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Abstract

We consider an agent who chooses from a set of options after receiving some
private information. This information however is unobserved by an analyst, so
from the latter’s perspective, choice is probabilistic or random. We provide a

theory in which information can be fully identified from random choice. In ad-
dition, the analyst can perform the following inferences even when information

is unobservable: (1) directly compute ex-ante valuations of option sets from ran-

dom choice and vice-versa, (2) assess which agent has better information by using
choice dispersion as a measure of informativeness, (3) determine if the agent’s
beliefs about information are dynamically consistent, and (4) test to see if these

beliefs are well-calibrated or rational.
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1 Introduction

In many economic situations, an agent’s private information is not observable. We provide
a theory for identifying this information from choice data. To be concrete, consider an

agent choosing from a set of health insurance plans at the beginning of every year. Before
choosing, she receives some private information (i.e. a signal) that influences her beliefs
about her health for the rest of the year. For example, she may obtain a health exam that

informs her about her likelihood of falling sick. As a result, her choice of an insurance plan

depends on the realization of her signal that year. An analyst (i.e. an outside observer)

knows the agent’s set of health plans but does not observe her signal. Hence, from the
analyst’s perspective, the agent’s choice of health insurance every year is probabilistic or

random. This is captured by a frequency distribution of choices over time. Call this the

individual interpretation of random choice.

Alternatively, consider a group of agents choosing from the same set of health insurance
plans in a given year. Before choosing, each agent in the group has some private information
about her health. For example, she may have some personal knowledge about her lifestyle

that affects her choice of insurance. This information however, is beyond what is captured by

all the characteristics observable by the analyst. To the analyst, agents are observationally
identical.1 Hence, from the analyst’s perspective, the choice of health insurance within the

group is probabilistic or random. This is captured by a frequency distribution of choices over
agents in the group. Call this the group interpretation of random choice.

In both the individual and group interpretations, the information affecting an agent’s

choice is strictly private i.e. it is completely unobservable to the analyst. Many problems in
information economics and decision theory fit in this framework. These include consumers
choosing a retail banking service, private investors deciding on an investment, buyers bidding

at a Treasury auction and users clicking on an online ad. In all these examples, it is likely

that an analyst is unable to directly observe an agent’s private information or has difficulty
discerning how that information will be interpreted.

In this paper, we provide a theory where private information can be completely identified
from random choice.2 We also provide tools for performing some of the standard exercises of

1 We can think of this group as the end result after applying all possible econometric (both parametric
and non-parametric) analysis available to differentiate the observable data.

2 An alternative approach is to directly elicit private information from survey data (for example, see
Finkelstein and McGarry [20] and Hendren [27]). However, respondents may not accurately report their true
beliefs or the data may be subject to other complications (such as excess concentrations at focal points). In
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inference. First, the analyst can use random choice to directly compute ex-ante valuations

of option sets (i.e. ex-ante utility in the individual interpretation or welfare in the group
interpretation) and vice-versa. Call this evaluating option sets. Second, the analyst can

assess which agent (or group of agents) has better information by using choice dispersion
as a measure of informativeness. Call this assessing informativeness. Third, if valuations
of option sets are known, then the analyst can compare them with random choice to detect

when beliefs about information are dynamically inconsistent. Call this detecting biases.

Finally, from the joint distribution of choices and payoff-relevant outcomes, the analyst can

determine if beliefs are well-calibrated or rational. Call this calibrating beliefs.
When information is observable, the above inferences are important and well-understood

exercises in information theory and information economics. We demonstrate how to carry

out the same analysis even when information is not directly observable and can only be

inferred from choice behavior. Our theorems reveal that when all relevant choice data is
available, all these inferences can be performed just as effectively as in the case with ob-
servable information. The more practical question of drawing inferences when choice data is

only partially available is left for future research.

Formally, each choice option corresponds to a state-contingent act. For example, a high-
deductible health plan corresponds to the act that yields a high (low) payoff if the agent is
healthy (sick). Call a set of acts a decision-problem. The timing is as follows. At time 0, the

agent faces a decision-problem. At time 1, she receives some private information that informs
her about the likelihood of the payoff-relevant state. At time 2, she evaluates each act based

on its subjective expected utility and chooses the best act from the decision-problem. Since

the agent’s private information is unobservable to the analyst, the only observable choice
data is a random choice rule (RCR) that specifies a choice distribution over acts for each
decision-problem.

We characterize a random utility maximization (RUM) model where the utilities are

subjective expected utilities.3 In the individual interpretation, each realization of the random

utility corresponds to a realization of the agent’s private signal. In the group interpretation,
each realization of the random utility corresponds to a random draw of an agent in the group.
In both interpretations, the probability that an act is chosen is equal to the probability

contrast, our approach follows the original spirit of Savage [43] by inferring beliefs from choice behavior.
3 For more about random utility maximization, see Block and Marschak [7], Falmagne [18], McFadden

and Richter [35] and Gul, Natenzon and Pesendorfer [25].
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that it attains the highest subjective expected utility in the decision-problem. Call this an

information representation of the RCR.
In general, RUM models have difficulty dealing with indifferences in the random utility.

We address this issue by drawing an analogy with deterministic choice. If two acts are
indifferent (i.e. they have the same utility) under deterministic choice, then the model
is silent about which act will be chosen. Similarly, under random choice, if two acts are

indifferent (i.e. they have the same random utility), then the model is silent about what

the choice probabilities are. This approach has two advantages. First, it allows the analyst

to be agnostic about choice data that is beyond the scope of the model and provides some
additional freedom to interpret data. Second, it allows for just enough flexibility so that

we can include deterministic choice as a special case of random choice. In particular, the

subjective expected utility model of Anscombe-Aumann [2] obtains as a degenerate case.

We first provide an axiomatic characterization of information representations. The first
four axioms (monotonicity, linearity, extremeness and continuity) are direct translations
of the random expected utility axioms from Gul and Pesendorfer [26]. Three new axioms

are introduced. Non-degeneracy ensures there is no universal indifference. C-determinism

ensures deterministic choice over constant acts, that is, acts that yield the same payoff
in every state. As information only affects beliefs (not tastes), constant acts yield the
same payoff regardless of beliefs so choice must be deterministic over them. Finally, S-

monotonicity ensures that acts that dominate in every state are chosen for sure. It is
the random choice version of the state-by-state monotonicity condition under deterministic

choice. Theorem 1 asserts that a RCR has an information representation if and only if it

satisfies these seven axioms. Theorem 2 asserts that analyzing binary decision-problems is
sufficient for identifying the agent’s private information. We thus provide a choice-based
theory for information.

We then introduce a key technical tool that will feature prominently in our subsequent

analysis. Given a decision-problem, consider the addition of an enticing test act (for example,

a fixed payoff). As the value of the test act decreases, the probability that some act in the
original decision-problem will be chosen over the test act will increase. Call this the test

function for the decision-problem. Test functions are cumulative distribution functions that

characterize the utility distributions of decision-problems. They serve as sufficient statistics

for identifying information.

Following, we address our main questions of inference. First, we evaluate option sets. In
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the individual interpretation, the valuation of an option set is the ex-ante utility of the set

before any information is received. In the group interpretation, the valuation of an option set
is the welfare or total utility of the set for all agents in the group.4 Given random choice, is

there a method to directly compute valuations? Theorem 3 shows that computing integrals
of test functions recovers valuations. Conversely, Theorem 4 shows that computing the
marginal valuations of decision-problems with respect to test acts recovers random choice.

These operations are mathematical inverses of each other; even when information is not

observable, the analyst can directly compute valuations from random choice and vice-versa.

This provides a methodology for elicitation that is similar to classical results from consumer
and producer theory (Theorem 4 for example is the random choice analog of Hotelling’s

Lemma).

Next, we assess informativeness. In the classical approach of Blackwell [5, 6], better

information is characterized by higher ex-ante valuations. Theorem 5 shows that under
random choice, better information is characterized by second-order stochastic dominance of
test functions. Given two agents (or two groups of agents), one is better informed than the

other if and only if test functions under the latter second-order stochastic dominate those

of the former. This equates an unobservable multi-dimensional ordering of information with
observable single-dimensional stochastic dominance rankings. Intuitively, a more informative
signal structure (or more private information in a group of observationally identical agents) is

characterized by greater dispersion or randomness in choice. For example, in the special case
where information corresponds to events that partition the state space, better information

is exactly characterized by less deterministic choice.

We then apply these results to detect biases. Suppose ex-ante valuations of option sets
are observable via a preference relation. Can the analyst detect when this preference rela-
tion is inconsistent with random choice? In the individual interpretation, this describes a

form of dynamic inconsistency where the time-0 preference relation suggests a more (or less)

informative signal than that implied by time-2 random choice. Call this prospective over-

confidence (or underconfidence). An example of the former is the diversification bias where
agents initially prefer large option sets but subsequently always choose the same option.
An example of the latter is the confirmation bias where beliefs becomes more extreme (i.e.

dispersed) after agents receive their signals. Both exhibit subjective misconfidence. These

biases also apply in the group interpretation. For example, consider a firm that chooses sets
4 McFadden [34] calls this the “social surplus”.
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of health plans based on total employee welfare (i.e valuation). Inconsistency now suggests

that the firm has an incorrect assessment of the distribution of beliefs among its employees.
By studying both valuations and random choice, the analyst can detect these biases even

when information is not directly observable.
Finally, we calibrate beliefs. As we have adopted a subjective treatment of beliefs, we

have been silent about whether beliefs are well-calibrated. By well-calibrated, we mean

that the beliefs implied by random choice are consistent with both choice data and actual

state realizations. In the individual interpretation, this implies that the agent has rational

expectations about her signals. In the group interpretation, this implies that agents have
beliefs that are predictive of actual state realizations suggesting that there is genuine private

information in the group. Given joint data on choices and state realizations, can the analyst

tell if beliefs are well-calibrated? Define a conditional test function where the payoffs of

a conditional test act are varied only in a given state. Theorem 6 shows that beliefs are
well-calibrated if and only if conditional and unconditional test functions share the same
mean. This provides a test for rational beliefs and can be combined with previous results on

subjective misconfidence to obtain measures of objective misconfidence.

2 An Informational Model of Random Choice

2.1 Random Choice Rules

Let S be a finite objective state space and X be a finite set of prizes. For example, S could

be the binary states for sick and healthy. Let �S and �X be their respective probability
simplexes. Interpret �S as the set of beliefs about S and �X as the set of lotteries over

prizes. Each choice option corresponds to a state-contingent payoff called an act. Following

the setup of Anscombe and Aumann [2], an act is formally a mapping f : S ! �X. Let
H be the set of all acts. Call a finite set of acts a decision-problem. Let K be the set of all

decision-problems, which we endow with the Hausdorff metric.5 For notational convenience,
5 For two sets F and G, the Hausdorff metric is given by

dh (F,G) := max

 

sup

f2F
inf

g2G
|f � g| , sup

g2F
inf

f2G
|f � g|

!
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let f denote the singleton set {f} whenever there is no risk of confusion.

The primitive (i.e. the choice data) is a random choice rule (RCR) that specifies choice
probabilities for acts in every decision-problem. In the individual interpretation of random

choice, the RCR specifies the frequency distribution of choices by an agent if she chooses
from the same decision-problem repeatedly. In the group interpretation of random choice,
the RCR specifies the frequency distribution of choices in the group if every agent in the

group chooses from the same decision-problem.

In the classic model of rational choice, if two acts are indifferent (i.e. they have the same

utility), then the model is silent about which act will be chosen. We introduce an analogous
innovation to address indifferences under random choice and random utility. If two acts

are indifferent (i.e. they have the same random utility), then we declare that the random

choice rule is unable to specify choice probabilities for each act in the decision-problem. For

instance, it could be that one act is chosen over another with probability a half, but any
other probability would also be perfectly consistent with the model. Similar to how the
classic model is silent about which act will be chosen in the case of indifference, the random

choice model is silent about what the choice probabilities are. In both cases, indifference

is interpreted as choice behavior that is beyond the scope of the model. This provides the
analyst with additional freedom to interpret data.

Formally, indifference is modelled as non-measurability with respect to some �-algebra

H on H. For example, if H is the Borel algebra, then this corresponds to the benchmark
case where every act is measurable and there are no indifferences. In general, H can be

coarser than the Borel algebra. Given any decision-problem, the decision-problem itself

must be measurable. This is because we know that some act will be chosen for sure from
the decision-problem. For F 2 K, let HF be the �-algebra generated by H [ {F}.6 Let ⇧

be the set of all probability measures on any measurable space of H.

Definition. A random choice rule (RCR) is a (⇢,H) where ⇢ : K ! ⇧ and ⇢ (F ) is a measure
on (H,HF ) with support F 2 K.

Let ⇢F denote the measure ⇢ (F ) for every F 2 K. A RCR thus assigns a probability measure

on (H,HF ) for each decision-problem F 2 K such that ⇢F (F ) = 1.7 Interpret ⇢F (G) as
the probability that some act in G will be chosen in the decision-problem F 2 K. For ease

6 This definition imposes a form of common measurability across all decision-problems. It can be relaxed
if we strengthen the monotonicity axiom.

7 The definition of HF ensures that ⇢F (F ) is well-defined.
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of exposition, we denote RCRs by ⇢ with the implicit understanding that it is associated

with some H. To address the fact that G ⇢ F may not be HF -measurable, we use the outer
measure8

⇢⇤F (G) := inf

G⇢G02HF

⇢F (G0
)

As both ⇢ and ⇢⇤ coincide on measurable sets, let ⇢ denote ⇢⇤ without loss of generality.

A RCR is deterministic iff all choice probabilities are either zero or one. What follows is an

example of a deterministic RCR; its purpose is to highlight (1) the use of non-measurability
to model indifferences and (2) the modeling of classic deterministic choice as a special case
of random choice.

Example 1. Let S = {s1, s2} and X = {x, y}. Without loss of generality, let f = (a, b) 2
[0, 1]2 denote the act f 2 H where

f (s1) = a�x + (1� a) �y

f (s2) = b�x + (1� b) �y

Let H be the �-algebra generated by sets of the form B ⇥ [0, 1] where B is a Borel set on

[0, 1]. Consider the RCR (⇢,H) where ⇢F (f) = 1 if f1 � g1 for all g 2 F . Acts are ranked
based on how likely they will yield prize x if state s1 occurs. This could describe an agent
who prefer x to y and believes that s1 will realize for sure. Let F = {f, g} where f1 = g1 and

note that neither f nor g is HF -measurable; the RCR is unable to specify choice probabilities

for f or g. This is because both acts yield x with the same probability in state s1. The two
acts are thus “indifferent”. Observe that ⇢ corresponds exactly to classic deterministic choice

where f is preferred to g iff f1 � g1.

2.2 Information Representation

We now describe the role of private information. Recall the timing of the model. At time 1,

the agent receives some private information about the underlying state. In the case of health

insurance for example, this could be a signal about her likelihood of falling sick. At time 2,
she chooses the best act in the decision-problem given her updated belief. Since her private

8 Lemma A1 in the Appendix ensures that this is well-defined.
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information is unobservable to the analyst, choice is probabilistic and can be modeled by the

analyst as a RCR. Call this an information representation of the RCR.
Since each signal realization corresponds to a posterior belief q 2 �S, we model private

information as an signal distribution µ over the canonical signal space �S. This approach
allows us to circumvent issues due to updating and work directly with posterior beliefs. Note
that in the group interpretation, µ is simply the distribution of beliefs in the group. Consider

the degenerate distribution µ = �q for some q 2 �S. In the individual interpretation, this

corresponds to the case where the agent receives no information and retains her initial prior.

In the group interpretation, this corresponds to the case where all agents in the group share
the same belief. In either interpretation, choice is deterministic in this example.

Let u : �X ! R be an affine utility function. The subjective expected utility of an act

f 2 H given the belief q 2 �S is q · (u � f).9 In order to study the role of information in

random choice, we hold u fixed (we relax this in Section 2.4). In the individual interpretation,
this implies that signals only affect beliefs but not tastes. In the group interpretation, this
implies that agents have heterogeneous beliefs but homogeneous tastes (i.e. risk aversion).

Choice is stochastic only as a result of varying beliefs.

Given a utility function, a signal distribution is regular iff the expected utilities of two
acts are either always or never equal. This relaxes the standard restriction in traditional
RUM where utilities are never equal.

Definition. µ is regular iff q · (u � f) = q · (u � g) with µ-measure zero or one.

Let (µ, u) consist of a regular µ and a non-constant u. Define an information representation
as follows.

Definition (Information Representation). ⇢ is represented by (µ, u) iff for f 2 F 2 K,

⇢F (f) = µ {q 2 �S | q · (u � f) � q · (u � g) 8g 2 F }

This is a RUM model where the random utilities are subjective expected utilities that

depend on unobservable private information. If a RCR is represented by (µ, u), then the

probability of choosing f 2 F is precisely the probability that f attains the highest subjective
expected utility in F . Since the signal distribution µ is subjective, any inference about the

agent’s private information can only be gleaned by studying the RCR.
9 For any act f 2 H, let u � f 2 RS denote its utility vector where (u � f) (s) = u (f (s)) for all s 2 S.

8



One of the classic critiques of subjective expected utility (especially in the context of

health insurance) is the state independence of the (taste) utility. In an information represen-
tation, utilities are independent of both the unobservable subjective states affecting infor-

mation and the objective state space S. We address the former below in Section 2.4 where
we characterize a general model that allows for unobservable utility shocks. The latter can
by addressed by any random choice generalization of the classic solutions to state-dependent

utility (see Karni, Schmeidler and Vind [30] and Karni [29]).10

We follow with two examples of information representations.

