
SEMI-INVARIANTS OF QUIVERS

AIDAN SCHOFIELD

ABSTRACT

Let Q be a quiver without oriented cycles and let a be a dimension vector such that G^(a) has an open
orbit on the representation space R(a). We find representations {St} and corresponding polynomials {Ps J
on R(a), which generate the semi-invariants and are algebraically independent.

0. Notation and generalities

Let Q be a quiver with vertex set QQ and arrow set Qv Typically, we shall write
veQo, aeQ1} and a has a tail, ta, and head, ha;

a

ta ha

We fix an algebraically closed field k. A representation R of Q is a family of
finite-dimensional vector spaces {R(v): v e Qo}, together with linear maps
R(a):R(ta) ->R(ha). The dimension vector of /? is the function, dim/?, defined by
dim R(v) = dimi?(y); it lies in F, the space of integer-valued functions on Qo. If 7? and
5 are representations then a morphism <t>:R->S is a collection of linear maps
<f>(v):R(v)->S(v) such that, for all atQx, </>(ta)S(a) = R(a)<j>(ha). The collection
of morphisms is written Horn (R, S). With these definitions, the category of
representations of Q, namely Rep (Q), may be seen to be an abelian category.

We assume throughout this paper that there are no oriented cycles; that is, there
is no sequence of arrows a1,a2,...,an such that hat = tai+1 and han = tav A path
p = a1a2...an is a sequence of arrows such that ha{ = tai+1 for / = 1 to n — 1. We
define tp = ta1 and hp = han. The trivial path from v to v has head and tail v. We define
[v, w] to be the vector space on the basis of paths from v to w. This is finite dimensional
given our assumption that there are no oriented cycles. We define a representation
Pv by Pv(w) = [v, w], and Pv(a): [v, ta] -> [v, ha] is defined by composition with a. One
checks that Horn (Pv, R) ~ R(v), so that Horn (/*„,—) is an exact functor which
implies that Pv is a projective representation. The set {Pv} is a complete set of
indecomposable projective representations up to isomorphism. Similarly, we define
the indecomposable injective representations of Q by Iv(w) = D[w, v]; here D V for a
vector space V is defined to be Homfc(K, k). One checks that Horn (R,IV) ^ DR(v).
Note that

Horn (Pv, Pw) ~ [v, w] ̂  DIJv) ~ Horn (/„, / J .

So there is a natural equivalence between the category of projective and the category
of injective representations of Q. If we define A = © Pv, A has a natural algebra
structure, the path algebra of Q, and representations of Q are modules for A. One can
show that the above equivalence between the category of projectives and injectives is
induced by the functor D Horn ( , A).
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Given any representation R, there is a short exact sequence

0 >®aR(ta)®kPha >®vR(v)®kPv >R >0

which we call the canonical projective resolution of R. For the maps in this see [4].
Dually we may define the canonical injective resolution of R. This implies that Ext*
vanishes on Rep ( 0 for / > 1.

If R has no projective summands, then Horn (R, A) = 0; we apply D Hom( , A) to
the canonical projective resolution: this gives a new short exact sequence:

0 >TR >®aR(ta)®kIha >®vR(v)®kIv >0;

TR is a representation of Q, the Auslander-Reiten translate of R and T is the
Auslander-Reiten functor, which in this case is equivalent to D Ext ( , A). We shall use
T both for this functor and for the linear map it induces on Y via dimension vectors.
The next two formulae due to Auslander and Reiten are important: we shall refer to
them as the duality formulae:

Ex t ( i ? , - )~Z)Hom(- ,T J R) and Hom(/?, - ) ~ Z>Ext( ,zR).

The corresponding formulae for projective representations have already been noted:

Hom(Pv, -)~DHom(-,Q and Ext(Pv, - ) = 0 = DExt( ,/„).

