
Eliminating Squashes Through Learning Cross-Thread
Violations in Speculative Parallelization for Multiprocessors�

Marcelo Cintray

Division of Informatics
University of Edinburgh

mc@dcs.ed.ac.uk

Josep Torrellas
Department of Computer Science

University of Illinois at Urbana-Champaign
torrellas@cs.uiuc.edu

ABSTRACT
With speculative thread-level parallelization, codes that cannot be
fully compiler-analyzed are aggressively executed in parallel. If the
hardware detects a cross-thread dependence violation, it squashes
offending threads and resumes execution. Unfortunately, frequent
squashing cripples performance.

This paper proposes a new framework of hardware mechanisms to
eliminate most squashes due to data dependences in multiproces-
sors. The framework works by learning and predicting violations,
and applying delayed disambiguation, value prediction, and stall
and release. The framework is suited for directory-based multi-
processors that track memory accesses at the system level with the
coarse granularity of memory lines. Simulations of a 16-processor
machine show that the framework is very effective. By adding our
framework to a speculative CC-NUMA with 64-byte memory lines,
we speed-up applications by an average of 4.3 times. Moreover,
the resulting system is even 23% faster than a machine that tracks
memory accesses at the fine granularity of words – a sophisticated
system that is not compatible with mainstream cache coherence
protocols.

1 INTRODUCTION
Despite advances in compiler technology, compilers still fail to au-
tomatically parallelize many codes. Typically, compilers abstain
from parallelizing codes with complex or unknown data depen-
dences, such as those that contain pointer accesses, references to
arrays with non-linear subscripts, very irregular control flow, or ac-
cesses across complicated procedure calling patterns.

To extract parallelism in such codes, speculative thread-level
parallelization has been proposed [1, 4, 6, 7, 8, 10, 12, 18, 19,
20, 22, 23, 25, 26, 32]. In this approach, potentially dependent
threads are speculatively executed in parallel, hoping not to violate
dependences. If a cross-thread dependence is violated at run time,
a corrective action is triggered to repair the state. Such an action
often involves squashing one or several threads.

Proposed schemes for speculative parallelization differ in many
ways. For example, some schemes rely on support code inserted
by the compiler to check for dependence violations and to perform
corrective actions [7, 19, 20]. Other schemes rely on special hard-
ware to perform some or all of these operations [1, 4, 6, 8, 10, 12,
18, 22, 23, 25, 26, 32].

�This work was supported in part by the National Science Foundation
under grants CCR-9970488, EIA-0081307, and EIA-0072102; by DARPA
under grant F30602-01-C-0078; and by gifts from IBM and Intel.

yWork conducted in part while the author was with the Department of
Computer Science at the University of Illinois at Urbana-Champaign.

In most schemes, however, squashing a thread due to a depen-
dence violation and restarting it is a costly operation. Typically, the
cost includes the overhead of the squash operation itself, the loss
of the work performed, and the cache misses necessary to reload
state after restart. Squashes are especially costly in large multi-
processors, where the overhead of squashing distributed threads is
high and the typical coarse grain of the threads likely implies more
wasted work.

Unfortunately, squashes due to data dependence violations can
be frequent. One reason is that the coherence protocol of multipro-
cessors typically operates at the granularity of memory lines. This
is because word-based accesses usually exhibit suboptimal local-
ity and result in increased traffic. However, line-based systems are
subject to false sharing, which may appear to violate dependences.

Another reason for frequent dependence violations may be the
early stage of development of compilation support for speculative
parallelization [15, 16, 24, 28]. Specifically, compilers may occa-
sionally make poor assessments of data dependences and attempt
to speculatively parallelize codes with many dependences.

One approach to reduce the number of squashes is to attempt
to learn at run time where the cross-thread dependence violations
occur. Then, when we predict that one such violation is about to
occur, we can prevent it from taking place. Past work has used
these ideas to dynamically synchronize dependent load-store pairs
in a uniprocessor [5, 21, 31], or even to dynamically synchronize
dependent threads in a tightly-coupled multiscalar processor [14].

In this paper, we focus on how to eliminate squashes through
run-time dependence learning in the distributed architecture of a
directory-based CC-NUMA. Clearly, the problem that we address
is different than the one addressed by previous work. Indeed, we
cannot afford any centralized learning structure and there is no
global context readily available. Moreover, we must largely rely
on memory access information that is only available at the grain
size of memory lines.

We propose a new framework of hardware mechanisms to elim-
inate most squashes due to data dependences in directory-based
multiprocessors. The framework works by learning and predicting
violations, and applying delayed disambiguation for false depen-
dences, value prediction for same-word dependences, and stall and
release for unpredictable, same-word dependences.

The framework works with multiprocessors that track system-
level memory accesses at the coarse granularity of memory lines.
Simulations of a 16-processor machine show that the framework
is very effective. By adding the framework to a speculative CC-
NUMA with 64-byte memory lines, we speed-up applications by
an average of 4.3 times. Moreover, the resulting system is even
23% faster than a machine that tracks memory accesses at the fine
granularity of words. Such fine-grain access tracking is not com-
patible with mainstream cache coherence protocols.

Proceedings of the Eighth International Symposium on High-Performance Computer Architecture (HPCA�02)
1503-0897/02 $17.00 © 2002 IEEE

This paper is organized as follows: Section 2 discusses back-
ground concepts; Section 3 presents the proposed framework; Sec-
tion 4 outlines its implementation; Section 5 discusses the evalu-
ation methodology; Section 6 evaluates the framework; Section 7
discusses related work; and Section 8 concludes the paper.

2 SPECULATIVE PARALLELIZATION
2.1 Basic Concepts
Speculative thread-level parallelization consists of extracting
threads from sequential code and running them in parallel, hoping
not to violate sequential semantics. Threads in a speculative sys-
tem are typically classified into a single non-speculative thread and
a set of speculative ones that can generate unsafe state. In spec-
ulative threads, stores generate speculative versions of variables,
and loads that do not find a local version must get the most up-to-
date one from a predecessor thread or memory. In such a system,
a thread commits when it has finished its execution and is non-
speculative. In the speculation protocol that we use in this paper,
when a thread commits, it writes-back to main memory all the dirty
lines in its cache [4]. Furthermore, a speculative thread becomes
non-speculative only when all its predecessors have committed.

As execution proceeds, the system tracks memory accesses to
identify any cross-thread data dependence violation. If one is
found, the offending thread is squashed. Typically, to simplify the
protocol, its successor threads are also squashed. Thread squash
is a very costly operation. The cost is three-fold: overhead of the
squash operation itself, loss of the work already performed by the
offending thread and successors, and cache misses in the offending
thread and successors needed to reload state after restarting. The
latter overhead appears because, as part of the squash operation,
the speculative state in the cache is invalidated. Figure 3a shows
an example of a RAW violation across threads i and i+j+1. The
consumer thread and its successors are squashed.

2.2 General Architectural Model
A few designs have been proposed to support speculative thread-
level parallelization in directory-based architectures [4, 18, 23, 32].
In the discussion of our framework, we assume a model where a
Speculation Module is added to the directory controller of the CC-
NUMA machine (e.g., as in [4]). The module keeps track of the
mapping of threads to processors and their ordering.

The speculation module is also responsible for detecting any
data dependence violation. It does so by recording what data has
been speculatively accessed by what thread with an exposed load
or a store. An exposed load is a load to a location by a thread before
the same thread has updated the location. If a violation is detected,
the module squashes all the necessary threads [4].

2.3 Granularity of Access Tracking
Speculation protocols can be classified depending on whether they
track speculative accesses with word or line granularity. Per-word
protocols only need to squash threads in cross-thread RAW vio-
lations on the same word. However, they require costly per-word
state support in caches, network messaging, and directory modules.
They also tend to generate higher traffic.

Per-line protocols are more cost-conscious and are compatible
with mainstream cache coherence protocols. However, they can-
not disambiguate accesses at word level. Furthermore, they cannot
combine different versions of a given line that have been updated
in different words. Consequently, cross-thread RAW and WAW
violations, on both the same and different words of a line, cause
squashes.

A per-line protocol with per-word extensions in the cache hi-

erarchy is a compromise that effectively reduces squashing to the
case of RAW violations on same or different words of a line. Each
cache line is augmented with one Store, one exposed Load, and
one Valid bit per word. The first bit indicates that the local thread
has updated the word. The second bit, that the local thread has is-
sued an exposed load to it. The Valid bits indicate which words
of the line are valid and allow for invalidation of individual words.
Line write-backs to memory piggy-back the Store bits of the line,
so that the directory controller can successfully combine different
versions of the line. Hence, all cross-thread WAW dependences
are supported without causing squashes. Still, the directory state is
kept per line. In this paper, we use this protocol as our baseline.

In all the protocols considered in this paper, we disable support
for the forwarding of uncommitted dirty data between caches. We
do this to simplify the implementation of the protocols. As a result,
the violations described above include both out-of-order dependent
accesses and in-order dependent accesses that need forwarding of
uncommitted dirty data.

3 PROPOSED FRAMEWORK
Squashes due to cross-thread data dependence violations can cause
major overheads under speculative parallelization in multiproces-
sors. One possible way to remove many such squashes is through
learning where violations occur, predicting them, and then prevent-
ing them from taking place. The motivation for this general ap-
proach is that some form of learning, prediction, and synchroniza-
tion of data dependences have been successfully used in uniproces-
sors and tightly-coupled chip multiprocessors [1, 5, 11, 13, 14, 21,
29, 30, 31].