Example 2. Let S = {s1, s2}, X = {x, y} and u (a�x + (1� a) �y) = a 2 [0, 1]. Let

µ = �q for q 2 �S such that qs1 = 1. Since the agent believes that s1 will occur for sure,

she only cares about payoffs in that state. Let (µ, u) represent ⇢, and let F = {f, g}. If
u (f (s1)) � u (g (s1)), then

⇢F (f) = µ {q 2 �S | q · (u � f) � q · (u � g)} = 1

If u (f (s1)) = u (g (s1)), then q · (u � f) = q · (u � g) µ-a.s. so

⇢F (f) = ⇢F (g) = 1

and neither f nor g is HF -measurable. This is exactly the RCR described in Example 1

above.

Example 3. Let S = {s1, s2, s3}, X = {x, y} and u (a�x + (1� a) �y) = a 2 [0, 1]. Let µ

be the uniform measure on �S and (µ, u) represent ⇢. Given two acts f and g such that
u � f = v 2 [0, 1]3 and u � g = w 2 [0, 1]3, we have

⇢f[g (f) = µ {q 2 �S | q · v � q · w}

Thus, the probability that f is chosen over g is the area of �S intersected with the halfspace
q · (v � w) � 0.

Example 2 above is exactly the standard subjective utility model where agents believe

that s1 will realize for sure. It serves to demonstrate how our random choice model includes

standard subjective expected utility as a special case.
10 In practice however, the empirical literature on health insurance has largely assumed state independence

due to a dearth of empirical evidence (see Finkelstein, Luttmer and Notowidigdo [19]).
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We end this section with a technical remark about regularity. As mentioned above,

indifferences in traditional RUM must occur with probability zero. Since all choice prob-
abilities are specified, these models run into difficulty when there are indifferences in the

random utility.11 Our definition of regularity circumvents this by allowing for just enough
flexibility so that we can model indifferences using non-measurability.12 In Example 2, if
q · (u � f) = q · (u � g) µ-a.s., then neither f nor g is Hf[g-measurable. Acts that have the

same utility µ-a.s. correspond exactly to non-measurable singletons. Note that our definition

still imposes certain restrictions on µ. For example, multiple mass points are not allowed if

µ is regular.13

2.3 Axiomatic Characterization

We now provide an axiomatic characterization of information representations. Given two
decision-problems F and G, let aF + (1� a)G denote the Minkowski mixture of the two

sets for some a 2 [0, 1].14 Let extF denote the set of extreme acts of F 2 K.15 We assume
f 2 F 2 K throughout. The first three axioms below are standard restrictions on RCRs.

Axiom 1 (Monotonicity). G ⇢ F implies ⇢G (f) � ⇢F (f).

Axiom 2 (Linearity). ⇢F (f) = ⇢aF+(1�a)g (af + (1� a) g) for a 2 (0, 1).

Axiom 3 (Extremeness). ⇢F (extF ) = 1.

Monotonicity is standard for any RUM. To see this, note that when we enlarge the

decision-problem, we introduce new acts that could dominate acts in the original decision-
problem. Thus, the probability that the original acts are chosen can only decrease.

11 Note that if we assumed that acts are mappings f : S ! [0, 1], then we could obtain a consistent model by
assuming that indifferences never occur. Nevertheless, this would not allow us to include deterministic choice
as a special case. Moreover, while extending a model with these mappings to the Anscombe-Aumann space
is standard under deterministic choice, the extension under random choice is more intricate and warrants
our approach.

12 More precisely, our definition of regularity permits strictly positive measures on sets in �S that have
less than full dimension. Regularity in Gul and Pesendorfer [26] on the other hand, requires µ to be full-
dimensional (see their Lemma 2). See Block and Marschak [7] for the case of finite alternatives.

13 See Example 7 below.
14 The Minkowski mixture for {F,G} ⇢ K and a 2 [0, 1] is defined as

aF + (1� a)G := {af + (1� a) g | (f, g) 2 F ⇥G}

15 Formally, f 2 extF 2 K iff f 2 F and f 6= ag + (1� a)h for some {g, h} ⇢ F and a 2 (0, 1).
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Linearity and extremeness follow from the fact that the random utilities in our model

are linear (i.e. agents are subjective expected utility maximizers). Linearity is exactly the
random choice analog of the standard independence axiom. In fact, it is the version of the

independence axiom tested in many experimental settings (see Kahneman and Tversky [28]
for example). Extremeness implies that only extreme acts of the decision-problem will be
chosen. This follows from the fact that when linear utilities are used for evaluation, mixtures

of acts in the decision-problem are never chosen (except for cases of indifference). Note

that both rule out behaviors associated with random non-linear utilities (such as ambiguity

aversion for example).
We now introduce the continuity axiom. Given a RCR, let K0 ⇢ K be the set of decision-

problems where every act in the decision-problem is measurable with respect to the RCR.

In other words, F 2 K0 iff f 2 HF for all f 2 F . Let ⇧0 be the set of all Borel measures

on H endowed with the topology of weak convergence. Since all acts in F 2 K0 are HF -
measurable, ⇢F 2 ⇧0 for all F 2 K0 without loss of generality.16 Call ⇢ continuous iff it is
continuous on the restricted domain K0.

Axiom 4 (Continuity). ⇢ : K0 ! ⇧0 is continuous.

If H is the Borel algebra, then K0 = K. In this case, our continuity axiom condenses to

standard continuity. In general though, the RCR is not continuous over all decision-problems.
In fact, the RCR is discontinuous precisely at decision-problems that contain indifferences.
In other words, choice data that is beyond the scope of the model exhibits discontinuities

with respect to the RCR. However, every decision-problem is arbitrarily (Hausdorff) close to
some decision-problem in K0, so continuity is preserved over almost all decision-problems.17

The first four axioms are necessary and sufficient for random expected utility (see Gul

and Pesendorfer [26]). We introduce three new axioms. An act f 2 H is constant iff f (s)

is the same for all s 2 S. A decision-problem is constant iff it contains only constant acts.

Given f 2 H and s 2 S, define fs 2 H as the constant act that yields the payoff f (s) in

every state. For F 2 K, let Fs :=
S

f2F fs be the constant decision-problem consisting of fs
for all f 2 F .

Axiom 5 (Non-degeneracy). ⇢F (f) < 1 for some F and f 2 F .

Axiom 6 (C-determinism). ⇢F (f) 2 {0, 1} for constant F .
16 We can easily complete ⇢F so that it is Borel measurable.
17 See Lemma A15 in the Appendix.
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Axiom 7 (S-monotonicity). ⇢Fs (fs) = 1 for all s 2 S implies ⇢F (f) = 1.

Non-degeneracy rules out the trivial case of universal indifference. C-determinism states
that the RCR is deterministic over constant decision-problems. This is because choice is

stochastic only as a result of varying beliefs and in a constant decision-problem, every act
yields the same payoff regardless of the state. Note that if ⇢ is represented by (µ, u), then

⇢ induces a preference relation over constant acts that is exactly represented by u. S-

monotonicity states that if an act is the best regardless of which state occurs, then it must
be chosen for sure. It is the random choice analog of the standard state-by-state monotonicity
condition from deterministic choice. Taken together, Axioms 1-7 are necessary and sufficient

for an information representation.

Theorem 1. ⇢ has an information representation iff it satisfies Axioms 1-7.

Proof. See Appendix.

Theorem 2 states that studying binary choices is enough to completely identify private
information. In other words, given two agents (or two groups of agents), comparing binary

choices is sufficient to completely differentiate between the two information structures.18

Theorem 2 (Uniqueness). Suppose ⇢ and ⌧ are represented by (µ, u) and (⌫, v) respectively.

Then the following are equivalent:

(1) ⇢f[g (f) = ⌧f[g (f) for all f and g

(2) ⇢ = ⌧

(3) (µ, u) = (⌫,↵v + �) for ↵ > 0

Proof. See Appendix.

Note that if we allow the utility u to be constant, then Axiom 7 can be dropped in

Theorem 1 without loss of generality. However, the uniqueness of µ in the representation

would obviously fail in Theorem 2.

18 Chambers and Lambert [10] also study the elicitation of unobservable information. While we consider an
infinite collection of binary decision-problems to obtain uniqueness, they consider a single decision-problem
but with an infinite set of choice options.
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2.4 General Case: Random Subjective Expected Utility

We now consider a general case where choice is driven by both belief and taste (i.e. risk
preference) shocks. Let RX be the space of affine utility functions u : �X ! R and ⇡ be a

measure on �S ⇥ RX . Interpret ⇡ as the joint distribution over beliefs and tastes. Assume
that u is non-constant ⇡-a.s.. Note that the marginal distribution of ⇡ on �S corresponds

exactly to the signal distribution µ. The corresponding regularity condition on ⇡ follows.

Definition. ⇡ is regular iff q · (u � f) = q · (u � g) with ⇡-measure zero or one.

Define a random subjective expected utility (RSEU) representation as follows.

Definition (RSEU Representation). ⇢ is represented by a regular ⇡ iff for f 2 F 2 K,

⇢F (f) = ⇡
�

(q, u) 2 �S ⇥ RX | q · (u � f) � q · (u � g) 8g 2 F
 

This is a RUM model where the random subjective expected utilities depend not only
on beliefs but tastes as well. In the individual interpretation, this describes an agent who
receives unobservable shocks to both beliefs and tastes. In the group interpretation, this

describes a group with heterogeneity in both beliefs and risk aversion. Note that in the
special case where ⇡ (�S ⇥ {u}) = 1 for some non-constant u 2 RX , this reduces to an

information representation.
To characterize a RSEU representation, C-determinism must be relaxed. In particular, we

replace S-monotonicity with a state-by-state independence axiom. For f 2 H and {s1, s2} ⇢
S, define fs1,s2 2 H as the act obtained from f by replacing the payoff in s2 with the payoff

in s1. In other words, fs1,s2 (s2) = f (s1) and fs1,s2 (s) = f (s) for all s 6= s2.

Axiom 8 (S-independence). ⇢F (fs1,s2 [ fs2,s1) = 1 for F = {f, fs1,s2 , fs2,s1}

S-independence ensures that two acts that are constant over two states will be chosen
for sure over an act that is non-constant over those states. This follows from the fact that

non-constant acts are only chosen over constant acts when an agent has state-dependent
utility. This is the random choice version of the state-by-state independence axiom.19

The proposition below shows that by replacing C-determinism and S-monotonicity with
S-independence, we obtain a RSEU representation.

19 Under deterministic choice, S-independence reduces to the condition that fs1,s2 ⌫ f or fs2,s1 ⌫ f .
Theorem 7 implies that this is equivalent to state-by-state independence axiom in the presence of the other
standard axioms. Note that the definition of null states becomes unnecessary in this characterization.
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Proposition 1. ⇢ has a RSEU representation iff it satisfies Axioms 1-5 and 8.

Proof. See Appendix.

3 Test Functions

We now introduce a key technical tool that will play an important role in our subsequent
analysis. To motivate the discussion, imagine enticing the agent with a test act that yields a

fixed payoff in every state. Given a decision-problem, what is the probability that the agent

will choose some act in the original decision-problem over the test act? If the test act is

very valuable (i.e. the fixed payoff is high), then this probability will be low. As we lower
the value of the test act, this probability will rise. Call this the test function for the original
decision-problem.

To be concrete, suppose the original decision-problem is a set of health plans and the test
act corresponds to a no-deductible (full-insurance) health plan introduced by the insurance

company. The test function of the original set of plans is the probability of choosing some

original plan over the test plan as a function of the test plan’s premium. As we increase its
premium, the test plan becomes less valuable and the demand for an original plan increases.

Call an act the best (worst) act under ⇢ iff in any binary choice comparison, the act (other

act) is chosen with certainty. In other words, ⇢f[f
�

f
�

= ⇢f[f (f) = 1 for all f 2 H. If ⇢

is represented by (µ, u), then there exists a best and a worst act.20 Test acts are mixtures
between the best and worst acts.

Definition. A test act is fa
:= af + (1� a) f for some a 2 [0, 1].

Test acts are constant under information representations. Define test functions as follows.

Definition. Given ⇢, the test function of F 2 K is F⇢ : [0, 1] ! [0, 1] where

F⇢ (a) := ⇢F[fa
(F )

20 To see this, recall that C-determinism implies that ⇢ induces a preference relation over constant acts
that is represented by u. Since u is affine, we can always find a best and worst act in the set of all constant
acts. S-monotonicity ensures that these are also the best and worst acts over all acts.
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Let F⇢ denote the test function of decision-problem F 2 K given ⇢. If F = f is a singleton

act, then denote f⇢ = F⇢. As a increases, the test act fa progresses from the best to worst
act and becomes less attractive. Thus, the probability of choosing something in F increases

so test functions are increasing. They are in fact cumulative distribution functions under
information representations.

Lemma 1. If ⇢ has an information representation, then F⇢ is a cumulative for all F 2 K.

Proof. See Appendix.

Test functions are the random choice generalizations of best-worst mixtures that yield

indifference under deterministic choice. They completely characterize utility distributions.

An immediate corollary is that test functions for singletons are sufficient for identifying
information.

Corollary 1. Let ⇢ and ⌧ have information representations. Then ⇢ = ⌧ iff f⇢ = f⌧ for all

f 2 H.

Proof. Follows from Theorem 2.

Corollary 1 implies that we can treat test functions as sufficient statistics for identifying
private information. We end this section with an example.

Example 4. Recall Example 3 where S = {s1, s2, s3}, X = {x, y}, u (a�x + (1� a) �y) =

a 2 [0, 1] and µ is the uniform measure on �S. Let (µ, u) represent ⇢. Thus, u � f = (1, 1, 1)

and u � f = (0, 0, 0). For a 2 [0, 1], the test act fa satisfies

u � fa
= af + (1� a) f = (1� a, 1� a, 1� a)

Consider two act f and g where u� f = (1, 0, 0) and u� g = (b, b, b) for some b 2 [0, 1]. Their
test functions are

f⇢ (a) = ⇢f[fa
(f) = µ {q 2 �S | qs1 � 1� a} = a

g⇢ (a) = ⇢g[fa
(g) = µ {q 2 �S | b � 1� a} = 1[1�b,1] (a)

Since g is constant, its utility is fixed regardless of beliefs. Its test function increases abruptly
at the critical value 1� b. On the other hand, the utility of f depends on beliefs, so its test

function increases more gradually as a increases.
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4 Evaluating Option Sets

We now address the first exercise of inference. We show that there is an intimate relation-
ship between random choice and ex-ante valuations of option sets (i.e. decision-problems).

Consider a valuation preference relation ⌫ over decision-problems.

Definition (Subjective Learning). ⌫ is represented by (µ, u) iff it is represented by

V (F ) =

Z

�S

sup

f2F
q · (u � f) µ (dq)

In the individual interpretation, V gives the agent’s ex-ante valuation of decision-problems
prior to receiving her signal. For example, if the agent expects to receive a very informa-
tive signal about her health, then she may exhibit a strict preference for flexibility. This

is the subjective learning representation axiomatized by Dillenberger, Lleras, Sadowski and
Takeoka [16] (henceforth DLST).

In the group interpretation, V gives the total utility or “social surplus” (see McFadden[34])
of decision-problems for all agents in the group. Consider a firm that chooses health insurance

based on total employee welfare. In this case, the firm prefers more flexible (i.e. larger) sets
of health plans if it thinks that employee beliefs about their health are disperse.

In this section, assume that ⇢ has a best and worst act and F⇢ is a well-defined cumulative

for all F 2 K.21 Call ⇢ standard iff it is monotone, linear and continuous.

Definition. ⇢ is standard iff it is monotone, linear and continuous.

Any ⇢ that has an information representation is standard. On the other hand, the condition

is relatively mild; it is insufficient to ensure that a random utility representation even exists.
Given random choice data, can the analyst directly compute valuations? Note that if

a decision-problem is very valuable, then its acts will be chosen frequently and its the test

function will take on high values. Consider evaluating decision-problems as follows.

Definition. Given ⇢, let ⌫⇢ be represented by V⇢ : K ! [0, 1] where

V⇢ (F ) :=

Z

[0,1]

F⇢ (a) da

Theorem 3 confirms that ⌫⇢ is the valuation preference relation corresponding to the

RCR ⇢. The analyst can simply use V⇢ to compute valuations.
21 The best and worst acts are respectively defined as constant acts ¯f and f where ⇢f[f

�

f
�

= ⇢f[f (f) = 1

for all f 2 H.
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Theorem 3. The following are equivalent:

(1) ⇢ is represented by (µ, u)

(2) ⇢ is standard and ⌫⇢ is represented by (µ, u)

Proof. See Appendix.

Thus, if ⇢ has an information representation, then the integral of the test function F⇢

is exactly the valuation of F . An immediate consequence is that if F⇢ (a) � G⇢ (a) for all

a 2 [0, 1], then V⇢ (F ) � V⇢ (G). Thus, first-order stochastic dominance of test functions
implies higher valuations.

Theorem 3 also demonstrates that if a standard RCR induces a preference relation that
has a subjective learning representation, then that RCR must have an information represen-

tation. In fact, both the RCR and the preference relation are represented by the same (µ, u).
This serves as an alternate characterization of information representations using properties

of its induced preference relation.
The discussion above suggests a converse: given valuations, can the analyst directly

compute random choice? First, ⌫ is dominant iff it satisfies the following.

Definition. ⌫ is dominant iff fs ⌫ gs for all s 2 S implies F ⇠ F [ g for f 2 F .

Dominance is one of the axioms of a subjective learning representation in DLST. It captures

the intuition that adding acts that are dominated in every state does not affect ex-ante

valuations. Define a RCR induced by a preference relation as follows.

Definition. Given ⌫, let ⇢⌫ denote any standard ⇢ such that a.e.

⇢F[fa (fa) =
dV (F [ fa)

da

where V : K ! [0, 1] represents ⌫ and fa := af + (1� a) f .

Given any preference relation ⌫, the RCR ⇢⌫ may not even exist. On the other hand,
there could be a multiplicity of RCRs that satisfy this definition. Theorem 4 shows that for

our purposes, these issues do not matter. If ⌫ has a subjective learning representation, then
⇢⌫ exists and is the unique RCR corresponding to ⌫.