Let a, /? be dimension vectors; we define the Euler inner product by

Ringel shows that <dimi?5 dimS> = dim Horn (R,S)-dim Ext (R, S). We define the
matrix E by the formula

where /T is the transpose of ft. Note that < a,/?> = - </?, ia> by the duality formulae.
The preceding material may be found in Gabriel [4], Ringel [12,13] and Dlab and

Ringel [3].
Let a be a fixed dimension vector; we define

R(<x) = X «««>#«*«>,
a

where a<ta>/̂ (Ao> denotes the space of a,(ta) x a(ha) matrices. A point p of R(oc) defines
a representation Rv of the dimension vector a in the natural way. Define

= X
V

where G<f(«) is the space of invertible nxn matrices. Then G/(a) acts in the natural
way on R(<x), and two representations Rp, Rq are isomorphic if and only if p and q are
conjugate under G/(a).

If G<f(a) has an open orbit on R(a), the corresponding representation is denoted
by G(<x). In this case, a is said to be a pre-homogeneous dimension vector. If the
representation G(tx) is indecomposable, then Kac [8] shows that it has endomorphism
ring k. In this case, a is said to be a real Schur root. In general

G{OL) =
i-i

for real Schur roots txv By the Artin-Voigt lemma, Ext (G(a), G(a)) = 0.
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The space G/(a) acts on the ring P(cc) of polynomial functions on R(cc). A semi-
invariant polynomial / satisfies g(f) = x(s)f for some character x on G/(a). The
characters of G/(a) are of the form (dety for some vector y in T, since the only
characters of G<f(«) are powers of det, the determinant function.

We intend to determine the semi-invariant polynomials for G<f (a) when a is a pre-
homogeneous dimension vector. In this case, the theorem of Sato and Kimura [13]
shows that if {cl5 ...,cn} are the components of codimension 1 in the complement of
the open orbit and they are defined by polynomials {/l5 ...,/„}, then these polynomials
are semi-invariant, algebraically independent, and every semi-invariant is a product
of them up to a scalar. A reference for the material here is Kac [8].

1. Determinantal semi-invariants

Let a,/? be dimension vectors such that <<x,/?> = 0; we define a polynomial Pa p on
R(a) x R(fi) which is semi-invariant with respect to the action of G<f(a) x G/(/7).

Let (p, q)eR((x) x R(J3). We attempt to construct a non-zero homomorphism from
Rp to RQ. This amounts to solving the following system of homogeneous linear
equations:

Rp(a)Xha-XtaRq(a) = 0 for all aeQx, (1)
where X° is an a(v)xP(v) matrix of indeterminants. If <a,/?> = 0, the number of
indeterminants, Xi«a(y)Ay)> *s equal to £aa(ta)/?(/*«), the number of equations. If
Afaj5(/>,#) is the matrix of coefficients of (1), we define PaJ(p,q) = det Ma^p, q).

THEOREM 1.1. Pa<^p,q) is a polynomial semi-invariant for the action of
G/(a) x G/Off) on R(oc)x R(fi). It vanishes at (p, q) if and only if Horn (Rp, Rg) ^ 0.

Proof Consider the map 0: i?(a) x R(fi) -• H o m ^ e * " ^ , 0 f o)^(fio)) given by

If we give Hom^e^A:^ , ®^kpm) the natural structure of a G/(a) x
module, 0 is a homomorphism of G/(a) x G£(fi) modules. It follows at once that
PaJ = det Maj is a polynomial semi-invariant.

There is a non-zero homomorphism from Rp to Rg if and only if (1) has a non-
zero solution, and this happens if and only if Paj(p,q) = 0.

Given a representation M of dimension vector a, there is some point p' in R(cc)
such that M ~ Rp,; we define PMtP(q) = Pa<^p',q)- Strictly speaking, PMp is only
defined up to multiplication by a non-zero scalar. It is a polynomial semi-invariant
for the action of G/(/?) on R(fi). If N is a representation of the dimension vector ft,
we define Pa N similarly.

We give another interpretation of these polynomials next.
If0->P-^(?->M->0isa projective resolution of M, and q is a point of R(fi), we

have the exact sequence

0 > Horn (M, Rg) > Horn (Q, Rg) ̂ M Horn (P, Rg)

>Ext(M,Rg) >0.
Therefore, Horn (M, Rg) ^ 0 if and only if (0, Rg) is not invertible. Similarly,
i fO-^ iV-* / -^ / - ^ is an injective coresolution of N, Horn (Rp, N) ^ 0 if and only
if (Rp,fi) is not invertible. These remarks together with the next lemma give our
new interpretation of PM p and Pa N.

