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Abstract

Transmit power control is a central technique for resource allocation and in-
terference management in spread-spectrum wireless networks. With the increasing
popularity of spread-spectrum as a multiple access technique, there has been signif-
icant research in the area in recent years. While power control has been considered
traditionally as a means to counteract the harmful effect of channel fading, the more
general emerging view is that it is a flexible mechanism to provide Quality-of-Service
to individual users. In this paper, we will review the main threads of ideas and re-
sults in the recent development of this area, with a bias towards issues that have
been the focus of our own research. For different receivers of varying complexity, we
study both questions about optimal power control as well as the problem of charac-
terizing the resulting network capacity. Although spread-spectrum communications
has been traditionally viewed as a physical-layer subject, we argue that by suitable
abstraction, many control and optimization problems with interesting structure can
be formulated at the network layer.
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1 Introduction

With the introduction of the IS-95 Code-Division Multiple-Access (CDMA)

standard ([63]), the use of spread-spectrum as a multiple-access technique in
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commercial wireless systems is growing rapidly in popularity. Unlike more tra-
ditional methods such as time-division multiple access (TDMA) or frequency-
division multiple access (FDMA), spread-spectrum techniques are broadband
in the sense that the entire transmission bandwidth is shared between all users
at all times. This is done by the spreading of the users’ signals onto a band-
width much larger than an individual user’s information rate. The advantages
of spread-spectrum techniques include simpler statistical multiplexing with-
out explicit scheduling of time or frequency slots, universal frequency reuse
between cells, graceful degradation of quality near congestion, and exploita-
tion of frequency-selective fading to avoid the harmful effects of deep fades
that afflict narrowband systems.

Since spread-spectrum systems do not explicitly schedule time or frequency
slots among the users, the central mechanism for resource allocation and in-
terference management is power control. Each user varies its access to the
resources by adapting its transmit power to the changing channel and inter-
ference conditions. While in the IS-95 standard, power control is used basically
as a mechanism to keep the received powers of users equal so that the nearby
users do not dominate over the far away users, the more general emerging view
is that it is a flexible mechanism to provide different Quality-of-Service (QoS)
to users with heterogeneous requirements.

In this survey paper, we would like to review the results on two sets of issues
associated with resource allocation and power control problems in spread-
spectrum systems:

o What are the appropriate power control algorithms which provide desired
QoS requirements while minimizing the power usage?

e How can the capacity of a power controlled spread-spectrum network be
characterized?

We will address these questions in two settings.

A typical way the wideband channel is shared among the users is through a
spread-spectrum technique called direct sequence CDMA (DS-CDMA), where
each user’s information symbols are spread over the wideband channel by its
unique signature sequence. To discriminate among the users, receivers of vary-
ing complexity can be implemented at the base-station. We will focus on the
class of linear receivers, i.e. receivers that operate linearly on the total received
signal to demodulate the symbols of a particular user. The simplest such re-
ceiver is the one which is matched to the signature sequence of the desired
user. This matched filter receiver is the receiver used in the 1S-95 standard.
Multiuser receivers are more sophisticated receivers which take into account
the signature sequences of the interfering users as well, thereby providing a
better interference suppression capability.



For these linear receivers, we describe decentralized power control algorithms
that enable resources to be rapidly reallocated among users without the need
for centralized decision making. These algorithms are iterative in nature, and
converge to the unique minimal possible power allocation that satisfies the
demands of the users in the network. We will also show that these systems
are all interference-limited, in the sense that the user capacity is limited even
when there are no power constraints. We will present a unifying framework
to characterize and compare network capacity for different receivers based on
two notions:

o cffective interference: a measure of the effect an interferer has on the
desired user.

o cffective bandwidth: a measure of the amount of network resources con-
sumed by each user in the system:;

The formulas for effective interference and effective bandwidths depend on
the linear receivers. Thus, these notions serve as a unifying basis for perfor-
mance comparison in this class of receivers. One can also think of the effective
bandwidth of a user in a spread spectrum system as the analog of the number
of time or frequency slots used by a user in a narrowband system. However,
because the signals of users in a DS-CDMA system are superimposed on each
other and discriminated by signal processing techniques, the existence of such
notions is non-trivial, and indeed hold only under certain conditions which
will be specified.

The above results are in the more practical setting of linear receivers for DS-
CDMA systems. In the second setting, we take a more speculative point of view
and ask a more fundamental question: what are the optimal power control and
resource allocation schemes for spread-spectrum receivers that are information
theoretically optimal? For the single-cell scenario, a complete answer to this
question is described. Using multiuser information theory, the power control
problem is formulated as the optimization of certain objective functions of the
transmit powers subject to constraints imposed by the desired performance
targets. By identifying polymatroid structure in the constraints, explicit greedy
solutions to the optimal power allocation problems are derived. The solutions
provide a nice contrast to the corresponding results for linear receivers, as they
are very different in flavor.

The problem of power control in wireless networks has received much attention
in recent years, and our survey here is by no means exhaustive. For a survey
on power control that focusses on narrowband wireless networks we refer the
reader to [7]. In the present paper, we focus on spread spectrum wireless
systems, and the bias is towards the issues that we ourselves have studied in
the past, and thus the paper is very much shaped by our outlook on the field.



While power control and spread-spectrum communication are traditionally
thought of as physical layer subjects, we will show that many interesting net-
work layer resource allocation problems require an understanding of the under-
lying spread spectrum physical layer that gives rise to optimization problems
involving power control. Although we consider a variety of different resource
allocation problems, we find two fundamental principles that are common to
all: monotonicity and conservation laws. Monotonicity is crucial to the proofs
of all convergence algorithms, and reflects the basic fact that if one user in-
creases its share of the available network resources, then the remaining users
obtain a smaller share of the resources. A stronger form of monotonicity is
manifested in the other principle of resource conservation: there is always a
total amount of network “resource”, which can be shared out in various ways,
but the total amount is fixed. The subtlety is in the appropriate definition of
“resource”, and this varies from problem to problem.

The rest of the paper is structured as follows. In Section 2, we review results on
power control and capacity under the standard matched-filter CDMA receiver.
We will then consider corresponding questions for linear multiuser receivers
in Section 3. We then turn to power control problems for information theoret-
ically optimal receivers in Section 4. Section 5 contains our conclusions and
some open problems.

2 Conventional Matched Filter Receiver
2.1 Basic Model

In a spread-spectrum system, each of the user’s information or coded symbols
is spread onto a much larger bandwidth via modulation by its own signature
or spreading sequence. The following is a sampled discrete-time model for a
symbol-synchronous multi-access spread-spectrum system:

M
y = ZXZ'SZ'—I-W, (1)

=1

where X; € R and s; € R” are the transmitted symbol and signature spreading
sequence of user i respectively, and w is N(0,a*1) background Gaussian noise.
The length of the signature sequences is L, which gives the spreading ratio
between the rate of narrowband information symbols (the X;’s ) and the rate
of the wideband spread-spectrum signals (the X;s;); L is sometimes called
the processing gain. The received vector is y € R, We assume the X;’s are
independent and that E[X;] = 0 and E[X?] = p;, where p; is the received



power of user . Each sample is sometimes called a chip.

Rather than looking at symbol-by-symbol detection, we are interested in the
more general problem of demodulation, extracting good estimates of the (coded)
symbols of each user as soft decisions to be used by the channel decoder [57].
From this point of view, a relevant performance measure is the signal-to-
interference ratio (SIR) of the estimates, which can be taken as a Quality-of-
Service measure for the user. Strictly speaking, the SIR does not completely
characterize performance such as bit error probability, since the interference
from other users is not necessarily Gaussian. However, it is found in practice
to be a reasonable measure, and its use is further justified rigorously in [76],
[77], [96] for a large system with many interferers, using the Central Limit
Theorem.

For convenience, let us focus on the demodulation of user 1’s symbols, and the
calculation of its SIR. The same approach can be taken to study the perfor-
mance of any other user. The conventional CDMA receiver for demodulating
user 1 is to perform the matched filtering s; - y on the received signal y. This
despreads the signal of user 1, inverting the original spreading operation at
the transmitter, and results in the effective channel:

M
X1 — Xl(Sl 'Sl) —|—ZXZSZ -81+81-wW

=2

The SIR for user 1 is the ratio of user 1’s signal energy to that of the noise
plus other users’ interference at the output of the matched filter, and is given
by: signal

(51 : 51)2}71

SIR, = 2
! (Sl . 51)0-2 + Ziwzz(sl : Su)zpu ( )

In the context of this conventional receiver, the basic questions of power control
and network capacity can be concretely stated as:

o Given a set of users with desired SIR requirements, does there exist trans-
mit powers such that the requirements are met? If so, how can the powers
be controlled?

e How do we characterize the number of users whose SIR requirements can
be simultaneously met via appropriate power control?

2.2 Effective Interference

A natural question at this point is the choice of the signature sequences {s;}.
To avoid interference, it is easily seen that the sequences can be chosen to be



orthogonal to each other. In practice, this is usually not possible in an up-
link CDMA system for several reasons. First, the underlying physical wireless
channel may cause multipath distortion to the transmitted signal, such that
several delayed replicas of the signal is superimposed together at the receiver.
Hence, even if the transmitted signature sequences were chosen to be orthog-
onal, the received signatures would not be. Second, uplink CDMA systems
are usually asynchronous, which means that there is a random relative delay
between users so that a symbol of a user overlaps with two partial symbols of
an interferer. Third, there may be more users than the processing gain L.

Rather than having a detailed model of these physical layer phenomena, we
will stick to the simple synchronous channel (1) but assume that the signature
sequences are randomly and independently chosen so as to capture the uncoor-
dinated nature of spread-spectrum systems. In fact, practical CDMA systems
often employ pseudonoise sequences which are a very close approximation to
true random sequences (see for e.g. [80, Chapter 2]) for which our model is
appropriate.

Under random spreading sequences, eqn. (2) can be approximated by:

P1
SIR; ~ 3
1 o2 + %ZuMzzpu ( )

The factor 1/L can be thought of as the processing gain advantage. This ap-
proximation can be justified in two specific scenarios where random sequences
are used. First, the spreading code of a user can be part of a long pseudo-noise
sequence which spans many symbols (such as in the 15-95 system). Each en-
try of the sequence can be modeled as i.i.d. equally probable to be +1/v/L
or —1/v/L. Each term in the denominator of (3) is then the expected value
of the interference (s; - s,)*p, due to interferer u, averaged over the random-
ness of the spreading sequences. For a system with coding over consecutive
symbols, this SIR averaged over different symbols is more important than the
instantaneous SIR during a single symbol period.

Another scenario for which the approximation (3) can be justified is for sys-
tems where the spreading sequence of each user is repeated from symbol to
symbol, but it is randomly selected initially when the user enters the network.
In this case, the SIR for each symbol is the same but random depending on
the initial choice. It is proved (Prop. 3.3 in [67]) that in a large system with
many users, i.e. L, M — 0o, but number of users per unit processing gain
M/ L fixed at «, the random SIR; for user 1 converges in probability to the

deterministic number: »
1

o? + o f° pdl'(p)

where [ is the empirical distribution of the received powers of the interfer-

ers. This result thus supports (3) as a finite system approximation to the



performance.

