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Abstract: - The analysis of spatial dependence and spatial heterogeneity as well as issues on model choice and 
model selection- how to decide between specification, both nested and non-nested have been predominant in 
spatial econometric modeling. This paper highlights the concept of spatial econometrics, and applies it to 
analyze the spatial dimensions of poverty and its determinants using data from Bangladesh. It is shown both 
theoretically and empirically that the OLS estimates of the poverty function suffer from upward bias. 
Alternative spatial econometric models showed that both spatial lag and spatial error are statistically 
significant, indicating that the OLS model is misspecified. The significance of the spatial effects parameters 
also suggest that spatial poverty trap exist in the country suggesting a more targeted-anti poverty intervention. 
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1 Introduction 
Spatial econometric has rapidly matured over the 
last decade, with many developments in model 
specification, estimation and testing (see for 
example [1]). The analysis of spatial dependence 
and spatial heterogeneity as well as issues on model 
choice and model selection- how to decide between 
specification, both nested and non-nested have been 
predominant in spatial econometric modeling. 

The purpose of this paper is twofold. In the first 
part on a theoretical level, we look at the concept of 
spatial econometrics. We also look at the existing 
literature of econometrics about spatial 
autoregressive models and relate them with their 
counter part in time series analysis. The second part 
of the paper is an empirical application were the 
autoregressive models are applied to analyse the 
spatial dimensions of poverty and its determinants 
using data from Bangladesh.  
 
 
2 Problem Formulation 
Consider the problem of fitting a regression model 
to a spatial data (e.g., poverty incidence) using the 
ordinary least squares (OLS) procedure:  

y xα β ε= + + ;  (1) 
where y is the latent variable, x  a n x 1 vector of k 
independent variables, α and  β are parameters to be 

estimated and ε is the error term with mean zero and 
constant variance (σ2).   

Due to spatial and aggregate nature of the data, a 
violated assumption is that of spherical disturbances 
and the presence of spatial patterns in general. 
Spatial patterns cause a number of measurement 
problems, referred to as spatial effects, such as the 
spatial dependence or spatial autocorrelation.  

In particular, there are two forms of spatial 
dependence [2]. The first is the spatial lag, which 
pertains to the spatial autocorrelation of the 
dependent variable.         

( ) , 1,...,i jy f y i n j i= = ≠ .              (2) 

If this form of spatial autocorrelation is ignored, 
the OLS estimates will be biased and all inferences 
based on the regression model will be incorrect ([3] 
and [4]. The problem can be best described as an 
omitted variable bias. To illustrate, let the true 
model of that includes the omitted variable z:  

y x zα β δ ε= + + + .  (3) 
The estimator b for the regression coefficient β in 
equation 1 is: 

( )
( ) ( )
( ) ( ) ( )

1

1

1 1 1

' '

' ' (4)

' ' ' ' ' ' .

b x x x v

x x x x z

x x x x x x x z x x x

β δ ε

β δ ε

−

−

− − −

=

= + +

⎡ ⎤ ⎡ ⎤= + +⎣ ⎦ ⎣ ⎦
 

Proceedings of the 8th WSEAS International Conference on APPLIED MATHEMATICS, Tenerife, Spain, December 16-18, 2005 (pp159-164)



And the expected value for the estimator b is: 
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Thus, the estimator b is (upwardly) bias by the 
term ( ) ( ),Cov x z Var x δ⎡ ⎤⎣ ⎦ . 

The second form of spatial dependence is 
referred to as spatial error, which pertains to spatial 
autocorrelation of the error term. Recall in the 
traditional regression model defined in (1). The 
Gauss-Markov assumptions are that: ( ), 0i jE ε ε = , 

which translate through the fixed X’s assumption to 

( ), 0i jE y y = . This form of spatial dependence is 

referred to as a nuisance but may help us to capture 
important facets of the realities of economic 
processes. If this type of spatial error is ignored, the 
OLS estimator remains unbiased, but is no longer 
efficient, since it ignores the correlation between 
error terms. As a result, inference based on t- and F- 
statistics will be misleading and indications of fit 
based on R2 will be incorrect [3].  

