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ABSTRACT
A recommender system must be able to suggest items that
are likely to be preferred by the user. In most systems, the
degree of preference is represented by a rating score. Given a
database of users’ past ratings on a set of items, traditional
collaborative filtering algorithms are based on predicting the
potential ratings that a user would assign to the unrated
items so that they can be ranked by the predicted ratings
to produce a list of recommended items. In this paper, we
propose a collaborative filtering approach that addresses the
item ranking problem directly by modeling user preferences
derived from the ratings. We measure the similarity be-
tween users based on the correlation between their rankings
of the items rather than the rating values and propose new
collaborative filtering algorithms for ranking items based on
the preferences of similar users. Experimental results on
real world movie rating data sets show that the proposed
approach outperforms traditional collaborative filtering al-
gorithms significantly on the NDCG measure for evaluating
ranked results.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Search and Re-
trieval—Information Filtering

General Terms
Algorithms, Experimentation

Keywords
Ranking, Collaborative Filtering, Random Walk

1. INTRODUCTION
With the information available to us growing far more

rapidly than our ability to process it, technologies to help
people sift through huge amount of information efficiently is
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becoming increasingly important in order to overcome the
resulted information overload problem. Recommender sys-
tem is one such promising technology that aims to generate
item recommendations from a huge collection of items based
on users’ preferences. Broadly speaking, existing technolo-
gies used for recommender systems fall in either of the fol-
lowing two categories: content-based filtering versus collab-

orative filtering. Content-based filtering approach analyzes
the content information associated with the items and users
such as product descriptions, user profiles etc. in order to
represent users and items using a set of features. To recom-
mend new items to a user, content-based filters match their
representations to those items known to be of interest to the
user. In contrast, the collaborative filtering(CF) approach
does not require any content information about the items, it
works by collecting ratings on the items by a large number
of users and make recommendations to a user based on the
preference patterns of other users. The CF approach is based
on the assumption that a user would usually be interested in
those items preferred by other users with similar interests.
Besides avoiding the need for collecting extensive informa-
tion about items or users, CF requires no domain knowledge
and can be easily adopted in different recommender systems.

Collaborative filtering is usually adopted in two classes of
application scenarios[2]. In the first class, a user is presented
with one individual item at a time along with a predicted
rating indicating the user’s potential interest in the item.
An example of this category is GroupLens[17], a collabora-
tive filtering system for Usenet news. The second class of
applications produce an ordered list of Top-N recommended
items where the highest ranked items are predicted to be
most preferred by the user. The user is expected to ex-
amine the items in the list starting from the top positions.
Many existing E-Commerce Websites fall in this category.
In this paper, we focus on improving collaborative filtering
techniques for the second class of applications.

The computation of the Top-N item list for making recom-
mendations is essentially a ranking problem. To produce a
ranking of the items, most collaborative filtering algorithms
adopt a rating-oriented approach which first predicts the
potential ratings a target user would assign to the items
and then rank the items according to the predicted ratings.
However, higher accuracy in rating prediction does not nec-
essarily lead to better ranking effectiveness as illustrated in
the following simple example. Suppose we have two items
i and j for which the true ratings are known to be 3 and
4 respectively and two different methods have predicted the
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ratings on i and j to be {2, 5} and {4, 3} respectively. In
terms of rating prediction accuracy as measured by the ab-
solute deviation from the true rating, there is no difference
between the two sets of predictions. However, using the pre-
dictions {4, 3}, item i and j will be incorrectly ordered while
the predictions {2, 5} ensures the correct order. The prob-
lem with rating-oriented CF approaches is that the focus
has been placed on approximating the ratings rather than
the rankings, which is a more important goal for recom-
mender systems. Moreover, most existing methods predict
the ratings for each individual items independently without
considering the user’s preferences regarding pairs of items.