While the use of long pseudonoise sequences to average out the interference is
reasonable for conventional CDMA systems which treat other users as white
noise, repetition of the spreading sequence is more suitable for the imple-
mentation of more sophisticated receivers which try to adaptively exploit the
structure of the interference provided by the signature sequences of the in-
terfering users. (See [72,75] for further discussions and comparisons between
these two approaches.) We will return to this point in Section 3 when we
discuss multiuser receivers. For the purpose of the present section, however,
we will take the SIR equation (3) as the starting point, abstracting away the
underlying physical layer structure.

The abstraction (3) shows that we can ascribe an effective interference of p, to
user u, summarizing the effect of user u on other users. While this concept is
almost trivial in the setting of the conventional receiver, we will see in Section
3.4 that this concept can be extended to multiuser receivers in a nontrivial
manner.

2.3  Effective Bandwidth in a Power-Controlled Cell

We will now focus on a single-cell scenario where every user is received and
power controlled to a single base-station, and we will derive the capacity of
such a system.

Power control is almost a necessary feature of a CDMA system. Indeed, in the
current implementation of CDMA in the [S-95 system, all users within the
same cell control their transmit powers in such a way to be received at the
same power at the cell site. The reasoning behind this type of power control
is that if users do not control their powers in this way, then one user close to
the receiver can completely dominate the others, and drown out the signals of
the other users. This is known as the “near-far” problem (see [51]), so named
because it is likely to occur, without power control, when an interferer is near
to the desired signal’s receiver, and the user himself is far.

The common power control policy in which users equalize their received powers
is analyzed in many references ([18], [81], [82], [83], [84]). However, an implicit
assumption is that the system under study is for one class of service (eg. voice)
and it is not difficult to see that it can be extended to allow multiple classes of
services to be accommodated simultaneously. This extension was undertaken
in ([21], [22], [23]) and, independently, in [91], and leads to the notion of the
effective bandwidth of a user within a class of service.

Consider now the situation when there are .J different classes of service avail-



able. The different service classes might offer different bit rates, or different bit
error rates, so that users in different classes have different SIR requirements.
Let 3; be the SIR requirement of the users in class j and suppose there are
M; users in class 7. If users in class j are received at power p;, then the SIR
achieved by those users is given by

P .
SIR; = g=12,....J 4
o+ L aipi—pi/L Y @
where «; = % is the number of users in class j per unit processing gain.

In a system with large processing gain L, the contribution of an individual
interferer is negligible, and we can further simplify the above equation to:

SIR; = L j=12....J (5)

The power control problem then arises: how do the J classes choose their
J respective received power levels in order to meet their desired SIRs? The
basic requirement is that a solution in p can be found to the following linear
inequalities:

P .
0'2—|—Zf]_10é'p'26j ]:1727"'7J (6)

but it can easily be shown that a solution exists if and only if a minimal
solution exists, satisfying equality in every constraint. The minimal solution
is given by

o?f3;

= i=1,2,...,J 7
1 -7 o (7)

p;

It is interesting to see how a notion of effective bandwidth arises from equation
(7). Let 3; denote the effective bandwidth of a class j users. Equation (7) shows
that it is not always possible to carry all the services simultaneously, and the
condition for feasibility is precisely that the sum of the effective bandwidths
does not exceed unity.

We can interpret

J
Z:%ﬂj <1 (8)

as a capacity constraint on the network, when there are no limitations imposed
on the transmit power levels of the users. As such, it reflects the fact that



the CDMA system with conventional receiver is interference-limited, i.e. the
number of users per unit processing gain cannot go unbounded even without
any power constraints. It is also intuitively clear that power constraints should
further reduce capacity. Let P; be the power constraint on the received powers
of the class j users. The effective bandwidth constraint then becomes:

J 52
Z:oz]ﬂj < min ll - 6]7 ] (9)

1<i<J P;

2.4 Power Control in a Cellular Network

In this subsection we extend the power control results of Section 2.3 to the
cellular network case. The focus is on deriving power control algorithms which
yield minimal powers if it is at all feasible that the SIR requirements of the
users can be simultaneously met. Moreover, in a cellular network, users in
one cell create interference in all other cells, and thus the important issue of
decentralization arises: it is essential that any power control algorithms should
be based on localized information, and not on centralized decision-making. The
problem of capacity characterization of cellular systems, which is considerably
more complicated than the single cell scenario, will be discussed in Section

2.5.

A traditional cellular network is depicted in the top of Fig. 1. Each cell has a
centrally located cell site and all users in the cell transmit to this cell site. This
is the basic model for a narrowband, cellular network. In CDMA | however, the
notion of “cell” is relaxed to obtain what is known as “soft handover”. When a
user is in soft handover between two (or more) cell sites, it really resides in both
cells simultaneously, as depicted in the bottom of Fig. 1. Thus a user moving
between two cells will spend a period in a soft-handover mode in which it sends
signals to both cell sites, and in the [5-95 standard, the strongest signal at
any one time is selected by the mobile switching center (“selection diversity”).

We shall now formulate the general problem of optimal joint power control and
cell-site selection. In what follows, we assume that during the communication
period of interest, user ¢ is in soft handover with a set of cell sites, which we
denote by D;. If |D;| = 1, then the user is strictly within a particular cell.
Each user has a unique SIR target corresponding to its own particular service
requirement, and there are M users. Let K be the number of cell sites in the
network.

We consider the network at an instant of time, and capture the random fadings
from each user to each cell-site in the M x K matrix 7. Thus, 7 [u, k] is the
fading from user u to cell site k, which means that if user u transmits with



mobile
switching
centre
Fig. 1. Traditional cellular (top) vs CDMA cellular (bottom)
power p,, it is received at cell site k at received power p,? [u, k]. We assume

that user 7 has SIR requirement STR; > [3;.

The power control and cell-site selection problem is to choose transmit power
levels (p;)M,, and cell-site selections (¢;)M, such that

c; € D (10)

pi?[ivci] .
>3 i=1,2...,.M (11)
=Yz P U, ¢] 4 02

Note that this problem is more difficult than the single cell problem with
simple linear inequalities in (6). In particular, it is only piecewise linear, and
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involves the potentially combinatorially explosive problem of finding an ap-
propriate allocation of users to cell sites, a problem that requires knowledge
of the entire system path gain matrix for its solution. There is no hope of
writing down an explicit solution, except in simple cases. The resolution of
this problem is to focus on an adaptive power control algorithm that rapidly
converges to a mintmal solution for transmitter powers. The optimal alloca-
tion of users to cell sites is then determined by the solution. Moreover, the
algorithm can be implemented in a decentralized manner, in the sense that an
individual user adapts its transmit power level based only on locally available
information.

The algorithmic solution we now describe was obtained independently in [89]
and [22], and both approaches are based on a monotonicity condition that
applies to the problem. Following the elegant formulation of [90], let us define
the interference function /(p) by

I:RM 5 RpM
p—1(p)
where
1»()—min(lz ?[u, k] + 0?) S 1M (12)
AP) =D e e 1 k] T

Then the inequalities (11) can be expressed as

p > 1(p) (13)

and we say that a vector p is feasible if and only if (13) is satisfied®. Note
that if p is feasible, then for each ¢ we obtain a feasible cell-site allocation ¢;
as the minimizing value of k in (12).

The power adaptation algorithm of interest is defined in discrete time, and
for simplicity we assume users adapt their powers in a synchronous manner,
although convergence can also be proved for asynchronous updates [90]. The
algorithm is deterministic and iterative, so at time n, the new transmit powers
can be defined in terms of the transmit powers at time n — 1 in a recursive
fashion.

Algorithm 1 Start at time 0 with an arbitrary vector of positive transmit
powers p\9. Then the transmit powers at time n are defined by

p" = I"(p®)

3 The inequality > for vectors means greater than in every component.
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so that

(n—l—l) _ : l (n—1)9 2 ﬁz .
2 —,ggg(L;pu ‘[“’kHU)?[@',k]Z_I’Z"”’M (14)

The associated cell-site selection algorithm is given by

an—l_l):argmiﬂkED Zp u k ‘I’U ) [ﬁlk] i:1727"'7M
u;éz &

The following theorems characterize the convergence of this algorithm:

Theorem 2.1 [fthe inequalities (13) have a solution, then there exists a min-
imal solution, (p*,c*), with p > p*, for any other solution (p,c). All inequal-
ities are satisfied with equality at the minimal solution. ([89], [22])

Theorem 2.2 For any initial, non-negative vector of transmit powers p(®,
the following convergence result holds:

I"(p") = p* as n — oo
where p* is a minimal power solution. ([89], [22])

There are three properties of the interference function that can be used to
prove Theorems 2.1 and 2.2 ([90]). These are :

e /(p) >0 for all p > 0. (positivity)
o if p() < p®@ then I(pM) < I(p?). (monotonicity)
e al(p) > I(ap) for a > 0 (scalability)

In fact, it was shown in [90] that the two theorems hold for any function [
satisfying the above three properties. Monotonicity is the most fundamental
(see Section 4) but scalability is also a useful property that recurs in many
other power control problems.

The key feature of scalability in the proof of convergence is that provided
p* exists, one can scale it up arbitrarily, to create an arbitrarily large fea-
sible power vector, u. Using monotonicity, it then follows that I"(u) | p*.
Conversely, it is easy to see that monotonicity implies ["(0) T p*. Conver-
gence from an arbitrary starting power vector p(®) then follows by a sandwich
argument.

A nice feature of the power adaptation algorithm, from an implementation
point of view, is the way it provides a decentralized solution to the power
control problem. Consider the right hand side of (14) which can be written as

12



(n—=1)

where I, is the total received power of all other

. 1 (n—1) 2 ﬁl
min gl e
users at cell site k at step n — 1 of the algorithm. Thus, at each step of the
algorithm, user 7 need only know its own desired f3;, its own path gains to the

cell-sites in which it is is in soft-handover, and the total received interference

at each of these cell sites. The user does not need to know any information
about other cell sites in the network, and it does not need to know anything
about the transmit power levels, or the path gains, of any other user.

Cell-site selection can be thought of in the following way. At each step of the
algorithm, the user listens to broadcast interference levels from each of the
cell-sites in its soft-handover set. The user then computes the transmit power
levels that it would need if it were to send to each of these cell sites, and
then transmits with the minimum computed power. Apart from this power
control mechanism, the cell-site selection plays no other role. Each cell site
in the soft handover set can still demodulate the user’s signal and send it to
the switching center. The switching center does the cell site selection, but the
decision can be based on frame error rates, rather than on explicit knowledge
of the selection that the mobile itself made when it transmitted the signal.

The above cell-site selection is also known as selection combining. If coherent
demodulation is used, then a more sophisticated form of combining is mazimal
ratio combining. This type of combining, in the context of multiple cell sites, is
called macrodiversity, and requires a link between each cell site to a centralized
processor. Power control and capacity are studied for a macrodiversity network

in [23].

To conclude this subsection, it should be remarked that the power control for-
mulation described above assumes that all users have target SIR requirements
and the transmit powers are controlled to meet those requirements. An alter-
native formulation, known as power balancing and adopted by much of the
first works on power control ([2], [48], [92], [93]), is to maximize the minimum
SIR achieved by all the users in the network. It follows from the monotonicity
property that at the optimal solution, all users achieves a common SIR; thus,
a better description of this formulation may be SIR balancing. In this formu-
lation, there is no notion of network capacity; instead, a best-effort service is
provided given the resources in the network and the current congestion level.
It should also be noted that [2], [92], [93] in fact addressed the power control
problem in the context of narrowband systems where users in the same cell
have their own channel. In this case, the objective is to mitigate the co-channel
interference between users in different cells to facilitate frequency re-use. How-
ever, conceptually the power control problem is very similar to the one in the
CDMA context. Historically, the important paper [92] (see also [93]) intro-
duced the notion of adaptive, decentralized algorithms for power control in the
narrowband context.