In our work, we target directory-based CC-NUMA architec-
tures. These architectures have distributed processors, caches, and
directories, which require different solutions. In particular, we ex-
ploit the fact that, as indicated in Section 2.2, some speculative
CC-NUMA designs have a speculation module in the directory
controller (module 1 in Figure 1). Such a module can see all the
accesses that are involved in dependence violations [4]. Conse-
quently, we can build support for learning, predicting, and elimi-
nating violations around that module.

In this section, we present a novel framework that uses these
ideas. We first present an overview of the mechanisms (Section 3.1)
and learning heuristics (Section 3.2) used. We then describe each
mechanism in detail (Section 3.3) and some possible extensions
(Section 3.4).

3.1 Overview of the Mechanisms
In conventional speculative systems, when the speculation module
at the directory controller observes the two accesses involved in a
RAW violation, it triggers a squash. In our framework, we try to
eliminate such a squash with four mechanisms.

First, some squashes are unnecessary because there is no true
data transfer between the threads involved: there is only false shar-
ing. Since our baseline speculation protocol tracks accesses at the
granularity of lines at the directory, false sharing causes squashes.
To eliminate these squashes, we optimistically let the consumer
thread proceed. However, before we allow the thread to commit,
we use the per-word access bits in its cache hierarchy to check
whether or not it was false sharing. We call this mechanism De-
lay&Disambiguate.

Secondly, even when there is true data transfer between threads,
a squash can be avoided with effective use of value prediction.
Specifically, we predict the value that the producer will produce,
speculatively provide it to the consumer, and let the latter proceed.
Before we allow the consumer to commit, we check whether or not
the value used was correct. We call this mechanism ValuePredict.

In cases where value prediction fails, we can avoid the squash

Proceedings of the Eighth International Symposium on High-Performance Computer Architecture (HPCA�02)
1503-0897/02 $17.00 © 2002 IEEE

Processor
+Caches

Directory
Controller

Network

LDE

Thread i

VPT

New Modules

3. VPT: Violation Prediction Table

Conventional support for
speculative parallelization

Memory

Write

Read
Thread i+j

1. Speculation module

4. LDE: Late Disambiguation Engine

(Per−word access info)
2. Access bits in cache hierarchy

(Per−line access info)

1

2 4

3

Figure 1: Model of speculative CC-NUMA used in this
paper. The shaded areas are support that has been proposed
elsewhere. The black areas are our proposed additions.

by stalling the consumer thread until the producer has produced
the value. At that point, the consumer reads the produced value
and can resume. This case has two possible mechanisms. An
aggressive approach is to release the consumer thread as soon as
the first producer thread commits. In this case, if an intervening
thread between the first producer and the consumer later writes
the line, the consumer will be squashed. We call this mechanism
Stall&Release. A more conservative approach is not to release the
consumer thread until it becomes non-speculative. In this case, the
presence of multiple predecessor writers will not squash the con-
sumer. We call this mechanism Stall&Wait.

3.2 Learning and Prediction Heuristics
To learn and predict what memory accesses cause violations, we
use the line address requested by the access. Specifically, we add
an extension to each speculation module called the Violation Pre-
diction Table (VPT) (module 3 in Figure 1). The VPT dynamically
keeps the address and other information for the lines that have been
involved in potential or actual violations in the past. When the
VPT observes an access to one such line, it triggers one of our four
mechanisms.

To decide what mechanism to use for a particular line, the VPT
uses the finite state machine of Figure 2. Initially, a line accessed
speculatively is in the Plain Speculative state in the VPT, and the
VPT takes no action. When the line appears to be involved in a po-
tential violation, the VPT transitions to the Delay&Disambiguate
state for the line (transition 1 in Figure 2). This engages the mech-
anism for handling false dependences. Note that, by default, we
predict that the dependence will turn out to be false. We make
the assumption that, in line-based protocols, false dependences are
more likely than same-word dependences.

If the dependence turns out to be a same-word dependence, a
squash is triggered and the VPT transitions to the ValuePredict
state for the line (transition 2 in Figure 2). This engages the mech-
anism for value prediction. If further same-word violations occur
in the line, the VPT transitions to the Stall&Release state for the
line (transition 3 in Figure 2). This engages the mechanism for
consumer stall and restart as soon as the first producer commits.

A

B

E

C

A

B

C

D

E

Dependence type
assumed

false

same−word with
predictable value

same−word with
single writer

same−word with
multiple writers

State

no dependence

D

violation and squash

age
age

Plain Speculative

age

violations and squashes

4

2

Delay&Disambiguate

potential
violation

1

Stall&Wait

ValuePredict

3

violations
and
squashes

Stall&Release

age

Figure 2: Finite state machine followed by the VPT for in-
dividual memory lines. Plain Speculative is the initial state.

Finally, if further violations occur in the line, the VPT transitions
to the Stall&Wait state (transition 4 in Figure 2). This engages the
mechanism for consumer stall and restart only when it becomes
non-speculative. Any of these states can directly age back to the
Plain Speculative state (dashed transitions in Figure 2).

3.3 Mechanisms Used
3.3.1 Delay&Disambiguate: False Dependences

For lines under the Delay&Disambiguate state, potential violations
detected by the speculation module at the directory controller are
assumed to be false. No squash is generated. Instead, the per-line
speculation protocol operates mostly unaltered. Later, before the
consumer thread is allowed to commit, access information from
the producer and consumer threads are compared to perform word-
address disambiguation.

Figures 3b and 3c show how a RAW violation is handled in this
case. If the disambiguation shows the dependence to be false (Fig-
ure 3b), the consumer thread only sees a small overhead while the
disambiguation is performed. However, if the dependence turns
out to be for the same word (Figure 3c), the consumer thread and
successors are squashed and restarted.

Implementing the Delay&Disambiguate mechanism requires
the following: identifying potential violations that are likely to
be false, remembering delayed unresolved violations, performing
the delayed disambiguation, squashing threads when violations are
confirmed, and learning which lines are involved in same-word vi-
olations.

This mechanism is triggered when the speculation module de-
tects the second access of a RAW access pair to a line. At this point,
the VPT checks if it has learned that the line has caused same-word
dependences in the past. If it has not, the speculation module ig-
nores the potential violation. At this point, the VPT transitions its
state for the line to Delay&Disambiguate (Figure 2) and records
the tag of the line involved and the ID of the consumer thread. The
VPT also prepares a bit mask that will identify the words of the
line that are actually written by predecessor threads. This mask is
called the Modified mask, and is updated every time that a prede-
cessor thread writes back the line to main memory at commit time.
Recall that write-backs include bits that identify which words were
written (Section 2.3).

When the consumer thread is about to become non-speculative,
the Modified mask contains the record of the modifications by all
the predecessor threads since the time of the potential violation.
The VPT then sends the Modified mask to a new module associ-
ated with the cache hierarchy of the consumer node, along with a
request for late disambiguation. Such a module is called the Late
Disambiguation Engine (LDE) (module 4 in Figure 1). Before the

Proceedings of the Eighth International Symposium on High-Performance Computer Architecture (HPCA�02)
1503-0897/02 $17.00 © 2002 IEEE

i

Wrt

Rd

Producer
i+j i+j+1 i+j+2

Consumer

Overhead for

Squash overhead

Useful work

Possibly incorrect
work

Wasted correct
work

Stall overhead

delayed disambiguation

(c)

Commit

Squash Squash

i+j+2

i

Wrt

Rd

Producer
i+j+2

Consumer

(a)

Time

Time

i

Rd

Wrt

i+j i+j+1

Squash

Producer Consumer

(d)

Rd

i+j

Wrt

Release

i+j i+j+1

Commit

Commit

(b)

RAW

Commit

Squash

Consumer

Release

i
Producer

i+j+2

i+j+1 i+j+2
Consumer

(e)

i

Wrt

Rd

Producer
i+j i+j+1

Figure 3: RAW violation with a squash (a); a successful delayed disambiguation (false RAW) or value prediction (b); a failed delayed
disambiguation (same-word RAW) or value prediction (c); a stall with early release (d); and a stall with no early release (e).

consumer is allowed to commit, the LDE compares the Modified
mask against the per-word Load and Store access bits of the corre-
sponding line in the cache hierarchy of the consumer node (module
2 in Figure 1).

If there is an intersection between the Load bits and the mask, a
same-word violation occurred and the thread is squashed. The VPT
then transitions its state for the line to ValuePredict (Figure 2), ef-
fectively learning that the line exhibits same-word dependences.
If no intersection is detected, the state in the VPT is kept as De-
lay&Disambiguate. Furthermore, any words in the line that both
have the Store bit clear and are marked in the Modified mask, have
become stale. Therefore, they are invalidated from the consumer
cache hierarchy.

The effectiveness of Delay&Disambiguate is related to the frac-
tion of delayed disambiguations that do not cause late squashes.
We define such a fraction as the selectivity of the mechanism.
Higher selectivity is better.

3.3.2 ValuePredict: Predicting Consumed Values

For lines under the ValuePredict state, the VPT provides a predicted
value to the consumer thread on demand. The VPT remembers
this value, which is finally compared with the correct value in the
system when the consumer thread becomes non-speculative. If the
prediction was correct the thread continues (Figure 3b). Otherwise,
the thread and its successors are squashed (Figure 3c).