In this paper, we propose a ranking-oriented approach
to collaborative filtering that directly addresses the item-
ranking problem without going through the inter-meditate
step of rating prediction. The main contributions of this
paper is first to describe a similarity measure for evaluat-
ing the consistency between two user’s rankings of a set of
items that can be used to determine a set of users that share
similar preferences to the target users. We then present two
methods for producing item rankings based on the prefer-
ences of a set of similar users: one is a greedy algorithm that
searches through the possible rankings for the optimal one
and the other is a novel random walk model defined using
a user’s preference information. Both methods aim to ef-
fectively combine the partial and incomplete item rankings
derived from the ratings of a set of similar users in order to
rank the items in a way that is most consistent with all the
known information about user preferences, which is why we
name our approach “EigenRank”.

This paper is organized as follows: in section 2, we briefly
review some related works. Section 3 describes in more de-
tail several similarity measures and models in traditional
rating oriented CF approach. We then present the similar-
ity measures and models for the proposed ranking-oriented
CF approach in section 4. The experimental results and
analysis are shown in section 5. Finally, we conclude the
paper in section 6.

2. RELATED WORKS
There are two types of common approaches to collabora-

tive filtering. One is the neighborhood-based approach and
the other is the model-based approach.

2.1 Neighborhood-based Approaches
The most common form of neighborhood-based approach

is the user-based model, which estimate the unknown ratings
of a target user based on the ratings by a set of neighbor-
ing users that tend to rate similarly to the target user. A
crucial component of the user-based model is the user-user
similarity su,v that is used to select the set of neighbors.
Popular choices for su,v include the Pearson Correlation Co-
efficient(PCC)[22, 11]and the vector similarity(VS)[2].

One difficulty in measuring the user-user similarity is that
the raw ratings may contain biases caused by the different
rating behaviors of different users. For example, some users
may tend to give high ratings. To correct such biases, differ-
ent methods have been proposed to normalize or center the
data prior to measuring user similarities. [22, 2] showed that
by correcting for user-specific means the prediction quality
could be improved. Later, Jin et al. proposed a technique
for normalizing the user ratings based on the halfway accu-
mulative distribution[15].

Another difficulty in user-based models arises from the
fact that the known user-item ratings data is typically highly
sparse, which makes it very hard to find highly similar neigh-
bors for making accurate predictions. To alleviate such spar-
sity problem, different techniques have been proposed to fill
in some of the unknown ratings in the matrix such as di-
mensionality reduction[8] and data-smoothing methods[25,
19].

An alternative form of the neighborhood-based approach
is the item-based model[24, 18]. Here the item-item simi-
larity is used to select a set of neighboring items that have
been rated by the target user and the ratings on the unrated
items are predicted based on his ratings on the neighboring
items. Since the number of items is usually much less than
the number of users in most applications, item-item similari-
ties are less sensitive to the data sparsity problem. Sarwar et
al.[24] recommended using the adjusted cosine similarity to
compute the item-item similarity and found that the item-
based model could obtain higher accuracy than the user-
based model, while allowing more efficient computations.

2.2 Model-based Approaches
In contrast to the neighborhood-based approach, the model-

based approach to CF use the observed user-item ratings
to train a compact model that explains the given data so
that ratings could be predicted via the model instead of
directly manipulating the original rating database as the
neighborhood-based approach does. Algorithms in this cat-
egory include clustering methods[25], aspect models[12] and
Bayesian networks[21].

2.3 Learning to Rank
Learning to rank has been attracting broad attention in

the machine learning community due to its importance in
a wide variety of applications such as information retrieval,
collaborative filtering, etc. Most of the proposed methods
are dedicated to ranking items represented in some feature
space as is the setting for content-based filtering. Given a set
of ordered pairs of instances as training data, the different
methods either try to learn an item scoring function[4, 16]
or learn a classifier for classifying item pairs into two types
of relations(correctly ordered vs. incorrectly ordered)[5, 6].
Different machine learning models including SVM, Boost-
ing and Neural Network have been used for learning such
ranking functions, which led to methods such as Ranking
SVM[16], RankNet[4] and RankBoost[6].