13



2.5  Capacity of Cellular Networks

Although it is natural to to include soft-handover in any model of a CDMA
cellular network, early work on power adaptation for cellular CDMA systems
[21] (see also [17] for the narrowband case) focussed on a network with a fixed
cellular structure, i.e. no cell-site selection. In this case, an underlying linearity
simplifies the power control problem and provides some further insight into
the issue of congestion and effective bandwidth.

In this case, we can assume that for each user 7 there is a fixed cell site ¢;
corresponding to the cell in which user ¢ resides. Then

Hp) = (7 St lwscl + 03/ il

The fixed point equation p = I(p) then simplifies to the linear system of
equations

(I-BAp=hb (15)

where [ is the M x M identity matrix, B is a diagonal matrix with entries
B1, 02, ..., By, and A is a M x M matrix with entries:

—

ol ;o

)

=
=

Alr, 5] = 0 i
1=

and b = 0?BH™'1, where H is a diagonal matrix with ith entry ?[7, ¢;], and 1
is the vector of all 1s. Note that A is not strictly positive, but it is primitive (its
square is strictly positive) and so the Perron-Frobenius theory ([59]) applies.
Indeed, it is well known from Perron-Frobenius theory that (15) has a positive
solution, p*, if and only if \* < 1, where A* is the Perron-Frobenius eigenvalue
of BA. If A* < 1 then (I — BA)™! exists and is positive, so we can express p*
as

p* = (I — BA) b (16)

Algorithm 1 reduces in the fixed cells scenario to the simple Jacobi iteration

p"*Y) = b + BAp™ (17)

and it is well known from Perron-Frobenius theory that (17) converges if and
only if \* < 1, and if A* < 1 then it converges to p*. These results provide
further insight into the performance of Algorithm 1, which behaves as (17)

14



until a cell site re-selection occurs. If the final optimal cell site allocation were
fixed and known a priori, then (17) would provide geometric convergence
to the minimal power allocation, at a rate given by A*. Since the optimal
allocation is not known, Algorithm 1 allows dynamic cell site selection, and
this complicates the convergence analysis. However, recent work [33] has shown
that Algorithm 1 does converge at a geometric rate, provided the allocation

of users to cell sites at the optimal solution is unique (and this is true with
probability 1, see [22]).

The capacity constraint A* < 1 suggests that A* itself might provide a mea-
sure of congestion. In the single cell case, we can easily compute that \* =
% SM. 3;, under the approximation that the received power of each user’s sig-
nal is negligible compared to the total received power of the other users. Note
that A* is then precisely the sum of effective bandwidths, as in (8).

The multiple cell scenario is much more complicated, as it has a spatial as-
pect, and “congestion” no longer just depends on each user’s own effective
bandwidths, but also on the path gains of each user in the network. While it
is unrealistic to expect that a single number can capture all aspects of conges-
tion in a spatial model, it is of interest to see what A* might be measuring in
the multi-cell case. This is the subject of investigation in [28] in which A* is re-
lated to other measures of congestion, such as total received powers at cellsites
(i.e. interference levels), “power warfare” (the sensitivity of power levels in the
network to new traffic), and actual traffic levels in the network (as measured
by effective bandwidths). Indeed, lower bounds on A* are provided which are
sums of effective bandwidths in regions, where the regions range from single
cells, to the whole network itself. A recent paper [4] shows a very strong cor-
relation between small fluctuations in A* and outage events in a simulated
cellular model with maximum power constraints on the users. Nevertheless,
the interpretations here for A\* are not as clear-cut as in the single cell case,
and for that matter, it is difficult to be precise about what “congestion” means
in the multiple cell context. When we look at soft-handover, for example, the
eigenvalue that corresponds to the cell site allocation that minimizes the pow-
ers in the network is not necessarily the same as the smallest eigenvalue out of
all cell site allocations. The minimum power allocation reduces the congestion
as measured by power consumption, yet the minimum eigenvalue allocation
might provide more capacity when the network load increases; one can make
a distinction between “power warfare” congestion, and “capacity congestion”.
Fortunately, this is not a practical problem, since cell site allocation need not
be fixed, but can instead be dynamic, as it is in Algorithm 1, and the minimum
power allocation is then always optimal.

In the case of macrodiversity [23] (i.e. network-wide soft-handover, with max-

imal ratio combining) a network-wide notion of congestion arises that makes
this distinction between “capacity congestion”, and “power warfare” conges-
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tion particularly clear. In contrast to the cellular models, capacity can be
completely characterized by an effective bandwidth constraint:

J
Sad < K (15)
7=1

where K is the number of cell sites in the network. Note that the total effec-
tive bandwidth Z}Izl a;3; does not depend on the path gains in the network.
However, this measure of congestion does not characterize a kind of “power
warfare” congestion that can arise when too many users are located in close
proximity, and it is not an adequate measure of congestion when power con-
straints are imposed.

It may well be that power consumption is the bottleneck resource in a radio
network, and congestion then needs to be measured with respect to this re-
source. In addition to A*, measures such as the total received power at each
cell site in the network may be important ([21]). How all these measures relate
to each other, and which will actually prove useful in admissions control and
flow control applications is not yet well understood.

2.6 FExtensions to Basic Model

2.6.1 Power Constraints

The basic decentralized power control algorithms we have considered so far
can easily be extended to include maximum power constraints on the transmit
powers of the users [90]. In this case, the only necessary modification is to limit
the transmit power of the users at each step of the algorithm; they use the
minimum of the power the unconstrained algorithm would specify and their
maximum power level. The constrained algorithm is guaranteed to converge,
and will satisfy all the users” SIR requirements if this is possible under the
power constraints. If not, those users with final transmit powers below their
constraints will at least achieve their target SIRs.

Although it is not the focus of the present paper, it is also possible to consider
the effect of power constraints on the “best effort” power control mentioned
at the end of Section 2.4. It is clear that the problem of maximizing the min-
imum SIR subject to power constraints still amounts to SIR balancing, as
it was without power constraints (see [20]). It is not possible to do this in
a totally decentralized way, and a centralized algorithm is obtained in [20].
In future work, it may be of interest to see if better algorithms can be ob-
tained which involve only limited communication between cell sites. Another
approach might be to include constraints on total received power levels at cell
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sites, as a way of controlling congestion in the network.

2.6.2  Asynchronicity, measurement errors, stochastic effects, and quantiza-
tion

So far we have assumed that power control operates in a synchronous fashion.
The basic model in [17] is relaxed in [44] to allow asynchronism: users adapt
their powers in discrete time, but it is no longer necessary for all users to
update their powers at each time point. Propagation delays are also modeled:
it is assumed that for each user there is a delay between the interference
measurement at the cell site, and when this information is available to the
user. Nevertheless, [44] shows that a power adaptation algorithm, similar in
form to (17), is robust in the face of these relaxations, although it is shown that
the Perron-Frobenius eigenvalue, \*, increases if there is asynchronism, and
hence some configurations diverge that in the synchronous case would have
converged. The important issue of rate of geometric convergence is addressed
in [44], and it is shown that asynchrony slows down the rate of convergence
(precisely because A\* increases).

Another practical issue that is not properly addressed in the earlier algorithms
is that of measurement. For example, in the power control scheme actually
implemented in the IS-95 CDMA standard (see Section 2.7 for more details of
their implementation), power levels are not measured directly at the cell site,
but are extracted from matched filter outputs, and the issue of measurement
error arises. A theoretical study that extends the algorithm in (17) along these
lines is [70]. Consider the deterministic iteration:

ptt) = BAp™ 4+ b
but which they write, perhaps more conveniently as:
p(n-l-l) —B H—I(Ap(n) 4 0_21)

where H is the diagonal matrix of ?[i, ¢;]s, 1 is the vector of all 1s, and A is
defined by

0 i=j

Ali, j] =
The next step is to consider a relaxed version:

p(n-l—l) — (1 _ an)p(n) + ClnB H—l(Ap(n) + 0'2]_) (19)

where (a,) is a sequence satisfying a,, < 1 for all n. However, this assumes
that the users can measure the interferences in Ap(™ + 021, so [70] extends
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the model to the case where the users only measure the squared value of their
matched filter outputs, taken over some finite window. Randomness enters
because the information bits of the users are random, as is the external noise,
and so it follows that the matched filter outputs are random. Indeed, the
random vector of averaged matched filter outputs, v, can be written as

v=(A+H)p+ol+w

where w is a zero-mean random variable. The stochastic adaptation based on
v can be written as:

where we note that if we replace v(®) by its expected value, we would recover

the deterministic iteration (19). Stochastic convergence results are obtained

under various assumptions; one result being, for instance, that if the sequence
L is used, then p(™ still converges to the solution p* in (16).

a, = n
Another feature of the IS-95 power control (again, see Section 2.7), is that
frame error rate measurements are used. A theoretical study that extends the
type of algorithm considered above to the case in which power updates are

based on bit error rate (BER) is provided in [39].

An important assumption behind all the power adaptation algorithms we have
mentioned so far, from the original narrowband work in [92] to Algorithm 1 in
the present paper, is that updates occur so quickly that the channel gains (the
7[¢,7]s) can be assumed to be fixed. This does not mean that the algorithms
only apply when users are immobile, but rather that there is a separation of
timescale between power updates and changes in propagation conditions. The
issue that the path gains themselves may be stochastic (i.e. not be known
precisely) is considered briefly in [70]. The dynamics of the iteration

are studied, where H is replaced with an estimate H. Nevertheless, this work
still assumes that the gains are time-invariant. An interesting topic for fu-
ture research might be to study stochastic power control algorithms when the
channel is described by a stochastic process.

So far, the theoretical power control models we have considered do not capture
the discrete nature of the transmit power levels that are available to mobiles
in practical systems such as 15-95. A recent paper [3] addresses this issue and
shows that notions of optimality and convergence are less straightforward. Two
discrete algorithms are presented, both being modifications of the continuous
power control algorithm; one rounds up to the nearest grid point (the “ceiling”
algorithm) and one rounds down (the “floor” algorithm). Both are shown to
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converge in a weaker sense to an envelope of powers, but of course oscillations
are possible. It is shown that oscillations can be avoided by first running the
floor algorithm , followed later by the ceiling algorithm, and that this converges
to an optimal power vector.

An earlier power control paper to consider quantization is [82]. This paper
provides an analysis of the closed-loop control of 1S-95 power control, which
only allows mobiles to increase or decrease their transmit powers by 1 dB
based on 1 bit feedback from the cell sites. We will examine this control, and
the analysis in [82], in more detail in Section 2.7.

2.6.3 Bursty Traffic and Rate Control

With the rapidly growing level of data in modern communications, it is natural
to look for new power control algorithms that are more appropriate for data.
Two important properties of data traffic come into play here: it tends to be
highly bursty, and it usually has less stringent delay requirements so that there
is often the flexibility of being able to do some form of dynamic rate allocation.