Theorem 4. The following are equivalent:

17



(1) ⌫ is represented by (µ, u)

(2) ⌫ is dominant and ⇢⌫ is represented by (µ, u)

Proof. See Appendix.

Thus, the analyst can use ⇢⌫ to directly compute random choice from valuations. The
probability that the act fa is chosen is exactly its marginal contribution to the ex-ante
valuation of the decision-problem.22 For example, consider a set of health plans that includes

a no-deductible (full-insurance) test plan. If increasing the premium of the test plan does

not affect the valuation of the set, then the test plan is never chosen from the set. Any
violation of this would indicate some form of inconsistency (which we explore in Section 6).

Given ⌫ represented by (µ, u), the corresponding RCR ⇢ = ⇢⌫ can be constructed as
follows. First, define ⇢ so that it coincides with u over all constant acts. Then use the

definition of ⇢⌫ to specify ⇢F[fa (fa) for all a 2 [0, 1] and F 2 K. Finally, linearity extends

⇢ to all decision-problems. By Theorem 4, the ⇢ so constructed is represented by (µ, u).
The other implication is that if a dominant preference relation induces a RCR that

has an information representation, then that preference relation has a subjective learning
representation. As in Theorem 3, this is an alternate characterization of subjective learning
representations using properties of its induced RCR.

Theorem 4 is the random choice version of Hotelling’s Lemma from classical producer

theory. The analogy follows if we interpret choice probabilities as “outputs”, conditional
utilities as “prices” and valuations as “profits”.23 Similar to how Hotelling’s Lemma is used
to compute firm outputs from the profit function, Theorem 4 can be used to compute random

choice from valuations.

Similar to classical results from consumer and producer theory (such as Hotelling’s
Lemma) that provide a methodology for relating data, Theorems 3 and 4 allow an ana-

lyst to compute valuations directly from random choice and vice-versa. Integrating test
functions give valuations, while differentiating valuations yields random choice. This com-

22 In the econometrics literature, this is related to the Williams-Daly-Zachary Theorem that also follows
from an envelope argument (see McFadden [34]). The presence of constant acts in the Anscombe-Aumann
setup however means Theorem 3 has no counterpart.

23 Formally, let y be a probability on F , and for each y, let Qy = {Qf}f2F denote some partition of �S

such that µ (Qf ) = y (f). For f 2 F , let pf :=

R

Qf

q·(u�f)
µ(Qf )

µ (dq) denote the conditional utility of f . Interpret
y as “output” and p as “price” so V (F ) = supy,Qy

p ·y is the maximizing “profit”. Note that a = pfa is exactly
the price of fa. The caveat is that prices are fixed in Hotelling’s Lemma while in our case, pf depends on
Qy.
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putation is direct since identification of the signal distribution and utility is unnecessary. In

the individual interpretation, observing choice data in one time period allows the analyst to
directly compute choice data in the other. We summarize these insights below.

Corollary 2. Let ⌫ and ⇢ be represented by (µ, u). Then ⌫⇢ = ⌫ and ⇢⌫ = ⇢.

Proof. Follows immediately from Theorems 3 and 4.

The following demonstrates how these operations work.

Example 5. Let S = {s1, s2}, X = {x, y} and u (a�x + (1� a) �y) = a 2 [0, 1]. Associate

each q 2 �S with t 2 [0, 1] such that t = qs1 . Let µ have density 6t (1� t). Let ⌫ and

⇢ be represented by (µ, u) and V : K ! [0, 1] represents ⌫. Two health plans are offered:
a no-deductible (full-insurance) plan f and a high-deductible plan g. Let u � f =

�

2
5 ,

2
5

�

,
u � g =

�

1
4 ,

3
4

�

and F = {f, g}.
Valuations from random choice: The test function of F is given by

F⇢ (a) = µ

⇢

t 2 [0, 1]

�

�

�

�

max

⇢

2

5

, t
1

4

+ (1� t)
3

4

�

� 1� a

�

It is straightforward to check that F⇢ (a) = 0 for a  1
4 , F⇢ (a) = 1 for a � 3

5 and

F⇢ (a) = (4a� 1)

2
(1� a)

for a 2 �

1
4 ,

3
5

�

. Integrating the test function yields the valuation of the set

V (F ) =

Z

[0,1]

F⇢ (a) da =

Z

[

1
4 ,

3
5 ]

(4a� 1)

2
(1� a) da+

2

5

⇡ 0.511

Random choice from valuations: Let fa := af + (1� a) f where a 2 [0, 1] and note that

f 2
5
= f . It is straightforward to check that for a 2 �

1
4 ,

3
4

�

V (g [ fa) =

Z

[0,1]

max

⇢

t
1

4

+ (1� t)
3

4

, a

�

µ (dt)

= �4a4 + 8a3 � 9

2

a2 + a+
27

64

Differentiating V (g [ fa) at a =

2
5 yields the probability of choosing plan f

⇢F (f) = ⇢g[fa (fa) =
dV (g [ fa)

da

�

�

�

�

a= 2
5

= (4a� 1)

2
(1� a)

�

�

a= 2
5
=

27

125
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5 Assessing Informativeness

5.1 Random Choice Characterization of Better Information

Given two agents (or two groups of agents), can the analyst use random choice to infer who

gets better information even when information is not directly observable? First, consider

the classic methodology when information is observable. A transition kernel24 on �S is
mean-preserving iff it preserves average beliefs about S.

Definition. The transition kernel K : �S ⇥ B (�S) ! [0, 1] is mean-preserving iff for all

q 2 �S,
Z

�S

p K (q, dp) = q

Let µ and ⌫ be two signal distributions. We say µ is more informative than ⌫, iff the

distribution of beliefs under µ is a mean-preserving spread of the distribution of beliefs under
⌫.

Definition. µ is more informative than ⌫ iff there is a mean-preserving transition kernel K
such that for all Q 2 B (�S)

µ (Q) =

Z

�S

K (p,Q) ⌫ (dp)

If µ is more informative than ⌫, then the information structure of ⌫ can be generated by

adding noise or “garbling” µ. This is Blackwell’s [5, 6] ranking of informativeness based on

signal sufficiency. In other words, µ is a sufficient signal for ⌫. If K is the identity kernel,
then no information is lost and ⌫ = µ.

In the classical approach, Blackwell [5, 6] showed that better information is characterized

by higher ex-ante valuations. What is the random choice characterization of better infor-

mation? First, consider a degenerate signal distribution corresponding to an uninformative

signal (or a group of agents all with the same belief). Choice is deterministic in this case, so
the test function of a singleton act corresponds a unit mass distribution. Another agent (or

group of agents) has a dispersed signal distribution. Depending on the posterior realization,
24 K : �S ⇥ B (�S) ! [0, 1] is a transition kernel iff q ! K (q,Q) is measurable for all Q 2 B (�S) and

Q ! K (q,Q) is a measure on �S for all q 2 �S.
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an act can either be valuable or not. Its test function corresponds to a more dispersed dis-

tribution. If both agents (or groups) have the same average beliefs, then the test function
under the better informed will be a mean-preserving spread of that of the other. For general

test functions, this is captured by second-order stochastic dominance.

Definition. F �SOSD G iff
R

R �dF � R

R �dG for all increasing concave � : R ! R.

Theorem 5. Let ⇢ and ⌧ be represented by (µ, u) and (⌫, u) respectively. Then µ is more

informative than ⌫ iff F⌧ �SOSD F⇢ for all F 2 K.

Proof. See Appendix.

Theorem 5 equates an unobservable multi-dimensional information ranking with an ob-
servable single-dimensional stochastic dominance relation. An analyst can assess informa-
tiveness simply by comparing test functions via second-order stochastic dominance. It is the

random choice characterization of better information. The intuition is that better informa-

tion corresponds to more dispersed (i.e. random) choice while worse information corresponds
to more concentrated (i.e. deterministic) choice. In the individual interpretation, the agent
who gets a more informative signal about her health will exhibit greater dispersion in her

annual choice of health insurance. In the group interpretation, the group with more private

information will exhibit greater variation in the distribution of health insurance choices.
In DLST, better information is characterized by a greater preference for flexibility in

the valuation preference relation. This is the preference relation version of Blackwell’s [5, 6]

result. A preference relation exhibits more preference for flexibility than another iff whenever

the other prefers a set to a singleton, the first must do so as well.

Definition. ⌫1 has more preference for flexibility than ⌫2 iff F ⌫2 f implies F ⌫1 f .

Corollary 3 relates our random choice characterization of better information with more
preference for flexibility.

Corollary 3. Let ⇢ and ⌧ be represented by (µ, u) and (⌫, u) respectively. Then the following

are equivalent:

(1) F⌧ �SOSD F⇢ for all F 2 K
(2) ⌫⇢ has more preference for flexibility than ⌫⌧

(3) µ is more informative than ⌫

21



Proof. By Theorem 5, (1) and (3) are equivalent. By Corollary 2, ⌫⇢ and ⌫⌧ are represented

by (µ, u) and (⌫, u) respectively. Hence, by Theorem 2 of DLST, (2) is equivalent to (3).

Greater preference for flexibility and greater choice dispersion are the behavioral mani-

festations of better information. In the individual interpretation, a more informative signal

corresponds to greater preference for flexibility (ex-ante) and more randomness in choice

(ex-post). In the group interpretation, more private information corresponds to a greater
group preference for flexibility and more heterogeneity in insurance choice. Note that by

Corollary 2, Corollary 3 could have been formulated entirely in terms of preference relations.

Also note the prominent role of test functions: computing their integrals evaluates options

sets while comparing them via second-order stochastic dominance assesses informativeness.
If µ is more informative than ⌫, then it follows that the two distributions must have the

same average.

Definition. µ and ⌫ share average beliefs iff
Z

�S

q µ (dq) =

Z

�S

q ⌫ (dq)

In the individual interpretation, two agents share average beliefs iff they share the same

prior about S (note the distinction between this prior and the more general “prior” over the

universal space �S ⇥ S)25. In the group interpretation, two groups share average beliefs iff
the average belief about S in both groups are the same. The analyst can determine if two
agents (or two groups of agents) share average beliefs by comparing means of singleton test

functions.

Lemma 2. Let ⇢ and ⌧ be represented by (µ, u) and (⌫, u) respectively. Then µ and ⌫ share

average beliefs iff f⇢ and f⌧ share the same mean for all f 2 H.

Proof. See Appendix.

Combined with Theorem 5, Lemma 2 implies that a necessary condition for µ being more
informative than ⌫ is that every f⇢ is a mean-preserving spread of f⌧ . This condition however

is insufficient for assessing informativeness. It corresponds to a strictly weaker stochastic

dominance relation known as the linear concave order.26 Note that if f⇢ and f⌧ have the
same mean, then f has the same ex-ante valuation. Thus, from the analyst’s perspective,

25 Agreeing on the latter prior necessitates that both agents must have identical information structures.
26 See Section 3.5 of Muller and Stoyan [36] for more about the linear concave order.
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the random choice characterization of better information may sometimes be richer than the

valuation characterization.
We end this section with an illustrative example.

Example 6. Let S = {s1, s2}, X = {x, y} and u (a�x + (1� a) �y) = a 2 [0, 1]. Associate
each q 2 �S with t 2 [0, 1] such that t = qs1 . Let µ have density 6t (1� t) and ⌫ be the

uniform distribution. Note that ⌫ is more informative than µ. Let ⇢ and ⌧ be represented by

(µ, u) and (⌫, u) respectively. As in Example 5, consider the set of plans F = {f, g} where
u � f =

�

2
5 ,

2
5

�

and u � g =

�

1
4 ,

3
4

�

. Recall that F⇢ (a) = 0 for a  1
4 , F⇢ (a) = 1 for a � 3

5 and

F⇢ (a) = (1� 4a)2 (1� a)

for a 2 �

1
4 ,

3
5

�

. The test function of F under ⌧ satisfies F⌧ (a) = 0 for a  1
4 , F⌧ (a) = 1 for

a � 3
5 and

F⌧ (a) = 2a� 1

2

for a 2 �

1
4 ,

3
5

�

. Hence, F⇢ �SOSD F⌧ . Note that the test functions of g under ⇢ and ⌧

respectively satisfy g⇢ (a) = g⌧ (a) = 0 for a  1
4 , g⇢ (a) = g⌧ (a) = 1 for a � 3

5 and

g⇢ (a) = (4a� 1)

2
(1� a)

g⌧ (a) =
1

2

(4a� 1)

for a 2 �

1
4 ,

3
4

�

. Hence, g⌧ is a mean-preserving spread of g⇢ and g⇢ �SOSD g⌧ as well.

5.2 Special Case: Partitional Information

In this section, we study the special case where information corresponds to events that

partition the state space. Fix a probability over S and consider a collection of events that

form a partition of S. For instance, the events “healthy” and “sick” form a binary partition in

the health insurance example. At time 1, an agent receives private information that reveals
which event the true state is in. Given this information, she then updates her belief according

to Bayes’ rule. At time 2, she chooses an act from the decision-problem using this updated

belief. Call this a partitional information representation of a RCR.
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Let
�

S, 2S, r
�

be a probability space for some r 2 �S. Assume that r has full support

without loss of generality.27 Given an algebra F ⇢ 2

S, let QF be the conditional probability
given F , that is, for s 2 S and the event E ⇢ S,

QF (s, E) = EF [1E]

where EF is the conditional expectation operator given F . Note that we can interpret the

conditional probability as a mapping QF : S ! �S from states to beliefs. Thus, F induces
a signal distribution µF := r � Q�1

F . Information corresponds to the event consisting of all

states s 2 S where the belief is q = QF (s). These events form a natural partition of the
state space S. Let u : �X ! R be an affine utility so for any f 2 H and s 2 S such that

QF (s) = q

EF [u � f ] = q · (u � f)

Let (F , u) denote an algebra F and a non-constant u.

We would like to consider the RCR generated by the signal distribution µF . However,

excepting the case where F is trivial, µF is in general not regular. The following example
demonstrates how violations of regularity can create issues with our method of modeling
indifferences.

Example 7. Let S = {s1, s2, s3}, X = {x, y} and u (a�x + (1� a) �y) = a 2 [0, 1]. Let r =

�

1
3 ,

1
3 ,

1
3

�

and F be generated by the partition {s1, s2 [ s3}. Let q1 := �s1 and q2 :=
1
2�s2+

1
2�s3

so

µF =

1

3

q1 +
2

3

q2

Consider acts f , g and h where u � f = (1, 0, 0), u � g = (1, 1, 0) and u � h = (0, 0, 1). Now

q1 · (u � h) = 0 < q1 · (u � g) = 1 = q1 · (u � f)
q2 · (u � f) = 0 < q2 · (u � g) = 1

2

= q2 · (u � h)

so µF {q 2 �S | q · (u � f) = q · (u � g)} =

1
3 . Hence, µF is not regular.

Let F := {f, g, h} and note that f and g are indifferent one third of the time. By similar
reasoning, g and h are indifferent two-thirds of the time. Using non-measurability to model

indifferences implies that no singleton act in F is measurable. This fails to capture all the
choice data implied by the model (it omits the fact that h will definitely not be chosen one

27 That is rs > 0 for all s 2 S.
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third of the time for example).

Example 7 illustrates that since µF violates regularity, complications arise whenever
a decision-problem contains acts that are neither always nor never equal (i.e. they have

the same random utility on some µF -measure that is strictly between zero and one). We

circumvent this issue by only considering decision-problems that do not contain such acts.
Call these generic.

Definition. F 2 K is generic under F iff for all {f, g} ⇢ F , q · (u � f) = q · (u � g) with

µF -measure zero or one.

Regularity is equivalent to requiring that all decision-problems are generic. Note that
generic decision-problems are dense in the set of all decision-problems. Moreover, any µF

can always be approximated as the limit of a sequence of regular µ’s. We are now ready for

the formal definition.

Definition (Partitional Information). ⇢ is represented by (F , u) iff for f 2 F 2 K where F

is generic,

⇢F (f) = r {s 2 S | EF [u � f ] � EF [u � g] 8g 2 F}

A partitional information representation is thus an information representation over generic
decision-problems with signal distribution µF . A decision-problem F 2 K is deterministic

under ⇢ iff ⇢F (f) 2 {0, 1} for all f 2 F . Let D⇢ denote the set of all generic decision-problems
that are deterministic under ⇢. Proposition 2 shows that in a partitional information model,
the analyst can assess informativeness simply by comparing deterministic decision-problems.

Proposition 2. Let ⇢ and ⌧ be represented by (F , u) and (G, u) respectively. Then F ⇢ G
iff D⌧ ⇢ D⇢.

Proof. See Appendix.

Thus, in the special case where information correspond to events that partition the state

space, better information is equivalent to less deterministic (i.e. more random) choice. This

captures the intuition shared by Theorem 5. Note that Theorem 5 still holds in this setting;
the only complication is dealing with test functions for non-generic decision-problems.28

28 One way to resolve this issue is to define the test function of F 2 K at a 2 [0, 1] as limb#a F⇢ (b). Since
generic decision-problems are dense, this is a well-defined cumulative. Theorem 5 then follows naturally.
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6 Detecting Biases

In this section, we study situations when valuations and random choice are inconsistent.
By inconsistent, we mean that private information inferred from ⌫ is misaligned with that

inferred from ⇢. In the individual interpretation, this misalignment describes an agent whose
prospective (ex-ante) beliefs about her signal are misaligned with her retrospective (ex-post)
beliefs. This is an informational version of the naive Strotz [45] model involving dynamic

inconsistency with regards to information. In the group interpretation, this misalignment

describes a situation where valuations of option sets indicate a more (or less) dispersed dis-

tribution of beliefs in the group than that implied by random choice. For example, a firm
that evaluates health plans based on total employee welfare may overestimate (underesti-

mate) the dispersion of employee beliefs and choose a more (less) flexible set of health plans

than necessary. Since both interpretations are similar, for ease of exposition, we focus on

the individual interpretation in this section.
Consider an agent who expects to receive a very informative signal. Ex-ante she prefers

large option sets and may be willing to pay a cost in order to postpone choice and “keep her

options open”. Ex-post however, she consistently chooses the same option. For example, in

the diversification bias, although an agent initially prefers a large option set containing a
variety of foods, in the end, she always chooses the same food from the set.29 If her choice

is driven by informational reasons, then we can infer from her behavior that she initially
anticipated a more informative signal than what her later choice suggests. This could be
due to a misplaced “false hope” of better information. Call this prospective overconfidence.