3. RATING ORIENTED COLLABORATIVE
FILTERING

In this section, we first describe several rating-based simi-
larity measures that have been commonly used in neighborhood-
based CF approaches for finding similar users[22, 2] and sim-
ilar items[24, 18]. We then discuss two models for rating
prediction in neighborhood-based CF, namely user-based
and item-based models. The notational framework is de-
fined as follows. Suppose we are given a set of m users
U = {u1, u2, ..., um} and a set of n items I = {i1, i2, ..., in}.
The user’s ratings on the items can be represented by an
m × n matrix R where each entry ru,i represents user u’s
rating on item i and ru,i = 0 if u has not rated i. The set
of users who have rated item i is denoted by Ui and the set
of items that have been rated by user u is denoted by Iu.
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3.1 Pearson Correlation Coefficient
The Pearson Correlation Coefficient(PCC) measures the

similarity between two users based their normalized ratings
on the set of items they rated in common:

su,v =

∑

i∈Iu∩Iv

(ru,i − ru)(rv,i − rv)

[ ∑

i∈Iu∩Iv

(ru,i − ru)2
∑

i∈Iu∩Iv

(rv,i − rv)2
]1/2

(1)

3.2 Vector Similarity
Another way of measuring user-user similarity is to view

each user as a vector in a high dimensional vector space
based on his ratings so that the cosine of the angle between
the two corresponding vectors can be used to measure their
similarities:

su,v =

∑

i∈Iu∩Iv

ru,i · rv,i

[ ∑

i∈Iu∩Iv

r2
u,i

∑

i∈Iu∩Iv

r2
v,i

]1/2
(2)

For measuring item-item similarity in item-based models,
the adjusted cosine similarity has been shown to be most
effective [24]:

si,j =

∑

u∈Ui∩Uj

(ru,i − ru)(ru,j − ru)

[ ∑

u∈Ui∩Uj

(ru,i − ru)2
∑

u∈Ui∩Uj

(ru,j − ru)2
]1/2

(3)

where each user’s rating on an item is adjusted by his mean
rating.

3.3 Rating Prediction
In user-based collaborative filtering, the unknown ratings

r̂u,i’s are predicted by selecting a set of k most similar users
Nu based on the user-user similarities su,v and compute the
weighted average of the ratings on i assigned by users in Nu:

r̂u,i = ru +

∑
v∈Nu∧Ui

su,v(rv,i−rv)

∑
v∈Nu∧Ui

su,v
(4)

Following the same idea, in the item-based model, r̂u,i’s
are predicted based on u’s ratings on items in Ni, the set
of k items most similar to i determined using the item-item
similarities si,j :

r̂u,i =

∑
j∈Ni∧Iu

si,j · rv,i

∑
j∈Ni∧Iu

si,j
(5)

4. RANKING-ORIENTED COLLABORATIVE
FILTERING

Traditional rating-oriented collaborative filtering focuses
on predicting a user’s potential ratings on unrated items by
utilizing the known ratings associated with similar users or
similar items. In this section, we present a ranking-oriented
collaborative filtering approach that aims at producing an

item ranking for the target user. We first describe a user-
user similarity measure that is based on two users’ prefer-
ences over the items and then present two methods for rank-
ing items based on the preferences of the set of neighbors of
the target user.

4.1 Kendall Rank Correlation Coefficient
Both PCC and VS described in Section 3 are rating-based

similarity measures in the sense that they are calculated by
comparing ratings values assigned to the items by differ-
ent users. In the ranking-oriented approach, the similarity
between users is determined by their preferences over the
items, which is reflected by their ranking of the items. Sup-
pose we have a set of three items, to which two users have
assigned ratings of {2,3,4} and {3,4,5} respectively. The
rating values on the same items by the two users are clearly
different, nevertheless their preferences are very close as the
items are ordered in the way based the two user’s ratings.
The Kendall rank correlation coefficient[20] is a similarity
measure between two rankings of the same set of objects:

su,v = 1 −

4 ×
∑

i,j∈Iu∩Iv

I−(
(ru,i − ru,j)(rv,i − rv,j)

)

|Iu ∩ Iv| · (|Iu ∩ Iv| − 1)
(6)

where I−(x) is an indicator function defined as:

I−(x) =

{
1 if x < 0
0 otherwise

The value of the coefficient is negatively correlated with the
number of disconcordant pairs, where a pair of items i and
j is disconcordant if i is ranked higher than j in one ranking
but lower in the other.