 
 
3   Problem Solution 
 
3.1 Spatial Autoregressive Models 
 
3.1.1 General spatial process model 
To account for spatial effect, a group of spatial 
autoregressive models, which follow from 
parameter restrictions of the “general spatial process 
model” [3] also known as “spatial autoregressive 
model” (SAC model) [4] was formulated. The 
general specification of the SAC model combines a 
spatially autoregressive dependent variable (spatial 
lag) among the set of explanatory variables and 
spatially autoregressive lagged disturbances (spatial 
error). For the first order process, the SAC model is 
given: 
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where  y, x, and β are as defined in (1), W is a 
spatial weight matrix with (n x n) elements ijw that  
contains the neighborhood structure of the locations 

(observations), ρ  and λ are parameters to be 
estimated. In particular, ρ  is a scalar spatially 
autoregressive parameter which determines the 
importance of spatial lag; λ  the scalar spatial 
autoregressive disturbance parameter which 
determines the importance of spatial error, and µ is 
an (n × 1) independently and identically distributed 
vector of error terms.  

These formulations correspond directly to the 
time series specifications of moving average or MA 
(correlation across time captured in the residual) and 
autoregressive or AR (correlation captured through 
lagged dependent variables). 
 
3.1.2 Spatial Lag Model (SAR) 
From the SAC model restricting the spatial effects 
parameters equal to 0 can derive other models. 
When λ = 0, a “spatial lag” model or following [4], 
a mixed regressive-spatial autoregressive model 
(SAR) can be derived which is analogous to the 
time-series lagged dependent variable model.  The 
SAR model then reads as: 
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3.1.3 Spatial Error Model (SEM) 
When the ρ in the SAC model (6) is set to 0, a 
spatial error model (SEM) with spatial 
autocorrelation in the disturbances can be derived of 
the form: 
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This model corresponds to the model in time 
series analysis where the errors show some temporal 
correlation process.  
 
 
3.14 First Order Autoregressive Model 
(FAR) 
The simplest among these models is the first order 
(FAR) model, which takes the form: 

);,0(~ 2
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                (9) 

As it does not involve any covariate 
(independent variables), the coefficient ρ  can be 
considered as pure measure of spatial 
autocorrelation [4]. 
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3.2 Spatial Weight Matrix (W) 
The W merits more discussion. It is the building 
block of spatial econometric models and a 
fundamental characteristic that distinguishes spatial 
econometrics from time series counterparts. 
Formally, given spatial framework of n locations, 

{ } 1

n
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S s
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= , and a neighbor relation N S X S⊂ , 

sites si and sj are neighbors iff ( ), ,i js s N i j∈ ≠ . 

Let ( ) ( ){ }: ,i j i jN s s s s N= ∈  denotes si ‘s 

neighborhood. The elements of normalized W are 
( ) ( ), 1 iw i j N s=  iff ( ),i js s N∈  and 

( ), 0w i j =  otherwise. The form of the spatial 
weight matrix can vary from a contiguity/adjacency 
relation to distance functions and eventually with a 
cut-off point (k) or k-nearest neighbor [5]. The k-
nearest neighbors weight matrix W(k) is of the form: 
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                                                                             (10)  
where ( )ijw k is an element of the standardized 

weight matrix and  ( )jd k is a critical cut-off 
distance defined for each location. More precisely, 

( )jd k is the kth order shortest distance between 
location i and all other units such that each unit i has 
exactly k neighbors.  
 
 
3.3 Estimation Procedure 
When there is spatial dependence in the spatial 
models, the OLS estimators will be biased as well as 
inconsistent (see [3] and [4]). Two alternative 
approaches are the instrumental variable (IV) 
estimation [6] and Maximum Likelihood (ML) 
approach [3]. For the ML approach of the FAR 
model, the log-likelihood to be maximized is given 
by: 
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In order to simplify the maximization problem, a 

concentrated log-likelihood function based on 

eliminating the parameter 2σ for the variance of the 
disturbances is obtained [4]. This is accomplished 

by substituting ( ) ( ) ( )2ˆ 1 n y Wy y Wyσ ρ ρ′= − −  
in the likelihood function define above and taking 
logs which yields: 

( ) ( ) ( )ln ln
2 n
nLn L y Wy y Wy I Wρ ρ ρ′∝ − − − + − . (12)  

 This expression can be maximized with respect to 
ρ using a simplex univariate optimization routine 
[4]. Using the value of ρ that maximizes the log-
likelihood function (say, ρ% ) in 

( ) ( ) ( )2ˆ 1 n y Wy y Wyσ ρ ρ′= − − , the estimate 

for the parameter 2σ can be obtained. 
 