On the flip side, there may be situations where ex-post choice reflects greater confidence
than that implied by ex-ante preferences. To elaborate, consider an agent who expects to
receive a very uninformative signal. Hence, ex-ante, large option sets are not very valuable.

However, after receiving her signal, the agent becomes increasingly convinced of its infor-

mativeness. Both good and bad signals are interpreted more extremely, and she updates
her beliefs by more than what she anticipated initially. This could be the result of some

confirmatory bias where consecutive good and consecutive bad signals generate posterior
beliefs that are more dispersed.30 Call this prospective underconfidence.

29 See Read and Loewenstein [41]. Note that in our case, the uncertainty is over future beliefs and not
tastes. Nevertheless, there could be informational reasons for why one would prefer one food over another
(a food recall scandal for a certain candy for example).

30 See Rabin and Schrag [39] for a model and literature review of the confirmatory bias.

26



Since beliefs in our model are subjective, we are silent as to which period’s choice be-

havior is more “correct”. Both prospective overconfidence and underconfidence are relative
comparisons involving subjective misconfidence. This is a form of belief misalignment that

is independent of the true information structure and in some sense more fundamental. We
show in Section 7 that given a richer data set (such as the joint data over choices and state
realizations), the analyst can discern which period’s choice behavior is correct.

Let the pair (⌫, ⇢) denote both the valuation preference relation ⌫ and the RCR ⇢.

Motivated by Theorem 5, define prospective overconfidence and underconfidence as follows.

Definition. (⌫, ⇢) exhibits:

(1) prospective overconfidence iff F⇢ �SOSD F⇢⌫ for all F 2 K
(2) prospective underconfidence iff F⇢⌫ �SOSD F⇢ for all F 2 K

Corollary 4. Let ⌫ and ⇢ be represented by (µ, u) and (⌫, u) respectively. Then the following

are equivalent:

(1) (⌫, ⇢) exhibits prospective overconfidence (underconfidence)

(2) ⌫ has more (less) preference for flexibility than ⌫⇢

(3) µ is more (less) informative than ⌫

Proof. By Corollary 2, ⇢⌫ and ⌫⇢ are represented by (µ, u) and (⌫, u) respectively. The rest

follows from Corollary 3.

Corollary 4 provides a choice-theoretic foundation for subjective misconfidence. Both (1)
and (2) are restrictions on observable behavior while (3) is an unobservable condition on

the underlying information structures. Note that by Corollary 3, we could have equivalently

defined prospective overconfidence (underconfidence) via more (less) preference for flexibility.

Corollary 4 also allows the analyst to order levels of prospective overconfidence and
underconfidence via Blackwell’s partial ordering of information structures. In other words,
by studying the choice behaviors of two agents, an analyst can distinguish when one is more

prospectively overconfident (or underconfident) than the other. This provides a unifying

methodology to measure the severity of various behavioral biases, including the diversification

and confirmatory biases.
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7 Calibrating Beliefs

Following the footsteps of Savage [43] and Anscombe and Aumann [2], we have adopted a
purely subjective treatment of beliefs. Our theory identifies when observed choice behavior

is consistent with some distribution of beliefs but is unable to recognize when these beliefs
may be incorrect. For example, our notions of misconfidence in the previous section are
descriptions of subjective belief misalignment and not measures of objective misconfidence.

In this section, we incorporate additional data to achieve this distinction. By studying

the joint distribution over choices and state realizations, an analyst can test whether agents’

beliefs are objectively well-calibrated. In the individual interpretation, this implies that the
agent has rational expectations about her signals. In the group interpretation, this implies

that agents have beliefs that are predictive of actual state realizations and suggests that

there is genuine private information in the group.

If information is observable, then calibrating beliefs is a well-understood statistical ex-
ercise.31 We show that the analyst can calibrate beliefs even when information is not ob-
servable. For example, in the case of health insurance, an analyst may observe a correlation

between choosing health insurance and ultimately falling sick. Even though information is

not observable, data on both choices (whether an agent chooses health insurance or not) and
state realizations (whether an agent gets sick or not) can be analyzed to infer if beliefs are

well-calibrated.
Let r 2 �S be some observed distribution over states. Assume that r has full support

without loss of generality. In this section, the primitive consists of r and a conditional

random choice rule (cRCR) that specifies choice frequencies conditional on the realization
of each state. Recall that ⇧ is the set of all probability measures on any measurable space
of H. Define a cRCR as follows.

Definition. A Conditional Random Choice Rule (cRCR) is a (⇢,H) where ⇢ : S ⇥ K ! ⇧

and (⇢s,H) is a RCR for all s 2 S.

Unless otherwise stated, ⇢ in this section refers to a cRCR. For s 2 S and f 2 F 2 K,

⇢s,F (f) is the probability of choosing f conditional on state s realizing. For example, let f

be a health plan and s the state of falling sick. In the individual interpretation, ⇢s,F (f) is

the frequency that the agent chooses plan f in all years in which she falls sick. In the group
31 For example, see Dawid [14].
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interpretation, ⇢s,F (f) is the frequency of agents who chooses plan f among the subgroup

of agents who fall sick. The probability that f 2 F is chosen and s 2 S occurs is given by
rs⇢s,F (f). Since each ⇢s,F is a measure on (H,HF ), the measurable sets of ⇢s,F and ⇢s0,F

coincide for all s and s0. Define the unconditional RCR as

⇢̄ :=
X

s2S
rs⇢s

noting that ⇢̄F (f) is the unconditional probability of choosing f 2 F .
The probability r in conjunction with the cRCR ⇢ completely specify the joint distribution

over choices and state realizations. The marginal distributions of this joint distribution on

choices and state realizations are ⇢̄ and r respectively. In both the individual and group
interpretations, this form of state-dependent choice data is easily obtainable.32

Information now corresponds to a unique joint distribution over beliefs about S and
actual state realizations. Define µs as the signal distribution conditional on s 2 S realizing.

For example, let s 2 S be the state of falling sick. In the individual interpretation, µs is the

agent’s signal distribution in the years in which she falls sick. In the group interpretation,
µs is the distribution of beliefs in the subgroup of agents who fall sick.

Let µ := (µs)s2S be the collection of conditional signal distributions. Unless otherwise

stated, µ in this section refers to this collection. Recall that u : �X ! R is an affine utility

function. Let (µ, u) denote some µ and a non-constant u. A cRCR ⇢ has an information
representation iff each RCR ⇢s has an information representation for all s 2 S.

Definition. ⇢ is represented by (µ, u) iff ⇢s is represented by (µs, u) for all s 2 S.

By Theorem 1, a cRCR ⇢ has an information representation iff for every s 2 S, the RCR

⇢s satisfies Axioms 1 to 7. The existence of an information representation does not imply

that beliefs are well-calibrated. Well-calibrated beliefs require µ to be consistent with the

observed frequency of states r. First, define the unconditional distribution of beliefs as

µ̄ :=

X

s2S
rsµs

32 In the individual interpretation, this data can be easily obtained in experimental work (for example,
see Caplin and Dean [8]). In the group interpretation, this data is also readily available (for example, see
Chiappori and Salanié [11]).
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Definition. µ is well-calibrated iff for all s 2 S and Q 2 B (�S),

µs (Q) =

Z

Q

qs
rs
µ̄ (dq)

Well-calibration implies that µ satisfies Bayes’ rule. For each s 2 S, µs is exactly the

conditional signal distribution as implied by µ. In other words, choice behavior implies

beliefs that agree with the observed joint data on choices and state realizations. In order to
see this, let Q be the set of beliefs that rank f 2 F higher than all other acts in F . Note that

⇢s,F (f) = µs (Q) for all s 2 S. By the definitions of ⇢̄ and µ̄, we also have ⇢̄F (f) = µ̄ (Q).

Hence
rs⇢s,F (f)

⇢̄F (f)
=

rsµs (Q)

µ̄ (Q)

=

R

Q
qsµ̄ (dq)

µ̄ (Q)

so the conditional probability that s occurs given that f is chosen agrees exactly with µ. In

the individual interpretation, this implies that the agent has rational (i.e. correct) expecta-
tions about her signals. In the group interpretation, this implies that all agents in the group
have rational (i.e. correct) beliefs about their future health and so there is genuine private

information in the group. The following example illustrates.

Example 8. Let S = {s1, s2} and again, associate each q 2 �S with t 2 [0, 1] such that

t = qs1 . Let r =

�

1
2 ,

1
2

�

and µ̄ have density 6t (1� t). Let µs1 and µs2 have densities

12t2 (1� t) and 12t (1� t)2 respectively. For b 2 [0, 1],
Z

[0,b]

qs1
rs1

µ̄ (dq) =

Z

[0,b]

12t2 (1� t) dt = µs1 [0, b]

Z

[0,b]

qs2
rs2

µ̄ (dq) =

Z

[0,b]

12t (1� t)2 dt = µs2 [0, b]

Thus, µs1 and µs2 correspond exactly to the conditional distributions consistent with µ̄ and

r. If we let µ := (µs1 , µs2), then µ is well-calibrated.

Can the analyst directly test for well-calibrated beliefs? Let ⇢ be represented by (µ, u).

Since u is fixed under ⇢s for all s 2 S, both best and worst acts are well-defined for ⇢. Given

a state s 2 S, define a conditional worst act that yields the worst act if s occurs and the
best act otherwise.

Definition (Conditional worst act). For s 2 S, let f s be such that f s
(s0) = f if s0 = s and

f s
(s0) = f otherwise.
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Define a conditional test act fa
s := af s

+ (1� a) f as the mixture between the best act

and conditional worst act. Define conditional test functions as follows.

Definition. Given ⇢, the conditional test function of F 2 K is F s
⇢ : [0, rs] ! [0, 1] where

F s
⇢ (rsa) := ⇢s,F[fa

s
(F )

Conditional test functions specify conditional choice probabilities as we vary the con-

ditional test act from the best act to the conditional worst act. As in unconditional test

functions, as a increases, the conditional test act becomes less attractive so F s
⇢ increases.

The domain of the conditional test function is scaled by a factor rs. Call F s
⇢ well-defined iff

F s
⇢ (rs) = 1, so well-defined conditional test functions are cumulatives on the interval [0, rs].

Let Ks denote all decision-problems with well-defined conditional test functions.

Theorem 6. Let ⇢ be represented by (µ, u). Then µ is well-calibrated iff F s
⇢ and F⇢̄ share

the same mean for all F 2 Ks and s 2 S.

Proof. See Appendix.

Theorem 6 equates well-calibrated beliefs with the requirement that both conditional and

unconditional test functions have the same mean. It is a random choice characterization of
rational beliefs. The following example illustrates.

Example 9. Let S = {s1, s2} and again, associate each q 2 �S with t 2 [0, 1] such that
t = qs1 . Following Example 8, let r =

�

1
2 ,

1
2

�

, µ̄ have density 6t (1� t) and µs1 have density

12t2 (1� t). Let F := {f, g} where u � f =

�

1
4 ,

3
4

�

and u � g = (0, 1). Conditional on s1, the
probability of choosing something in F over a conditional test act fa

s1
is

µs1

⇢

t 2 [0, 1]

�

�

�

�

max

⇢

1� t, t
1

4

+ (1� t)
3

4

�

� 1� at

�

If we let F s1
⇢ be this conditional probability scaled by rs1 =

1
2 , then F s1

⇢ (a) = 0 for a  3
8 ,

F s1
⇢ (a) = 1 for a � 1

2 and

F s1
⇢ (a) = 1 +

1

2 (1� 4a)3
+

3

16 (1� 4a)4

for a 2 �

3
8 ,

1
2

�

. The unconditional test function F⇢̄ satisfies F⇢̄ (a) = (3� 2a) a2 for a  1
2 ,
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F⇢̄ (a) = (1� a) (1� 4a)2 for a 2 �

1
2 ,

3
4

�

and F⇢̄ (a) = 1 for a � 3
4 . Note that

Z

[0,1]

a dF s1
⇢ =

29

64

=

Z

[0,1]

a dF⇢̄

so both test functions have the same mean. This follows from the fact that µ1 is well-

calibrated.

Suppose that in addition to the cRCR ⇢, the analyst also observes the valuation preference

relation ⌫ over all decision-problems. In this case, if beliefs are well-calibrated, then any

misalignment between ⌫ and ⇢ is no longer solely subjective. For example, in the individual

interpretation, any prospective overconfidence (underconfidence) can now be interpreted as
objective overconfidence (underconfidence) with respect to the true information structure.
Hence, by enriching choice behavior with data on state realizations, the analyst can make

objective claims about belief misalignment.

8 Related Literature

This paper is related to a long literature on stochastic choice. Information representation is

a RUM model.33 Testable implications of RUM were first studied by Block and Marschak
[7], and the model was later characterized by McFadden and Richter [35], Falmagne [18] and
Cohen [13]. Gul and Pesendorfer [26] obtain a more intuitive characterization by enriching

the choice space with lotteries. More recently, Gul, Natenzon and Pesendorfer [25] charac-
terize a special class of RUM models called attribute rules that can approximate any RUM

model.
In relation to this literature, we show that a characterization of random expected utility

can be comfortably extended to the realm of Anscombe-Aumann acts. The axioms of sub-

jective expected utility yield intuitive analogs in random choice. Moreover, by allowing our

RCR to be silent on acts that are indifferent, we are able to include deterministic choice as

a special case of random choice, overcoming an issue that most RUM models have difficulty
with. Finally, one could interpret Theorem 3 as presenting an alternative characterization

of RUM via properties of its induced valuation preference relation.
33 RUM is used extensively in discrete choice estimation. Most models in this literature assume specific

parametrizations such as the logit, the probit, the nested logit, etc. (see Train [46]).
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Some recent papers have also investigated the relationship between stochastic choice and

information. Natenzon [37] studies a model where an agent gradually learns her own tastes.
Caplin and Dean [8] and Matejka and McKay [33] study cRCRs where the agent exhibits

rational inattention. Ellis [17] studies a similar model with partitional information so the
resulting cRCR is deterministic. In contrast, the information structure in our model is fixed,
which is closer to the standard model of information processing and choice. Note that since

the information structure in these other models is allowed to vary with the decision-problem,

the resulting random choice model is not necessarily a RUM model. Caplin and Martin [9]

do characterize and test a model where the information structure is fixed. We can recast
their model in our richer Anscombe-Aumann setup, in which case our conditions for a well-

calibrated cRCR imply their conditions. Note that by working with a richer setup, our

representation can be uniquely identified from choice behavior.

This paper is also related to the large literature on choice over menus (i.e. option sets).
This line of research commenced with Kreps’ [31] seminal paper on preference for flexibility
and was extended to the lottery space by Dekel, Lipman and Rustichini [15] (henceforth DLR)

and more recently to the Anscombe-Aumann space by DLST [16]. Our main contribution to

this literature is showing that there is an intimate link between ex-ante choice over option sets
(i.e. our valuation preference relation) and ex-post random choice from option sets. Theorem
4 can be interpreted as characterizing the ex-ante valuation preference relation via properties

of its ex-post random choice. Ahn and Sarver [1] also study this relationship although in the
lottery space. Their work connecting DLR preferences with Gul and Pesendorfer [26] random

expected utility is analogous to our results connecting DLST preferences with our random

choice model (their Axiom 1 is an ordinal version of Theorem 4). As our choice options reside
in the richer Anscombe-Aumann space, we are able to achieve a much tighter connection
between the two choice behaviors (we elaborate on this further in Appendix E). Fudenberg

and Strzalecki [21] also analyze the relationship between preference for flexibility and random

choice but in a dynamic setting with recursive random utilities. In contrast, in both Ahn

and Sarver [1] and our model, the ex-ante choice over option sets is static. Saito [42] also
establishes a relationship between greater preference for flexibility and more randomness,
although the agent in his model deliberately randomizes due to ambiguity aversion.

Grant, Kajii and Polak [23, 24] also study decision-theoretic models involving information.

However, they consider generalizations of the Kreps and Porteus [32] model where the agent

has an intrinsic preference for information even when she is unable to or unwilling to act on
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that information. In contrast, in our model, the agent prefers information only as a result

of its instrumental value as in the classical sense of Blackwell.
Another strand of related literature studies the various biases in regards to information

processing. This includes the confirmatory bias (Rabin and Schrag [39]), the hot-hand fallacy
(Gilovich, Vallone and Tversky [22]) and the gambler’s fallacy (Rabin [38]). Our model can be
applied to study all these behaviors. To see this, assume that ex-ante, the agent is immune to

these biases but after receiving her signal, she becomes afflicted and exhibits ex-post random

choice that reflects these biases. In this setup, the confirmatory bias and the hot-hand

fallacy correspond to prospective underconfidence while the gambler’s fallacy corresponds to
prospective overconfidence. Corollary 4 also allows us to rank the severity of these biases

via the Blackwell ordering of information structures. Finally, although not necessarily about

biased information processing, the diversification bias (Read and Loewenstein [41]) can also

be studied in this setup.
In the strategic setting, Bergemann and Morris [3] study information structures in Bayes’

correlated equilibria. In the special case where there is a single bidder, our results translate

directly to their setup for a single-person game. Thus, we could interpret our model as

describing the actions of a bidder assuming that the bids of everyone else are held fixed.
Kamenica and Gentzkow [? ] and Rayo and Segal [40] characterize optimal information
structures where a sender can control the information that a receiver gets. In these models,

the sender’s ex-ante utility is a function of the receiver’s random choice rule. Our results
relating random choice with valuations thus provide a technique for expressing the sender’s

utility in terms of the receiver’s utility and vice-versa.