13-2
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LEMMA 1.2. Let

o — > e a fc*«a) e , pha -$*+ ®v *«•> ®kpv — > R P — • o

be the canonical projective resolution of Rp. Then (</>p,Rg) = Ma^p,q).

A similar result holds for the canonical injective resolution of Rg.

Proof. We have the canonical isomorphisms: Hom(Pv,Rq) ^ Rg(v) a* k?tv).
Therefore,

Horn (©, *•*» ® Pv, Rg) ~ 0 V " W ,
and

After making these identifications, the result is a simple matter to check. The dual
result for an injective coresolution of Rg is the same. This means that any projective
resolution may be used in this way to calculate PM p = detMM j . For if

0 >p >Q >M ,0 and 0 >P' >Q' >M >0

are two projective resolutions of M, it is an easy matter to show that the map 0©/Q.
is associated to $' 0IQ; in consequence det {<]>, Rq) = det (0 0IQ., Rg) which differs by
a unit from det ((/>' 0IQ, Rg) = det (<f>', Rg). Similar remarks hold for injective
coresolutions.

The next lemma is a simple consequence of this result. Note that <a,/?> = 0 if and
only if <# ra> = 0.

LEMMA 1.3. PM ^ = Pp<xM up to a non-zero scalar for a representation M, having no
projective summands.

Proof. IfO—> P -+ Q-* M —•() is the canonical projective resolution of M, then

0 — n M •ZmomC^A) •DHom(0,A) >0

is an injective coresolution of xM. The result follows.

For the projective representation Pv, Horn (Pv, N) = 0 if and only if N(v) = 0,
which happens if and only if Horn (N, Iv) = 0. These are equivalent to either of the
conditions, <TTV,/?> = 0 or </?,/„> = 0, since Ext(Pv, - ) = 0 = Ext(- , /„) . Here nv is
the dimension vector of Pv and iv is the dimension vector of Iv.

Finally, we calculate the weight of the semi-invariant PaJ? and hence of the semi-
invariants PM p and Pa N. Recall the definition of the matrix E from section 0.

LEMMA 1.4. The weight of the semi-invariant PaP on R(<x) x R(Jf) is det"^T • det0^.
Therefore, the semi-invariant PMJ has weight det"5 and Pa N has weight det~^B .

Proof The matrix Mafi is an element of Horn (®fvW{v), ®faW{ha)). Choose a
basis for each a(v)k?(v) and ««a>fc/?(Ao). This represents MaJ} as an explicit matrix. Let
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(c,d) be a central element in G/(a)xG(f(j8): so c = (...,cv,...) and d = (...,dv,...).
Then operating by (c, d) on Map multiplies any given monomial in the determinant
of MaJ} by

1 I \aha Ctaf M l \av Cv f
a \ v

Therefore, P^p = det Ma<p transforms by this character on the centre of G^(a) x Gt(Jf).
The only character of G«f(a) x Gf(fi) that induces this central character is

2. Perpendicular categories

Let i? be a representation of Q. We define i?x, the right perpendicular category of
R, to be the full subcategory of representations S such that

Similarly, we define 1i? the left perpendicular category of R to be the full subcategory
of representations T such that Horn (7", R) = 0 = Ext (T,R). Given a set of
representations {R^. iel} we define {R^1 and ±{i?J in the obvious way. These
categories are closed under direct sums, direct summands, extensions, images, kernels
and cokernels. Therefore they are abelian subcategories. The last three properties
require a slight check.

These notions are connected to the determinantal semi-invariants in the following
way. We see that PRp is defined and non-zero at a point q in R(J3) if and only if Rq

lies in Rl. Also, PT a is defined in R(<x) and non-zero on the orbit corresponding to
R if and only if T lies in XR.

We recall the duality formulae from Section 0. These imply at once the following
two results on perpendicular categories.

THEOREM 2.1. Assume that R has no projective direct summands. Then R1 = 1 T /? .

THEOREM 2.2. Assume that the support of R is the whole of Q. Then r: XR -*• Rx

is an equivalence of categories.