In [45], an approach is taken which assumes that burstiness of the traffic oc-
curs on a very fast time-scale, and that powers do not have time to adapt to
the dynamically changing interference in the way the previous algorithms did.
Instead, transmit power levels need to be found that satisfy the SIR require-
ment in a statistical sense, taking into account that the random, bursty nature
of the interferers. The basic power adaptation algorithm (17) is adjusted by
including a measurement of the variance of the interference, and it is shown
to converge (in an appropriate large bandwidth limiting regime) to a solution
in which users obtain their desired SIRs a sufficient proportion of the time.

The approach in [45] is sender-driven in the sense that the receiver does not
attempt to control the traffic rate of the users. An alternative approach consid-
ers the scenario in which the bursty traffic can be queued at the transmitter
and explicit rate allocation and power control performed in adaptation to
congestion level, channel conditions and traffic demands from the users. For
example, [60] and [52], [53] study the problem in which users do not require
fixed target rates, but can adapt the processing gain to keep the required SIR
fixed. Thus, the SIR target for a particular user ¢ remains fixed, but now L
can be adapted. Indeed, different users can have different spreading factors, so
we should write L; for user 7. The assumption is still that the overall rate of
chips/sec is held fixed, and hence the spectrum occupied by the signals is fixed,
but the number of chips/information symbol L; is variable. By varying L;, user
i therefore varies the rate of information in symbols/sec. More sophisticated
approaches can even consider the target SIR as variable, as would be the case
with adaptive coding. This type of “best effort” bandwidth allocation may be
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very appropriate for many types of data, and indeed mirrors the sort of flow
control provided by TCP on the Internet. The papers [52], [53] also consider
the issue of dynamic rate allocation, in which it is shown that throughput can
be increased if delay tolerant packets are scheduled so as to avoid collisions
i.e. schemes with a hybrid TDMA /CDMA flavour are considered. This type of
approach, but with focus on fading issues rather than burstiness, is also taken
in [36], [37]. We will also consider this approach in more detail in Section 4.4.

A related study, although not specifically on power control, is [49], [50]. These
authors study a random access model of data in a CDMA environment and
show that processing gain control eliminates bistability. In fact, they show that
there is an optimal spreading gain for each level of backlogged traffic (which in-
creases linearly with the amount of backlogged traffic) and that asymptotically,
in the limit of large backlog and spreading gain, the optimal retransmission
probability of a backlogged packet is 1. The connection with power control is
provided by the final section of the paper, in which energy constraints are im-
posed. This work seems open to be extended to the case of joint power control
and spreading gain control, and indeed preliminary work in this direction can

be found in [32].

Recent research on flow control for the internet has advocated an economic
approach to resource allocation based on utility functions and the pricing of
resources (see [34]). This approach can also be applied to power control, and
has been taken up recently in [15], and in an information-theoretic context in
[66], [26]. We will review the latter two papers in Section 4, when we return to
the problem of joint rate and power allocation in the context of information-
theoretically optimal schemes.

2.6.4 Admission Control

The interesting idea that power control should be intimately connected with
call admissions control is taken up in [6] (see also [7]). Bambos and Pottie [6]
formulate a notion of active link protection and incorporate this idea into the
power control procedure. In this approach, a small, positive constant, 4, defines
the protection margin for the active calls that are already in progress. Thus,
if all users require the minimal SIR of 3, then it is assumed that they can
actually achieve a higher SIR, namely (1 + ). When a new call arrives, the
network must decide whether or not to admit the call into the active set, and
power control is intimately related to this call admissions procedure. While
the active links use the basic power adaptation algorithm, with target SIRs
marginally above the minimal requirements, as described above, the new user
is only allowed to increase its power at a slow, linear rate prescribed by the
parameter d. It is shown that no active user will ever drop below its minimal
SIR requirement, and that if it is possible for the new user to become a member
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of the active set, then it will do so eventually. However, if after a certain time-
out period has elapsed, the new user has not yet become an active link, the
network will drop the call.

2.7 Power Control in 15-95

To conclude this section, we will discuss the implementation of power control
and handover in the 15-95 CDMA standard ([18], [81], [82], [83], [84], [80]),

and compare it with the theoretical results surveyed above.

An interesting feature of I5-95 is the ability of a user to go into “soft handover”
between several cell sites simultaneously. The approach to power control and
soft handover in [18] is to assume that at any instant of time, a user selects the
cell site to which its current path gain is strongest. All users in the network
then control their transmit powers in such a way to be received at a fixed re-
ceived power level at their chosen cell site. The level of received power is fixed,
and common to all cell sites in the network. Under these assumptions, appli-
cable to a system with a single class of service, users will achieve a variable
SIR, with a level dependent on the random, fluctuating level of interference
at their chosen cell site. In [18], capacity is then calculated on the basis that
traffic is uniformly distributed in the network, and that users have a minimum
tolerable SIR (common to all users) that they must achieve a sufficient pro-
portion of the time. Further papers in this direction consider the benefits of
soft handover [84], the effects of other-cell interference ([83]), and the random
arrival and departure of users in the system ([81]).

It is interesting to compare this power control algorithm to Algorithm 1.
Rather than fixing the received power level of all users at their chosen cell
site, Algorithm 1 takes into account the interference levels at each cell site,
and received power levels adapt to fluctuating interference levels. This is clearly
an advantage in the case in which traffic is nonuniformly distributed in the
network, and we note that the algorithm will adapt to changing traffic pat-
terns. On the other hand, Algorithm 1 may be too adaptive in some scenarios,
when interference levels are very volatile, and power control algorithms do
not have time to converge. A lowpass filter can be used to overcome this ([1]))
where the bandwidth is chosen to provide the desired level of smoothing of
channel fluctuations. A power control algorithm that adapts received powers
on a slow time-scale (such that the received powers are constant on the fast
time-scale of fading and burstiness) is described in [24].

The actual power control in I5-95 has an open-loop component that attempts

to keep the received power near the target level. The way this is achieved is by
allowing the cell site to transmit a pilot signal on the forward link, in addition
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to the users’ data, and then the mobile can measure the strength of the pilot
signal and so estimate the path gain from cell site to the mobile. This can
be used to adjust the transmit power of the mobile to compensate for large
changes in signal strength brought about by shadow fading and cell geometry.
However, because [5-95 is implemented in a frequency division duplex mode,
the reverse link channel is not identical to the forward link channel due to
fast varying multipath effects. As a result, a faster, closed-loop control is also
needed to try to compensate for these effects that change rapidly, and yet
can’t be measured by the mobile.

The closed-loop power control operates at 800 Hz and captures fairly fast
changes in propagation conditions, as well as rapid changes in interference
levels from other mobiles, but it is not fast enough to allow direct measurement
and feedback of multipath fading effects. Instead, the impact of multipath
is indirectly measured in an outer loop that tracks frame error rates. The
inner loop involves 1 bit feedback from the cell site to the mobile, based on
measured SIR values; if the measured SIR is above a setpoint, the command
is to decrease power by 1 dB, and if the SIR is below a setpoint, then the
command is to increase power by 1 dB. The received power measurement is
based on matched filter outputs, rather like the model considered in [70], but
in addition to measurement errors, the accuracy of the power control is also
limited by the 1-bit quantization. An outer loop varies the SIR setpoint as a
function of frame error rates, and in this respect is similar to the model studied
in [39]. An important point, however, is that even though 1 bit feedback occurs
at a high rate (800 Hz), this is only fast enough to track shadow fading at
vehicular speeds, and there is no separation of timescale between updates and
the fast end of this fading process. The way the closed-loop control deals with
soft handover is that the mobile will always decrease its transmit power by
1 dB if at least one of the soft handover cell sites instructs it to do so; in
other words, the minimum transmit power is always used. Thus, Algorithm 1
captures this aspect of the 1S-95 power control. It should be noted that in
current third-generation wideband CDMA proposals, mobiles transmit a pilot
signal on the reverse link as well as on the forward link, and this enables the
cell site to directly measure received power from the pilot.

An analysis of the [S-95 closed loop is provided in [82]. This paper focusses on
more detailed physical layer issues than the other papers we have reviewed so
far. On the other hand, the previous analyses take into account the interaction
that occurs between users i.e. the fact that when one user increases its power,
the interference to other users also increases, and causes them to increase their
power. In [82], the multi-access aspects are not addressed. The analysis in [82]
is in discrete time, and 7}, refers to the transmit power of the user at time n
in dB. Let L, be the propagation loss, and £, the received power, so that

E,=T,—L, indB
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In the IS-95 closed loop, the transmit power at time n+1 is an explicit function
of feedback from the cell-site, but implicitly this is dependent on the received
power at time n — 1 (this lag takes account of measurement and propagation

delays). Thus,

Tn_|_1 - Tn —|— C(En_l)A (20)

where C'(F,—1) is the power command from the cell site (£1) and A is the
discrete change in power level (e.g. 1 dB). To be more precise, C' is not a
function of K, _; , but takes the value 1 with a probability that depends on
E,_1. The analysis includes the calculation of the probability for a particular
low-rate encoded orthogonal modulation scheme, as used in the Qualcomm
system. Included in the probability is the chance that the mobile receives the
command incorrectly. If we rewrite (20) as

En_|_1 - En —|— C(En_l)A - (Ln_|_1 - Ln) (21)

and if we assume the increments L,.; — L, are independent, as in fairly
fast fading, then we have a nonlinear difference equation with independent-
increment driving function. It is reasonable to assume that the increments are
Gaussian, under the assumption that the shadow fading is log-Normally dis-
tributed. A simulation study in [82] then obtains the probability distribution
for Fy/Ng under various multipath fading assumptions. Finally, coded error
performance is obtained from the probability distribution for Fj/Njy.

3 Linear Multiuser Recelvers

3.1 Multiuser Receivers

It was shown in Section 2.2 that under the matched filter receiver and random
signature sequences, the effective interference of an interferer u is equal to its
received power p,. A direct consequence of this fact is the near-far problem:
users with strong received powers will drown out the weak users. In a conven-
tional CDMA system, the only counter-measure available is power control.

It has been well appreciated for some time ([74]) that the near-far problem is
actually not intrinsic to a direct sequence CDMA system, but is due to the
sub-optimality of the matched-filter receiver. The matched-filter only depends
on the signature sequence of the user to be demodulated, and is optimal (in
the sense that its outputs are sufficient statistics) only when the signature
sequences of the users are orthogonal to each other. When this is not the
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case (such as for pseudonoise sequences), performance gain can be achieved
by taking into account the signature sequences of the other users as well.

The first multiuser receiver, proposed by Verdu [73], has the property of min-
imizing the probability of symbol detection error. However, its complexity
grows exponentially with the number of users in the system. Linear multiuser
receivers were later proposed [40,41] which have lower complexity and retain
much of the performance advantage over the conventional matched-filter re-
ceiver. In this part of the paper, we will focus on linear multiuser receivers.

Although a significant amount of work has been done on the performance of
multiuser receivers, most have focused on evaluating their ability to reject the
worst-case interference from other users (a notion called near-far resistance
[40]). Here, we are concerned with the questions of how power control should
be done in conjunction with multiuser receivers and the resulting network
capacity. The latter gives a basis for comparing the performance gain over the
conventional receiver.

3.2 MMSE Recewver

A linear receiver for user 1 is specified by a L dimensional vector ry such that
the the demodulated symbol is ry -y, where y is the received signal. The SIR
associated with a given receiver is given by:

(1'1 : 51)2}71
SIR, = )
(et + 0 (e s0) .

using the same channel model (1) as in the previous section.