Finally, this paper is related to the recent literature on testing for private information
in insurance markets. Hendren [27] uses elicited subjective beliefs from survey data to test
whether there is more private information in one group of agents (insurance rejectees) than

another group (non-rejectees). Under the group interpretation, Theorem 5 allows us to

perform this same test by inferring beliefs directly from choice data. Also, we can interpret

Theorem 6 as providing a sufficient condition for the presence of private information that is
similar to tests for private information in the empirical literature (e.g. Chiappori and Salanié
[11], Finkelstein and McGarry [20] and also Hendren [27]).
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Appendix A

A1. Representation Theorem

In this section of Appendix A, we prove the main representation theorem. Given a non-empty
collection G of subsets of H and some F 2 K, define

G \ F := {G \ F |G 2 G}

Note that if G is a �-algebra, then G \ F is the trace of G on F 2 K. For G ⇢ F 2 K, let

GF :=

\

G⇢G02HF

G0

denote the smallest HF -measurable set containing G.

Lemma (A1). Let G ⇢ F 2 K.

(1) HF \ F = H \ F .

(2) GF =

ˆG \ F 2 HF for some ˆG 2 H.

(3) F ⇢ F 0 2 K implies GF = GF 0 \ F .

Proof. Let G ⇢ F 2 K.

(1) Recall that HF := � (H [ {F}) so H ⇢ HF implies H \ F ⇢ HF \ F . Let

G := {G ⇢ H|G \ F 2 H \ F}

We first show that G is a �-algebra. Let G 2 G so G \ F 2 H \ F . Now

Gc \ F = (Gc [ F c
) \ F = (G \ F )

c \ F

= F\ (G \ F ) 2 H \ F

as H \ F is the trace �-algebra on F . Thus, Gc 2 G. For Gi ⇢ G, Gi \ F 2 H \ F so
 

[

i

Gi

!

\ F =

[

i

(Gi \ F ) 2 H \ F

Hence, G is an �-algebra

Note that H ⇢ G and F 2 G so H [ {F} ⇢ G. Thus, HF = � (H [ {F}) ⇢ G. Hence,

HF \ F ⇢ G \ F = {G0 \ F |G0
= G \ F 2 H \ F} ⇢ H \ F

38



so HF \ F = H \ F .

(2) Since HF \ F ⇢ HF , we have

GF :=

\

G⇢G02HF

G0 ⇢
\

G⇢G02HF\F
G0

Suppose g 2 T

G⇢G02HF\F G0. Let G0 be such that G ⇢ G0 2 HF . Now, G ⇢ G0 \ F 2
HF \F so by the definition of g, we have g 2 G0 \F . Since this is true for all such G0,

we have g 2 GF . Hence,

GF =

\

G⇢G02HF\F
G0

=

\

G⇢G02H\F
G0

where the second equality follows from (1). Since F is finite, we can find ˆGi 2 H where
G ⇢ ˆGi \ F for i 2 {1, . . . , k}. Hence,

GF =

\

i

⇣

ˆGi \ F
⌘

=

ˆG \ F

where ˆG :=

T

i
ˆGi 2 H. Note that GF 2 HF follows trivially.

(3) By (2), let GF =

ˆG \ F and GF 0
=

ˆG0 \ F 0 for
n

ˆG, ˆG0
o

⇢ H. Since F ⇢ F 0,

G ⇢ GF 0 \ F =

ˆG0 \ F 2 HF

so GF ⇢ GF 0\F by the definition of GF . Now, by the definition of GF 0 , GF 0 ⇢ ˆG\F 0 2
HF 0 so

GF 0 \ F ⇢
⇣

ˆG \ F 0
⌘

\ F =

ˆG \ F = GF

Hence, GF = GF 0 \ F .

Let ⇢ be a RCR. By Lemma A1, we can now define

⇢⇤F (G) := inf

G⇢G02HF

⇢F (G0
) = ⇢F (GF )

for G ⇢ F 2 K. Going forward, we simply let ⇢ denote ⇢⇤ without loss of generality. We
also employ the notation

⇢ (F,G) := ⇢F[G (F )
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for {F,G} ⇢ K. We say that two acts are tied iff they are indifferent.

Definition. f and g are tied iff ⇢ (f, g) = ⇢ (g, f) = 1.

Lemma (A2). For {f, g} ⇢ F 2 K, the following are equivalent:

(1) f and g are tied

(2) g 2 fF

(3) fF = gF

Proof. We prove that (1) implies (2) implies (3) implies (1). Let {f, g} ⇢ F 2 K. First,

suppose f and g are tied so ⇢ (f, g) = ⇢ (g, f) = 1. If ff[g = f , then g = (f [ g) \fF 2 Hf[g

so gf[g = g. As a result, ⇢ (f, g)+⇢ (g, f) = 2 > 1 a contradiction. Thus, ff[g = f [g. Now,

since f [ g ⇢ F , by Lemma A1, f [ g = ff[g = fF \ (f [ g) so g 2 fF . Hence, (1) implies
(2).

Now, suppose g 2 fF so g 2 gF \ fF . By Lemma A1, gF \ fF 2 HF so gF ⇢ gF \ fF

which implies gF ⇢ fF . If f 62 gF , then f 2 fF\gF 2 HF . As a result, fF ⇢ fF\gF implying

gF = Ø a contradiction. Thus, f 2 gF , so f 2 gF \ fF which implies fF ⇢ gF \ fF and
fF ⇢ gF . Hence, fF = gF so (2) implies (3).

Finally, assume fF = gF so f [ g ⇢ fF by definition. By Lemma A1 again,

ff[g = fF \ (f [ g) = f [ g

so ⇢ (f, g) = ⇢f[g (f [ g) = 1. By symmetric reasoning, ⇢ (g, f) = 1 so f and g are tied.

Thus, (1), (2) and (3) are all equivalent.

Lemma (A3). Let ⇢ be monotonic.

(1) For f 2 F 2 K, ⇢F (f) = ⇢F[g (f) if g is tied with some g0 2 F .

(2) Let F :=

S

i fi, G :=

S

i gi and assume fi and gi are tied for all i 2 {1, . . . , n}. Then

⇢F (fi) = ⇢G (gi) for all i 2 {1, . . . , n}.

Proof. We prove the lemma in order:

(1) By Lemma A2, we can find unique hi 2 F for i 2 {1, . . . , k} such that
�

h1
F , . . . h

k
F

 

forms a partition on F . Without loss of generality, assume g is tied with some g0 2 h1
F .
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By Lemma A2 again, h1
F[g = h1

F [ g and hi
F[g = hi

F for i > 1. By monotonicity, for all

i

⇢F
�

hi
F

�

= ⇢F
�

hi
� � ⇢F[g

�

hi
�

= ⇢F[g
�

hi
F[g

�

Now, for any f 2 hj
F , f 2 hj

F[g and

⇢F (f) = 1�
X

i 6=j

⇢F
�

hi
F

�  1�
X

i 6=j

⇢F[g
�

hi
F[g

�

= ⇢F[g (f)

By monotonicity again, ⇢F (f) = ⇢F[g (f).

(2) Let F :=

S

i fi, G :=

S

i gi and assume fi and gi are tied for all i 2 {1, . . . , n}. From

(1), we have
⇢F (fi) = ⇢F[gi (fi) = ⇢F[gi (gi) = ⇢(F[gi)\fi (gi)

Repeating this argument yields ⇢F (fi) = ⇢G (gi) for all i.

For {F, F 0} ⇢ K, we use the condensed notation FaF 0
:= aF + (1� a)F 0.

Lemma (A4). Let ⇢ be monotonic and linear. For f 2 F 2 K, let F 0
:= Fah and f 0

:= fah

for some h 2 H and a 2 (0, 1). Then ⇢F (f) = ⇢F 0
(f 0

) and f 0
F 0 = fFah.

Proof. Note that ⇢F (f) = ⇢F 0
(f 0

) follows directly from linearity, so we just need to prove

that f 0
F 0 = fFah. Let g0 := gah 2 fFah for g 2 F tied with f . By linearity, ⇢ (f 0, g0) =

⇢ (g0, f 0
) = 1 so g0 is tied with f 0. Thus, g0 2 f 0

F 0 by Lemma A2 and fFah ⇢ f 0
F 0 . Now, let

g0 2 f 0
F 0 so g0 = gah is tied with fah. By linearity again, f and g are tied so g0 2 fFah.

Thus, f 0
F 0 = fFah.

We now associate each act f 2 H with the vector f 2 [0, 1]S⇥X without loss of generality.

Find {f1, g1, . . . , fk, gk} ⇢ H such that fi 6= gi are tied and zi · zj = 0 for all i 6= j, where
zi :=

fi�gi
kfi�gik . Let Z := lin {z1, . . . , zk} be the linear space spanned by all zi with Z = 0 if no

such zi exists. Let k be maximal in that for any {f, g} ⇢ H that are tied, f � g 2 Z. Note
that Lemmas A3 and A4 ensure that k is well-defined. Define ' : H ! RS⇥X such that

' (f) := f �
X

1ik

(f · zi) zi

and let W := lin (' (H)). Lemma A5 below shows that ' projects H onto a space without

ties.
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Lemma (A5). Let ⇢ be monotonic and linear.

(1) ' (f) = ' (g) iff f and g are tied.

(2) w · ' (f) = w · f for all w 2 W .

Proof. We prove the lemma in order

(1) First, suppose f and g are tied so f � g 2 Z by the definition of Z. Thus,

f = g +
X

1ik

↵izi

for some ↵ 2 Rk. Hence,

' (f) = g +
X

1ik

↵izi �
X

1ik

" 

g +
X

1jk

↵jzj

!

· zi
#

zi

= g �
X

1ik

(g · zi) zi = ' (g)

For the converse, suppose ' (f) = ' (g) so

f �
X

1ik

(f · zi) zi = g �
X

1ik

(g · zi) zi

f � g =

X

1ik

((f � g) · zi) zi 2 Z

and f and g are tied.

(2) Note that for any f 2 H,
' (f) · zi = 0

Since W = lin (' (H)) and ' is linear, w · zi = 0 for all w 2 W . Thus,

w · ' (f) = w ·
 

f �
X

1ik

(f · zi) zi
!

= w · f

for all w 2 W .

Lemma (A6). If ⇢ satisfies Axioms 1-4, then there exists a measure ⌫ on W such that

⇢F (f) = ⌫ {w 2 W |w · f � w · g 8g 2 F}
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Proof. Let m := dim (W ). Note that if m = 0, then W = ' (H) is a singleton so everything is

tied by Lemma A5 and the result follows trivially. Thus, assume m � 1 and let �m ⇢ RS⇥X

be the m-dimensional probability simplex. Now, there exists an affine transformation T = �A

where � > 0, A is an orthogonal matrix and T � ' (H) ⇢ �

m. Let V := lin (�

m
) so

T (W ) = V . Now, for each finite set D ⇢ �

m, we can find a p⇤ 2 �

m and a 2 (0, 1) such
that Dap⇤ ⇢ T � ' (H). Thus, we can define a RCR ⌧ on �

m such that

⌧D (p) := ⇢F (f)

where T � ' (F ) = Dap⇤ and T � ' (f) = pap⇤. Linearity and Lemma A5 ensure that ⌧ is
well-defined.

Since the projection mapping ' is linear, Axioms 1-4 correspond exactly to the axioms
of Gul and Pesendorfer [26] on �

m. Thus, by their Theorem 3, there exists a measure ⌫T on

V such that for F 2 K0

⇢F (f) = ⌧T�'(F ) (T � ' (f))

= ⌫T {v 2 V | v · (T � ' (f)) � v · (T � ' (g)) 8g 2 F}

Since A�1
= A0,

v · (T � ' (f)) = v · �A (' (f)) = �
�

A�1v
� · ' (f) = �2T�1

(v) · ' (f)

Thus,

⇢F (f) = ⌫T
�

v 2 V |T�1
(v) · ' (f) � T�1

(v) · ' (g) 8g 2 F
 

= ⌫ {w 2 W |w · ' (f) � w · ' (g) 8g 2 F}
= ⌫ {w 2 W |w · f � w · g 8g 2 F}

where ⌫ := ⌫T � T is the measure on W induced by T . Note that the last equality follows

from Lemma A5.
Finally, consider any generic F 2 K, and let F0 ⇢ F be such that f 2 F0 2 K0. By

Lemma A3,

⇢F (f) = ⇢F0 (f) = ⌫ {w 2 W |w · f � w · g 8g 2 F0}
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By Lemma A5, if h and g are tied, then

w · h = w · ' (h) = w · ' (g) = w · g

for all w 2 W . Thus,

⇢F (f) = ⌫ {w 2 W |w · f � w · g 8g 2 F}

Henceforth, assume ⇢ satisfies Axioms 1-4 and let ⌫ be the measure on W as specified by
Lemma A6. We let ws 2 RX denote the vector corresponding to w 2 W and s 2 S. For

u 2 RX , define R (u) ⇢ RX as the set of all ↵u + �1 for some ↵ > 0 and � 2 R. Let

U :=

�

u 2 RX
�

�u · 1 = 0

 

and note that R (u) \ U is the set of all ↵u for some ↵ > 0.
A state s⇤ 2 S is null iff it satisfies the following.

Definition. s⇤ 2 S is null iff fs = gs for all s 6= s⇤ implies ⇢F[f (f) = ⇢F[g (g) for all F 2 K

Lemma (A7). If ⇢ is non-degenerate, then there exists a non-null state.

Proof. Suppose ⇢ is non-degenerate but all s 2 S are null and consider {f, g} ⇢ H. Let
S = {s1, . . . , sn} and for 0  i  n, define f i 2 H such that f i

sj
= gsj for j  i and

f i
sj

= fsj for j > i. Note that f 0
= f and fn

= g. By the definition of nullity, we have
⇢ (f i, f i+1

) = 1 = ⇢ (f i+1, f i
) for all i < n. Thus, f i and f i+1 are tied for all i < n so by

Lemma A2, f and g are tied. This implies ⇢ (f, g) = 1 for all {f, g} ⇢ H contradicting

non-degeneracy so there must exist at least one non-null state.

Lemma (A8). Let ⇢ satisfy Axioms 1-4 and 8. Suppose {s1, s2} ⇢ S are non-null. Define

� : W ! U ⇥ U such that

�i (w) := wsi �
✓

wsi · 1
|X|

◆

1

for i 2 {1, 2} and ⌘ := ⌫ � ��1 as the measure on U ⇥ U induced by �. Then

(1) ⌘ ({0}⇥ U) = ⌘ (U ⇥ {0}) = 0

(2) ⌘ {(u1, u2) 2 U ⇥ U |u1 · r > 0 > u2 · r} = 0 for any r 2 U

(3) ⌘ {(u1, u2) 2 U ⇥ U |u2 2 R (u1)} = 1

Proof. We prove the lemma in order.
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(1) Since s1 is non-null, we can find {f, g} ⇢ H such that fs = gs for all s 6= s1 and f and

g are not tied. Let fs1 = p and gs1 = q so

1 = ⇢ (f, g) + ⇢ (g, f)

= ⌫ {w 2 W |ws1 · p � ws1 · q}+ ⌫ {w 2 W |ws1 · q � ws1 · p}
0 = ⌫ {w 2 W |ws1 · r = 0} = ⌘ ({u1 2 U | u1 · r = 0}⇥ U)

for r := p� q. Since we can assume ⌘ is complete, ⌘ ({0}⇥ U) = 0. The case for s2 is

symmetric.

(2) For any {p, q} ⇢ �X, let {f, g, h} ⇢ H be such that fs1 = fs2 = hs1 = p, gs1 = gs2 =

hs2 = q and fs = gs = hs for all s 62 {s1, s2}. First, suppose h is not tied with either f
nor g. Hence, by S-independence,

0 = ⇢{f,g,h} (h) = ⌫ {w 2 W |w · h � max (w · f, w · g)}
= ⌫ {w 2 W |ws2 · q � ws2 · p and ws1 · p � ws1 · q}
= ⌫ {w 2 W |ws1 · r � 0 � ws2 · r}

for r := p� q 2 U . Note that if h is tied with g, then

1 = ⇢ (g, h) = ⇢ (h, g) = ⌫ {w 2 W |w · h = w · g}
= ⌫ {w 2 W |ws1 · r = 0}

Symmetrically, if h is tied with f , then ws2 · r = 0 ⌫-a.s., so we have

0 = ⌫ {w 2 W |ws1 · r > 0 > ws2 · r}
= ⌫ {w 2 W |�1 (w) · r > 0 > �2 (w) · r}
= ⌘ {(u1, u2) 2 U ⇥ U |u1 · r > 0 > u2 · r}

for any r 2 U without loss of generality.

(3) First, define the closed halfspace corresponding to r 2 U as

Hr := {u 2 U | u · r � 0}

and let E be the set of all finite intersection of such halfspaces. Consider a partition

P = {0}[Si Ai of U where for each Ai, we can find two sequences Aij 2 E and ¯Aij 2 E
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such that Aij % Ai [ {0}, Aij ⇢ int
�

¯Aij

� [ {0} and ¯Aij \ ¯Ai0j = {0} for all i0 6= i .

Note that since sets in E are ⌘-measurable, every Aij ⇥ Ai0j0 is ⌘-measurable. By (1)

1 = ⌘ (U ⇥ U) = ⌘

 

[

i

Ai ⇥
[

i

Ai

!

=

X

ii0

⌘ (Ai ⇥ Ai0)

=

X

i

⌘ (Ai ⇥ Ai) +

X

i0 6=i

⌘ (Ai ⇥ Ai0)

= ⌘

 

[

i

(Ai ⇥ Ai)

!