Let a be a pre-homogeneous dimension vector; then the open orbit of G^(a) on
i?(a) defines a representation G(a). By Kac [8],

where a, is a real Schur root. Further,

Ext(G(a),

and so Ext ((/(ocj, G(a})) = 0 for all i and / By a result of Happel and Ringel [6,
Lemma 4.2] we know that any map from G(cct) to G(a^) is either injective or surjective.
It follows that the dimension vectors {aj are partially ordered by a< ̂  a, if and only
if there is a non-zero homomorphism from G(a() to (/(a,). We may choose the
subscripts in such a way so that i<j implies that (/(oc^eG^a,)1. It follows that in
order to study G(a)x we need only inductively study the categories G(a,)x for a real
Schur root <xt. This turns out to be technically simpler.
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The next two results were also proved by Geigle and Lenzing [5].

THEOREM 2.3. Let Q be a quiver with n vertices; let a. be a real Schur root. Then
G(a)1 is naturally equivalent to representations of a quiver Q(<x.x) having no oriented
cycles with n—\ vertices. The inverse functor from Rep((?(ax)) to G(a)x is a full exact
embedding into R e p ( 0 .

Proof. If G(<x) is a projective representation, this result is clear since G(a) ~ Pv for
some vertex v, and (/(a)1 is the full subcategory of representations whose support does
not contain v.

In the case where G(a) is not projective, we shall prove that (/(a)1 has enough
projective objects. Consider A as the free representation of rank 1; let

dim(Ext(G(a),A)) = s,
and let

0 > A > A~ > (G(<x))s > 0 (2)

be the exact sequence such that no copy of G(a) splits off. Since (/(a) is no t projective.
Hom(G(a), A) = 0. Apply Hom(G(a), •) to the exact sequence to obtain

0 > Horn (G(a), A") > Horn (G(a), G(<x)s) > Ext (G(a), A)

• Ext(G(a),A") >0.

Since the middle map is invertible by construction, A~must lie in G(a)1. Also, it must
be a projective object, because Ext (A, •) and Ext(G(a), •) both vanish on G(a)x, and
so must Ext(A~ •). Since A~© G(<x) is a tilting module for A, it has precisely n non-
isomorphic direct summands (see Bongartz [2]); therefore, A~must have «—1 non-
isomorphic direct summands. To show that A~is a generator in G(a)x, we apply Horn
(-,S) to (2) for S in G(a)x; we find the exact sequence

0 = Horn (G(oc), S) > Horn (A", S) > Horn (A, S) > Ext (G(a), S) = 0.

It follows that every homomorphism from A to S lifts to a homomorphism from A~
to S; since A' maps onto S for some /, so does (A~)(. Since A~is a projective generator
in <j(a)x, G(a)1 is naturally equivalent to modules for End (A").

Finally, Ext(S, T) ^ ExtC(a)i.(S, T) for S and Tin G(a)x, because any extension of
S on T must also lie in G(a)1; therefore, ExtC(oOi(iS, •) is a right exact functor, for all
S in <j(a)x, which implies that End(A~) must be hereditary. All hereditary algebras
over an algebraically closed field are Morita equivalent to path algebras of quivers;
therefore, <j(a)x is naturally equivalent to the representations of the quiver
corresponding to End(A~). This quiver has n—\ vertices because A~has n—\ non-
isomorphic direct summands. It has no oriented cycles because its path algebra is
Morita equivalent to End (A~) and must be finite dimensional.

Let a be some dimension vector for the quiver Q. We define

Then we have the following result.

THEOREM 2.4. Let en be a real Schur root, and let Q(ocx) be the quiver such that
G(a)x is naturally equivalent to Rep(Q(ax)) . Let {OL^.J = 1,...,«— 1} be the dimension
vectors of the simple objects o /G(a) x . Then, the linear map O:F((2(ax)) -* ax given by
(j>{...,r},...) = Yjr]aj l<iS an isometry with respect to the Euler forms.
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Proof It is enough to check that the inner products between the dimension
vectors {a,} are correct. Let St be the simple object in G(a)1 of dimension vector OL} :
then the inner products between the dimension vectors {â } are determined by the
dimensions of the Horn and Ext groups between the objects {S^. But these are the
same in each category.