This mechanism requires: learning when to apply value predic-
tion, predicting a value based on past observed values, comparing
predicted consumed values with the actual values, and squashing

threads if necessary.

When Delay&Disambiguate identifies a same-word violation, a
squash is triggered and the VPT transitions immediately to Val-
uePredict for the line. Alternatively, we could wait and observe the
predictability of the values before attempting value prediction. The
choice here depends on the history depth required by the predic-
tion mechanism. In this paper, we only investigate an approximate
last-value prediction, which allows for immediate transition.

We design the mechanism as follows. When a thread attempts to
consume data from a line marked ValuePredict in the VPT, the VPT
provides a predicted value of the line. For simplicity, in our imple-
mentation the predicted value of the line is the last value written-
back to main memory. Consequently, the VPT provides the current
version of the line in memory. This prediction technique has also
been called value reuse or silent store. The VPT also records the
line tag, the value of the line provided, and the ID of the consumer
thread.

When the thread finally becomes non-speculative, the VPT com-
pares the prediction it made to the final value of the line. Recall
that, in our protocol, such a value is the one currently in memory
(Section 2.1). For words whose values differ, the VPT sets the
corresponding bit in the Modified mask described in Section 3.3.1.
The VPT then sends the Modified mask to the LDE in the con-
sumer node, which performs local late disambiguation as described
in Section 3.3.1. The state of the line in the VPT remains in Val-
uePredict unless a squash is required and such a squash increases
the squash count for the line over a certain threshold.

The effectiveness of the ValuePredict mechanism depends on

Proceedings of the Eighth International Symposium on High-Performance Computer Architecture (HPCA�02)
1503-0897/02 $17.00 © 2002 IEEE

the predictability of the values and on the accuracy of the predictor
used.

3.3.3 Stall&Release: Waiting for the First Writer

For lines under the Stall&Release state, the VPT stalls the con-
sumer thread when it tries to load the line. Later, when the producer
thread commits, the consumer thread finally gets the line and con-
tinues. Figure 3d shows how a potential RAW violation is handled
under the Stall&Release mechanism.

This mechanism requires: identifying the lines that cause same-
word violations where value prediction fails, stalling threads be-
fore they are allowed to consume unsafe data, and releasing threads
when the data is considered safe.

Before transitioning to Stall&Release for a line, the VPT counts
the number of squashes caused by the line under ValuePredict.
When a threshold is exceeded, the VPT learns that violations can-
not be successfully handled with value prediction. At that point,
after the squash is complete, the VPT transitions the state of the
line to Stall&Release (Figure 2) and issues cache invalidations for
the line to all speculative threads. These invalidations are selective
in that, in each cache, they only invalidate the words in the line that
have no local modified version.

We can now see how the Stall&Release mechanism works.
When a consumer thread issues an exposed read to one of the
words in the line, the request misses in the cache and is propa-
gated to the directory. Since the VPT knows that the line is in state
Stall&Release, it buffers the request and does not reply. There-
fore, the consumer thread will eventually stall when it runs out of
instructions to execute.

The safe time to release a stalled thread is when it becomes non-
speculative. However, releasing it earlier may speed-up execution.
The earliest time when a line can be forwarded and the consumer
released is when the producer thread commits and writes back the
modified line to memory. At this time, the line can be forwarded
provided that no other predecessor of the stalled consumer thread
has created a newer version of the line in its cache. If no such
version exists, the VPT releases the buffered request and allows it
to proceed, therefore effectively releasing the stalled thread. This
is shown in Figure 3d, where the consumer thread is released as
soon as the producer thread commits. However, if any predecessor
of the released thread now writes to the line, a squash will occur.

The effectiveness of Stall&Release is measured in terms of cov-
erage and selectivity. Coverage is the fraction of the squashes that
are successfully avoided. Selectivity is the fraction of the stalls that
actually eliminate squashes. Ideally, both should be high.

3.3.4 Stall&Wait: Waiting for Multiple Writers

For lines under the Stall&Wait state, the VPT also stalls the con-
sumer thread when it tries to load the line. However, the VPT
does not allow the thread to resume until the thread becomes non-
speculative. At that point, it is completely safe for the thread to
resume. Figure 3e shows how a potential RAW violation is han-
dled under the Stall&Wait mechanism.

For a given line, the VPT reaches Stall&Wait from
Stall&Release. While in Stall&Release, the VPT counts the num-
ber of squashes caused by the line. Such squashes are nearly al-
ways due to premature early releases. Specifically, after the con-
sumer has been released, other predecessor threads also write the
line. If the number of such squashes reaches a certain threshold,
the VPT transitions from Stall&Release to Stall&Wait for the line
(Figure 2), effectively learning that the line has multiple writers.

We design the Stall&Wait mechanism like the Stall&Release
one. The only difference is that the VPT keeps the consumer read
buffered until the consumer thread becomes non-speculative.

3.4 Advanced Learning Heuristics
3.4.1 Violation Predictors

Our violation prediction heuristics are based on counting the num-
ber of violations caused by accesses to a particular memory line.
Such a scheme is easy to implement in the memory subsystem of
CC-NUMA multiprocessors, as it only requires monitoring in the
directory controller the addresses of the accesses that cause viola-
tions.

Prediction of violations can instead be based on the addresses of
the instructions causing the violations, as in [14]. However, this ap-
proach is a bit harder to implement in CC-NUMA multiprocessors
as instruction addresses are not usually visible at the main memory
system.

We have also experimented with more advanced prediction
mechanisms based on history tables [17]. Such mechanisms can
exploit correlation between related memory operations and thus
predict violations better. However, our experiments showed little
performance improvement. Due to the additional complexity of
such predictors, we do not pursue them further.

3.4.2 Value Predictors

Our framework can accommodate more complex value predictors
than the one investigated in this paper. Indeed, once a particular
line has been identified as causing same-word violations, the VPT
can keep a history of the actual values produced. This history can
be updated every time that a thread commits and writes back to
memory a new version of the line. Then, when the line is read, we
can make a prediction based on this history.

Our experiments with a suite of floating-point applications (Sec-
tion 5.1) show that values are either highly unpredictable or do not
change because they are accessed by silent stores. For this reason,
we do not pursue more complex value predictors. A more compre-
hensive investigation of value prediction under speculative paral-
lelization for multiprocessors is beyond the scope of this paper.

4 IMPLEMENTATION
In this section, we show an implementation of the VPT and LDE
modules. As an example, we implement them on top of the CC-
NUMA speculation protocol and the speculation module presented
in [4]. That module was called Global Memory Disambiguation
Table (GMDT). In the following, we first describe the GMDT (Sec-
tion 4.1) and then the VPT and LDE (Sections 4.2 and 4.3). We
also outline implementations under other speculative CC-NUMA
configurations (Section 4.4).

4.1 Global Memory Disambiguation
Table (GMDT)

The GMDT tracks speculative accesses in a CC-NUMA somewhat
like the directory tracks regular coherent accesses [4]. The GMDT
is coupled with the directory and, like such, it is physically dis-
tributed across nodes based on data address ranges. We show the
GMDT as module 1 in Figure 1.

More specifically, the GMDT records the subset of lines that
receive speculative exposed loads or stores from currently-active
speculative threads (and stores from the non-speculative thread).
The GMDT also knows about the relative ordering of the threads.
While lines read speculatively can be displaced from caches, the
GMDT cannot forget any of the exposed reads that took place. Un-
like in [4], the GMDT design that we use tracks speculative ac-
cesses at the granularity of lines, not words.

The GMDT in a node is organized as a set-associative SRAM
table where rows are dynamically allocated per memory line upon

Proceedings of the Eighth International Symposium on High-Performance Computer Architecture (HPCA�02)
1503-0897/02 $17.00 © 2002 IEEE

a speculative access (or a write by the non-speculative thread) [4].
This SRAM table is allowed to overflow into memory. Each row
corresponds to a line (Figure 4). It contains a line address tag, a
Valid bit, and a pair of Load and Store bits for the non-speculative
thread and for each of the speculative threads that can be active at a
time. The Load and Store bits indicate whether individual threads
have issued an exposed load or a store, respectively, to the line.
When a thread commits, all its cached dirty lines are written back to
memory, and its GMDT bits are cleared and reassigned to another
thread. If all Load and Store bits for an entire row become zero,
the entry is deallocated.

VPTGMDT

Line
Tag

Valid
Bit

Load
Bits

Store
Bits

Valid
Bit

State
Bits

Squash
Counter

SavedSquash
Bit

Line
Tag

Valid
Bit

Thread
ID Bits

State Modified
Mask

Predicted
Line Value

VPT Pending Transactions Buffer

ThrsStallR

ThrsStallW

AgePeriod

VPT Registers

Figure 4: Hardware structures for speculation (GMDT) and
for learning (VPT, VPT Pending Transactions Buffer, and
VPT Registers).

4.2 Violation Prediction Table (VPT)
The VPT is a table that keeps dynamic information on the memory
lines that have recently been involved in potential or actual vio-
lations. The main VPT structure is an extension to every row of
the GMDT (Figure 4). A VPT entry is allocated when its asso-
ciated GMDT entry is allocated (Section 4.1). Initially, the VPT
entry simply records that the line is in the Plain Speculative state
of Figure 2. However, as potential or actual violations on the line
occur, the VPT entry changes state as shown in Figure 2. The cor-
responding GMDT and VPT entries are routinely looked up when
the directory controller receives a transaction that involves the line.
Depending on the state of the VPT entry, the VPT triggers the ac-
tions discussed in Section 3.3. Finally, the associated GMDT and
VPT entries are deallocated together, only when neither entry has
any useful information. For the VPT entry, this occurs when the in-
formation about the involvement of the line in violations has aged
out and the line is back in Plain Speculative state.