+

X

i0 6=i

lim

j
⌘ (Aij ⇥ Ai0j)

By a standard separating hyperplane argument (Theorem 1.3.8 of Schneider [44]), we
can find some r 2 U such that u1 · r � 0 � u2 · r for all (u1, u2) 2 ¯Aij ⇥ ¯Ai0j. Since

Aij\ {0} ⇢ int
�

¯Aij

�

, we must have u1 · r > 0 > u2 · r for all (u1, u2) 2 (Aij\ {0}) ⇥
(Ai0j\ {0}). By (1) and (2),

⌘ (Aij ⇥ Ai0j) = ⌘ ((Aij\ {0})⇥ (Ai0j\ {0}))
 ⌘ {(u1, u2) 2 U ⇥ U |u1 · r > 0 > u2 · r} = 0

so ⌘ (
S

i (Ai ⇥ Ai)) = 1.

Now, consider a sequence of increasingly finer such partitions Pk
:= {0} [S

i A
k
i such

that for any (u1, u2) 2 U ⇥ U where u2 62 R (u1), there is some partition Pk where

(u1, u2) 2 Ak
i ⇥ Ak

i0 for i 6= i0. Let

Ck := {0} [
[

i

�

Ak
i ⇥ Ak

i

�

C0 := {(u1, u2) 2 U ⇥ U |u2 2 R (u1)}

We show that Ck & C0. Since Pk0 ⇢ Pk for k0 � k, Ck0 ⇢ Ck. Note if u2 2 R (u1), then

u1 2 Hr iff u2 2 Hr for all r 2 U so C0 ⇢ Ck for all k. Suppose (u1, u2) 2 (

T

k Ck) \C0.
Since u2 62 R (u1), there is some k such that (u1, u2) 62 Ck a contradiction. Hence,
C0 =

T

k Ck so

⌘ (C0) = lim

k
⌘ (Ck) = 1

Theorem (A9). If ⇢ satisfies Axioms 1-5 and 8, then it has a RSEU representation.

Proof. Let ⇢ satisfy Axioms 1-5 and 8, and ⌫ be the measure on W as specified by Lemma
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A6. Let S⇤ ⇢ S be the set of non-null states with some s⇤ 2 S⇤ as guaranteed by Lemma

A7. Define
W0 := {w 2 W |ws 2 R (ws⇤) 8s 2 S⇤}

and note that by Lemma A8,

⌘ (W0) = ⌘

 

\

s2S⇤

{w 2 W |ws 2 R (ws⇤)}
!

= 1

Let Q : W0 ! �S be such that Qs (w) := 0 for s 2 S\S⇤ and

Qs (w) :=
↵s (w)

P

s2S⇤ ↵s (w)

for s 2 S⇤ where ws = ↵s (w)ws⇤ +�s (w)1 for ↵s (w) > 0 and �s (w) 2 R. Define ˆQ : W0 !
�S ⇥ RX such that

ˆQ (w) := (Q (w) , ws⇤)

and let ⇡ := ⌘ � ˆQ�1 be the measure on �S ⇥ RX induced by ˆQ.

For s 2 S\S⇤, let {f, h} ⇢ H be such that hs =
1

|X|1 and fs0 = hs0 for all s0 6= s. By the
definition of nullity, f and g are tied so

1 = ⇢ (f, h) = ⇢ (h, f) = ⌫

⇢

w 2 W

�

�

�

�

ws · f (s) =
1

|X| (ws · 1)
�

Thus

⇢F (f) = ⌫

(

w 2 W

�

�

�

�

�

X

s2S
ws · f (s) �

X

s2S
ws · g (s) 8g 2 F

)

= ⌫

(

w 2 W0

�

�

�

�

�

X

s2S⇤

ws · f (s) �
X

s2S⇤

ws · g (s) 8g 2 F

)

= ⇡
�

(q, u) 2 �S ⇥ RX |q · (u � f) � q · (u � g) 8g 2 F
 

Note that Lemma A8 implies that u is non-constant. Finally, we show that ⇡ is regular.

Suppose 9 {f, g} ⇢ H such that

⇡
�

(q, u) 2 �S ⇥ RX
�

� q · (u � f) = q · (u � g) 2 (0, 1)

If f and g are tied, then q · (u � f) = q · (u � g) ⇡-a.s. yielding a contradiction. Since f and
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g are not tied, then

⇡
�

(q, u) 2 �S ⇥ RX
�

� q · (u � f) = q · (u � g) = ⇢ (f, g)� (1� ⇢ (g, f)) = 0

a contradiction. Thus, ⇢ is represented by ⇡.

Theorem (A10). If ⇢ has a RSEU representation, then it satisfies Axioms 1-5 and 8.

Proof. Note that monotonicity, linearity and extremeness all follow trivially from the repre-
sentation. Note that if ⇢ is degenerate, then for any constant {f, g} ⇢ H,

1 = ⇢ (f, g) = ⇢ (g, f) = ⇡
�

(q, u) 2 �S ⇥ RX
�

�u � f = u � g 

so u is constant ⇡-a.s. a contradiction. Thus, non-degeneracy is satisfied.

To show S-independence, suppose fs1 = fs2 = hs1 , gs1 = gs2 = hs2 and fs = gs = hs for
all s 62 {s1, s2}. Note that if h is tied with f or g, then the result follows immediately, so
assume h is tied to neither. Thus,

⇢{f,g,h} (h) = ⇡
�

(q, u) 2 �S ⇥ RX
�

� q · (u � h) � max (q · (u � g) , q · (u � g)) 

= ⇡
�

(q, u) 2 �S ⇥ RX
�

�u (hs2) � u (hs1) and u (hs1) � u (hs2)
 

Note that if u (hs2) = u (hs1) ⇡-a.s., then h is tied with both, so by the regularity of ⇡,
⇢{f,g,h} (h) = 0.

Finally, we show continuity. First, consider {f, g} ⇢ Fk 2 K0 such that f 6= g and

suppose q ·(u � f) = q ·(u � g) ⇡-a.s.. Thus, ⇢ (f, g) = ⇢ (g, f) = 1 so f and g are tied. As ⇢ is
monotonic, Lemma A2 implies g 2 fFk

contradicting the fact that Fk 2 K0. As µ is regular,

q · (u � f) = q · (u � g) with ⇡-measure zero and the same holds for any {f, g} ⇢ F 2 K0.

Now, for G 2 K, let

QG :=

[

{f,g}⇢G, f 6=g

�

(q, u) 2 �S ⇥ RX
�

� q · (u � f) = q · (u � g) 

and let
¯Q := QF [

[

k

QFk

Thus, µ
�

¯Q
�

= 0 so µ (Q) = 1 for Q := �S\ ¯Q. Let ⇡̂ (A) = ⇡ (A) for A 2 B ��S ⇥ RX
�\Q.

Thus, ⇡̂ is the restriction of ⇡ to Q (see Exercise I.3.11 of Çinlar [12]).
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Now, for each Fk, let ⇠k : Q ! H be such that

⇠k (q, u) := argmax

f2Fk

q · (u � f)

and define ⇠ similarly for F . Note that both ⇠k and ⇠ are well-defined as they have domain

Q. For any B 2 B (H),

⇠�1
k (B) = {(q, u) 2 Q| ⇠k (q, u) 2 B \ Fk}

=

[

f2B\Fk

�

(q, u) 2 �S ⇥ RX
�

� q · (u � f) > q · (u � g) 8g 2 Fk

 \Q

2 B ��S ⇥ RX
� \Q

Hence, ⇠k and ⇠ are random variables. Moreover,

⇡̂ � ⇠�1
k (B) =

X

f2B\Fk

⇡̂ {(q, u) 2 Q| q · (u � f) > q · (u � g) 8g 2 Fk}

=

X

f2B\Fk

⇡
�

(q, u) 2 �S ⇥ RX
�

� q · (u � f) � q · (u � g) 8g 2 Fk

 

= ⇢Fk
(B \ Fk) = ⇢Fk

(B)

so ⇢Fk
and ⇢F are the distributions of ⇠k and ⇠ respectively. Finally, let Fk ! F and fix

(q, u) 2 Q. Let f := ⇠ (q, u) so q · (u � f) > q · (u � g) for all g 2 F . Since linear functions

are continuous, there is some l 2 N such that q · (u � fk) > q · (u � gk) for all k > l. Thus,

⇠k (q, u) = fk ! f = ⇠ (q, u) so ⇠k converges to ⇠ ⇡̂-a.s.. Since almost sure convergence implies
convergence in distribution (see Exercise III.5.29 of Çinlar [12]), ⇢Fk

! ⇢F and continuity is
satisfied.

Corollary (A11). ⇢ satisfies Axioms 1-7 iff it has an information representation.

Proof. We first prove sufficiency. Note that if ⇢ satisfies Axioms 1-6 and 8, then by Theorem
A9, ⇢ has an information representation. We show that Axioms 1-7 imply Axiom 8. Suppose

fs1 = fs2 = hs1 , gs1 = gs2 = hs2 and fs = gs = hs for all s 62 {s1, s2}. Note that if h is tied

with f or g, then the result follows immediately, so assume h is tied to neither. Note that if
hs1 and hs2 are tied, then S-monotonicity implies h is tied to both, so assume ⇢ (hs1 , hs2) = 1

without loss of generality. By S-monotonicity again, ⇢ (f, h) = 1 implying ⇢ (h, f) = 0. Thus,

⇢{f,g,h} (h) = 0 so Axiom 8 is satisfied.

For necessity, note that Axioms 1-5 all follow from Theorem A10. C-determinism follows
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trivially from the representation. To show S-monotonicity, suppose ⇢Fs (fs) = 1 for all s 2 S.

Thus, u (fs) � u (gs) for all g 2 F and s 2 S which implies q · (u � f) � q · (u � g) for all
g 2 F . Hence, ⇢F (f) = 1 from the representation yielding S-monotonicity.

A2. Uniqueness

In this section of Appendix A, we use test functions to prove the uniqueness properties of

information representations. Let Hc ⇢ H denote the set of all constant acts.

Lemma (A12). Let ⇢ be represented by (µ, u). Then for any measurable � : R ! R,

Z

[0,1]

�dF⇢ =

Z

�S

�

 

u
�

f
�� supf2F q · (u � f)
u
�

f
�� u

�

f
�

!

µ (dq)

Proof. For F 2 K, let  F : �S ! [0, 1] be such that  F (q) =

u
(

f
)

�supf2F q·(u�f)
u
(

f
)

�u
(

f
)

which is

measurable. Let �F := µ �  �1
F be the image measure on [0, 1]. By a standard change of

variables (Theorem I.5.2 of Çinlar [12]),
Z

[0,1]

� (x)�F (dx) =

Z

�S

� ( F (q))µ (dq)

We now show that the cumulative distribution function of �F is exactly F⇢. For a 2 [0, 1],

let fa
:= faf 2 Hc. Now,

�F [0, a] = µ �  �1
F [0, a] = µ {q 2 �S | a �  F (q) � 0}

= µ

⇢

q 2 �S

�

�

�

�

sup

f2F
q · (u � f) � u (fa

)

�

First, assume fa is tied with nothing in F . Since µ is regular, µ {q 2 �S| u (fa) = q · (u � f)} =

0 for all f 2 F . Thus,

�F [0, a] = 1� µ {q 2 �S| u (fa) � q · (u � f) 8f 2 F}
= 1� ⇢ (fa, F ) = ⇢ (F, fa

) = F⇢ (a)

Now, assume fa is tied with some g 2 F so u (fa
) = q · (u � g) µ-a.s.. Thus, fa 2 gF[fa so

F⇢ (a) = ⇢ (F, fa
) = 1 = �F [0, a]
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Hence, �F [0, a] = F⇢ (a) for all a 2 [0, 1]. Note that �F [0, 1] = 1 = F⇢ (1) so F⇢ is the

cumulative distribution function of �F .

For convenience, we define the following.

Definition. F �m G iff
R

R xdF (x) � R

R xdG (x).

Lemma (A13). Let ⇢ and ⌧ be represented by (µ, u) and (⌫, v) respectively. Then the fol-

lowing are equivalent:

(1) u = ↵v + � for ↵ > 0

(2) f⇢ = f⌧ for all f 2 Hc

(3) f⇢ =m f⌧ for all f 2 Hc

Proof. For f 2 Hc, let û (f) :=
u
(

f
)

�u(f)

u
(

f
)

�u
(

f
)

and note that

f⇢ (a) = ⇢
�

f, faf
�

= 1[û(f),1] (a)

Thus, the distribution of f⇢ is a Dirac measure at {û (f)} so
Z

[0,1]

a df⇢ (a) = û (f)

and �f⇢ = �{R[0,1] df⇢(a)a}. Hence, �f⇢ = �f⌧ iff f⇢ =m f⌧ so (2) and (3) are equivalent.

We now show that (1) and (3) are equivalent. Let ⌫c
⇢ and ⌫c

⌧ be the two preference

relations induced on Hc by ⇢ and ⌧ respectively, and let
�

f, f
�

and
�

g, g
�

denote their
respective worst and best acts. If (1) is true, then we can take

�

f, f
�

=

�

g, g
�

. Thus, for
f 2 Hc

Z

[0,1]

a df⇢ (a) = û (f) = v̂ (f) =

Z

[0,1]

a df⌧ (a)

so (3) is true. Now, suppose (3) is true. For any f 2 Hc, we can find {↵, �} ⇢ [0, 1] such

that f↵f ⇠c
⇢ f ⇠c

⌧ g�g. Note that

↵ = û (f) =

Z

[0,1]

a df⇢ (a) =

Z

[0,1]

a df⌧ (a) = v̂ (f) = �

so f ⇠c
⇢ f↵f iff f ⇠c

⌧ g↵g. As a result, f ⌫c
⇢ g iff f↵f ⌫c

⇢ f�f iff � � ↵ iff g↵g ⌫c
⌧ g�g

iff f ⌫c
⌧ g. Thus, ⇢ = ⌧ on Hc so u = ↵v + � for ↵ > 0. Hence, (1), (2) and (3) are all

equivalent.
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Theorem (A14). Let ⇢ and ⌧ be represented by (µ, u) and (⌫, v) respectively. Then the

following are equivalent:

(1) (µ, u) = (⌫,↵v + �) for ↵ > 0

(2) ⇢ = ⌧

(3) ⇢ (f, g) = ⌧ (f, g) for all {f, g} ⇢ H

(4) f⇢ = f⌧ for all f 2 H

Proof. Let ⇢ and ⌧ be represented by (µ, u) and (⌫, v) respectively. If (1) is true, then
⇢F (f) = ⌧F (f) for all f 2 H from the representation. Moreover, since ⇢ (f, g) = ⇢ (g, f) = 1

iff ⌧ (f, g) = ⌧ (g, f) = 1 iff f and g are tied, the partitions {fF}f2F agree under both ⇢ and

⌧ . Thus, H⇢
F = H⌧

F for all F 2 K so ⇢ = ⌧ and (2) is true. Note that (2) implies (3) implies
(4) trivially.

Hence, all that remains is to prove that (4) implies (1). Assume (4) is true so f⇢ = f⌧

for all f 2 H. By Lemma A13, this implies u = ↵v + � for ↵ > 0. Thus, without loss of
generality, we can assume 1 = u

�

f
�

= v
�

f
�

and 0 = u
�

f
�

= v
�

f
�

so u = v. Now,

 f (q) := 1� q · (u � f) = 1� q · (v � f)

where  f : �S ! [0, 1]. Let �f⇢ = µ �  �1
f and �f⌧ = ⌫ �  �1

f , so by the lemma above, they
correspond to the cumulatives f⇢ and f⌧ . Now, by Ionescu-Tulcea’s extension (Theorem

IV.4.7 of Çinlar [12]), we can create a probability space on ⌦ with two independent random
variables X : ⌦ ! �S and Y : ⌦ ! �S such that they have distributions µ and ⌫

respectively. Let � (a) = e�a, and since f⇢ = f⌧ , by Lemma A12,

E
⇥

e� f (X)
⇤

=

Z

�S

e� f (q)µ (dq)

=

Z

[0,1]

e�a df⇢ (a) =

Z

[0,1]

e�a df⌧ (a)

=

Z

�S

e� f (q)⌫ (dq) = E
⇥

e� f (Y )
⇤

for all f 2 H. Let wf 2 [0, 1]S be such that wf = 1�u�f so  f (q) = q ·wf . Since this is true

for all f 2 H, we have E
⇥

e�w·X⇤
= E

⇥

e�w·Y ⇤ for all w 2 [0, 1]S. Since Laplace transforms

completely characterize distributions (see Exercise II.2.36 of Çinlar [12]), X and Y have the
same distribution, so µ = ⌫. Thus, (µ, u) = (⌫,↵v + �) for ↵ > 0 and (1) is true. Hence, (1)

to (4) are all equivalent.
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Lemma A15 below shows that (1) every decision-problem is arbitrarily (Hausdorff) close to

some decision-problem in K0, and (2) ⇢ is discontinuous at precisely those decision-problems
that contain ties (indifferences).

Lemma (A15). Let ⇢ have an information representation.

(1) K0 is dense in K.

(2) f and g are not tied iff fk ! f and gk ! g imply ⇢ (fk, gk) ! ⇢ (f, g).

Proof. Let ⇢ be represented by (µ, u). We prove the lemma in order:

(1) Consider F 2 K. For each {fi, gi} ⇢ F tied and fi 6= gi, let

zi := u � fi � u � gi

so q · zi = 0 µ-a.s.. Let q⇤ 2 �S be in the support of µ so q⇤ · zi = 0 for all i. Now, for
every f 2 ˆF := {f 2 F | fF 6= f}, let "f > 0 and f 0 2 H be such that

u � f 0
= u � f + "fq

⇤

Since F is finite, we can assume "f 6= "g for all {f, g} ⇢ ˆF such that f 6= g. Suppose

f 0 and g0 are tied, so µ-a.s.