 
3.4 Estimation Issues and Model Selection  
As mentioned at the outset of this paper, model 
selection is predominant in spatial econometric 
modeling. The literature provides different model 
selection strategies, one of which is the nesting 
approach - proceed with a very general model 
including spatial effects, and reduce the model on 
the basis of significance tests [4]. An insignificant λ 
coefficient estimate in the SAC model would point 
to SAR model as more appropriate, whereas an 
insignificant ρ estimate suggests the SEM model 
would be more appropriate (Fig. 1). 
 

Figure 1. Model selection framework using the 
nested approach. 
 

 
If both spatial coefficients are significant in a 

SAC model, there is an issue of model identification 
if W1 = W2. LeSage [4] demonstrated the estimation 
of SAC model where both ρ  and λ  are significant 
using different combinations of W’s in such a way 
that one is the square of the other (i.e., W and W2). 

SAC 

SAR

OLS 

SEM

0( : 0 | 0)H λ ρ= ≠ 0( : 0 | 0)H ρ λ= ≠

0( : 0 0)H andλ ρ= =

0ρ = 0λ =
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3.5 Test for Spatial Dependence  
As model specification issues have become an 
integral part of spatial econometrics, an extensive 
toolbox of diagnostic tests–comprising 
unidirectional, multidirectional and robust tests for 
OLS residuals had been developed (see [3] and [7] 
for a comprehensive review).  In general, all these 
tests are based on the null hypothesis of no spatial 
dependence against the alternative of spatial 
dependence. 
 
3.5.1 Lagrange Multiplier Test for Spatial Error 
(LM-ERR) 
A test on spatial dependence of the residual is the 
LM-ERR denoted by [8]: 

)1(~]/)')[(/1( 222 χsWeeTERRLM =−      (13) 

where 2 's e e R=  and ( )2T tr W W W′= + , with 

tr as the matrix trace operator. 
The LM-ERR test is a test that is conditional to 

no spatial lag dependence, i.e., 0 : 0H λ = , 
conditional upon 0ρ = .  
 
3.5.2   Robust Lagrange Multiplier Test for 
Spatial Error (LM-EL) 
A test that is robust to local misspecification in the 
form of spatial lag error (LM-EL) is computed as 
[8]: 
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where  
( ) ( ) ( )

11 ' 2RJ T WX M WX sρ β β β
−−

−
⎡ ⎤= +⎣ ⎦

%  and where 

WX β  is a spatial lag of the predicted values from 

an OLS regression, ( ) 1' 'M I X X X X−= −   is  a 
projection matrix.  
 
 
3.5.3    Lagrange Multiplier Test for Spatial Lag 
(LM-Lag) 
A counterpart of LM-ERR is the conditional test on 
spatial lag dependence of the dependent variable 
(LM-Lag), i.e. 0 : 0H ρ = , conditional upon 0λ = . 
The LM-Lag can be computed by: 

( )
( )

22'e Wy s
LM Lag

RJ ρ β−

− =
%

             (15) 

where .* is as defined earlier. 

3.5.4    Robust Lagrange Multiplier Test for 
Spatial Lag (LM-LE) 
The corresponding robust to local misspecification 
in the form of spatial lag term (LM-LE) is computed 
as [9;10]: 
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      (16) 

 
3.5.5 Joint test on Residual Spatial 
Autocorrelation and Spatially Lagged 
Endogenous Variable 
A Lagrange multiplier test for a joint test on spatial 
lag (Autoregressive) and spatial (moving average) 
error ( 0 : 0H λ =  and 0ρ = ) by combining LM-
ERR and LM-LE, denoted by LM-SARMA, is 
given by [7]: 
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                                                                             (17) 
 
4   Empirical Application  
In what follows is an application to the analysis of 
poverty using Data from Bangladesh. An Upazillaa 
level of rural poverty rates measured by headcount 
index (HCI)b is used. All the data were taken from 
the Bangladesh Country Almanac (BCA)c.   