As shown in Figure 4, each row of the main VPT structure con-
tains a Valid bit, 3 State bits that encode which state of Figure 2 the
VPT entry is in, a Squash counter, and a SavedSquash bit. The last
two will be described later. Overall, if we use 3 bits for the counter,
a VPT row takes only 1 byte. We set the number of rows in the per-
node GMDT and VPT to be 2048. Such a number was shown to
be enough in [4], mostly because the compiler carefully marks the
data that is accessed speculatively. As a result, the per-node VPT
takes 2 Kbytes.

The VPT has two helper structures, namely the VPT Registers
and the VPT Pending Transactions Buffer (Figure 4). The former
contain three settable values called ThrsStallR, ThrsStallW, and

AgePeriod. They affect state transitions for VPT entries. We will
discuss them later.

The VPT Pending Transactions Buffer allocates one entry for
each exposed load in progress to a line that is in the VPT in state
other than Plain Speculative. The entry contains temporary state
for the transaction and is deallocated as soon as the transaction
completes. Each entry effectively corresponds to one potential vio-
lation that has not yet been resolved. The buffer is implemented as
a small SRAM table. When the buffer is full, accesses that can po-
tentially cause violations cannot allocate entries and, therefore, are
allowed to proceed unhindered. Fortunately, our experiments show
that, at any time, only a few accesses that can potentially cause
violations overlap with each other (Section 6).

In the following, we show how VPT entries change state, how
Pending Transactions Buffer entries are allocated and deallocated,
and how VPT entries age.

4.2.1 Changing State of VPT Entries

When a VPT entry is initially allocated, its State bits are set for
the Plain Speculative state. As potential or actual violations on the
line occur, possibly followed by squashes, the State bits in the en-
try change to follow the state diagram of Figure 2. At each state,
the VPT entry triggers the corresponding actions discussed in Sec-
tion 3.3.

Some of the state changes in Figure 2 depend on the number
of squashes seen. For them, the VPT registers keep two squash
thresholds, namely ThrsStallR and ThrsStallW (Figure 4). They
keep the number of squashes that a line must cause before its
VPT entry transitions from ValuePredict to Stall&Release, and
from Stall&Release to Stall&Wait, respectively (Figure 2). At any
time, the Squash counter in the VPT entry counts the number of
squashes caused by the line. Consequently, when a VPT entry tran-
sitions to ValuePredict, the Squash counter is cleared. When the
line causes a squash, the Squash counter is incremented and com-
pared to ThrsStallR. If the counter exceeds the threshold, the VPT
entry transitions to Stall&Release. A similar process occurs for
ThrsStallW and the transition from Stall&Release to Stall&Wait.

4.2.2 Allocation & Deallocation of Buffer Entries

Every exposed load to a line that is in the VPT in state other than
Plain Speculative triggers the allocation of an entry in the VPT
Pending Transactions Buffer. The entry remains allocated until the
transaction completes. As shown in Figure 4, an entry contains a
line address tag, a Valid bit, the Thread ID of the consumer thread,
3 State bits for the state in Figure 2 that the corresponding VPT
entry is in when the entry is allocated in the buffer, the Modified
Mask, and the Predicted Line Value.

Consider first an entry in the buffer in state De-
lay&Disambiguate. Every time that a predecessor commits
and writes back to memory a dirty copy of the line, the Modified
mask updates its bit-map according to the dirty words in the
line. When the consumer thread is finally about to become
non-speculative, the Modified mask contains a bit-map of all the
modifications since the load. At this point, the mask is sent to the
consumer node’s LDE for late disambiguation and the buffer entry
is deallocated.

When an entry in state ValuePredict is allocated in the buffer,
the value of the line provided to the consumer is copied to the Pre-
dicted Line Value field. When the consumer thread is about to
become non-speculative, the current value of the line in memory is
compared to the value in the Predicted Line Value field. Words with
mismatching values are marked in the Modified mask. The mask is
then sent to the consumer node’s LDE for late disambiguation like
in Delay&Disambiguate and the buffer entry is deallocated.

An entry in state Stall&Release is kept in the buffer only until a
committing predecessor writes back to memory a dirty copy of the
line, and there are no other predecessors of the stalled thread with

Proceedings of the Eighth International Symposium on High-Performance Computer Architecture (HPCA�02)
1503-0897/02 $17.00 © 2002 IEEE

dirty versions of the line in their caches. At that point, the entry is
deallocated, allowing the original consumer load to proceed with
the line read. Finally, an entry in state Stall&Wait is kept until the
consumer thread is about to become non-speculative. Only then
is the entry deallocated and the original consumer load allowed to
proceed.

4.2.3 Aging VPT Entries

Given a VPT entry in state other than Plain Speculative, we want
it to age back to Plain Speculative when the corresponding mem-
ory line is no longer involved in potential violations. The desired
transitions are shown as dashed lines in Figure 2.

To support these transitions, we use the SavedSquash bit of each
VPT entry (Figure 4). This bit is set every time that any of the
mechanisms in our framework (Section 3.3) saves a violation on
the corresponding line and, therefore, a squash. Consequently, at
regular intervals, the directory controller scans all the local VPT
entries. For a given entry, if the SavedSquash bit is clear, the state
is set back to Plain Speculative. Otherwise, it means that at least
one squash has been saved. In this case, the state is kept as it is and
the SavedSquash bit is cleared. Note that, before doing this scan-
ning pass, the directory controller checks the entries in the VPT
Pending Transactions Buffer. Any memory lines that have entries
there cannot have their VPT entries aged back to Plain Speculative
state. The reason is that these buffer transactions are still pending
under one mechanism.

The time interval between these scanning passes on the VPT is
given by the value stored in the AgePeriod register. Such a value is
given in terms of number of thread commits observed. The size of
the interval determines how fast entries age.

We decide whether or not to set the SavedSquash bit every time
that we deallocate an entry from the VPT Pending Transactions
Buffer. At that point, an exposed load transaction is fully com-
pleted, and we can know whether our support indeed eliminated a
squash relative to a plain speculative system. To know whether or
not it did, we reuse the Modified mask of the buffer entry. Recall
that, for entries in Delay&Disambiguate state, the mask records all
the words in the line that are being updated by predecessors since
the exposed load. To support aging, we simply use the Modified
mask in the same way for all buffer entries, irrespective of their
state. Then, right before the entry is about to be deallocated, we
check the mask. If it is not clear, at least one predecessor wrote the
line and, therefore, a squash would have been generated in a plain
speculative system. Consequently, we set the SavedSquash bit.
Otherwise, the bit is left unmodified. Note that, for entries in the
ValuePredict state, after this operation is done, the mask is cleared
and we proceed to use the mask as indicated in Section 4.2.2.

4.3 Late Disambiguation Engine (LDE)
The LDE is associated with the cache hierarchy of a node, although
it is located outside the processor chip. It performs late disam-
biguation for exposed loads issued by the local node to lines that are
in state Delay&Disambiguate or ValuePredict in their home VPT.

The LDE receives the Modified mask of any line for which it has
to perform late disambiguation. The mask indicates what words in
the line have potentially changed (in Delay&Disambiguate state) or
indeed changed (in ValuePredict state) since the line was originally
provided to the consumer thread. The LDE needs to compare the
mask against the per-word exposed Load and Store bits that record
the accesses of the consumer thread to the line. Such access bits
are represented as module 2 in Figure 1 and are kept somewhere in
the local cache hierarchy.

The LDE operation has two steps. First, it performs a bit-wise
AND between the mask and the Load bits. If the result is not zero,
the consumer has consumed incorrect data and has to be squashed.
Second, the LDE performs a bit-wise AND between the mask and

the negated Store bits. If a resulting bit is set, the corresponding
word was changed by predecessors and not overwritten by the con-
sumer. Consequently, the word is stale and the LDE has to invali-
date it from the local cache hierarchy.

While the LDE could perform the two AND operations as soon
as it receives the mask, we choose a simpler implementation to
minimize races with the local processor. Specifically, the LDE
waits until the consumer thread finishes execution before perform-
ing the operations. After that, the thread can safely commit. Note
that, in general, the access bits of a consumer thread need to be
available after the thread has finished and until late disambiguation
can be performed. In addition, the bits need to be accessible from
outside the processor chip. To accomplish this, these bits may be
temporarily buffered in the LDE.

4.4 Implementation Variations
The implementation that we have presented for our framework im-
plicitly assumes the speculation protocol proposed in [4]. In this
section, we briefly outline some changes necessary to accommo-
date the framework to other protocols.

Some scalable speculation protocols keep the speculation infor-
mation only in the cache hierarchy of the processing nodes [23].
A thread communicates a commit or a squash operation only to its
immediate successor. There is no speculation module attached to
the directory controller such as the GMDT that knows about all
such operations.

In such systems, the VPT will be coupled with the speculation
engines in the cache hierarchies of the processing nodes. This VPT
must be made to work with only the partial information available
locally. For example, nodes that are not involved in the squash may
not learn that the line is causing violations. Similarly, aging may
be based on fairly limited information about the line’s behavior.
Consequently, our learning heuristics may have to change.