4.2 Preference Functions
Since our goal is to produce a ranking of the items for

a user rather than predicting the rating values, we focus on
modeling a user’s preference function of the form Ψ : I×I →
R, where Ψ(i, j) > 0 means that item i is more preferable to
j for user u and vice versa. The magnitude of this preference
function |Ψ(i, j)| indicates the strength of preference and a
value of zero means that there is no preference between the
two items. Following [6], we assume that Ψ(i, i) = 0 for all
i ∈ I and that Ψ is anti-symmetric, i.e. Ψ(i, j) = −Ψ(j, i)
for all i, j ∈ I . Note that, however, we do not require Ψ to
be transitive, i.e. Ψ(i, j) > 0 ∧ Ψ(j, k) > 0 does not imply
Ψ(i, k) > 0.

In content-based filtering, the preference function Ψ is of-
ten realized by a binary classifier that categorizes each pair
of items into two categories(correctly ranked and incorrectly
ranked) based on their content features. Various machine
learning approaches including ensembles[5, 6], support vec-
tor machines[16] and neural networks[4] have been developed
for learning such a binary classifier to model the preference
function. However, in the collaborative filtering setting, such
approaches could not be applied due to the lack of features
for describing the items.

Given a user’s ratings on a set of items, we can derive his
preference over the items by comparing his ratings on pairs
of rated items. Suppose user u’s rating on item i and j are 5
and 3 respectively, this clearly indicates that he prefer i to j
and should serve as evidence for Ψ(i, j) > 0 and Ψ(j, i) < 0.
In ranking-oriented collaborative filtering, the key challenge
is to obtain preference information regarding pairs of items
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that have not both been explicitly rated by the target user.
Following the same idea of neighborhood-based collaborative
filtering, we resort to a set of users with similar preferences
to the target user, referred to as the neighborhood Nu. The
basic idea is that the more often the users in Nu assign i a
higher rating than j, the stronger the evidence for Ψ(i, j) >
0 and Ψ(j, i) < 0. This leads to the following formula for
estimating the values of the preference function Ψ(i, j):

Ψ(i, j) =

∑

v∈N
i,j
u

su,v · (rv,i − rv,j)

∑

v∈N
i,j
u

su,v

where the summation is over N i,j
u , the set of neighbors of u

who have rated both item i and j.
Given a preference function Ψ, which assigns a score to

every pair of items i, j ∈ I , we want to choose a ranking of
items in I that agrees with the pairwise preferences defined
by Ψ as much as possible. Let ρ be a ranking of item in I
such that ρ(i) > ρ(j) if and only if i is ranked higher than
j. We can define a value function V Ψ(ρ) that measures how
consistent is the ranking ρ with respect to the preference
function Ψ as follows:

V Ψ(ρ) =
∑

i,j:ρ(i)>ρ(j)

Ψ(i, j) (7)

Therefore, our goal is to produce a ranking ρ∗ that maxi-
mizes the above value function.

4.3 Greedy Order Algorithm
One possible approach to solve the item ranking problem

is to search through the possible rankings in an attempt to
find the optimal ranking ρ∗ that maximizes the value func-
tion defined Equation 7 . However, Cohen et al.[5] showed
that finding the optimal ranking ρ∗ is a NP-Complete prob-
lem based on reduction from the Cyclic-Ordering problem[7]
and proposed an efficient greedy order algorithm for finding
an approximately optimal ranking shown in Algorithm 1 be-
low:

Algorithm 1 Greedy Order

INPUT: an item set I ; a preference function Ψ

OUTPUT: a ranking ρ̂

1: for each i ∈ I do
2: π(i) =

∑
j∈I Ψ(i, j) −

∑
j∈I Ψ(j, i)