The next result is the natural extension of Theorem 2.3.

THEOREM 2.5. Let Q be a quiver having n vertices. Let <x be a pre-homogeneous
dimension vector. Let

G(a) ^ 0 G(<xt)
n<,

where each <xt is a real Schur root, and <xt # aj for i #y. Then G(a)x is naturally
equivalent to representations of a quiver having no oriented cycles and n — s vertices. The
same result holds for ±G(a).

Proof Now G(a)1 = {G(a4): * = 1, . . . , s}x . We assume that the suffices are
ordered so that i <j implies that G(ai)eG(a4)1. This is possible by [6, Corollary 4.2].
But G{a^ is equivalent to the category of representations of a quiver without
oriented cycles on n - \ vertices, 0 ( a x ) . Moreover, the Schur roots { a f : / > l }
correspond to real Schur roots {fit:i> 1} on £?(ax). It follows that {G(tx{):i= 1, . . . ,s}1

is equivalent to {C?(/?():/ = 2,...,s}L and the result follows by induction.
The dual result may be proved by turning all the arrows round.

3. A slice theorem

First we need a notation. If H c G is an inclusion of semisimple algebraic groups
and W is an affine variety on which H acts, then the action of H on G x W given by
(g,w)h = (gh,h~xw) has an orbit space GxHW since Gx W is an affine variety.
The space GxHW has a natural map to G/H induced by (g, w) -> gH; the fibres of this
map are copies of W.

Let a be a real Schur root. We use the notation of Theorem 2.4, so the simple
objects of G(<x)x have dimension vector {ay:y = l, . . . ,r—1}. Let the corresponding
vertices of (?(ax) be {vî }. Let y be a dimension vector for Q{<xL) and let O(y) = /?
be the corresponding dimension vector for Q. Let Ca be the closed codimension 1
subset of R{p) where PG(a) ^ = 0. We intend to show that there is an embedding
Gf(y) c-> G/(/?) and that R(y) may be found as a G/(y)-stable subvariety of R(fi) so
that the natural map from Gif(fi)xG'wR(y) to R(ff)-Ca is biregular. This may be
thought of as a strong version of Luna's etale slice theorem [11] for this special case,
because the slice actually exists in the Zariski topology: R(fi) — Ca is an open
neighbourhood of its unique closed orbit which corresponds to the unique semisimple
representation of dimension vector y and this has isotropy group G/(y).

To set this up we need some categorical generalities. Let Q be a quiver; we define
Add ( 0 to be the additive ^-category freely generated by Q. So, Rep ( 0 is the
category of covariant fc-functors to mod fc from Add (Q). If R is a representation and
^ is a map in Add ( 0 , we extend notation by writing R(jx) for the image of fi under the
functor that R defines. It is clear that Add (Q) is dual to the category of projective
representations of Q. So we may regard representations of Q as contra variant
functors from the category of projective representations of Q to mod k. We intend to
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define a map from the category of projective representations of Q to the category
of projective representations of Q{<x.L) which induces the equivalence between

and

THEOREM 3.1. Let cube a real Schur root such that G(a) is not projective. Let P be
a projective representation of Q. Let dim Ext (G(a), P) = s. Define P" by the following
exact sequence:

0 >P >P~ >G(a)s >0 (3)

and no copy of G(a) splits off. Then

(i) P~ lies in G(a)1,
(ii) Horn (P, S) s Horn (P~, S) for all S in G(a)\

(iii) P~ is a projective object of (/(a)1,
(iv) ()~ extends to a functor from projective representations of Q to projective

objects in G(a)1.

Proof (i) Applying Hom(G:(a)5 —) to (3) gives

0 = Horn (G(a), P) > Horn (G(a), P~) > Horn (G(a), G(a)8)

> Ext (G(a), P) > Ext (G(a), P~) > 0.

By construction, the map from Horn (G(<x), G(<x)s) to Ext(G(a),P) is an
isomorphism, so P~ lies in G(a)x.