Other scalable protocols do not eagerly merge the state of com-
mitting threads with main memory. For example, dirty lines are
not written back to main memory as the thread commits [18]. In-
stead, they are lazily merged with main memory on demand, often
on a cache displacement. The implementation that we presented
here relied on eager write-backs at commit time to quickly resolve
pending exposed loads.

In such lazy systems, the VPT can be extended to proactively
request write-backs from committing threads. These write-backs
are for lines that have pending transactions in the VPT Pending
Transactions Buffer and may be dirty in the cache of the commit-
ting thread. In this way, the few lines that are actively experiencing
potential violations are written back eagerly at commit time, while
all the other lines are written back lazily.

5 EVALUATION METHODOLOGY
5.1 Applications
To evaluate our framework, we choose one Perfect Club application
(TRACK), two SPECfp2000 applications (EQUAKE and WUP-
WISE), and two HPF-2 applications (EULER and DSMC3D). The
input sets used are the standard ones except for EQUAKE and
WUPWISE, which use the train inputs. All applications spend a
large fraction of their time on loops that cannot be fully analyzed
by state-of-the-art compilers. The reason for the non-analyzability
is that the dependence structure is either too complex or dependent
on input data. Specifically, the codes often have array accesses with
subscripted subscripts, procedure calls inside the loops, and com-
plex control flow. Consequently, we use speculative parallelization
for these loops. We use the Polaris parallelizing compiler [3] to
identify and instrument such loops, mark the speculative variables,
and privatize variables whenever safe and convenient. All the loops

Proceedings of the Eighth International Symposium on High-Performance Computer Architecture (HPCA�02)
1503-0897/02 $17.00 © 2002 IEEE

nlfilt_300 58 502

Loop to
Parallelize

% of Seq.
Time

Avg. Iterations
per Invocation

and False

Same−word

RAW
Dependences

TRACK

Application

move3_100 41 758972

dflux_[100,200]

eflux_[100,200,

300]

psmoo_20
90 2494

Same−word

and False

FalseEULER

DSMC3D

45 7294smvp_1195 Same−wordEQUAKE

WUPWISE
muldeo_200’

muldoe_200’
67 8000

Same−word

and False

Table 1: Characteristics of the applications studied.

considered exhibit cross-iteration dependences, either to the same
word or to different words of the same memory line (false depen-
dences).

For each application, Table 1 shows the loops that we attempt
to parallelize speculatively, the fraction of the sequential execution
time taken by these loops on a Sun server excluding initialization
and I/O, the average number of iterations executed per loop invo-
cation, and the type of cross-iteration RAW dependences that exist.

These loops are dynamically scheduled into processors. The
loops in TRACK, DSMC3D, EULER, and EQUAKE are unrolled
three times to exploit data locality. In the case of WUPWISE, we
obtain loops muldeo 200’ and muldoe 200’ by merging the three
outer loops in loop nests muldeo 200 and muldoe 200, respec-
tively. For that, it is necessary to hoist some induction variables
and compute the loop indices appropriately, which is within the
capabilities of compilers1.

In Section 6, we present results and speedups for the loops in
Table 1 only. We do not estimate overall application speedups be-
cause they are dependent on the efficiency of the parallel execution
of the rest of the code.

5.2 Architecture Simulated
The evaluation is based on execution-driven simulations. Our sim-
ulation environment uses an extension to MINT [27] that includes
a superscalar processor model [9], and supports dynamic spawn,
squash, restart, and retire of light-weight threads. The processor
model is a 4-issue dynamic superscalar with register renaming,
branch prediction, and non-blocking memory operations. Some of
its parameters are shown in the left portion of Table 2.

The memory system models the speculative CC-NUMA of Fig-
ure 1. However, as in [4], each node is a speculative chip multipro-
cessor (CMP). Each CMP includes 4 processors with their private
L1 caches and an on-chip speculation engine that keeps specula-
tion state at the granularity of words. This on-chip speculation en-
gine only triggers squashes on same-word out-of-order RAW de-
pendences inside the chip [4]. These squashes are beyond the con-
trol of the VPT and, therefore, not amenable to the mechanisms of
our framework. Nevertheless, they are visible to the VPT and do
increment the Squash counter like the squashes due to dependences
across chips.

Each node in the machine has a CMP, an L2 cache, a victim
cache (VC) for dirty lines evicted from L2, one local GMDT, VPT,
and LDE module, a portion of the global memory and directory,

1Recently, as part of the SPEC OMP parallelization effort [2], loops
similar to muldeo 200 and muldoe 200 have been parallelized with help
from hand analysis. Such analysis is still beyond the capabilities of auto-
matic parallelization alone.

2−hop memory latency
3−hop memory latency

L1,L2,VC assoc.

L1,L2,VC line size
L1,L2,VC latency

L1,L2,VC banks
Local memory latency

GMDT size

L1,L2,VC size

GMDT assoc.

ValueMemory Param.

2,3,2

290 cycles
75 cycles

1,12,12 cycles

360 cycles
2K entries

20 cycles

64B,64B,64B

8−way

2−way,4−way, 8−way

32KB,1MB, 64KB

Pend. Trans. Buffer size
GMDT/VPT lookup

128 entries
Pend. Trans. Buffer scan 3 cycles/entry

Value

Instruction window
size

No. functional
units (Int,FP,Ld/St)

No. renaming
registers (Int,FP)

memory ops. (Ld,St)

Issue width

32,32

3,2,2

64

4

8,16No. pending

Processor Param.

Table 2: Parameters of the 16-processor CC-NUMA archi-
tecture modeled.

and a network controller. The local cache hierarchy holds the per-
word Load and Store access bits. However, it discards the Load
access bits immediately when a thread finishes, in order to real-
locate these bits to a newly-scheduled thread [4]. Thus, the lo-
cal LDE is augmented to capture this information when a thread
finishes, for possible disambiguation when the thread finally be-
comes non-speculative. We dynamically assign iterations to CMP
nodes in chunks of four consecutive iterations [4]. In this way, the
chunk appears to the GMDT and VPT as a single bigger thread,
no different than if a single processor per node was used and as-
signed a block of unrolled iterations. The machine is equipped
with a DASH-like directory-based cache coherence protocol and
the GMDT-based speculation protocol outlined in Section 4.1 and
discussed in [4]. For simplicity, when a thread is squashed, all its
successors are also squashed.

The right part of Table 2 lists the main parameters used. L1,
L2, VC, and memory latencies are round-trip times from the pro-
cessor, without contention. Contention is modeled everywhere ex-
cept in the interconnect, where a fixed time is assumed for each
hop. We model all protocol transactions and messages in detail,
as well as all GMDT, VPT, and LDE overheads. The GMDT and
VPT Pending Transactions Buffer parameters in the table corre-
spond to a single node. In all experiments, we use the same static
round-robin page allocation policy across the nodes. Our Baseline
system corresponds to a CC-NUMA with per-line speculation state
in the GMDT. The machine has 4 CMPs, for a total of 16 proces-
sors. Unless otherwise indicated, we set ThrsStallR, ThrsStallW,
and AgePeriod to 1, 4, and 4, respectively. Note that an AgePeriod
of one corresponds to one commit seen by the VPT, which in our
case is the commit of a chunk of 4 iterations.

6 EVALUATION
To evaluate the framework, we first examine the squash behavior of
the applications. Then, we examine the mechanisms in the frame-
work individually and in combination.

6.1 Squash Behavior
To assess the potential of the mechanisms in the framework, we
characterize the squash behavior of the applications on the Base-
line architecture. For each application, we count the number of
squashes induced by each memory line. Squashes are classified
based on their source: false dependences, same-word dependences
where the store generates a new value (non-silent), and same-word
dependences due to a silent store.

Figure 5 shows the squash counts. For each application, the
figure groups the memory lines into those that generate 1, 2-10,

Proceedings of the Eighth International Symposium on High-Performance Computer Architecture (HPCA�02)
1503-0897/02 $17.00 © 2002 IEEE

��������
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
������

���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

����

����

����

��
��
��
��

������
��
��
��
����
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

����

150

>
10

0

Number of Squashes per Line

2−
10

TRACK

4

1

30

2−
10

11
−

10
0

91
>

10
00

50

100

DSMC3D

1

3809

121

11
−

10
0

1

>
10

0

EULER

633

1

1520

2−
10

946

11
−

10
0

2170
69

EQUAKE

600

1

1025

2−
10

138

11
−

10
0

9

>
10

0

45

1

3

2−
10

0

11
−

10
0

10

>
10

0

WUPWISE

F
ra

ct
io

n
of

 S
qu

as
he

s
(%

)

silent
same−word,

non−silent

false

same−word,
��
��
��
��

Figure 5: Distribution of the number of times that the same
memory line causes a squash in Baseline. The numbers on
top of the bars are the number of different lines in each bin.

11-100, and more than 100 squashes during the execution of the
application. The actual number of lines in each bin is shown on top
of each bar. The height of each bar is the fraction of total squashes
in the application that fall in that bin. For example, in TRACK,
91 memory lines cause more than 100 squashes each, and their
combined effect accounts for nearly 100% of the total squashes in
the application.