The conventional receiver is obtained by picking r = s;. Given the signature
sequences and received powers of all the users, the optimal linear receiver
that maximizes the SIR is called the Minimum Mean-Square Error (MMSE)
receiver [42,54,57]. This receiver is thus given by:

(1'1 : 51)2}71
(r1-r1)o? + 20, (r1 - 84)%pa

* J—
r] = argmax,cpr

The formulae for the MMSE and its performance are well known:

* P

= S1DySt+ o)™ 22
1 1+p157i(51D15f+02[)_151( 1151 +070) s (22)

and the signal to interference ratio for user 1 is

S[RT :plsi(SlDlsf —|—0'2[)_1S1 (23)
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where S := [sq,...,sym] and D := diag(pz,...,pm). Observe that the MMSE
receiver, unlike the conventional receiver, depends not only on the signature
sequence of the user to be demodulated but also on the sequences and powers
of all the other users. In practice, this information is obtained by adaptive
algorithms that enable the receiver to learn about the structure of the in-
terference (see for e.g. [31]). Because of its optimality, we will focus on the
MMSE receiver in this section. However, we will also be comparing it with
other multiuser receivers.

3.8 Power Control

Consider now a cellular network with demodulation by MMSE receivers at
the base-stations. As in the conventional receiver scenario, we are interested
in the power control problem: how does one find the appropriate powers and
cell sites for the users to satisty given desired SIR requirements? This problem
was studied by [38,69,55] and they showed that it can be solved naturally in
the framework considered in Section 2.4. Basically, the ability to choose the
optimal linear receiver provides additional degrees of freedom in the optimiza-
tion beyond cell site selection.

Using the same notation as introduced in Section 2.4, the problem can be
formulated as follows: given SIR requirement j3; for user 7,2 = 1,... M, choose
transmit power levels (p;)X,, cell site selection (¢;)¥, and receivers (r;)M,,
such that:

¢ € D; (24)
(ri-si)’pi?[i, e
Sz (Ti - 80)2pu? [u, i) + (ri - 15)0

>0 =12, M (25)

As before, the set D; contains the base-stations to which user ¢ is currently
in soft-handover. Compared to (11), we have explicitly included the signature
sequences in the SIR equations, as we are now concerned also with choosing
the best linear receiver for given sequences. Observe also that for a given user
7, the interferers can be from inside and outside the cell of user 7, so that the
receiver for user ¢ will depend on out-of-cell interference as well. As a matter
of fact, there is no distinction between in-cell and out-of-cell interference in
this formulation.

Again, the key to the solution of this problem is to define the appropriate
interference function /;. In this problem, we can define for given power vector
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I;(p) = min min (Z“#(r -8, pu T [u, k] + (v I.)Uz)

=12, M(26
keD; reRL (I‘SZ)Q?[Z,]C] ﬁ ! ( )

It is easily seen that inequalities (25) are equivalent to p; > I;(p) for all
i. Straightforward calculations show that this interference function satisfies
the three properties of positivity, monotonicity and scalability. Hence Theo-
rems 2.1 and 2.2 hold for this problem. If there exists powers, cell site selections
and receivers such that the SIR requirements of the users are satisfied, then
there exists a minimal solution (p*,c*,r*) such that p > p* for any other fea-
sible solution and for which the SIR requirements are met with equality. It can
also be seen that the optimal receiver for user 1 is the MMSE receiver for the
chosen cell site and transmit power levels. Moreover, the optimal solution can
be obtained by iterating [ starting with any arbitrary non-negative powers.

These results show how optimal powers can be computed for the MMSE re-
ceiver, if the SIR requirements are feasible. This still leaves the question of
characterizing the feasible SIR requirements, i.e. the capacity region. To an-
swer this question, a better qualitative understanding of the performance of
the MMSE receiver in a power controlled system is needed, particularly the ef-
fect of an interferer to be demodulated. This is a more difficult problem than in
the conventional receiver case, since the MMSE receiver depends on signature
sequences and received powers of all users. While there is no known solution
to the cellular network capacity characterization problem, we will present in
the next few sections some results which shed some light on this question.

3.4  Effective Interference

For the conventional receiver, it was observed that for random spreading se-
quences, a simple approximate SIR equation (2) can be written down. The
effect of the interferers can be decoupled into a sum of effective interference
terms, each term being equal to the received power of the interferer. This sim-
ple SIR equation forms a basis for the derivation of capacity constraints for
the conventional receiver, as well as give a simple abstraction of the interfering
effect without worrying about specific signature sequences.

The decoupling for the conventional receiver is a consequence of the fact that
the receiver depends only on the signature sequence of user 1 and nothing
else. The situation is not as simple for the MMSE receiver, as it depends
on all the sequences and received powers of users (see eqn. (22)). Somewhat
surprisingly, in a large system with many users and large processing gain, some
sort of decoupling does occur even for the MMSE receiver.
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Recall that the random sequence model is that each entry is randomly and in-
dependently chosen to be +1/v/L or —1/v/L. Since the sequences are random,
the performance SIR;, being a function of the sequences, is also random. The
following result describes the asymptotic distribution of SIR; [67]. Its proof
makes use of results from random matrix theory [43,62].

Theorem 3.1 Suppose the number of users M and the processing gain L both
go to infinity, with M/L — «, and the empirical distribution of the received
powers of the interferers converge to a limiting distribution F'. Then SIR4
converges to 37 in probability, where 37 is the unique solution to the equation:

* n
=y o [o 1(p, p1, B7)dF (p) (27)

and

Pb1
I(p,p1,37) = ———
(p,pe. 51) P+ pB;

Heuristically, this means that in a large system, the SIR (3; is deterministic
and approximately satisfies:

1

0 =
! UZ‘I’%Zi\izl(puvplvﬁl)

(28)

where as before p, is the received power of user u. Thus, under the MMSE
receiver and in a large system, the total interference can be decoupled into a
sum of the background noise and an interference term from each of the other
users. (The factor £ results from the processing gain advantage of user 1.) The
interference term depends only on the received power of the interfering user,
the received power of user 1 and the attained SIR. It does not depend on the
other interfering users except through the attained SIR .

One must be cautioned not to think that this result implies that the interfering
effect of the other users on a particular user is additive across users. It is
not, since the interference term I(py, p1, 1) from interferer v depends on the
attained SIR which in turn is a function of the entire system. However, it can
be shown that the equation:

P
= 29
0'2‘|‘%ZuM:2[(pu7p17x) ( )

has a unique fixed point z*, and moreover the equation has the following
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monotonicity property: for any x, ™ > « if and only if

P
o? + %ZuMZQ [(puvplvx)

> (30)

It follows then that to check if the target for user 1’s SIR, 7, can be met for
a given system of users, it suffices to check the following condition:

P1
o2+ %ZuM:2 [(puvplvﬁT)

> Br

Based on this interpretation, it seems justified to consider I(p,, p1,Br) as the
effective interference of user u on user 1, at a target SIR of 7.

The correspondence between eqns. (3) and (28) is somewhat striking. For
the matched filter, the interference due to user w is simply p, in place of
I(pusp1, 41). Since the matched filter is independent of the signature sequences
of the other users, it is not surprising that the interference is linear in the re-
ceived powers of the interferers. In the case of the MMSE receiver, the filter
does depend on the signature sequences of the interferers, thus resulting in
the interference being a non-linear function of the received power of the inter-
ferer. Also, observe that I(py, p1, 1) < pu, which is expected since the MMSE
receiver maximizes the SIR among all linear receivers. But more importantly,
in the matched filter case the interference grows unbounded as the received
power of the interferer increases, yet for the MMSE receiver, the effective in-
terference from user ¢ is bounded and approaches % as p, goes to infinity.
Thus, while the SIR of the matched filter receiver goes to zero for large inter-
ferers’ powers, the SIR of the MMSE receiver does not. This is the well-known
near-far resistance property of the MMSE receiver [42]. The intuition is that
as the power of an interferer grows to infinity, the MMSE receiver will null

out its signal.

A graphical comparison of the effective interferences of the matched filter and
the MMSE receiver is shown in Fig. 2. This figure also shows the performance
of the decorrelator. This is another multiuser receiver [40,41] which operates by
nulling out the directions spanned by the signature sequences of the interferers.
More precisely, rather than projecting the received signal onto the signature
sequence of the desired user, as would the matched filter, the decorrelator
receiver projects the received signal onto the orthogonal complement to the
space spanned by the signature sequences of all the other users. This receiver
is only well defined if the dimension of the space spanned by the interferers
is less than the total processing gain L. The decorrelator is the zero forcing
linear filter and the effective interference is the effect of the background noise
through the filter. The effective interference under the decorrelator is p;/3;
([67]), and does not depend on the received power of any interferer.
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Fig. 2. Effective interference for the 3 receivers as a function of interferer’s received
power P;. Here,P is the received power of the user to be demodulated, and G is the

SIR achieved.

The effective interference results discussed here for the ideal CDMA model
are extended to symbol-asynchronous systems (i.e. symbols of different users
are not necessarily time-aligned) [35] and to channels with multipath fading

[14].

3.5  Effective Bandwidth in A Power Controlled Cell

The notion of effective interference captures the effect of an individual inter-
ferer on the user to be demodulated, and is valid for both in-cell and out-of-cell
interferers. Specializing now to a single power-controlled cell allows us to de-
velop a notion of effective bandwidth to characterize the capacity under the
MMSE receiver [67]. This is in parallel to the development in Section 2.3 for
the matched filter.

Consider as before the situation when there are J different classes of service
available. Let 3; be the SIR requirement of the users in class j, and suppose
there are M; users in class j. Focus on the asymptotic regime where L, M; —
oo and M;/L — «a;, the number of users per degree of freedom in each class.
The result in Section 3.3 tells us that if the SIR requirements are feasible,
there is a minimum power solution. From (27), it is also clear that the minimal
received powers of users in the same class should be the same; let p? be the
power for class j. Then the power control equations become

*

p;
o’ + 25:1 Oéif(p?,p% B3;)

=8 j=12...,J (31)
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where, as in Theorem 3.1, I(p;, p;, 3;) = . Solving these equations give:

T pyHpily
. Bjo? :
pr= - =1,2, ..., J. (32)
' 1- 22'121 Ozil-lﬁ—lﬁi

The capacity constraint for the MMSE receiver with J classes is therefore
given by

J ,
Z:lajl f]ﬁj <1 (33)

which is linear in aq, ..., ay. This shows that even under the MMSE receiver,
the system is still interference limited, and the interference-limited capacity
region under random sequences is given by (33).

As in the matched filter case, maximum power constraints provide tighter
capacity constraints, and in this context we note that (32) implies that

J . L2
Sa, b :1—@3 j=1,2,... T
i=1 L+ 05 P;

Thus if p7 < P; is a maximum power constraint on class j, then the linear
constraint

J 4 2
> a; 5; < min |1 — [3{0 (34)
1+ 8; — 1isd P,

i=1

defines the restricted capacity region of the system. It seems very reasonable
to define the effective bandwidth of class j users to be €nmsc(/3;) degrees of
freedom per user, where

Emmse () =

Comparing eqn. (34) to the corresponding capacity constraint (9), we note
that the effective bandwidth of a user in class j under the matched filter is
B3; degrees of freedom. The effective bandwidth concept thus forms a basis for
comparing the performance of different receivers; see Fig. 3. Also shown is the
effective bandwidth under the decorrelator; it is precisely 1 degree of freedom,
irrespective of the SIR requirement of the user (see [67]).