0 = q · (u � f 0 � u � g0) = q · (zi + ("f � "g) q
⇤
) = ("f � "g) q · q⇤

Thus, q · q⇤ = 0 µ-a.s.. Since q⇤ · q⇤ 6= 0, q⇤ is not in the support of µ yielding a

contradiction. If we let f 0
:= f for f 2 F\ ˆF , then F 0

:=

S

f2F f 0 2 K0. Setting

"kf ! 0 for all f 2 ˆF yields that F 0
k ! F . Thus, K0 is dense in K.

(2) First, let f and g not be tied and fk ! f and gk ! g. Suppose there is some

subsequence j such that all fj and gj are tied. Let

zj := u � fj � u � gj

and ¯Z := lin
⇣

S

j zj

⌘

\ [0, 1]S. Let z := u � f � u � g and since f and g are not tied,
z 62 ¯Z by linearity. Thus, z and ¯Z can be strongly separated (see Theorem 1.3.7 of

Schneider [44]), but zj ! z yielding a contradiction. Hence, there is some m 2 N such
that fk and gk are not tied for all k > m. Continuity yields ⇢ (fk, gk) ! ⇢ (f, g).
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Finally, suppose f and g are tied. Without loss of generality, let f" 2 H be such that

u � f" = u � f � "1

for some " > 0. By S-monotonicity, ⇢ (f", f) = ⇢ (f", g) = 0. Thus, if we let "! 0 and

f" ! f , then
⇢ (f", g) ! 0 < 1 = ⇢ (f, g)

violating continuity.

Appendix B

In Appendix B, we prove our results relating valuations with random choice. In this section,
consider RCRs ⇢ such that there are

�

f, ¯f
 ⇢ Hc where ⇢

�

f, f
�

= ⇢
�

f, f
�

= 1 for all f 2 H

and F⇢ is a cumulative distribution function for all F 2 K. For a 2 [0, 1], define fa
:= faf .

Lemma (B1). For any cumulative F on [0, 1],
Z

[0,1]

F (a) da = 1�
Z

[0,1]

a dF (a)

Proof. By Theorem 18.4 of Billingsley [4], we have
Z

(0,1]

a dF (a) = F (1)�
Z

(0,1]

F (a) da

The result then follows immediately.

Lemma (B2). For cumulatives F and G on [0, 1], F = G iff F = G a.e..

Proof. Note that sufficiency is trivial so we prove necessity. Let � be the Lebesgue measure

and D := {b 2 [0, 1]|F (b) 6= F (G)} so � (D) = 0. For each a < 1 and " > 0 such that

a+ "  1, let Ba," := (a, a+ "). Suppose F (b) 6= G (b) for all b 2 Ba,". Thus, Ba," ⇢ D so

0 < " = � (Ba,")  � (D)
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a contradiction. Thus, there is some b 2 Ba," such that F (b) = G (b) for all such a and

". Since both F and G are cumulatives, they are right-continuous so F (a) = G (a) for all
a < 1. Since F (1) = 1 = G (1), F = G.

Lemma (B3). Let ⇢ be monotonic and linear. Then
�

F [ f b
�

⇢
= F⇢ _ f b

⇢ for all b 2 [0, 1].

Proof. Let ⇢ be monotonic and linear. Note that if ⇢
�

f, f
�

> 0, then f and f are tied so
by Lemma A3, ⇢

�

f, f
�

= ⇢
�

f, f
�

= 1 for all f 2 H. Thus, all acts are tied, so
�

F [ f b
�

⇢
=

1 = F⇢ _ f b
⇢ trivially.

Assume ⇢
�

f, f
�

= 0, so linearity implies ⇢
�

f b, fa
�

= 1 for a � b and ⇢
�

f b, fa
�

= 0

otherwise. Hence f b
⇢ = 1[b,1], so for any F 2 K,

�

F⇢ _ f b
⇢

�

(a) =
�

F⇢ _ 1[b,1]

�

(a) =

8

<

:

1 if a � b

F⇢ (a) otherwise

Let G := F [ f b [ fa so
�

F [ f b
�

⇢
(a) = ⇢G

�

F [ f b
�

First, suppose a � b. If a > b, then ⇢
�

fa, f b
�

= 0 so ⇢G (fa
) = 0 by monotonicity. Hence,

⇢G
�

F [ f b
�

= 1. If a = b, then ⇢G
�

F [ f b
�

= 1 trivially. Thus,
�

F [ f b
�

⇢
(a) = 1 for all

a � b. Now consider a < b so ⇢
�

f b, fa
�

= 0 which implies ⇢G
�

f b
�

= 0 by monotonicity.
First, suppose fa is tied with nothing in F . Thus, by Lemma A2, fa

G = fa
F[fa = fa so

⇢F[fa
(F ) + ⇢F[fa

(fa
) = 1 = ⇢G (F ) + ⇢G (fa

)

By monotonicity, ⇢F[fa
(F ) � ⇢G (F ) and ⇢F[fa

(fa
) � ⇢G (fa

) so ⇢G (F ) = ⇢F[fa
(F ).

Hence,

⇢G
�

F [ f b
�

= ⇢G (F ) = ⇢F[fa
(F ) = F⇢ (a)

Finally, suppose fa is tied with some f 0 2 F . Thus, by Lemma A3,

⇢G
�

F [ f b
�

= ⇢F[fb

�

F [ f b
�

= 1 = F⇢ (a)

so
�

F [ f b
�

⇢
(a) = F⇢ (a) for all a < b. Thus,

�

F [ f b
�

⇢
= F⇢ _ f b

⇢ .

Definition. u is normalized iff u
�

f
�

= 0 and u
�

f
�

= 1.
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Lemma (B4). Let ⇢ be monotonic and linear. Suppose ⌫⇢ and ⌧ are represented by (µ, u).

Then F⇢ = F⌧ for all F 2 K.

Proof. Let ⇢ be monotonic and linear, and suppose ⌫⇢ and ⌧ are represented by (µ, u). By

Theorem A14, we can assume u is normalized without loss of generality. Let

V (F ) :=

Z

�S

sup

f2F
q · (u � F )µ (dq)

so V represents ⌫⇢. Since test functions are well-defined under ⇢, let f and f be the best

and worst acts respectively. We first show that ⇢
�

f, f
�

= 0. Suppose otherwise so f and
f must be tied. By Lemma A4, f b and fa are tied for all {a, b} ⇢ [0, 1]. Thus, f b

(a) = 1

for all {a, b} ⇢ [0, 1]. Hence V⇢
�

f b
�

= V⇢ (f
a
) so V

�

f b
�

= V (fa
) for all {a, b} ⇢ [0, 1]. This

implies

u
�

f
�

= V
�

f 1
�

= V
�

f b
�

= u
�

f b
�

for all b 2 [0, 1] contradicting the fact that u is non-constant. Thus, ⇢
�

f, f
�

= 0 so
Z

[0,1]

f
⇢
(a) da = 0 

Z

[0,1]

f⇢ (a) da  1 =

Z

[0,1]

f⇢ (a) da

which implies f �⇢ f �⇢ f . Thus, V
�

f
�  V (f)  V

�

f
�

for all f 2 H so u
�

f
�  u (f) 

u
�

f
�

for all f 2 Hc and
�

f, f
 ⇢ Hc. Hence, we can let f and f be the worst and best acts

of ⌧ .
Since ⌫⇢ is represented by V , we have V⇢ (F ) = � (V (F )) for some monotonic transfor-

mation � : R ! R. Now, for b 2 [0, 1],

1� b =

Z

[0,1]

f b
⇢ (a) da = V⇢

�

f b
�

= �
�

V
�

f b
��

= � (1� b)

so � (a) = a for all a 2 [0, 1]. Now, by Lemmas A12 and B1,
Z

[0,1]

F⇢ (a) da = V⇢ (F ) = V (F )

= 1�
Z

[0,1]

a dF⌧ (a) =

Z

[0,1]

F⌧ (a) da

for all F 2 K.

56



By Lemma B3, for all b 2 [0, 1],
Z

[0,1]

�

F [ f b
�

⇢
(a) da =

Z

[0,1]

�

F⇢ _ f b
⇢

�

(a) da =

Z

[0,1]

�

F⇢ _ 1[b,1]

�

(a) da

=

Z

[0,b]

F⇢ (a) da+ 1� b

Thus, for all b 2 [0, 1],

G (b) :=

Z

[0,b]

F⇢ (a) da =

Z

[0,b]

F⌧ (a) da

Let � be the measure corresponding to G so � [0, b] = G (b). Thus, by the Radon-Nikodym
Theorem (see Theorem I.5.11 of Çinlar [12]), we have a.e.

F⇢ (a) =
d�

da
= F⌧ (a)

Lemma B2 then establishes that F⇢ = F⌧ for all F 2 K.

Lemma (B5). Let ⇢ be monotonic, linear and continuous. Suppose ⌧ is represented by (µ, u).

Then F⇢ = F⌧ for all F 2 K iff ⇢ = ⌧ .

Proof. Note that necessity is trivial so we prove sufficiency. Assume u is normalized without

loss of generality. Suppose F⇢ = F⌧ for all F 2 K. Let
�

f, f , g, g
 ⇢ Hc be such that for all

f 2 H,
⇢
�

f, f
�

= ⇢
�

f, f
�

= ⌧ (g, f) = ⌧
�

f, g
�

= 1

Note that
⌧
�

f, g
�

= f ⌧ (0) = f⇢ (0) = 1

so f and g are ⌧ -tied. Thus, by Lemma A3, we can assume f = g without loss of generality.

Now, suppose u
�

f
�

> u
�

g
�

so we can find some f 2 Hc such that u
�

f
�

> u (f) and f = fbf

for some b 2 (0, 1). Now,

1 = ⌧
�

f, g
�

= f⌧ (1) = f⇢ (1) = ⇢
�

f, f
�

violating linearity. Thus, u
�

f
�

= u
�

g
�

, so f and g are also ⌧ -tied and we assume f = g

without loss of generality.
Suppose f 2 H and f b are ⌧ -tied for some b 2 [0, 1]. We show that f b and f are also

⇢-tied. Note that

1[b,1] (a) = f⌧ (a) = f⇢ (a) = ⇢ (f, fa
)
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Suppose f b is not ⇢-tied with g. Thus, ⇢
�

f b, f
�

= 0. Now, for a < b, ⇢ (f, fa
) = 0 implying

⇢ (fa, f) = 1. This violates the continuity of ⇢. Thus, f b is ⇢-tied with f .
Consider any {f, g} ⇢ H such that f and g are ⌧ -tied As both ⇢ and ⌧ are linear, we

can assume g 2 Hc without loss of generality by Lemma A4. Let f b be ⌧ -tied with g, so it
is also ⌧ -tied with f . From above, we have f b is ⇢-tied with both f and g, so both f and g

are ⇢-tied by Lemma A2.

Now, suppose f and g are ⇢-tied and we assume g 2 Hc again without loss of generality.

Let f b be ⌧ -tied with g. From above, f b is ⇢-tied with g are thus also with f . Hence

⌧ (f, g) = ⌧
�

f, f b
�

= f⌧ (b) = f⇢ (b) = 1

Now, let h 2 H be such that g = fah for some a 2 (0, 1). By linearity, we have h is ⇢-tied

with g and thus also with f b. Hence

⌧ (h, g) = ⌧
�

h, f b
�

= h⌧ (b) = h⇢ (b) = 1

By linearity, f and g are ⌧ -tied. Hence, f and g are ⇢-tied iff they are ⌧ -tied, so ties agree

on both ⇢ and ⌧ and H⇢
F = H⌧

F for all F 2 K.

Now, consider f 2 G. Note that by linearity and Lemma A3, we can assume f = fa

for some a 2 [0, 1] without loss of generality. First, suppose fa is tied with nothing in

F := G\fa. Thus,

⇢G (f) = 1� ⇢G (F ) = 1� F⇢ (a) = 1� F⌧ (a) = ⌧G (f)

Now, if fa is tied with some act in G, then let F 0
:= F\fa

G. By Lemma A3, ⇢G (f) = ⇢ (f, F 0
)

and ⌧G (f) = ⌧ (f, F 0
) where f is tied with nothing in F 0. Applying the above on F 0 yields

⇢G (f) = ⌧G (f) for all f 2 G 2 K. Hence, ⇢ = ⌧ .

Theorem (B6). Let ⇢ be monotonic, linear and continuous. Then the following are equiva-

lent:

(1) ⇢ is represented by (µ, u)

(2) ⌫⇢ is represented by (µ, u)

Proof. First suppose (1) is true and assume u is normalized without loss of generality. Let

V (F ) :=

Z

�S

sup

f2F
q · (u � F )µ (dq)
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so from Lemmas A12 and B1,

V⇢ (F ) = 1�
Z

[0,1]

a dF⇢ (a) = 1� (1� V (F )) = V (F )

so (2) is true. Now, suppose (2) is true and let ⌧ be represented by (µ, u) with u normalized.

By Lemma B4, F⇢ = F⌧ for all F 2 K. By Lemma B5, ⇢ = ⌧ so (1) is true.

Lemma (B7). Let ⌫ be dominant and ⇢ = ⇢⌫. Then for all F 2 K

(1) f ⌫ F ⌫ f

(2) F [ f ⇠ f and F [ f ⇠ F

Proof. Let ⌫ be dominant and ⇢ = ⇢⌫. We prove the lemma in order:

(1) Since ⇢ = ⇢⌫, let V : K ! [0, 1] represent ⌫ and ⇢ (fa, F ) =

dV (F[fa)
da

for fa :=

af + (1� a) f . Thus,

V (F [ f1)� V (F [ f0) =

Z

[0,1]

dV (F [ fa)

da
da =

Z

[0,1]

⇢ (fa, F ) da

Now, for F = f ,

V
�

f [ f
�� V

�

f
�

=

Z

[0,1]

⇢
�

fa, f
�

da = 1

Thus, V
�

f
�

= 0 and V
�

f [ f
�

= 1. Since f ⌫ f , by dominance,

V
�

f
�

= V
�

f [ f
�

= 1

so V
�

f
�

= 1 � V (F ) � 0 = V
�

f
�

for all F 2 K.

(2) From (1), f ⌫ f ⌫ f for all f 2 H. Let F = {f1, . . . , fk}. By iteration,

f ⇠ f [ f1 ⇠ f [ f1 [ f2 ⇠ f [ F

Now, for any f 2 F , fs ⌫ f for all s 2 S so F ⇠ F [ f .

Lemma (B8). Let ⇢ be monotone, linear and ⇢
�

f, f
�

= 0. Then a.e.

⇢ (fa, F ) = 1� F⇢ (1� a) =
dV⇢ (F [ fa)

da
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Proof. Let ⇢ be monotone, linear and ⇢
�

f, f
�

= 0 and let f b
:= f1�b. We first show that a.e.

1 = ⇢
�

f b, F
�

+ F⇢ (b) = ⇢
�

f b, F
�

+ ⇢
�

F, f b
�

By Lemma A2, this is violated iff ⇢
�

f b, F
�

> 0 and there is some act in f 2 F tied with f b.

Note that if f is tied with f b, then f cannot be tied with fa for some a 6= b as ⇢
�

f, f
�

= 0.
Thus, ⇢

�

f b, F
�

+ F⇢ (b) 6= 1 at most a finite number of points as F is finite. The result

follows.
Now, by Lemma B3,

V⇢ (F [ fb) = V⇢
�

F [ f 1�b
�

=

Z

[0,1]

⇣

F⇢ (a) _
�

f 1�b
�

⇢
(a)

⌘

da

=

Z

[0,1�b]

F⇢ (a) da+ b =

Z

[b,1]

F⇢ (1� a) da+ b

Since V⇢ (F [ f0) =
R

[0,1] F⇢ (1� a) da, we have

V⇢ (F [ fb)� V⇢ (F [ f0) = b�
Z

[0,b]

F⇢ (1� a) da

=

Z

[0,b]

(1� F⇢ (1� a)) da

Thus, we have a.e.
dV⇢ (F [ fa)

da
= 1� F⇢ (1� a) = ⇢ (fa, F )

Theorem (B9). Let ⌫ be dominant. Then the following are equivalent:

(1) ⌫ is represented by (µ, u)

(2) ⇢⌫ is represented by (µ, u)

Proof. Assume u is normalized without loss of generality and let

V (F ) :=

Z

�S

sup

f2F
q · (u � f)µ (dq)

First, suppose (1) is true and let ⇢ = ⇢⌫ where W : K ! [0, 1] represents ⌫ and
⇢ (fa, F ) =

dW (F[fa)
da

for fa := af + (1� a) f . Since V also represents ⌫, W = � � V for
some monotonic � : R ! R. By Lemma B7, f ⌫ F ⌫ f so u

�

f
� � u (f) � u

�

f
�

for all

f 2 H. Let ⌧ be represented by (µ, u) so f and f are the worst and best acts of ⌧ as well.
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By Lemmas A12 and B1,

V⌧ (F ) = 1�
Z

[0,1]

a dF⌧ (a) = 1� (1� V (F )) = V (F )

so by Lemma B8, ⌧ (fa, F ) =

dV (F[fa)
da

.

Suppose ⇢
�

f, f
�

> 0 so f and f are ⇢-tied. Thus, by Lemma A2, ⇢
�

f, f
�

= ⇢
�

f, f
�

= 1

so all acts are tied under ⇢. Thus,

W (f1)�W (f1 [ f0) =

Z

[0,1]

⇢ (fa, f1) da = 1

so f � f [ f ⇠ f by Lemma B7 a contradiction. Thus, ⇢
�

f, f
�

= 0.