The figure shows that, except in EQUAKE, the large major-
ity of squashes are due to false dependences. Consequently, the
Delay&Disambiguate mechanism has the potential to save many
squashes. We also see that, of the squashes due to same-word
dependences in EQUAKE, about one quarter are caused by silent
stores. Consequently, the ValuePredict mechanism with the simple
last-value prediction scheme that we use also has the potential to be
beneficial. The figure also shows that, in general, individual mem-
ory lines cause many squashes. The best examples are WUPWISE
and TRACK. Consequently, learning what lines cause squashes and
then applying our mechanisms looks generally promising, the start-
up cost of learning is likely to be amortized. Finally while it looks
like the squashes are caused by a large number of lines, our exper-
iments show that the squashes caused by a line are often clustered
in time. Therefore, at any time, many fewer lines are actively in-
volved in squashes. As a result, we may not need large VPT Pend-
ing Transactions Buffers.

6.2 Plain Speculation
We first compare a system with per-line speculation state in the
GMDT and none of our mechanisms, to a system with full per-word
speculation state in the GMDT. We call these systems Baseline and
Word, respectively. Per-line schemes can suffer from false sharing.
The latter can create false dependences and, therefore, squashes.
However, per-word schemes tend to induce more traffic. Indeed, an
invalidation or a dependence-checking message for one word does
not usually eliminate the need for a similar message for another
word in the same line.

The first two bars for each application in Figure 6 compare
the execution time of the applications on these systems. For
each application, the bars are normalized to Baseline and broken
down into the following categories: execution of instructions and
stall due to memory accesses (Busy+Mem); overhead associated
with squash operations, including draining pending transactions
and waiting for synchronization messages (Squash); other spec-
ulative execution overheads [4] plus conventional pipeline haz-
ards (Ovhd+Other); and stall on exposed loads forced by our
Stall&Release and Stall&Wait mechanisms (Stall). Note that the
total cost of squashes shows up as Squash time and as addi-
tional Busy+Mem and Ovhd+Other time due to the reexecution of

threads. The numbers on top of the bars show the speedups over
the sequential execution.

The figure shows that Baseline is usually much slower than
Word. The large slowdowns of Baseline in TRACK, DSMC3D,
EULER, and WUPWISE are mostly due to the additional squashes
caused by false sharing. As shown in Figure 5, the squashes in
these four applications come mostly from false dependences. Con-
sequently, they appear in Baseline but not in Word. The higher
traffic of Word, while probably slowing down the applications to
some extent, has a much lower impact.

EQUAKE has only same-word violations and, therefore, the
number of squashes in Baseline and Word is about the same. These
squashes are very frequent and determine the execution time. Both
Baseline and Word take the same time to execute, showing slow-
downs with respect to sequential execution.

6.3 Individual Mechanisms
6.3.1 Delayed Disambiguation Only

We now augment Baseline with support for our De-
lay&Disambiguate mechanism only. The resulting system is
called Delay. Such a system only implements states A and
B in Figure 2. Specifically, once a VPT entry gets to De-
lay&Disambiguate state, it remains there unless it ages back to
Plain Speculative state. For comparison, we also implement an
ideal system called Oracle Delay. Such a system is like Delay
except that a VPT entry in Delay&Disambiguate state will not
perform the actions for delayed disambiguation (Section 3.3.1) if
the end result is that the thread will later get squashed anyway.
Instead, it will trigger the squash immediately, as soon as the
second access in the RAW dependence is received.

Figure 6 shows the performance of Delay and Oracle Delay.
We focus first on the applications with mostly false dependences
(TRACK, DSMC3D, EULER, and WUPWISE). These applica-
tions are sped-up by Delay significantly. The reason is that the
Delay&Disambiguate support eliminates practically all squashes.
This can be seen from the negligible Squash time in Delay. As
a result, Delay is much faster than Baseline and, typically, even
faster than Word. It outperforms Word because it suffers no more
squashes than Word and creates less traffic than it.

For these same applications, Oracle Delay is no better than De-
lay. The reason is that most squashes come from false dependences
and, therefore, Oracle Delay will typically work as Delay.

For EQUAKE, Delay outperforms both Baseline and Word. This
is unintuitive since all squashes in EQUAKE come from same-
word dependences. We would expect Delay to be slower than Base-
line because it delays the resolution of transactions that will cause
squashes anyway.

In fact, in our architecture, delaying transaction resolution can
help in applications with many dependences across threads. To
see why, recall that our architecture uses CMP nodes and that de-
pendences between threads running on different processors of the
same CMP are not subject to our squash-removing mechanisms.
Consequently, consider a thread with two dependences, one with
a far-away thread in another CMP and one with a close-by thread
in the same CMP. In Baseline and Word, as soon as the inter-chip
dependence is detected, the thread is eagerly squashed. Then, the
thread is re-started, only to be later squashed again by the intra-chip
violation. In Delay, the resolution of the inter-chip dependence is
delayed. Eventually, the intra-chip violation will trigger a squash,
therefore avoiding the need for the first squash. The result is fewer
squashes and less overhead. This is why Delay outperforms both
Baseline and Word. Note that Delay still has significant Squash
time.

Oracle Delay performs no different than Delay in EQUAKE.
The reason is that inter-chip dependences do not end up causing

Proceedings of the Eighth International Symposium on High-Performance Computer Architecture (HPCA�02)
1503-0897/02 $17.00 © 2002 IEEE

��
��
��
��

��
��
��
��

������������

����

��
��
��
������

��������

��
��
��
��
��
��

��
��
��
��
��
��

����

��������

��
��
��
��

��
��
��
��

����
���
���
���
���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

������
���
���
���
���
������

���
���
���

���
���
���

���
���
���
���

����
��������

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��

��
��
��

��
��
��
��
��
��
��
����
��
��
��
��
��
��
��

���
���
���
������

���
���
���

������

���
���
���
���

���
���
���
���

���������
���
���
���
���
���
���
���

B
as

el
in

e

4.9

������

������
��
��
��
��
��
��
��
��

C
om

bi
ne

d

D
el

ay

B
as

el
in

e

N
or

m
al

iz
ed

 E
xe

cu
ti

on
 T

im
e

(%
)

O
ra

cl
e

16

C
om

bi
ne

d

TRACK

2.6

8.7

W
or

d

9.9

D
el

ay

9.9

O
ra

cl
e_

D
el

ay

3.9

V
Pr

ed
ic

t

2.9

S&
W

ai
t_

t4

3.0

O
ra

cl
e_

St
al

l

9.9

C
om

bi
ne

d

9.9

O
ra

cl
e0

50

100

150

DSMC3D

0.8

16
2.8

W
or

d

4.5
D

el
ay

4.5
O

ra
cl

e_
D

el
ay

1.7

V
Pr

ed
ic

t

2.3

S&
W

ai
t_

t4

2.6

O
ra

cl
e_

St
al

l

O
ra

cl
e_

St
al

l

6.5

5.4

O
ra

cl
e

EULER

1.1

B
as

el
in

e

3.4

W
or

d

3.3

S&
W

ai
t_

t4

3.3

O
ra

cl
e_

D
el

ay

1.2

V
Pr

ed
ic

t

1.8

S&
W

ai
t_

t4

2.7

O
ra

cl
e_

St
al

l

3.3

C
om

bi
ne

d

3.3

O
ra

cl
e

EQUAKE

0.8

B
as

el
in

e

0.8

W
or

d

1.9

D
el

ay

2.0

O
ra

cl
e_

D
el

ay

1.9

V
Pr

ed
ic

t

2.1

S&
W

ai
t_

t4

2.1

O
ra

cl
e_

St
al

l

2.1

C
om

bi
ne

d

2.4

O
ra

cl
e

WUPWISE

2.6

B
as

el
in

e

14

W
or

d

16

D
el

ay

16

O
ra

cl
e_

D
el

ay

7.6

V
Pr

ed
ic

t

1.5

Stall

Squash

Ovhd+Other

���
���
���
���

Busy+Mem

Figure 6: Execution time of the applications on different systems. The numbers on top of the bars are the speedups of the applications
over the sequential execution.

DSMC3D

EULER

85.9

89.3

1.2 / 23.6

0.2 / 3

0.2 / 15

4.1 / 77 74.2

0.9 / 14

0.6 / 9

Avg. / Max.
Buffer entries

Delay&Disambiguate

1.9 / 12.6

Application

TRACK

76.7

97.8

EQUAKE

WUPWISE

Average

Selectivity
(%)

100.0

99.8

100.0

99.8

99.1

99.7

Coverage
(%)

84.8

100.0

100.0 3.3 / 15

2.1 / 12

0.7 / 12

Selectivity
(%)

100.0

97.1

100.0

99.4

Buffer entries
Avg. / Max.

Stall&Release (ThrsStallR=1)

1.5 / 12

1.8 / 12

Table 3: Performance and usage statistics for different
systems. The numbers for the VPT Pending Transactions
Buffer are per node.

squashes and, as a result, Oracle Delay follows Delay. Moreover,
intra-chip squashes are outside the control of Oracle Delay.

Finally, Table 3 shows some statistics that give insight into the
behavior of Delay. The second column shows the selectivity of its
Delay&Disambiguate mechanism. The selectivity is always close
to 100%, which means that there are very few late squashes. This
is consistent with the fact that Delay and Oracle Delay have prac-
tically the same performance.

The third column in the table shows that the De-
lay&Disambiguate mechanism keeps very few entries in the
VPT Pending Transactions Buffer at a time. On average, the buffer
in a node keeps only 1.2 entries. This means that, at any given
time, there are only very few concurrent transactions to lines being
monitored for squashes.