We note that the conventional receiver is more efficient than the decorrelator
when 3 is small, and far less efficient when [ is large. Intuitively, at high
SIR requirements, a user has to transmit at high power, thus causing a lot of
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Fig. 3. Effective bandwidths for 3 receivers as a function of SIR.

interference to other users under the conventional receiver. Not surprisingly,
since it is by definition optimal, the MMSE filter is the most efficient in all
cases. When ( is small, it operates more like the conventional receiver, al-
lowing many users per degree of freedom, but when 3 is large, each user is
decorrelated from the rest, much as in the decorrelator receiver, and therefore
the interferers can still occupy no more than 1 degree of freedom per interferer.
The performance gain afforded by the MMSE receiver over the conventional
receiver depends on the SIR at which the system is to be operated, and this in
turn depends on the data rate, the amount of coding and the symbol constel-
lation size. However, due to the superior performance of the MMSE receiver
over a wide range of SIRs, it can be seen that it is particularly suitable in a
heterogeneous network with multiple traffic types.

Linearity in the capacity constraints in the matched filter case is a straightfor-
ward consequence of the fact that powers add. However, the MMSE effective
bandwidth results are rather surprising, as the receiver itself depends on the
signature sequences and the received powers of the users. We will provide a
partial explanation of this phenomenon in the next subsection.

3.6 Conservation Laws

In this section, we will show that the linearity of the capacity constraints un-
der the MMSE receiver is partially a consequence of underlying deterministic
conservation laws governing the tradeoff between the performance of differ-
ent users under the MMSE receiver. This understanding in turn allows us to
extend some of the above asymptotic results to finite systems with arbitrary
signature sequences, not necessarily random.

Suppose Sy, ..., s)s are given signature sequences and py, . .., pps given received
powers of the users in a system with processing gain L. The following lemma
relating the performance of different users under the MMSE receiver is proven

in [78].
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Lemma 3.2 Let SIR; be the performance of user v under the MMSFE receiver.
Then:

SIR, —ZL: y
1—|—S]RZ_ )\]‘—I-O'2

J=1

M=

Il
—

(35)

K3

where A;’s are the eigenvalues of SDS* and S = [sy1,...,sy], D = diag(p1,...,pm)-

The following result yields the capacity region in a finite system, for given
signature sequences but with power control [27].

Theorem 3.3 For any subset U of the users, let S(U) be the matriz whose
columns are the signature sequences of the users in U. Let By,..., By be the
SIR requirements of the users. They can be satisfied by some choice of transmit
powers if and only if:

Ejlfi@ < rank (S(U)) YU C{1,2,....M} (36)

The necessity of these constraints follows directly from Lemma 3.2. The suffi-
ciency is verified by showing that an iterative power control algorithm, simi-
larly to the one presented in Section 3.3, converges to a finite minimum power
solution whenever the SIR requirements satisfy (36).

The constraints (36) reflect the basic conservation laws trading off the perfor-
mance of one user and the other. When the signature sequences are chosen
such that any subset of L or fewer users has linearly independent sequences,
the constraints (36) collapse into a single constraint:

M ,
Z1f25i<L (37)

=1

This deterministic result for fixed spreading sequences provides a clear expla-
nation of the interference-limited capacity region (33) for random sequences;
we see here that the role of the random sequences is to ensure that the lin-
ear independence conditions are met with high probability in a large system.
However, in the case when there are power constraints on the users, there is
no known capacity characterization analogous to (36) for finite system with
arbitrary signature sequences. Indeed the power-constrained capacity charac-
terization (34), and the notion of effective interference from which it is derived,
depends heavily on the randomness of the signature sequences.

It should also be noted that no such deterministic conservation laws exist
for the matched filter. Thus, the effective bandwidth characterization of the
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capacity region under the matched filter is valid only for random sequences,

unlike the MMSE case.

3.7 Extensions: imperfect power control, symbol-asynchronism, multipath fad-
ing, and antenna arrays

The effective bandwidth and capacity results of Section 3.5 are for systems
with perfect power control. In practice, due to channel fading, feedback delay
and errors, the received powers of users in the same class cannot be kept
identical. The effect of imperfect power control on capacity is analysed in [94]
and [96] for the matched filter and the MMSE receivers respectively.

The effective interference results discussed in Section 3.4 for the ideal CDMA
model are extended to symbol-asynchronous systems (i.e. symbols of different
users are not necessarily time-aligned) in [35], and to channels with multi-
path fading [14]. Effective bandwidth results are also obtained for the symbol-
asynchronous system in [35].

Although we have described the application of the MMSE receiver and the
decorrelator receiver to a CDMA system, these receivers can be applied to any
system with spatial diversity, and in particular to antenna array processing
(“beam-forming”). Work on antenna capacity using the decorrelator receiver
can be found in [86]. It is shown in [67] that the notion of effective interference
and effective bandwidth carry over to antenna arrays. A study of joint power
control, and beam-forming for antenna arrays is undertaken in [55], [56].

Recent work has also considered the combination of CDMA and antenna array
signal processing (e.g. [47], [23], [64]). Typically, standard rake signal process-
ing (matched filtering, using maximal ratio combining of the antenna outputs)
is assumed. In this scenario, it is shown in [23] that effective bandwidth results
carry over from the single antenna, matched filter scenario, to the antenna ar-
ray case. In [27], effective bandwidth and power control results are obtained
for CDMA antenna arrays, using the multi-user MMSE receiver.

4 Information Theoretic Optimal Receivers

In the previous section, we have discussed the problems of power control
and capacity characterization for linear multiuser receivers. Although they
are likely candidates for implementation in the next generation CDMA sys-
tems, it should be noted that neither the direct-sequence modulation format
nor the linear receiver structure is optimal from an information theoretic point
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of view. In this section, we will take a more speculative look at the problem
of power control and resource allocation for information theoretically optimal
systems. It will be seen that the solutions to these problems are quite differ-
ent in flavor from the counterpart in DS-CDMA systems with linear multiuser
receivers.

The focus in this section will be exclusively on the problem for a single cell,
where all the users are power-controlled to the same receiver. The problem of
power control in the cellular case is at this time completely open.

We first introduce the multiuser Shannon capacity region for the Gaussian
multi-access channel modeling the uplink. We will then use the characteriza-
tion as constraints for the optimal power control problem.

4.1 Multiuser Shannon Capacity Region

The Shannon capacily * of a point-to-point channel is the maximum rate at
which information can be transmitted reliably with arbitrarily small probabil-
ity of error. Analogously, the Shannon capacity region of a M-user multi-access
channel is the set of rate vectors R = (Ry,..., Ry) that can be simultane-
ously transmitted reliably from the M users to the single receiver. We focus on
channels with additive Gaussian noise. The capacity of a discrete-time point-
to-point Gaussian channel with power constraint p and noise power o2 is well

known:

1 p

For the additive Gaussian multi-access channel model in (1), it is known that
Shannon capacity can be achieved when bandwidth expansion is done by cod-
ing alone, i.e. the processing gain is set to be 1. This maximizes the rate for a
given total bandwidth, i.e. the rate per chip. The resulting Shannon capacity
region is given by (see e.g. [11]):

C(p) = {R: YR < %log (1—|—%2p¢) for all U C {1,...,M}},(38)

€U €U

where o2 is the background noise power and p; is the received power of user i.
Here, R;s are measured in terms of bits per chip (or per sample) and the log
is to the base 2.

1 To distinguish this from our general use of capacity as the number of users that
can be supported in the network, we will use “Shannon capacity” to refer to the
information rate.
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Fig. 4. (a) Two-user capacity region inside the pentagon, for given power constraints
p1 and po. Point A is achieved by decoding user 2 first and then user 1; point B vice
versa. Priority is given to user 1 at point A so that user 1 gets better rate than at
point B. (b) T'wo-user power region to the outside of the three constraints, for given
target rates R}, R5. Point C is achieved by decoding user 2 first and then user 1;
point D vice versa. Priority is given to user 2 at point C so that user 2 needs less
power than at point D.

This Shannon capacity region is a polyhedron with an interesting structure.
It is characterized by 2" — 1 constraints, one for each subset of users. There
are exactly M! vertices in the positive orthant. The rate vector at each of
the vertices can be achieved by a technique called successive decoding. First
fix an ordering of users. Decode the first user, treating other-user interference
as Gaussian noise. Then subtract the known transmitted signal of this user
from the total received waveform and repeat the process with the second
user. The last user is decoded with the interference coming only from the
background noise, the other users’ interference having been cancelled out in
previous stages. Assume ideal coding for each user, this procedure achieves for
user ¢ an information rate equal to:

1 Pi
—log [ 1 + ———M—
2 g( 02+Ejpj)

where the sum is over the powers of the users that are not yet cancelled
when user ¢ is decoded. Note that this is also the capacity of a point-to-point
Gaussian channel with received power p; and noise power o®+>". p;. Applying
this technique to every possible ordering of the users yields all the vertices of
the capacity region. Fig. 4(a) shows a two-user capacity region.
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4.2 Polymatroid structure and conservation laws

It is observed in [66] that the Shannon capacity region of the Gaussian multi-
access channel is a polymatroid, a class of combinatorial objects first studied
by Edmonds [13]. Since this structure is central to our power control problems,
we will review the general definition here.

Definition 1 Let £ = {1,...,M} and f : 2¥ — R, be a set function. The
polyhedron

B(f)y={(z1,...,am): D ;< f(U) YUCE, ;>0 Vi} (39)

€U

is a polymatroid if the set function [ satisfies: 1) f(0) =0 (normalized), 2)
fU) < f(T) if U C T (nondecreasing), and 3) f(U) + f(T) > fF(UUT) +
FUNT) (submodular). The polyhedron

G(f)={(x1,....anm): D @i > f(U) YU CE}

€U

is a contra-polymatroid if f is normalized, nondecreasing and satisfies f(U)+

) < fOuT)+ fUNT) (supermodular).
If [ satisfies the three properties, f is called a rank function in both cases.

It can be shown that a polymatroid has exactly M! vertices in the positive
orthant, each of which is the intersection of M of the constraints, correspond-
ing to a sequence of nested subsets. Polymatroid structure arises in many
resource allocation and scheduling problems as a consequence of underlying
strong conservation laws [58]. By giving different priority orders to the users
in the scheduling of resources, one can achieve all the extreme points of the
polymatroid performance region.

For the present problem, the strong conservation laws are the following. First
restrict the operating points to those for which the sum constraint is tight, ie:

Note that at these operating points, the sum rate over all users is conserved.
Then, for any subset of users, U, the information theoretic constraint says
that the achievable rates among this subset of users must satisfy:

1 1

€U
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with equality if and only if strict priority is given to the users in U over the
remaining users (this means that users in U are always decoded after the
other users have been decoded). It is also clear that from a power control
perspective there is no point in considering any operating points that do not
achieve equality in the overall constraint ([30]).

It is interesting to note in passing that the achievable region (36) in the linear
receiver setting is also a polymatroid, in terms of the performance measure
SIR/(1+ SIR). There, prioritization among users is achieved by power control
together with the MMSE receiver, with strict priority given to a subset of users
by allocating arbitrarily large powers to these users; the remaining users then
null them out. In the information theoretic setting, priority is done through
the successive decoding order together with power control.

4.3 Optimal Power Control

In the information theoretic setting, a natural QoS measure for a user is its
achievable information rate. This is the analog of the SIR requirement used
in the formulation for DS-CDMA systems with linear receivers. The power
control question is then : how can one “optimally” control the received powers
P1y- .., pu to achieve a target rate vector R* = (R, ..., Ry)?