3: end for
4: while I is not empty do
5: t = arg maxi∈I π(i)
6: ρ̂(t) = |I |
7: I = I − {t}
8: for each i ∈ I do
9: π(i) = π(i) + Ψ(t, i) − Ψ(i, t)

10: end for
11: end while

The algorithm maintains for each item i ∈ I a potential

value π(i), which is equal to
∑

j∈I Ψ(i, j)−
∑

j∈I Ψ(j, i). So

the more items that are less preferred than i (i.e. Ψ(i, j) > 0)
the higher the potential of i. The greedy algorithm produces

the ranking from the highest position to the lowest position
by always picking the item t that currently has the maxi-
mum potential and assign it a rank equal to the number of
remaining items in I so that it will be ranked above all the
other remaining items. It then deletes t from I and updates
the potential values of the remaining items by removing the
effects of t. The algorithm has a time complexity O(n2),
where n denotes the number of items and it was shown in
[5] that the ranking ρ̂ produced by the greedy order algo-
rithm has a value V Ψ(ρ) that is within a factor of 2 of the
optimal, i.e., V Ψ(ρ̂) ≥ 1

2
V Ψ(ρ∗).

4.4 Random Walk Model for Item Ranking
In this section, we describe a random walk model for rank-

ing the set of items. Instead of directly searching for a rank-
ing as the greedy order algorithm, we attempt to define a
Markov chain model in which states correspond to the items
and the transitional probabilities depend on a user’s prefer-
ence function Ψ. The stationary distribution of this Markov
chain can then be used to produce a ranking.

4.4.1 Random Walk based on User Preferences
The motivation for using the Markov chain model is that

it is an effective model for aggregating partial and incom-
plete preference information from many users. Suppose that
among the set of users, some rated i higher than j and others
rated j higher than k but very few have rated all three items
i, j and k so the preferences regarding i and k is implicit and
need to be inferred through transitivity. Such implicit rela-
tionships between pairs of items not both explicitly rated by
the user could be effectively inferred using multi-step ran-
dom walks that can exploit the connectivity of the directed
graph model underlying the Markov chain.

Our model is closely related to the “PageRank” scheme
[3], which defines a random walk on the Web pages based
on the Web’s hyperlink structure. In particular, the“PageR-
ank” model assumes that a random surfer always randomly
pick a hyperlink on the current page to follow at each step.
It interprets a direct link from page p to q as an endorsement
of q by p so that the stationary probability of being at some
page in the long run could reflect its authority. Similarly,
our model could be viewed as deriving implicit links between
items based on the observed preference information so that
a less preferred item j would link to a more preferred item
i and the transition probability p(i|j) would depend on the
strength of the preference which can be told from the value
Ψ(i, j).

Our goal is to obtain a probability distribution π(i) over
items in I , which could be interpreted as the probability that
a user would be interested in each item i. Imagine a user
trying to find his favorite item and suppose that he has pref-
erences over the items in his mind. So he would randomly
select the items in the following manner. He first chooses an
item j randomly. Then based on his preferences, he would
switch to another item i based on the conditional probability
p(i|j) which would be higher for those items that are more
preferred than j and lower for the items that are less pre-
ferred than j by the user. Such a process continues and in
the long run, the user should select his favorite items most
often, which explains intuitively how the stationary distri-
bution could be used to rank the items based on preferences.
More precisely, the transition probability p(i|j) of switching
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to another item j given the current item i is defined as:

p(j|i) =
eΨ(j,i)

∑
j∈I eΨ(j,i)

(8)

where the transitional probability p(j|i)’s is proportional to

eΨ(j,i).

