is limited to inverse scattering problems.

In the case of scattering, the operator F above is an integral operator whose kernel is made up of the
“measured” far field pattern on the sphere at infinity, otherwise known as the far field operator. The factor
B maps the boundary condition of the governing PDE (the Helmholtz equation) to the far field pattern.
Given the right choice of spaces, the mapping B is compact, one-to-one and dense. There are two keys to the
factorization method and other sampling techniques (see linear sampling, for instance [1]) for determining
the shape and location of scatterers from the far field patterns: first, the construction of the test function
φ above and, second, the connection of the range of B to that of some operator easily computed from the
far field operator F . The secret behind the success of these methods in inverse scattering is, first, that the
construction of φ is trivial and, second, that there is (usually) a simpler object to work with than the Fenchel
conjugate that depends only on the far field operator (usually the only thing that is known). Indeed, the test
functions φ are simply far field patterns due to point sources: φz := e−ikbx·z where x̂ is a point on the unit
sphere (the direction of the incident field), k is a nonnegative integer (the frequency of the incident field),
and z is some point in space.

The crucial observation of the factorization method is that φz is in the range of B if and only if z is a
point inside the scatterer. Now, if one does not know where the scatter is, let alone its shape, then one does
not know B. Enter the Fenchel conjugate: the Fenchel conjugate depends not on B but on the operator F
which is constructed from measured data. However, the Fenchel conjugate, and hence the Kirsch-Grinberg
infimal characterization, is very difficult to compute in general. Which leads us to the final piece to the
factorization method that makes it fly: depending on the physical setting, there is a functional U of F under
which the ranges of U(F ) and B coincide. In the case where F is a normal operator, U(F ) = (F ∗F )1/4; for
non-normal F the functional U depends more delicately on the physical problem at hand and is only known
in a handful of cases. So the algorithm for determining the shape and location of a scatterer amounts to
determining those points z where e−ikbx·z is in the range of U(F ) and where U and F are known and easily
computed.

The second chapter deals mainly with technical refinements. In particular, the basic technique detailed
in the first chapter is extended to problems for which the far field operator is not normal. This expands the
methodology to problems with impedance boundary conditions, limited apertures, near-field measurements
from spherical incident fields, and scattering on a half-space. The inf criterion discussed in the first chapter
is shown to characterize the support of the scatterer in these more exotic instances, however, as already
mentioned, this does not lead to feasible computational strategies. Instead, the authors show that the
scatterer can be found by those points z where e−ikbx·z is in the range of U(F ) := (|ReF |+ |ImF |)1/2, or,
using the authors notation, F 1/2
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The remainder of the special cases for the basic scalar wave scattering problem, mixed boundary value

problems and inhomogeneous media are featured in dedicated short chapters. The chapter on inhomogeneous
media also contains a brief discussion of the interior transmission eigenvalue problem. This sets the stage for
the analogous problem for Maxwell’s equations, which are elegantly presented in Chapter 5. Chapter six is
another short chapter dedicated to impedance tomography and the factorization of the Neumann-to-Dirichlet
map. The final chapter is a brief survey of three alternative methods: the dual space method of Colton and
Monk [3,4], the singular sources method of Potthast [8] and the probe method of Ikehata [5, 6].

This is a nice collection of results on the factorization method for a variety of scattering applications. It
provides beginning researchers with a good survey of the basic theoretical approach, and for more experienced
researchers working with factorization techniques it is a good reference source. This is, however, a keyhole
view into a vast and rapidly evolving field. I await the second edition with great anticipation.

References

[1] D. Colton and A. Kirsch. A simple method for solving inverse scattering problems in the resonance
region. Inverse Problems, 12(4):383–93, 1996.

[2] D. Colton and R. Kress. Inverse Acoustic and Electromagnetic Scattering Theory. Springer-Verlag, New
York, 2nd edition, 1998.

[3] D. Colton and P. Monk. A novel method for solving the inverse scattering problem for time-harmonic
waves in the resonance region. SIAM J. Appl. Math., 45:1039–53, 1985.



[4] D. Colton and P. Monk. A novel method for solving the inverse scattering problem for time-harmonic
waves in the resonance region II. SIAM J. Appl. Math., 46:506–23, 1986.

[5] M. Ikehata. Reconstruction of an obstacle from the scattering amplitude at a fixed frequency. Inverse
Problems, 14:949–54, 1998.

[6] M. Ikehata. Reconstruction of the shape of the inclusion by boundary measurements. Commun. Partial
Differ. Equations, 23:1459–1474, 1998.

[7] V. Isakov. Inverse Problems for Partial Differential Equations. Springer-Verlag, New York, 1998.

[8] R. Potthast. Point Sources and Multipoles in Inverse Scattering Theory. Chapman & Hall, London,
2001.