This power control problem is fundamentally different from the one in the
linear receiver setting. In particular:

o The system viewed as a single cell is not interference-limited because pow-
erful users can be cancelled out after they are decoded. Nevertheless, in
practice, using the minimum power to guarantee the desired level of QoS
is still necessary to reduce interference in adjacent cells and to conserve
battery power.

e There is no solution which minimizes the required power of all users.
Unlike the linear receiver case, increasing the power of one user benefits
the others because it can be decoded and cancelled more easily. In other
words, the monotonicity property, which was central to the power control
problems for linear receivers, does not hold in this setting.

A sensible formulation then is to minimize a weighted sum of the users’ trans-
mit powers while at the same time ensuring that the target rates R* can be
met [26,46]. Denote ?; as the path gain from user i to the receiver. The power
control problem can be precisely stated as:

M
Ai :
Hgnz oD subject to R" € C(p). (40)
i=1 "1
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The coefficients A = (A1, ... Ayr) are the weights for the transmit powers of the
users. We will address the choice of A in a moment, but let us first focus on
solving the optimization problem (40). The constraints define a feasible power
region:
P = {pe RS X p 2 sz R - 1),
€U i€l

It can be directly verified that the power region is a contra-polymatroid. See
Fig. 4(b) for an example of a two-user power region.

To find the optimal solution, we observe that (40) is a linear programming
problem, so it follows that the optimal solution corresponds to a vertex of the
power region P(R*). Each vertex of the power region corresponds to one of M!
possible successive decoding order, with the powers such that the target rates
R* can be achieved when the users are decoded in that order. More explicitly,
the vertex p corresponding to successive decoding order 7 is given by :

Uz[exp(ZR;(l)) — 1] ifi=1

p”(l) = : * i— * :

0-2[6Xp(2 Zm:l Rw(m)) - 6Xp(2 Zmzll Rw(m))] = 27 cee M

(The interpretation of 7 is such that user w(M) is decoded first, user m(1) is
decoded last.)

The optimal solution to the problem (40) must be at one of these M! vertices,
corresponding to the M! possible successive decoding orders. A well-known
result in polymatroid theory [13] says that the decoding ordering should be
in increasing value of the coefficients A;/7;, i.e. the user with smallest X;/7;
decoded first, the user with largest A;/7; decoded last. Note that the optimal
ordering does not depend on the target rates R*, although the optimal powers
do.

Thus, even though the power region has exponentially large number of con-
straints (in M), a simple explicit solution can be obtained. Here again, it is
useful to think of the successive decoding order 7m as a way to give priority
to different users in the scheduling of resources; a user decoded later in the
ordering is given higher priority than a user decoded earlier. This is because
users need more transmit power to support their target rates when they are
decoded earlier. What polymatroid theory tells us is that the optimal solution
can be obtained in a greedy manner: always decode the user with the “cheap-
est” power first, where the cost is measured by the coefficient A;/7;. This rule
is analogous to the classic ¢ — p rule in scheduling theory (see eg. [58]), as both
arise from the polymatroid structure of the underlying optimization problems.

The weights A;’s can be thought of as “power prices”. In the special case
when they are all set to be equal, the optimal strategy minimizes the total
transmit power and takes on the simple form of decoding the user with the
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best channel first and the one with the worst channel last [25]. The decoding
order thus adapts to the fading state (74,...,7 ). Contrast this with the
strategy of keeping received powers equal in conventional CDMA schemes,
we see that this optimal scheme leads to a much lower transmit power for
the user with the weakest channel as it need not compete with any of the
other users who have better channels. This improvement in performance is a
direct consequence of the flexibility of the successive decoding technique. In a
cellular system, this optimal power control strategy has the further advantage
of reducing the inter-cell interference, leading to an increase in its interference-
limited capacity ([9,85]).

Given fixed As, we can think of the greedy solution to (40) as a fast time-scale
power allocation algorithm. On a fast time-scale, during which the channel can
be thought of as fixed, the greedy solution determines the optimal successive
decoding order and the allocation of transmit power levels to the users, for
the current channel state.

On a slow time-scale, over which channel variations occur, this gives rise to an
average, or long-term power consumption by the users. A more general formu-
lation is to impose average transmit power constraints pq, ..., pas on the users,
averaged over the random time variation of the fading state (71,...,7 ), and
to require that a target rate vector R* is achieved at all fading states. In [26],
it is shown that in this problem formulation, there is no loss in generality
in restricting attention to power control strategies that solve (40), for some
choice of A. Suppose the fading state has a certain stationary distribution.
Given a target rate vector R* and power prices A, let p;(R*, A) be the average
transmit power for user ¢ when applying the power control which solves (40)
at each fading state 7. However, for a different power price vector, we would
get a different average power consumption, and so the issue of fairness arises.
Setting A;s to be all the same in the above example minimizes the total av-
erage power consumption, but this may not be a fair allocation if users have
different rate and power requirements.

In [26] the issue of min max fairness is considered. The problem is to find
power prices A which minimizes the maximum of the average transmit powers
of the users, weighted by the respective average power constraints:

p;(R*, A
inf max }M

A>01<i<M Di (41)

Note that if the optimal value is less than 1, then the target rates are achievable
within the given average power constraints, but otherwise they are not.

To solve (41), the fading state distribution is needed, and in practice this may
not be known explicitly. However, in [26], an iterative algorithm is provided
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to solve (41) that be implemented adaptively, where the updates on the power
prices can be driven by measuring the actual average power consumed. An
interesting feature of the algorithm is that the proof that it converges to
the minmax solution is based on a monotonicity property that holds for the
underlying mapping that defines the iteration.

The power control we have sketched in the present section is a two-time-scale
resource allocation scheme. At the slow time-scale over which the channel
variations occur, the algorithm iteratively updates the power prices to meet
average power constraints. At the fast time-scale during which the channel
can be thought of as fixed, the solution to (40) for the current power prices is
used to control the powers and successive decoding order.

4.4 Optimal Rate and Power Control

It was observed that the optimal power control strategy considered in the
previous section provides flexibility by prioritizing users according to their
fading states. However, users in deep fade will still require a large amount of
transmit power to ensure that the target rates are met. In fact, for some fading
distributions, such as the Rayleigh distribution, meeting a fixed target rate
at every fading state would require an infinite amount of transmit power. If
instead one is interested only in maximizing the long-term rate, averaged over
time as the fading state varies, then an alternative strategy is to dynamically
vary both the rate and the power over time: more power is used to send at
a higher rate when the channel is good and less or even no power when the
channel is bad. While this does not guarantee a constant rate at all fading
states, it can yield a better long-term average rate for a given average power
constraint by exploiting the time-diversity in the system. For applications,
such as data, with delay requirements longer than the time-scale of the channel
fluctuations, this may suffice.

Goldsmith and Varaiya [19] formulate this idea for point-to-point fading chan-
nels, and pose the question: given a time-varying fading channel, what is the
optimal power control policy which maximizes the long-term average rate sub-
ject to an average power constraint? The optimal transmit power to use at

1
max ()\ — ?—,0) ,

where X is the Lagrange multiplier (power price) chosen such that the average

fading state 7 is given by:

power constraint is met. If one considers a sample path of the fading process
{7(t)} and plots the curve 1/7(t), then this optimal power allocation has the
interpretation of filling water on this curve up a level of A such that the average
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amount of water (power) per unit time is equal to the power constraint. Note
that this solution has the qualitative properties of a good policy described
above.

The problem of optimal rate and power control is formulated and solved for the
general multi-access scenario in [65,66]. The optimal solution has the following
structure. At each fading state 7 = (74,...,7a), the optimal rate and power
allocation solves the following optimization problem:

R — =pi bject RecC 42
fﬁ%; (u ?'p) subject to (p) (42)

<1

The weights p;8 can be interpreted as rate rewards prioritizing the users, while
the A;s are Lagrange multipliers associated with the average power constraints.
They can also be interpreted as power prices. Contrast this with the optimiza-
tion problem (40), where the rates are fixed and the optimization is only
over the powers. In the formulation of the previous section, powers are opti-
mally controlled to meet a target rate vector R* at every fading state, subject
to average power constraints. In the formulation here, both rate and power
can be varied to adapt to channel conditions, in such a way as to maximize
the long term rates (averaged over the fading state) subject to average power
constraints. Varying the rate rewards u;s allows the tradeoff between the long-
term rates achieved by different users. Exploiting the underlying convexity of
the problem, it is shown in [66] that for given average power constraints, all
achievable long term average rates can be obtained by an appropriate choice
of the rate rewards p.

Let us consider the heart of the problem, which is to solve (42) for the optimal
rate and power allocation for given rate rewards p, power prices A and fading
state 7. This would yield the “fast time-scale” rate and power control at a
fixed fading state. Unlike the optimization problem (40), this is not a standard
problem in polymatroid theory, and requires a new solution [66]. Nevertheless,
the solution still retains the simple greedy flavor that one would expect from
the underlying polymatroid structure of the constraints. Define:

1
g(2) = 3 log(1 + g)
)\2 M )\2
ui(z) = pig'(z) — 7. 5.
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where * = max(z,0). The optimal value for problem (42) is given by

o0

/u*(z)dz

0

The optimal solution is again achieved by successive decoding and can be
interpreted as follows. Think of o2 + 2z as the current “interference level” due
to background noise and received powers of users not yet cancelled, and think
of w;(z) as the marginal utility obtained from allocating unit received power
to user ¢ at interference level ¢ + 2. Starting with z = 0, at each z we
allocate a marginal received power dp to the user ¢* with the largest positive
ui(z). Stop when w;(z) < 0 for all j. The marginal increase in rate of user
i* is glx(2) - Op, decoding at interference level o + 2. The value u*(z) - dp is
therefore the marginal increase in the value of the overall objective function
i piRi — (X /74)p; by allocating power dp to the user that will benefit most at
the interference level 0%+ z. The procedure is thus greedy. Integrating over all
z gives the optimal rate and power allocation to all the users. Moreover, it is
guaranteed that the resulting solution can be achieved by successive decoding,
with the ordering of the users implicitly given by the above procedure. See
Fig. 5 for an example. We observe that some users may get no power and
therefore no rate in the optimal solution. This means that the current fading
state is too unfavorable for those users to transmit information.

The special case when the rate rewards and power prices are the same for all
users was earlier solved by Knopp and Humblet [36]: the optimal strategy has
the interesting structure that only the user with the best channel transmits at
any one time. This follows directly from the general solution above: when the
;’s are the same, the functions w;(-) are all parallel and that of the user with
the best channel dominates for all z. Moreover, the transmit power used by the
strongest user also has the waterfilling interpretation described above. When
some users have weaker channels a lot of the time, this strategy may have
some fairness problems. Assigning unequal rate rewards to users can yield a
fairer policy in that case.