4.4.2 Compute the Item Rankings
The algorithm for computing the item rankings using the

random walk model described in the last section can be de-
scribed clearly using matrix notations. Let P be the tran-
sition matrix for the random walk model where each en-
try pi,j is equal to the transition probability p(j|i). Let
πt = [pt(1), pt(2), . . . , pt(n)]T where pt(i) is the probability
of being at item i after walking t steps. Given an initial
probability distribution over the items π0, πt’s can be com-
puted iteratively using the formula:

π
T
t = π

T
t−1P (9)

which is the power or vector iteration methods for solving
principal eigenvector problems[9]. The vector of stationary
probabilities is defined to be π

∗ = limt→∞ πt. In general,
using the iterative power method, πt would converge to the
dominant or principal eigenvector of the transition matrix
P[3]. The existence and uniqueness of the stationary distri-
bution π

∗ is guaranteed if and only if the matrix P is irre-
ducible and different modifications to P have been proposed
in order to improve numerical stability of the PageRank al-
gorithm[3]. In our model, since the transition probabilities
p(j|i)’s are calculated using Equation 8, the entries of P are
all non-negative, which could guarantee the existence and
uniqueness of the stationary distribution π

∗[1].

4.4.3 Personalization Vector
To avoid the reducibility of the stochastic matrix, Brin

and Page[3] proposed a trick which forms a revised transition
matrix P by interpolating P with a perturbation matrix
E = evT/n where e is the vector with all components equal
to 1 and v is a “personalization” vector:

P = ε · E + (1 − ε) · P (10)

where ε is a scalar between 0 and 1. The reasoning is that a
web surfer can sometimes“teleport”to other pages according
to the probability distribution defined by v independent of
the current page and the parameter ε controls how often the
surfer may teleport to another page rather than following the
hyperlinks. A few follow up works to PageRank proposed
different methods to bias the personalization vector v to take
into account different types of information besides the link
structure such as contents[10, 23] and user preferences[14].

In our random walk model for item ranking, we follow
the similar idea to define a personalization vector vu =
[pu(1), . . . , pu(n)]T for each target user u based on his known
ratings on the items:

pu(i) =






e
ru,i−ru

1+
∑

i∈Iu
e

ru,i−ru
if i ∈ Iu

1
n−|Iu|

· 1

1+
∑

i∈Iu
e

ru,i−ru
otherwise

(11)

So the user would teleport to those items with high ratings
more often than to those items that have been rated low by
him and all the unrated items have equal probabilities of be-
ing visited via teleportation. The use of the personalization

vector provides an effective way of incorporating the known
preference information of the target user into the random
walk model so that the user’s given preferences are not only
used in selecting the neighbors but also in producing the
item rankings.

5. EXPERIMENTS
We evaluated the proposed approach using two sets of

real world movie ratings data and conducted different ex-
periments to address the following issues: (1) Does the pro-
posed ranking-oriented CF approach improve item ranking
effectiveness compared with traditional rating-oriented ap-
proaches such as user-based and item-based algorithms? (2)
Which of the two ranking-oriented CF algorithms, namely
greedy order and random walk model, is more effective?
(3) Is the ranking-oriented similarity measure Kendall Rank
Correlation Coefficient more effective in finding users with
similar preferences?

5.1 Data Sets
We evaluated the algorithm using two movie ratings data

sets: EachMovie1 and Netflix2. The EachMovie data set
consists of about 2.8 million ratings made by more than
72 thousand users on 1628 movies. The Netflix data set
contains over 100 million ratings from over 480 thousand
users on around 18000 titles. The ratings for EachMovie
are on a scale from 1 to 6 while the Netflix ratings are on
a scale from 1 to 5. Due to the huge size of the Netflix
data, we extract a subset comprised of the ratings on the
2000 movies with the most ratings. Then from both data
sets, we randomly picked a set of 10600 users that have
rated more than 40 different movies, where 10000 are used
as the training data and the other 100 and 500 are used for
parameter tuning and testing purposes respectively. The
density of user-item rating matrix (i.e. proportion of non-
zero entries) of the EachMovie and Netflix data sets are 6.1%
and 6.6% respectively.