(ii) Apply Horn ( , S) to (3):

0 > Horn (G(a), 5) > Horn (P~, 5) > Horn (P, 5)

> Ext (G(a), 5) = 0 > Ext (P~, 5) • Ext (P, 5) = 0.

This proves both (i) and (ii).
(iv) The functor Hom(P, Q) embeds in Hom(P, 0~) since Q embeds in Q~; then

Hom(P,(T) ~ Hom(P~,e~) by (ii). This proves (iv).

By composing ()~ with an equivalence between G(<x)1 and Rep (Qja.1)), we obtain
a functor O from the projective representations of Q to the projective representations
of Q(<xx). Part (ii) of Theorem 3.1 shows that the pullback along <J> defines the
equivalence between Rep(g(ax)) and G(a)x.

We fix isomorphisms O(Pr<) ~ ®i{Pw )s«. If we have a representation of Qia1) of
dimension vector y, we define by pullback along O a representation of Q of dimension
vector 0 that lies in G(a)1. We have

For all points # in R(y), we have

a fixed vector space independent of the choice of the point q. Therefore, pullback
along O defines a map 0:P(y)-> R(fi)-Ca. The decompositions fc^ = ©,(#'<w<))f«
giving an embedding G*f(y) o> G<f(/?) under which O(P(y)) is a G<f(y)-stable subvariety

THEOREM 3.2. R{fi)-C^ GStf) x
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Proof. Let p be a point in R(JJ) — Ca; then Rp lies in G(a)1 and so it is isomorphic
to some representation Rp, for p' in <b(R(y)). So, the map from Gf(fi) x °'{y)R(y) to
R{0) - Ca is surjective.

If the map is not injective then it is not injective on some G£(fi) orbit; it would
follow from this that the stabilizer of a point in the intersection of this orbit with R(y)
is larger than its stabilizer in G£(y). However, each of these stabilizers is the group of
units of the endomorphism ring of the corresponding representation.

This proves that the map is bijective and in characteristic 0 a bijective morphism
of smooth varieties is biregular. In characteristic p, a further argument is required
which we shall sketch below. What we shall show is that if C is a commutative
fc-algebra then the morphism between the C-points of the two varieties is an
isomorphism. It follows at once that the morphism is biregular by taking C to be the
co-ordinate ring of one of the varieties.

It is enough to check this when C is a local algebra. We consider representations
of Q over C. These are modules for A ® C which are free as C-modules,
where A is the path algebra of Q; G(a)®C is such a representation. We define
(G(a) ® C)x to be the full subcategory of such representations over C such that
Hom(G(a) ® C, - ) = 0 = Ext(G(a) (g) C, - ) . Now A~® C is still a projective
generator for this category and the map A ® C-> End(A~(g) C) = End(A~) (g) C is
still an epimorphism in the category of rings since A -*• End(A~) is an epimorphism.
So, ((j(a) ® C)1 is naturally equivalent to the category of End (A~) ® C modules free
as C-modules.

We have an induced map O c : R(y) (C) -> R(fi) (C) and since every point of
R(J3) (Q — Ca(Q corresponds to a representation in ((/(a) ® Q1, the above discussion
shows that it lies in a G/(/7) (C) orbit that intersects non-trivially with R(y) (Q . So the
induced morphism from (G<f(/?) x Gay)R{y)) (C) is surjective. It is also injective because
the stabilizer in G£(y) ( Q of a point q in R{y) (C) is the group of units of End (Rg)
and this is also the stabilizer in G<f(/?) (C) since the corresponding representation in
(G(a) (g) C)1 has the same endomorphism ring.

Thus we have shown that the morphism induces a bijection on the C-points of the
varieties for any commutative local fc-algebra and hence for any commutative k-
algebra and so the morphism is biregular.

4. The main theorem

We fix our notation for the rest of the paper. Let a be a prehomogeneous
dimension vector; so

where each <xt is a real Schur root. We assume that a is a sincere dimension vector:
that is, a(y) # 0 for all veQ0. Let {^:j= 1,...,« — s) be the dimension vector of the
n—s simple objects in lG(<x). So each fi} is a real Schur root by inductive application
of Theorem 2.4, and G(<x) lies in G{fi^)L. Let yi be the dimension vector in Qifif) that
corresponds to a. We shall need to know later that yj is sincere on Q(Jif). The next two
results give a proof of this.