6.3.2 Value Prediction Only

We augment Baseline with support for the ValuePredict mechanism
only. Such a system only has states A and C in Figure 2. For a
VPT entry to transition to the ValuePredict state, the VPT must
first observe a squash to the line. As usual, the VPT entry remains
in this state until it ages back to Plain Speculative. The resulting
system is called VPredict.

Note that the simple value predictor that we use would not
strictly need to squash to transition to ValuePredict: the value pre-
dicted is simply the current version of the line in memory and we
can save it in the VPT Pending Transactions Buffer at the time that
the potential violation is detected. However, we choose to need one
squash to assess the impact of the start-up cost of a more realistic

value predictor. Such a predictor would need to see more than one
value before predicting.

Figure 6 shows the performance of VPredict. In all the appli-
cations, VPredict performs better than Baseline. The reason is
that it intrinsically supports delayed disambiguation of false de-
pendences. However, it does not compare favorably to Word or
Delay. The reason is that, in VPredict, each VPT entry needs one
squash to transition out of the Plain Speculative state. These addi-
tional squashes make VPredict much slower than Word and Delay
in TRACK, DSMC3D, EULER, and WUPWISE.

For the application with only true dependences and some silent
stores (EQUAKE), VPredict performs much better than Word, but
no faster than Delay. VPredict would be able to eliminate some
squashes due to inter-chip dependences. However, it has little op-
portunity to succeed because threads are often squashed before the
late disambiguation takes place. Its major effect, like Delay, comes
from simply deferring the squashes due to inter-chip dependences
until another squash occurs. Overall, therefore, we do not see any
advantages of VPredict over Delay for our combination of applica-
tions and architecture.

6.3.3 Stall Only

We augment Baseline with support for the Stall&Release mech-
anism only, and with support for both the Stall&Release and
Stall&Wait mechanisms. We call the former S&Release and the
latter S&Wait. In these schemes, a VPT entry transitions from Plain
Speculative to Stall&Release when the line has caused ThrsStallR
squashes. In S&Wait, the entry further transitions to Stall&Wait
when ThrsStallW additional squashes occur. For S&Release, we
use a ThrsStallR of 1 and 4 (S&Release t1 and S&Release t4). For
S&Wait, we use a ThrsStallR of 1 and a ThrsStallW of 1 and 4
(S&Wait t1 and S&Wait t4).

Figure 7 shows the execution times of the applications on these
systems normalized to Baseline. We see that these systems elimi-
nate most of the Squash time in Baseline. However, they trade it for
the Stall category. This is because threads eliminate squashes by
waiting. In general, these systems are faster than Baseline because
many of the squashes have disappeared. However, in some cases
such as WUPWISE, the performance is much worse. In WUP-
WISE, threads are very long, and the relative position of the con-
flicting loads and stores is such that trading off squashes for stall
time hurts performance. Depending on the parameters used, stall-
only mechanisms can backfire and lead to slowdowns compared to
Baseline.

Proceedings of the Eighth International Symposium on High-Performance Computer Architecture (HPCA�02)
1503-0897/02 $17.00 © 2002 IEEE

��������

���� ������
��
��
��

����

��
��
��
�� ���

���
���

���
���
���

��
��
��
��

����
���
���
���
�����

��
��
��
����

����

���
���
���
���

����

������������

����
����

S&
R

el
ea

se
_t

1

EULER

1.8

S&
W

ai
t_

t4

1.5

TRACK

2.9

S&
R

el
ea

se
_t

1

3.0

S&
R

el
ea

se
_t

4

2.8

S&
W

ai
t_

t1

2.9

S&
W

ai
t_

t4

0

50

100

150

DSMC3D

2.3

S&
R

el
ea

se
_t

1

2.3

S&
R

el
ea

se
_t

4

2.3

S&
W

ai
t_

t1

2.3

S&
W

ai
t_

t4

S&
W

ai
t_

t1

1.5

N
or

m
al

iz
ed

 E
xe

cu
ti

on
 T

im
e

(%
)

1.4

S&
R

el
ea

se
_t

4

1.6

S&
W

ai
t_

t1

1.8

S&
W

ai
t_

t4

EQUAKE

2.1

S&
R

el
ea

se
_t

1

1.9

S&
R

el
ea

se
_t

4

2.1

S&
W

ai
t_

t1

2.1

S&
W

ai
t_

t4

WUPWISE

1.5

S&
R

el
ea

se
_t

1

2.2

S&
R

el
ea

se
_t

4

���
���
���
���

Busy+Mem

Stall

Squash

Ovhd+Other

Figure 7: Performance of the Stall&Release and
Stall&Wait mechanisms alone. The numbers on top of the
bars are the speedups over sequential execution.

In general, these schemes tend to have good coverage and selec-
tivity, and use the VPT Pending Transactions Buffer little. This is
confirmed for S&Release t1 in the last three columns of Table 3.

Comparing the different schemes for the applications that im-
prove, we see that they tend to have similar performance. However,
S&Wait schemes tend to be faster than S&Release. Among the
S&Release schemes, a low ThrsStallR (S&Release t1) seems to be
better. This suggests reacting fast to squashes as they initially oc-
cur. Among the S&Wait schemes, a high ThrsStallW (S&Wait t4)
seems to be better. This suggests aggressively releasing threads de-
spite occasional squashes. Overall, therefore, S&Wait t4 seems to
be best.

Finally, we place S&Wait t4 as the sixth bar in Figure 6. We
can see that, in most applications, this system is not competitive
with Word or Delay. Relative to these systems, S&Wait t4 suf-
fers from much Stall time. The exception is EQUAKE, where
S&Wait t4 is slightly faster than the other schemes. In applica-
tions with squashes due to same-word dependences, S&Wait t4
may have an edge over all the other schemes.

For comparison purposes, Figure 6 also includes an ideal stall-
only system called Oracle Stall. This is an oracle system that only
stalls a thread when the exposed load would cause a squash (due to
a false or a same-word dependence) and releases the thread as soon
as the correct version is produced. Except in two applications, the
performance of S&Wait t4 is close to this ideal system.

6.4 Combining all Mechanisms
Finally, we augment Baseline with support for our complete frame-
work as shown in Figure 2. The resulting system is called Com-
bined. For each application, it is shown as the last but one bar in
Figure 6.

The figure shows that Combined is always as fast, or faster than,
each of the systems with only a single mechanism. Furthermore,
it successfully adapts to the behavior of the application. Indeed,
consider first the applications with no or very few same-word de-
pendences, namely TRACK, EULER, and WUPWISE. For these
cases, VPT entries rarely transition to the ValuePredict and Stall
states. The figure shows Combined to perform as well as Delay.

For applications with only same-word dependences where value
prediction often fails, such as EQUAKE, VPT entries under Com-
bined transition to the Stall&Wait state. As a result, Figure 6 shows
that Combined performs as well as S&Wait t4. More interestingly,
consider applications with a mix of same-word and false depen-
dences such as DSMC3D. In this case, VPT entries adapt to the
dependence patterns, and Combined is shown to outperform both

Delay and S&Wait t4.

Overall, to speed up a wide range of applications we recommend
adding our complete framework to Baseline. For applications with
mostly false dependences, the system will run as well as a sys-
tem with only Delay&Disambiguate support. For applications with
same-word dependences where value prediction often fails the sys-
tem will run as well as with only Stall&Wait support. Finally, for
applications that have mixed dependence patterns, the framework
will adapt and perform better than all the other systems. On aver-
age, Combined runs the applications 4.3 times as fast as Baseline.
Moreover, the average execution time of the applications is 23%
lower than under Word.

Finally, the last bar of each application in Figure 6 (Oracle) cor-
responds to an ideal environment. This system is like Combined
with full knowledge of all dependences. Therefore, Oracle can ap-
propriately decide when to use delayed disambiguation, predict a
silent store, stall a thread, and release a stalled thread. From the
figure, we see that Combined always gets very close to Oracle.
Consequently, we conclude that the performance of Combined is
very close to its upper bound.

7 RELATED WORK
There are many proposals for architectures that support speculative
thread-level parallelization [1, 4, 6, 8, 10, 12, 18, 22, 23, 25, 26, 32].
We focus on directory-based systems [4, 18, 23, 32].

While we use a framework of mechanisms to eliminate squashes
under a per-line protocol, the other directory-based systems have
tried other approaches to limit the impact of data dependence vi-
olations. Specifically, some systems provide per-word protocol
support [4, 32], while another employs compiler-generated syn-
chronization instructions plus some local per-word access infor-
mation [23].

The system in [18] uses support for high-level access patterns.
This support performs speculation at the per-line granularity when
applications have no dependences. Consequently, under these con-
ditions, it works like our system. However, when applications ex-
hibit false dependences, the support in [18] simply reverts to a per-
word protocol for lines exhibiting such dependences. Our system,
instead, thanks to the Delay&Disambiguate mechanism, continues
to operate with a per-line protocol even for these lines. While we
save traffic over [18] for these lines, we do not expect our system to
have a noticeable performance advantage unless many lines exhibit
false dependences at the same time. However, our main advantage
is that we only need to support a per-line protocol.

Dynamic prediction and synchronization of load-store pairs in a
uniprocessor has been widely investigated in the past (e.g., [5, 21,
31]). Dynamic prediction and synchronization of cross-thread de-
pendences has been investigated in the context of a tightly-coupled
multiscalar processor in [14] and, concurrently with our work, in
the context of a chip multiprocessor in [24]. Our solution and those
of these two works are different. Indeed, we focus on a distributed
directory-based multiprocessor. Moreover, while [14] uses learn-
ing mechanisms based on program counter values, we use mecha-
nisms based on memory line addresses.