To start with, we specify a poverty function of 
the form: 

15

1
i j ij i

j

Y a b X e
=

= + +∑              (18) 

where subscripts i and j refer to the ith Upazilla and 
jth explanatory variable (x), respectively;  Y refers to 
rural HCPI; X1 represents % highland area of the ith 
Upazilla, X2 is % medium highland 1, X3 is % 
medium highland 2, X4 is % lowland, X5 is % very 
lowland, X6 is % area affected by severe drought, X7 
% is area affected by moderate drought, X8 is % area 
with clay or loamy clay soil, X9 is % net crop area 
served by modern irrigation, X10 is of household 
with electricity supply, X11 is % average travel time 
by road to main service facilities, X12 is percent of 
landless households, X13 is % agricultural area under 

                                                 
a A rural sub-district of Bangladesh. 
b HCI is the proportion of households with cost of basic 
needs below the poverty line.  
c The BCA is a compilation of digital data sets, both 
spatial and non-spatial attributes in a CD-ROM with Mud 
Springs Awhere-ACT Spatial Information System tools 
developed using MapObjects programming. In particular, 
the HCI was estimated and mapped by the International 
Rice Research Institute (IRRI) and partner Institute [11]. 
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tenancy, X14 is % average number of livestock per 
household (HH), X15 is % average years of 
schooling of adult HH members.  

All tests and estimation concerning spatial 
dependence are done in GeoDaT [12], Spatial 
Econometrics Toolbox of Matlab developed by 
LeSage[4], and the Statistical Analysis System 
(SAS). 
  In addition, it is hypothesized that an interaction 
between irrigation (X9) and drought (X6 and X7) 
exists. So, another model is estimated (Model 2) 
which include these interactions defined by X16 = X6 
x X9 and X17 = X7 x X9. Results of Model 2 (not 
shown) however showed that both the coefficients 
of X16 and X17, as well as the joint test are not 
statistically significant.  

The next step was to establish that Model 1 
suffer from spatial effects, either spatial lag 
dependence or residual spatial dependence, or both. 
For this purpose, the test defined in equations 14- 18 
are conducted on Model 1d. Results showed that all 
the tests are statistically significant (Table 1). This 
indicates that the OLS model is misspecified and 
that spatial effects should be included in the model.  

 

 
In what follows is the estimation of econometric 

models defined in equations 7-10 that accounts or 
spatial effects. To select the most appropriate 
model, a model selection is employed using the 
nested approach [4] as illustrated in Fig 1. A SAC 

                                                 
d Model 1 was also subjected to diagnostic for normality, 
tests on the presence of heteroskedasticity of the errors 
and multicolliniarity among independent variables. All 
these tests resulted to the acceptance of the respective 
alternative hypothesis. 

model was first estimated using different 
combinations of W1 and W2 where 2

2 1W W= [4] and 
W1 is defined by 6-neaarest neighbour spatial weight 
(11)e. Model 1 is based on W for spatial 
autoregressive lag (ρ) and W2 (second order) for 
spatially correlated disturbances (µ). Model 2 is 
based on W2 for ρ and W for µ. Model 3 is based on 
W for both ρ and µ and Model 4 is based on W2 for 
both ρ and µ. Due to space constraints, we will only 
present the result of Model 1 by virtue of its 
smallest Log-likelihood value. The result is 
presented in Table 2 (under SAC Model).  Also 
presented in Table 2 are the results of OLS 
estimates, and estimates of the SAR and SEM 
model. 
 
Table 2. Results of the poverty function estimated 
using OLS, and SAC, SAR and SEM models. 

s.e. s.e. s.e. s.e.
Intercept 71.388 *** 2.134 64.759 *** 3.610 55.396 *** 2.804 71.702 *** 2.202
X 1 -0.041 *** 0.014 -0.003 0.014 -0.036 *** 0.013 -0.011 0.015
X 2 -0.042 * 0.023 0.023 0.023 -0.034 * 0.021 0.016 0.023
X 3 -0.081 *** 0.016 -0.018 0.015 -0.059 *** 0.015 -0.021 0.015
X 4 -0.039 * 0.021 0.012 0.019 -0.032 * 0.019 0.023 0.020
X 5 0.081 ** 0.034 0.053 * 0.030 0.041 *** 0.031 0.063 * 0.030
X 6 -0.035 *** 0.009 0.002 0.013 -0.019 ** 0.008 -0.012 0.012
X 7 -0.044 *** 0.008 -0.008 0.008 -0.028 *** 0.008 -0.014 * 0.009
X 8 -0.020 *** 0.007 -0.009 0.008 -0.012 * 0.007 -0.014 * 0.009
X 9 -0.021 *** 0.007 -0.014 * 0.008 -0.022 *** 0.007 -0.016 ** 0.008
X 10 -0.125 *** 0.017 -0.090 *** 0.017 -0.105 *** 0.015 -0.089 *** 0.017
X 11 0.006 0.008 0.003 0.008 -0.004 0.008 0.004 0.008
X 12 0.060 *** 0.022 0.009 0.020 0.013 0.020 0.015 0.020
X 13 0.050 0.032 0.056 * 0.032 0.052 * 0.029 0.058 * 0.032
X 14 0.567 *** 0.120 0.239 * 0.136 0.530 *** 0.108 0.257 * 0.139
X 15 -20.973 *** 0.841 -22.511 *** 0.844 -18.434 *** 0.867 -22.488 *** 0.855
ρ 0.161 ** 0.056 0.309 *** 0.038
λ 0.903 *** 0.031 0.726 *** 0.042