LEMMA 4.1. Let 5 be a sincere prehomogeneous dimension vector. Then, G(8) is a
faithful representation.
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Proof. Let Y^KPi be a non-zero sum of distinct paths from v to w. We wish to
show that it has a non-trivial action on G(S).

Let Xx T* 0. We choose a representation R of dimension vector 6 so that R(a) # 0
for all a^Qx occurring in the path px and their composition is also non-zero; that
is, RipJ is non-zero. Further, R(a') — 0 for all other arrows. Then R(Y,^iPt) —
R(X1p1) # 0. It follows that Rg(£^iPi) ^ 0 f° r <7 o n a n ° P e n subset of R(S) and
therefore <J(<5) (£>!.</><) # 0 as required.

LEMMA 4.2. Let d be a sincere prehomogeneous dimension vector. Let G(e) be a
simple object in 1G(S). Let y be the dimension vector for Q(eL) corresponding to 3. Then
y is sincere.

Proof. We have to show that Horn (P, G(S)) ^ 0 for each indecomposable
projective object P in Gift)1. Certainly, Ext (P, G(S)) = 0, since P is projective in
G(e)1; so Hom(P, G(S)) = 0 implies that PeLG{5).

On the other hand, Lemma 4.1 implies that there is an embedding 0: A -> G(SY for
some t; for example, take t = dim Horn (A, G(S)) and <fi to be the canonical map from
A to G(Sy. We have an induced map 0~:A~-> G(d)1 by Theorem 3.1 (ii).Now P is a
direct summand of A~, and Hom(.P, G(S)) = 0 implies that P lies in the kernel of <f>~;
so P 0 A = 0 and P embeds in G(e)u for some integer u. Since we assumed that G(e)
is simple in ±G(S), this implies that P ^ G(e)r for some integer r, which is absurd.

It follows that Horn (P, G(S)) ^ 0 for an indecomposable projective object P in
Gifi)1, and this means that y, the dimension vector corresponding to 6 for Q(ex), is
sincere.

We are in a position to prove the main theorem.

THEOREM 4.3. Let <x be a sincere prehomogeneous dimension vector. Let

G(OL) - ©

for real Schur roots {aj. Let {/?,: 1,...,«—s} be the dimension vectors of the simple
objects in ±G(<x). Then the semi-invariants PG<^),OL

 are algebraically independent and
generate all the semi-invariants.

Proof. By [8], the complement of the open orbit contains precisely n—s distinct
codimension 1 components. By [14], if {ff.j = 1,...,«—s) are the defining polynomials
of these n—s components, they are algebraically independent and generate the ring
of semi-invariants. It follows that we only have to prove that each PG(0)<a is one of
these fy

Let Ct = {p:PG{j}jha(p) = 0}. Then, by Theorem 3.2,

where y is the dimension vector for Qifif) corresponding to a. By Lemma 4.2, y is a
sincere dimension vector and it is also prehomogeneous for Qifif) since the open orbit
in R(a) must intersect R(y) in an open orbit for Gf(y).

There are n — s—I codimension 1 components {/),:/= 1,...,« — s— 1} of the
complement of the open orbit in R(y). By induction these are given by the vanishing
of polynomials of the form PQ(S)IY, 1= I, ...,n—s—\.
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Let Rt be the representation in (/(ft)1 corresponding to G(St); then PR a vanishes
possibly in Ci and definitely on G<f(a)Z)Z5 but nowhere else. It follows that each
G<?(a) • Dt is of codimension 1 and they are distinct since their intersections with R(y)
are distinct. So C} must be irreducible. One may also see that G<f(a) • Z), ^
G^(a) x oay)Dl has codimension 1 by a direct dimension calculation.

All that remains to show is that PG(p) a is a reduced polynomial. The weight of the
semi-invariant PG(fi)t<l is (det)^B by Lemma 1.4. But hcfv{ft(t;)} = 1 since ft is a real
Schur root, and the matrix E is invertible, so (det/ 'B cannot be a power of some other
weight, and PG^),a cannot be a power either.
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