Value prediction within a single thread of control has been inves-
tigated in the past (e.g., [11, 29]). Value prediction in the context of
multiple concurrent threads has been investigated in [1, 13, 24, 30].
These works have concentrated on integer applications and, ex-
cept for [24], rely on little compiler support to eliminate largely
statically-predictable values. We investigate value prediction for
floating-point applications and use the compiler to eliminate easily-
predictable values and to limit prediction to memory locations.
We are then left with hard-to-predict floating-point values and our
mechanism does not achieve the same level of gains as these other
works.

Proceedings of the Eighth International Symposium on High-Performance Computer Architecture (HPCA�02)
1503-0897/02 $17.00 © 2002 IEEE

8 CONCLUSIONS
We have proposed a new framework of hardware mechanisms to
eliminate most squashes due to data dependences under speculative
parallelization. The framework works by learning and predicting
cross-thread violations. It is suited for directory-based multipro-
cessors with protocols that track speculative memory accesses at
the system level with the coarse granularity of memory lines.

Simulations of a 16-processor machine showed that the frame-
work is very effective. It can quickly and accurately track the vi-
olation behavior of applications and gets very close to an oracle
system. We have taken a CC-NUMA that tracks memory accesses
at the system level with the granularity of a 64-byte line and added
our framework. The resulting system runs a set of applications
with dependence violations on average 4.3 times faster. Moreover,
the system is even 23% faster than a CC-NUMA that tracks ac-
cesses at the system level with the fine granularity of a word – a
sophisticated system that is not compatible with mainstream cache
coherence protocols.

For numerical applications with mostly false dependences such
as ours, we found that the delayed disambiguation mechanism is
responsible for most of the performance gains. Moreover, when-
ever same-word dependences occur, the stall and wait mechanism
can complement it and improve performance. Finally, for our ap-
plications and architecture, a simple value prediction mechanism
does not improve performance much.

REFERENCES
[1] H. Akkary and M. A. Driscoll. “A Dynamic Multithreading Proces-

sor.” Intl. Symp. on Microarchitecture, pages 226-236, December
1998.

[2] V. Aslot, M. Domeika, R. Eigenmann, G. Gaertner, W. B. Jones, and
B. Parady. “SPEComp: A New Benchmark Suite for Measuring Par-
allel Computer Performance.” Wksp. on OpenMP Applications and
Tools, pages 1-10, July 2001.

[3] W. Blume, R. Doallo, R. Eigenmann, J. Grout, J. Hoeflinger, T.
Lawrence, J. Lee, D. Padua, Y. Paek, B. Pottenger, L. Rauchwerger,
and P. Tu. “Advanced Program Restructuring for High-Performance
Computers with Polaris.” IEEE Computer, Vol. 29, No. 12, pages
78-82, December 1996.

[4] M. Cintra, J. F. Martı́nez, and J. Torrellas. “Architectural Support for
Scalable Speculative Parallelization in Shared-Memory Multiproces-
sors.” Intl. Symp. on Computer Architecture, pages 13-24, June 2000.

[5] G. Chrysos and J. Emer. “Memory Dependence Prediction Using
Store Sets.” Intl. Symp. on Computer Architecture, pages 142-153,
June 1998.

[6] S. Gopal, T. Vijaykumar, J. Smith, and G. Sohi. “Speculative Version-
ing Cache.” Intl. Symp. on High Performance Computer Architecture,
pages 195-205, February 1998.

[7] M. Gupta and R. Nim. “Techniques for Run-Time Parallelization of
Loops.” Supercomputing, November 1998.

[8] L. Hammond, M. Wiley, and K. Olukotun. “Data Speculation Sup-
port for a Chip Multiprocessor.” Intl. Conf. on Architectural Support
for Programming Languages and Operating Systems, pages 58-69,
October 1998.

[9] V. Krishnan and J. Torrellas. “A Direct-Execution Framework for
Fast and Accurate Simulation of Superscalar Processors.” Intl. Conf.
on Parallel Architectures and Compilation Techniques, pages 286-
293, October 1998.

[10] V. Krishnan and J. Torrellas. “A Chip-Multiprocessor Architecture
with Speculative Multithreading.” IEEE Trans. on Computers, Spe-
cial Issue on Multithreaded Architectures, Vol. 48, No. 9, pages 866-
880, September 1999.

[11] M. H. Lipasti and J. P. Shen. “Exceeding the Dataflow Limit via
Value Prediction.” Intl. Symp. on Microarchitecture, pages 226-237,
December 1996.

[12] P. Marcuello and A. González. “Clustered Speculative Multithreaded
Processors.” Intl. Conf. on Supercomputing, pages 365-372, June
1999.

[13] P. Marcuello, J. Tubella, and A. González. “Value Prediction for
Speculative Multithreaded Architectures.” Intl. Symp. on Microarchi-
tecture, pages 230-237, December 1999.

[14] A. Moshovos, S. E. Breach, T. N. Vijaykumar, and G. S. Sohi. “Dy-
namic Speculation and Synchronization of Data Dependences.” Intl.
Symp. on Computer Architecture, pages 181-193, June 1997.

[15] C.-L. Ooi, S. W. Kim, I. Park, R. Eigenmann, B. Falsafi, and T.
N. Vijaykumar. “Multiplex: Unifying Conventional and Speculative
Thread-Level Parallelism on a Chip Multiprocessor.” Intl. Conf. on
Supercomputing, pages 368-380, June 2001.

[16] J. Oplinger, D. Heine, and M. Lam. “In Search of Speculative Thread-
level Parallelism.” Intl. Conf. on Parallel Architectures and Compila-
tion Techniques, pages 303-313, October 1999.

[17] S.-T. Pan, K. So, and J. T. Rahmeh. “Improving the Accuracy of Dy-
namic Branch Prediction Using Branch Correlation.” Intl. Conf. on
Architectural Support for Programming Languages and Operating
Systems, pages 76-84, October 1992.

[18] M. Prvulovic, M. J. Garzaran, L. Rauchwerger, and J. Torrellas. “Re-
moving Architectural Bottlenecks to the Scalability of Speculative
Parallelization.” Intl. Symp. on Computer Architecture, pages 204-
215, June 2001.

[19] L. Rauchwerger and D. Padua. “The LRPD Test: Speculative Run-
Time Parallelization of Loops with Privatization and Reduction Par-
allelization.” SIGPLAN Conf. on Programming Language Design
and Implementation, pages 218-232, June 1995.

[20] P. Rundberg and P. Stenström. “A Software Approach to Thread-
Level Data Dependence Speculation for Multiprocessors.” Ninth
ISCA Wksp. on Scalable Shared Memory Multiprocessors, June 2000.

[21] Y. Sazeides and J. E. Smith. “The Predictability of Data Values.” Intl.
Symp. on Microarchitecture, pages 248-258, December 1997.

[22] G. Sohi, S. Breach, and T. Vijaykumar. “Multiscalar Processors.” Intl.
Symp. on Computer Architecture, pages 414-425, June 1995.

[23] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry. “A Scalable
Approach to Thread-Level Speculation.” Intl. Symp. on Computer Ar-
chitecture, pages 1-12, June 2000.

[24] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry. “Improving
Value Communication for Thread-Level Speculation.” Intl. Symp. on
High-Performance Computer Architecture, February 2002.

[25] M. Tremblay. “MAJC: Microprocessor Architecture for Java Com-
puting.” Presentation at Hot Chips, August 1999.

[26] J.-Y. Tsai, J. Huang, C. Amlo, D. Lilja, and P.-C. Yew. “The Su-
perthreaded Processor Architecture.” IEEE Trans. on Computers,
Special Issue on Multithreaded Architectures, Vol. 48, No. 9, pages
881-902, September 1999.

[27] J. Veenstra and R. Fowler. “A Front End for Efficient Simulation of
Shared-Memory Multiprocessors.” Intl. Wksp. on Modeling, Analy-
sis, and Simulation of Computer and Telecommunication Systems,
pages 201-207, January 1994.

[28] T. N. Vijaykumar and G. Sohi. “Task Selection for a Multiscalar Pro-
cessor.” Intl. Symp. on Microarchitecture, pages 81-92, December
1998.

[29] K. Wang and M. Franklin. “Highly Accurate Data Value Prediction
Using Hybrid Predictors.” Intl. Symp. on Microarchitecture, Decem-
ber 1997.

[30] F. Warg and P. Stenström. “Limits on Speculative Module-Level Par-
allelism in Imperative and Object-Oriented Programs on CMP Plat-
forms.” Intl. Conf. on Parallel Architectures and Compilation Tech-
niques, pages 221-230, September 2001.

[31] A. Yoaz, M. Erez, R. Ronen, and S. Jourdan. “Speculation Tech-
niques for Improving Load Related Instruction Scheduling.” Intl.
Symp. on Computer Architecture, pages 42-53, May 1999.

[32] Y. Zhang, L. Rauchwerger, and J. Torrellas. “Hardware for Specu-
lative Run-time Parallelization in Distributed Shared-Memory Mul-
tiprocessors.” Intl. Symp. on High-Performance Computer Architec-
ture, pages 161-173, February 1998.

Proceedings of the Eighth International Symposium on High-Performance Computer Architecture (HPCA�02)
1503-0897/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