R2 0.840 0.92 0.83 0.90
Log-likelihood value -579.03 -885.53 -851.42

Residual FAR 0.60 *** 0.08 0.05 0.12 0.64 *** 0.07 0.73 *** 0.06

* significant at a = 0.10 ** significant at a = 0.05 *** significant at a = 0.01

b b b b
OLS SAC SAR SEM

 
In the SAC model, the spatial parameters (ρ and 

λ) are statistically significant. The value of the 
correlation coefficient (ρ = 0.161) indicates that on 
average, a 10-percentage point increase in poverty 
rate in a location results in a 1.61 percentage point 
increase in the poverty rate in a neighboring 
location, ceteris paribus. This is strong evidence 

                                                 
e A delaunay triangulation routine is used to pick-out the 
six nearest Upazillas based on the latitude and longitude 
coordinates for the Upazilla centroid. Delaunay 
triangulazation computes a set of triangles such that no 
data points are contained in any triangle’s circumcircle. 
The choice of k=6 is based on the average number of 
adjacent neighbors of each Upazilla. 

Table 1. Tests for spatial dependence on OLS 
poverty function. 
Tests p-value Conclusion
Test on residual spatial 
autocorrelation    
   LM-ERR 0.0000 *** Reject Ho 
   Robust LM-EL (LM-EL) 0.0000 *** Reject Ho 
Test on spatial lag    
   LM-Lag 0.0000 *** Reject Ho 
   Robust LM-Lag (LM-LE) 0.0191 ** Reject Ho 
Joint test on Spatial Lag 
and Spatial Error    
   LM-SARMA 0.0000 *** Reject Ho 
** statistically significant at α = 0.05 
*** statistically significant at α = 0.01 
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that spill over effects. The highly significant λ 
suggest that a random shock in a spatially omitted 
variable that affects poverty rate in a particular 
location triggers a change in the poverty rate. 

It is instructive to compare the biased OLS 
estimates to those from the SAC models. In general, 
an upward bias in the OLS estimates is observed 
indicating over-estimation when spatial effects are 
ignored as illustrated theoretically in equation 5.  
There are also sign differences observed. The 
number of significant variables decreased for SAC 
model after taking into account for spatial effects. 
This illustrates the “misleading effect spatial error 
autocorrelation may have on inference using OLS 
estimates” [12].  

There are three indications supporting that the 
SAC estimates are superior to the OLS estimates. 
First, the R2 is much greater in SAC model (0.92 
compared to 0.84). Second, the standard errors of 
the estimates are also lower in the SAC model. 
Lastly, the residual of the SAC model do not exhibit 
spatial autocorrelation (0.05) compared to the OLS 
residual as indicated by the FAR coefficient (0.60; 
p-value = 0.08).  This spatial autocorrelation of the 
residuals is also observed in the SAR and SEM 
models leaving the SAC model as the most 
appropriate model that captures the spatial 
dependence of the data. It is noteworthy that the 
respective estimated spatial parameters of both 
models are statistically significant. 

 
 

5   Conclusion  
As shown theoretically and empirically, the OLS 
estimates are (upward) bias in the presence of 
spatial dependence data. The alternative spatial 
econometric models are superior to the OLS 
estimates by virtue of: (i) higher R2, (ii) lower 
standard errors, and (iii) free from residual spatial 
autocorrelation. The significance of the spatial 
effects parameters indicates that the OLS model is 
misspecified. More meaningfully, it indicates that a 
spatial poverty trap exist suggesting a more targeted 
anti-poverty intervention. It also indicates that a 
spillover effects not only in poverty incidence but 
also in poverty reduction. 

However, the significance of the parameter 
estimates of some variables is affected or masked by 
the incorporation of spatial effects parameters. This 
raises the issue of whether to relax spatial effects in 
order to understand relationship we are modeling or 
to account for spatial effects but losses some 
insights of the relationship.  
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