5.2 Evaluation Metric
The major criterion for evaluating traditional rating-oriented

collaborative filtering algorithms is the rating prediction ac-
curacy. Commonly used measures for accuracy include the
Mean Absolute Error (MAE) and the Root Mean Square
Error (RMSE), both of which depend on difference between
true rating and predicted rating. However, since the em-
phasis of our work is on improving item rankings instead of
rating prediction, we employ the Normalized Discounted Cu-
mulative Gain(NDCG)[13] metric, which is an increasingly
popular metric for evaluating ranked results in information
retrieval where the documents are assigned graded rather
than binary relevance judgements. For collaborative filter-
ing applications, the ratings on items assigned by the users
can naturally serve as the graded relevance judgements.

The NDCG metric is evaluated over some number k of the
top items on the ranked item list. Let Q be the set of users
used for testing and R(u, p) be the rating assigned by u to
the item at the p-th position on the ranked list produced for
user u. The NDCG at the k-th position with respect to the

1http://nyc.lti.cs.cmu.edu/IRLab/11-743s03/lebanon/IR-
lab.htm
2http://www.netflixprize.com
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set of users Q is:

NDCG(Q, k) =
1

|Q|

∑

u∈Q

Zu

k∑

p=1

2R(u,p) − 1

log(1 + p)

where Zu is a normalization factor calculated so that the
NDCG of the optimal ranking has a value of 1. The value
of NDCG ranges from 0 to 1 with a higher value indicates
better ranking effectiveness. The NDCG is very sensitive to
the ratings of the highest ranked items. This is modeled by
the discounting factor log(1 + p), which increases with the
position in the ranking. This characteristic makes it highly
desirable for measuring ranking quality in recommender sys-
tems as most users rarely look past the first few items on
a recommendation list so the relevance of items at the top
positions are far more important than those at low positions.

Note that the Kendall Rank Correlation Coefficient can
also be used to evaluate the quality of a ranking by calcu-
lating its correlation with the optimal ranking, however such
an approach is not able to take into consideration the dif-
ferent importance of high and low positions in a ranking as
NDCG does. Therefore, we did not use it as the evaluation
metric in our experiments.

5.3 Evaluation Protocol
For each user in the test set, we use 50% of his known

ratings as input for model construction and use the remain-
ing 50% as hold-out data for evaluation purposes. Different
algorithms are evaluated based on the quality of the rank-
ings they produced for the items in the hold-out data of each
user, which can be measured using NDCG based on the true
ratings on the items.

5.4 Impact of Parameters

5.4.1 Impact of Neighborhood Size
Similar to user-based and item-based collaborative filter-

ing algorithms, the size of the neighborhood will affect the
performance of our algorithms which need to estimate a user
preference based a set of neighbors. For this set of experi-
ments, we fix the number of training users at 5000 and use
NDCG at the 1st position as the performance measure. We
run both the greedy order algorithm and the random walk
algorithm with varying neighborhood size. Figure 1 shows
the change in performances when the size of the neighbor-
hood increase from 20 to 200. We can see that the NDCG
gradually increases as the neighborhood size increases from
20 to 100 since the preference Ψ(i, j) can be estimated more
accurately given more neighbors. However, we also observe
that the performance start to decrease as the neighborhood
size exceeds 100, which is due to that many non-similar users
began to enter the neighborhood and introduce incorrect
preference information into Ψ(i, j) as the neighborhood size
gets too large. The optimal value for the neighborhood size
is around 100.

5.4.2 Impact of ε

The parameter ε in Equation 10 controls how often the
“teleport”operation is performed in the random walk model.
By setting ε to 0, the transition probabilities will be defined
by Equation 8, which is only determined by the preference
function Ψ(i, j). On the other hand, by setting ε to 1, the
random walk model will perform the “teleport” operation
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Figure 1: NDCG vs. Neighborhood Size Results on
EachMovie (Above) and Netflix (Below)

all the time and the preference information Ψ(i, j) is totally
ignored. In our experiments, we vary ε from 0 to 0.9 and
measure the NDCG at the 1st, 3rd and 5th positions de-
noted by NDCG1, NDCG3 and NDCG5 respectively. The
results are shown in Figure 2. We can see that increasing
the ε value from 0 can generally lead to improvements on all
three NDCG measures and the improvements on NDCG1
are especially notable. We also note that as ε gets very large
the performances would start to drop significantly. This is
because with high ε value, the random walk model would
perform the “teleport” operation most of the time and the
stationary distribution would approach the personalization
vector defined in Equation 11, which assigns equal proba-
bilities to all the unrated items and makes it impossible to
rank the unrated items effectively. The optimal value for ε
is around 0.6.