The greedy solution presented above to the optimization problem (42) is inti-
mately tied to a certain dual polymatroid structure of the constraints: given
received powers p, the Shannon capacity region C(p) is a polymatroid; on the
other hand, given target rate vector R, the feasible power region P(R) is a
contra-polymatroid. In fact, a more general class of polymatroids shares this
structure. This is the class of polymatroids with generalized symmetric rank
functions, i.e. rank functions f of the form:

F0)=90>_ v)

€U

where ¢ is an increasing concave function and yy,...ya are scalars. It is clear
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Fig. 5. A 3-user example illustrating the greedy power allocation. The z-axis repre-
sents the received interference level and y-axis the marginal utility of each user at
the interference levels. At each interference level, the user who is selected to trans-
mit is the one with the highest marginal utility. Here, user 1 gets decoded after user
2, and user 3 gets no power at all. The optimal received powers for user 1 and user
2 are p} and pj respectively.

that the multi-access Gaussian capacity region belongs to this class, with ¢
specializing to the log function. If we now consider the following optimization
problem for polymatroids with generalized symmetric rank function:

maxp-X—A-y subject to da <g(d oy YU CA{l,...,M},(43)

(x,y) iceU =

then it can be shown that the greedy algorithm presented above solves this
more general problem as well. This may be of independent interest for other
resource allocation problems involving this class of polymatroids (see [16,58]
for some examples.)

We remark here that at the optimal solution to (43), the overall constraint

M M
Soai <> i)
=1 =1

will be satisfied with equality. In the present problem, this says that there is a
total amount of resources provided by the users, "M p;, and this dictates the
total amount of rate, S R; that can be allocated among the users. Given
we decode some user first, then the total amount of rate remaining to be
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allocated is dictated by the remaining total amount of received power, and
so on. These are the conservation laws referred to in Section 4.2; they involve
conservation since it is the sum of rates that is conserved among many possible
rate allocation policies.

We have considered the optimal power and rate allocation at a fading state,
for a given p and A. As in Section 4.3, we consider the case in which there is a
stationary fading process, and we note that for fixed g and A, the optimal rate
and allocation solution gives rise to average rate and power vectors R(y, ),
and p(u, A) respectively. In [66], iterative algorithms are developed that adjust
p and/or A to solve various resource allocation problems.

Consider, for example, the situation in which there is a desired average power
vector, p, and a vector of rate rewards, p, is given. Consider the following
iterative algorithm for updating A such that the average power constraints are
met and 3, ;R(p, A) is maximized.

Algorithm 2 Start with an arbitrary power price vector 9. Generate a se-
quence of power price vectors (A\)°L as follows. Given \*=Y  vary \;, hold-

ing the other )\;n_l)s fized, until p;(p1, N) = p;. This defines the new value of

)\gn). Each user does this simultaneously, and we obtain a new vector A\,

It is proven in [66] that p(u, )\(”)) — P, as n — 00. A key element of the proof
is the following monotonicity property: if A; increases, then p;(u, A) decreases,
but all other p;(x, A)s increase, for j # .

A “dual” algorithm in [66] deals with the case in which a desired rate vector R
is given, together with a vector of power prices A. An algorithm for adapting s
is given, such that R(u(™,\) — R, as n — oo, while minimizing 3°; \ip (s, A).

Summarizing, we have presented a two-time-scale resource allocation scheme
for optimal rate and power control in multi-access fading channels. At the
slow time-scale, power prices or rate rewards are updated to meet average
power or rate constraints. At the fast time-scale, the greedy solution to the
optimization problem (42) yields the optimal rate and power allocation at the
current fading state and current power prices and rate rewards.

The results we have presented here are for the time-varying, flat fading Gaus-
sian multiaccess channel. Dual results hold for the time-invariant, frequency
selective Gaussian multiaccess channel [66]. In this scenario, the channel re-
sponse is not flat over frequency and the optimal solution involves power
allocation accross frequencies, rather than over time. Qur solution generalizes
earlier work in [10], which considered this problem in the special case of two
users. In [66] we also treat the more general case of a time-varying, frequency
selective channel. As remarked above, in the flat fading scenario, the optimal
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power and rate allocation to achieve the maximum sum rate was found in [36].
This work is also extended to the frequency selective case in [37].

5 Conclusions and Open Problems

It is important to first emphasize the differences between the linear receiver
CDMA power control solutions, and the information-theoretic resource allo-
cation solutions. The latter are two-time-scale resource allocation schemes. At
the fast time-scale, during which the channel can be thought of as fixed, fast
greedy algorithms allocate rates and/or powers among the users. At the slow
time-scale over which the channel variations occur, the algorithm iteratively
updates the rate rewards and/or power prices to meet average constraints.
Contrast this with the power control strategies for linear receivers. They can
be viewed as single time-scale algorithms since there is a strict component-
wise optimal solution for each fading state in that problem; a property which
does not hold in the information theoretic formulation. In the linear receivers
case, users directly control their access to the “available bandwidth” through
their transmit power levels. In the information-theoretic formulation, increas-
ing power can benefit other users, and it is this lack of monotonicity in power
space that requires us to incorporate performance constraints that are aver-
aged over the fading distribution.

At a more fundamental level, however, we note that there is monotonicity
in A-space, in the information-theoretic formulation of Section 4.3. If a user
increases its power price, then it will benefit, since it will use less average
power, but all other users will use more. In Section 4.4, if a user increases its
rate reward, then it will benefit since it will get more long-term rate, but all
the others will get less rate. Users control access to the “available resources”
through their power prices (and in Section 4.4, rate rewards). This enables
very similar iterative procedures to be applied to compute the appropriate
rate rewards and/or power prices, as were used in Section 2.4 to compute the
optimal transmit power levels.

We also note that conservation laws arise in both problems. Section 3.6 shows
that the totality of effective bandwidths of the users is always bounded by the
processing gain, no matter what power control is used. Furthermore, for each
subset U of users in the system, there is a conservation constraint imposed by
the dimension of the space spanned by the signature sequences of the users
in U. In the information-theoretic single-cell models, the notion of “available
resources” is more subtle, since the system is not interference limited, and
resources can be increased or decreased through power control. Nevertheless,
there are indeed conservation laws that still apply, as explained in Section 4.2,
and these have a strikingly similar form to those in Section 3.6. It should be
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emphasized though that the existence of effective interference and effective
bandwidths under power constraints is based not only on the conservation
laws but also on the randomness of the signature sequences.

There are many open problems in the area of power control and its relation
to network capacity. First of all, little attention has been payed to multiple
time-scales that arise in both models of fading, and models of data source
behavior. For example, all the works reviewed in this paper, with the exception
of the Shannon-theoretic work on fading channels, and the essentially single-
user analysis of the 1S-95 closed loop power control in [82], assume that the
fadings (path gains) are held fixed for the duration of the algorithm. This is
unrealistic even for indoor wireless systems in which the terminals might be
more or less immobile, because mutipath fading effects still occur due to a
time-varying environment in which the terminals are located. On this point,
it is often necessary to model fading as occurring on two time-scales; the
slow timescale of shadow fading is often of the order of seconds, and the fast
timescale of multipath fading, due to the constructive and destructive effects of
multipath self-interference, can occur on the order of milliseconds. Both time-
scales, of course, depend on the carrier frequency, bandwidth, and speed of
the mobiles. The stochastic work of [70] briefly considers the issue of imperfect
knowledge of the channel gains, but it seems the problem may become much
more challenging if the dynamics of the fading are taken into account.

The issue of channel measurement and its relation to power control, and chan-
nel feedback, is an area that warrants more study. Note that if one measures
interference at a high rate then one can update power levels at a high rate,
but the measurements tend to be more noisy. This raises the question as to
whether it is better to make accurate measurements, and use up the feedback
bandwidth this way, or make coarser measurements at a higher rate, and use
up the feedback bandwidth with a high rate 1 bit feedback, as in the closed-
loop of 1595 [82]. We note that the proposals for third generation power control
involve more precise interference measurements being sent back to the mobile
([12]). The correct approach will depend on the timescale of the fading effects.

The issue of channel measurement also raises the question as to whether it
is better to measure and then adapt to the actual realizations of fading, or
to adapt to the statistics of the fading only. Again, this question depends on
the time-scale of the fading effects. For example, with multipath, one might
measure over a window short enough that the statistics remain constant, but
long enough to obtain averaging. Clearly, there is a limit to the rate of fading,
if power adaptations are to be functions of channel realizations, and in 1S95 it
is assumed that multipath effects are too fast for this at vehicular speeds [80].

In the theoretical power control models we have considered in the present
paper, power updates and interference measurements are assumed to occur
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at about the same rate. Similarly, the 1S-95 closed loop causes the mobile’s
transmit power to adapt to realizations of the shadow fading of the user, and
also attempts to measure interference at the same rate. However, it updates
the F,/Ny setpoint on a slower time-scale based on frame error rates, which
can be thought of as an adaptation to interference statistics, and the statistics
of multipath effects. Note that the power updates occur more rapidly than the
measurements of these statistics. In the future third-generation systems, it may
be possible to more directly measure the multipath fading realizations, since
there will be coherent reception on the uplink. Coherent detection requires a
tracking of the multipath fading effects at the receiver, and this is possible
in third generation systems because a pilot signal will be used on the uplink
([12]). It is in principle possible for the transmit power updates to be very
fast and actually track the multipath fading, especially if a high rate 1 bit
feedback is used. However, it may not be possible to accurately measure and
feed back the interference effects at this same rate, and therefore it may still be
preferable to measure the statistics of the interference over a longer timescale.
Thus, there may need to be a separation of time-scale between power updates
and interference measurements. This aspect is not currently a feature of power
control analyses.

The works reviewed on power control for data traffic seem to be of a rather
preliminary nature. Here again, time-scales are important; some traffic types
e.g. voice and video, are very sensitive to the slightest delay, and would rather
lose packets than suffer any delay; others, such as web browsing, can tolerate
small delays, but are inelastic on longer time-scales; and emails and off-line
file transfers may be quite elastic, with most emphasis on accuracy, and very
little on delay. The problem of power control for data is clearly intimately
connected with that of flow control, and a holistic approach is required in
which both teletraffic and radio propagation issues are considered together.
See [15] for some preliminary work in this direction.

Mobility and the variation over time of traffic patterns occur on a relatively
slow timescale, yet are clearly important issues for call admissions. A paper
that tries to relate power control to the traffic pattern is [28], but this work
does not consider time-evolution at all. Nevertheless, it suggests that power
control and call admissions may well be intimately connected. This is also the
view taken in [6], but again, call admission based on channel probing along
the lines described in [6] makes the assumption that the users are essentially
immobile; this may be a reasonable assumption for some important wireless
systems, but it remains true that combined study of power control and call
admissions taking into account mobility, remains an open area. In summary,
very little attention has been paid to date to the interaction between power
control (which is usually thought of as a physical layer control) and networking
layer issues.
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In the information-theoretic paradigm, the power and rate control problem
formulations we surveyed all assume instantaneous and perfect channel state
information at both the transmitters and the receiver. In practice, such in-
formation is obtained via measurement and feedback from the receiver to the
transmitter. In fast time-varying channels, the channel state information may
be inaccurate due to measurement errors and delay in the feedback link. An
interesting problem is the impact of such imperfection on capacity and on the
optimal power and rate control strategies. Interesting results are obtained re-
cently [79] in the context of a point-to-point time-varying channel with delayed

feedback.

The information theoretic capacity of a network of cells is still very open.
Indeed, if the interference from other cells is to be treated as noise (rather
than decoded jointly via a connected “antenna array” of base stations, as in
[29], [87]) then the problem is a hybrid between a multiple access channel
(because of the users within the cell) and an interference channel (because
of the other-cell users) [11]. As such, it is an open problem to characterize
the Shannon capacity region for fixed powers, even if we ignore the issue of
resource allocation altogether. Indeed, the characterization of capacity for the
general interference channel has been an open problem in information theory
for many years [71].
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