5.5 Comparisons with other Algorithms
We choose 4 rating-oriented collaborative filtering algo-

rithms as the baselines including item based model using
Pearson Correlation Coefficient(IPCC) and Vector Similar-
ity(IVS), user based model using Pearson Correlation Co-
efficient (UPCC) and Vector Similarity(UVS)and compared
them with our algorithms: random walk model using Pear-
son Correlation Coefficient (RWPCC), Vector Similarity (RW
VS), and Kendall Rank Correlation Coefficient (RWKRCC),
greedy order algorithm using Pearson Correlation Coeffi-
cient(GOPCC), Vector Similarity (GOVS) and Kendall Rank

88



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.71

0.72

0.73

0.74

0.75

0.76

0.77

Epsilon    
(EachMovie)

NDCG1
NDCG3
NDCG5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.8

Epsilon  
(Netflix)

NDCG1
NDCG3
NDCG5

Figure 2: NDCG vs. Epsilon Results on EachMovie
(Above) and Netflix (Below)

Correlation Coefficient (GOKRCC). For IPCC and IVS, we
set the number of neighboring items to be 50 as suggested
by [24]. For all the other algorithm, we set the size of the
neighborhood Nu to be 100. The parameter ε for the random
walk based models are set to 0.6.

The evaluation results on both EachMovie and Netflix
data sets are shown in Table 1(a) and 1(b) respectively. For
both data sets, we vary the number of training users from
1,000 to 10,000. For each algorithm, we report the NDCG
values at the 1st, 3rd and 5th positions, denoted by NDCG1,
NDCG3 and NDCG5 respectively. For each column in Table
1(a) and 1(b), we have highlighted the top 3 performers and
the values shown in the bottom row are the performance im-
provements achieved by the best ranking-oriented methods
over the best rating-oriented methods.

As can be seen from the results, in all the conducted ex-
periments, the top 3 performers are consistently ranking-
oriented methods. The improvements on NDCG1, NDCG3
and NDCG5 of the best ranking oriented methods over the
best rating oriented methods are more than 8.8%, 4.7% and
3.4% on average. We can see that random walk model had
consistently outperformed all the rating oriented methods
and the greedy order algorithm in almost all the experi-
ments.

For the greedy order algorithm, we can see that using
Kendall Rank Correlation Coefficient as the similarity mea-
sure has led to higher performances than the Pearson Cor-
relation Coefficient and the Vector Similarity on both data

sets. For the random walk model, the performances of RW-
PCC and RWKRCC are very close on the EachMovie data
set while RWKRCC outperformed RWKRCC on the Net-
flix data. So from the results we can see that the Kendall
Rank Correlation Coefficient is a more effective similarity
measure for finding users with similar preferences. It can
also be noted that the performances of different algorithms
would improve as the number of training users increases.
This is because with a larger user database, it will be easier
to find sufficient number of neighbors with high similarities
to the target user so that his preferences can be estimated
more accurately.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we propose a ranking-oriented framework

for collaborative filtering that addresses the item ranking
problem directly without trying to predict a user’s ratings on
the unrated items as an intermediate step. Our approach ex-
tends the neighborhood-based collaborative filtering frame-
work by identifying and aggregating the preferences rather
than ratings of similar users in order to produce a rank-
ing of items. We described two methods for computing the
item rankings based on preferences including a greedy order
algorithm and a random walk model. Experimental results
show that our approach outperforms existing CF algorithms
in terms of ranking effectiveness.

For future work, we would like to investigate different
techniques proposed for improving traditional rating ori-
ented CF including data smoothing and utilizing content in-
formation, and study their usefulness to our ranking-oriented
CF approach.
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