Now,
W

�

f [ f
��W

�

f
�

=

Z

[0,1]

⇢
�

fa, f
�

da = 1

so W
�

f
�

= 0 and W
�

f
�

= 1 by dominance. By dominance, for b � 0,

W (fb) = W (f0 [ fb)�W (f0 [ f0) =

Z

[0,b]

⇢ (fa, f0) da = b

By the same argument, V (fb) = b so

b = W (fb) = � (V (fb)) = � (b)

so W = V . By Lemma B8, we have a.e.

1� F⌧ (1� a) = ⌧ (fa, F ) =

dW (F [ fa)

da
=

dV (F [ fa)

da
= 1� F⇢ (1� a)

so F⌧ = F⇢ a.e.. By Lemma B2, F⌧ = F⇢ so by Lemma B5, ⇢⌫ = ⇢ = ⌧ and (2) holds.

Now, suppose (2) is true and let ⇢ = ⇢⌫ where W : K ! [0, 1] represents ⌫ and ⇢ (fa, F ) =

dW (F[fa)
da

for fa := af + (1� a) f . Suppose ⇢ is represented by (µ, u) and since V⇢ = V , we

have ⇢ (fa, F ) =

dV (F[fa)
da

by Lemma B8. Now, by dominance,

1�W (F ) = W (F [ f1)�W (F [ f0) =

Z

[0,1]

⇢ (fc, F ) da

= V (F [ f1)� V (F [ f0) = 1� V (F )

so W = V proving (1).
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Appendix C

C1. Assessing Informativeness

In this section of Appendix C, we prove our result on assessing informativeness.

Theorem (C1). Let ⇢ and ⌧ be represented by (µ, u) and (⌫, u) respectively. Then the

following are equivalent:

(1) µ is more informative than ⌫

(2) F⌧ �SOSD F⇢ for all F 2 K
(3) F⌧ �m F⇢ for all F 2 K

Proof. Let ⇢ and ⌧ be represented by (µ, u) and (⌫, u) respectively and we assume u is
normalized without loss of generality. We show that (1) implies (2) implies (3) implies (1).

First, suppose µ is more informative than ⌫. Fix F 2 K and let U := u � F and h (U, q)

denote the support function of U at q 2 �S. Let  F (q) := 1 � h (U, q), and since support
functions are convex,  F is concave in q 2 �S.34 Let � : R ! R be increasing concave, and

note that by Lemma A12,
Z

[0,1]

�dF⇢ =

Z

�S

� �  F (q)µ (dq)

Now for ↵ 2 [0, 1],  F (q↵r) � ↵ F (q) + (1� ↵) F (r) so

� ( F (q↵r)) � � (↵ F (q) + (1� ↵) F (r))

� ↵� ( F (q)) + (1� ↵)� ( F (r))

34 See Theorem 1.7.5 of Schneider [44] for elementary properties of support functions.
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so � �  F is concave. By Jensen’s inequality,
Z

�S

� �  F (q)µ (dq) =

Z

�S

Z

�S

� �  F (p)K (q, dp) ⌫ (dq)


Z

�S

� �  F

✓

Z

�S

p K (q, dp)

◆

⌫ (dq)


Z

�S

� �  F (q) ⌫ (dq)

so
R

[0,1] �dF⇢ 
R

[0,1] �dF⌧ and F⌧ �SOSD F⇢ for all F 2 K.

Since �SOSD implies �m, (2) implies (3) is trivially. Now, suppose F⌧ �m F⇢ for all
F 2 K. Thus, if we let � (x) = x, then

Z

�S

 F (q)µ (dq) =

Z

[0,1]

a dF⇢ (a)


Z

[0,1]

a dF⌧ (a) =

Z

�S

 F (q) ⌫ (dq)

Thus,
Z

�S

h (u � F, q)µ (dq) �
Z

�S

h (u � F, q) ⌫ (dq)

for all F 2 K. Hence, by Blackwell [5, 6], µ is more informative than ⌫ .

Lemma (C2). Let ⇢ and ⌧ be represented by (µ, u) and (⌫, v) respectively. Then f⇢ =m f⌧

for all f 2 H iff µ and ⌫ share average beliefs and u = ↵v + � for ↵ > 0.

Proof. Let ⇢ and ⌧ be represented by (u, µ) and (v, ⌫) respectively. We assume u is normal-
ized without loss of generality. Let  f (q) := 1� q · (u � f) so by Lemma A12,

Z

[0,1]

a df⇢ (a) =

Z

�S

 f (q)µ (dq)

First, suppose µ and ⌫ share average beliefs and u = v without loss of generality. Thus,
Z

�S

 f (q)µ (dq) =  f

✓

Z

�S

q µ (dq)

◆

=  f

✓

Z

�S

q ⌫ (dq)

◆

=

Z

�S

 f (q) ⌫ (dq)

so f⇢ =m f⌧ for all f 2 H. Now assume f⇢ =m f⌧ for all f 2 H so by Lemma A13, u = ↵v+�
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for ↵ > 0. We assume u = v without loss of generality so

 f

✓

Z

�S

q µ (dq)

◆

=

Z

�S

 f (q)µ (dq)

=

Z

�S

 f (q) ⌫ (dq) =  f

✓

Z

�S

q ⌫ (dq)

◆

If we let rµ =

R

�S
q µ (dq) and r⌫ =

R

�S
q ⌫ (dq), then

1� rµ · (u � f) = 1� r⌫ · (u � f)
0 = (rµ � r⌫) · (u � f)

for all f 2 H. Thus, w · (rµ � r⌫) = 0 for all w 2 [0, 1]S implying rµ = r⌫ . Thus, µ and ⌫

share average beliefs.

Lemma C3 below shows that our definition of “more preference for flexibility than” coincides

with that of DLST.

Lemma (C3). Let ⌫1 and ⌫2 have subjective learning representations. Then ⌫1 has more

preference for flexibility than ⌫2 iff F �2 f implies F �1 f .

Proof. Let ⌫1 and ⌫2 be represented by V1 and V2 respectively. Suppose g ⌫2 f implies

g ⌫1 f . Let f and f be the worst and best acts under V2 and assume V2

�

f
�

= 0 and
V2

�

f
�

= 1 without loss of generality. Now, g ⇠2 f implies g ⇠1 f . If we let g ⇠2 faf for

some a 2 [0, 1], then V2 (g) = a and

V1 (g) = aV1

�

f
�

+ (1� a)V1

�

f
�

=

�

V1

�

f
�� V1

�

f
��

V2 (g) + V1

�

f
�

for all g 2 H. Thus, ⌫1 and ⌫2 coincide on singletons. Note that the case for g ⌫1 f implies
g ⌫2 f is symmetric.

First, suppose ⌫1 has more preference for flexibility than ⌫2. Let F �2 f and F ⇠2 g

for some g 2 H. Thus, F ⌫1 g and since g �2 f , g �1 f . Hence, F �1 f . For the converse,

suppose F �2 f implies F �1 f . Let F ⌫2 f and note that if F �2 f , then the result follows

so assume F ⇠2 f . Let g ⇠1 F for some g 2 H so g ⌫2 F . Thus, g ⌫2 f so g ⌫1 f which
implies F ⌫1 f so ⌫1 has more preference for flexibility than ⌫2.
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C2. Partitional Information Representations

In this section of Appendix C, we consider partitional information representations. Given
an algebra F on S, let QF (S) :=

S

s2S QF (s). For each q 2 QF (S), let

EF
q := {s 2 S|QF (s) = q}

and let PF :=

�

EF
q

 

q2QF (S)
be a partition on S. Also define

CF := conv (QF (S))

Lemma (C4). � (PF) = F .

Proof. Let q 2 QF (S) and note that since QF (·, {s0}) is F -measurable for all s0 2 S,

EF
q =

\

s02S
{s 2 S|QF (s, {s0}) = qs0} 2 F

Thus, EF
q 2 F for all q 2 QF (S) so PF ⇢ F . Now, let A 2 F and note that

1A (s) = EF [1A] = QF (s, A)

so QF (s, A) = 1 for s 2 A and QF (s, A) = 0 for s 62 A. Since PF is a partition of S, let

PA ⇢ PF be such that
A ⇢ E :=

[

E2PA

E

Suppose 9s 2 E\A for some E 2 PA. Thus, we can find an s0 2 A \ E so QF (s) = QF (s0).

However, QF (s0, A) = 1 > 0 = QF (s, A) a contradiction. Thus, A = E 2 � (PF) so
PF ⇢ F ⇢ � (PF). This proves that � (PF) = F (see Exercise I.1.10 of Çinlar [12]).

Lemma (C5). EF
q = {s 2 S| qs > 0} for q 2 QF (S).

Proof. Let q = QF (s) for some s 2 S. Since EF
q 2 F , QF

�

s0, EF
q

�

= 1EF
q
(s0) for all s0 2 S.

Note that since s 2 EF
q , q

�

EF
q

�

= 1 for all q 2 QF (S). Thus, qs > 0 implies s 2 EF
q .

Suppose s 2 EF
q but qs = 0. Now,

rs = E
⇥

EF
⇥

1{s}
⇤⇤

= E [QF (s0, {s})]
=

X

q02QF (S)

r
�

EF
q0
�

q0s = r
�

EF
q

�

qs = 0

contradicting the fact that r has full support. Thus, EF
q = {s 2 S| qs > 0}.
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Lemma (C6). ext (CF) ⇢ QF (S).

Proof. Suppose q 2 ¯QF := ext (CF) ⇢ CF but q 62 QF (S). If q 2 conv (QF (S)), then
q =

P

i ↵ipi for ↵i 2 (0, 1),
P

i ↵i = 1 and pi 2 QF (S) ⇢ CF . However, this contradicts

the fact that q 2 ext (CF), so q 62 conv (QF (S)) = CF another contradiction. Thus, ¯QF ⇢
QF (S).

Proposition (C7). Let ⇢ and ⌧ be represented by (F , u) and (G, u) respectively. Then the

following are equivalent:

(1) D⌧ ⇢ D⇢

(2) CF ⇢ CG

(3) F ⇢ G

Proof. Let ⇢ and ⌧ be represented by (F , u) and (G, u) respectively. Assume u is normalized
without loss of generality. We show that (1) implies (2) implies (3) implies (1).

First, suppose (1) is true but CF 6⇢ CG and let p 2 CF\CG. Note that CG is compact (see

Theorem 1.1.10 of Schneider [44]). Thus, by a separating hyperplane argument (Theorem
1.3.4 of Schneider [44]), there is a a 2 R, " > 0 and v 2 RS such that for all q 2 CG,

q · v � a+ " > a� " � p · v

Note that since CG ⇢ �S and p 2 �S, we can assume v 2 [0, 1]S without loss of generality.
Let f 2 H be such that u � f = v. Note that (a� ", a+ ") ⇢ [0, 1], and since both QF (S)

and QG (S) are finite, we can find

b 2 (a� ", a+ ") \
[

q2QF (S)[QG(S)

q · v

Thus, b 6= q · v for all q 2 QF (S) [QG (S). Let h 2 Hc such that u (h) = b so

u (h) 6= q · (u � f)

for all q 2 QF (S) [QG (S). Thus, {f, h} is generic under both F and G. Since q · (u � f) >
b = u (h) for all q 2 CG, we have

⌧ (f, h) = µG {q 2 �S| q · (u � f) � u (h)} = 1
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so {f, h} 2 D⌧ . However, u (h) > p · (u � f) for some p 2 CF . If q · (u � f) � u (h) for all

q 2 QF (S), then q · (u � f) � u (h) for all q 2 CF a contradiction. Thus, 9q 2 QF (S) such
that u (h) > q · (u � f). On the other hand, if u (h) > q · (u � f) for all q 2 QF (S), then

QG (s) · (u � f) > b > QF (s) · (u � f)

for all s 2 S. Thus, EG [u � f ]� EF [u � f ] > "0 for some "0 > 0. Taking expectations yield

E [EG [u � f ]� EF [u � f ]] = E [u � f ]� E [u � f ] = 0

a contradiction. Thus, 9 {s, s0} ⇢ S such that u (h) > QF (s) · (u � f) and QF (s0) · (u � f) �
u (h). Since we assume r has full support,

⇢ (h, f) = µF {q 2 �S| u (h) � q · (u � f)} � rs > 0

⇢ (f, h) = µF {q 2 �S| q · (u � f) � u (h)} � rs0 > 0

so {f, h} 62 D⇢ contradicting (1). Thus, (1) implies (2).

Now, assume (2) is true. Let q 2 QF (S) so q 2 CF ⇢ CG. Since ext (CG) ⇢ QG (S) from

Lemma C6, Minkowski’s Theorem (Corollary 1.4.5 of Schneider [44]) yields that q =
P

i ↵ip
i

for ↵i > 0,
P

i ↵i = 1 and pi = QG (si). Note that by Lemma C5,
P

s2EF
q
qs = 1. If pis > 0 for

some s 62 EF
q , then qs > 0 a contradiction. Thus,

P

s2EF
q
pis = 1 for all pi. Now, by Lemma

C5 again, for each pi,
EG

pi =
�

s 2 S| pis > 0

 ⇢ EF
q

so
S

i E
G
pi

⇢ EF
q . Moreover, if s 2 EF

q then qs > 0 so 9pi such that pis > 0 which implies

s 2 S

i E
G
pi

. Thus, EF
q =

S

i E
G
pi
2 G so PF ⇢ G. Hence F ⇢ G so (2) implies (3).

Finally, assume (3) is true so F ⇢ G and let F 2 D⌧ . Since F is generic under ⌧ , for all

{f, g} ⇢ F ,
r {s 2 S|EG [u � f ] = EG [u � g]} 2 {0, 1}

Thus, EG [u � f � u � g] = 0 or EG [u � f � u � g] 6= 0. Since F ⇢ G, by repeated conditioning

(see Theorem IV.1.10 of Çinlar [12]),

EF [EG [u � f � u � g]] = EF [u � f � u � g]

so EF [u � f � u � g] = 0 or EF [u � f � u � g] 6= 0 . Thus, F is generic under ⇢. Since F is
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deterministic under ⌧ , we can find a f 2 F such that

1 = ⌧F (f) = r {s 2 S|EG [u � f ] � EG [u � g] 8g 2 F}

By repeated conditioning again, EF [u � f � u � g] � 0 for all g 2 F so

1 = ⇢F (f) = r {s 2 S|EF [u � f ] � EF [u � g] 8g 2 F}

so F 2 D⇢. Hence D⌧ ⇢ D⇢ so (3) implies (1).

Appendix D

In Appendix D, we prove our results for calibrating beliefs.

Lemma (D1). Let ⇢s be represented by (µs, u) and ⇢s
�

f s, f
�

= 0.

(1) qs > 0 µs-a.s..

(2) For F 2 Ks,
Z

[0,ps]

a dF s
⇢ (a) =

Z

�S

rs
qs

✓

1� sup

f2F
q · (u � f)

◆

µs (dq)

Proof. Assume u is normalized without loss of generality. We prove the lemma in order:

(1) Note that

0 = ⇢s
�

f s, f
�

= µs

�

q 2 �S| q · �u � f s
� � 1

 

= µs {q 2 �S| 1� qs � 1} = µs {q 2 �S| 0 � qs}

Thus, qs > 0 µs-a.s..

(2) Define  s
F (q) :=

rs
qs

�

1� supf2F q · (u � f)� and let �Fs := µs � ( s
F )

�1 be the image
measure on R. By a change of variables,

Z

R
x�Fs (dx) =

Z

�S

 s
F (q)µs (dq)

Note that by (1), the right integral is well-defined. We now show that the cumulative

distribution function of �Fs is exactly F s
⇢ . For a 2 [0, 1], let fa

s := f saf and first assume
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fa
s is tied with nothing in F . Thus,

�Fs [0, rsa] = µs � ( s
F )

�1
[0, rsa] = µs {q 2 �S| rsa �  s

F (q)}

= µs

⇢

q 2 �S| sup
f2F

q · (u � f) � 1� aqs

�

= µs

⇢

q 2 �S| sup
f2F

q · (u � f) � q · (u � fa
s )

�

= ⇢s (F, f
a
s ) = F s

⇢ (rsa)

Now, if fa
s is tied with some g 2 F , then

F s
⇢ (rsa) = ⇢s (F, f

s
a) = 1 = µs

⇢

q 2 �S| sup
f2F

q · (u � f) � q · (u � f s
a)

�

= �Fs [0, rsa]

Thus, �Fs [0, rsa] = F s
⇢ (rsa) for all a 2 [0, 1]. Since F 2 Ks,

1 = F s
⇢ (rs) = �Fs [0, rs]

so F s
⇢ is the cumulative distribution function of �Fs .

Lemma (D2). Let ⇢ be represented by (µ, u).

(1) ⇢̄ is represented by (µ̄, u) where µ̄ :=

P

s rsµs.

(2) For s 2 S, qs > 0 µ̄-a.s. iff qs > 0 µs0-a.s. for all s0 2 S.

Proof. Let ⇢ be represented by (µ, u). We prove the lemma in order:

(1) Recall that the measurable sets of ⇢s,F and ⇢̄F coincide for each F 2 K. Note that ⇢s
is represented by (µs, us) for all s 2 S. Since the ties coincide, we can assume us = u

without loss of generality. For f 2 F 2 K, let

Qf,F := {q 2 �S| q · (u � f) � q · (u � f) 8g 2 F}

Thus

⇢̄F (f) = ⇢̄F (fF ) =
X

s

rs⇢s,F (fF ) =
X

s

rsµs (Qf,F ) = µ̄ (Qf,F )

so ⇢̄ is represented by (µ̄, u).
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(2) Let s 2 S and

Q : =

�

q 2 �S| q · �u � f s
� � u

�

f
� 

= {q 2 �S| 1� qs � 1}
= {q 2 �S| qs  0}

For any s0 2 S, we have ⇢s0
�

f, f s
�

= 1 = ⇢̄
�

f, f s
�

where the second inequality follows
from (1). Thus, f s is either tied with f or µs0 (Q) = µ (Q) = 0. In the case of the

former, µs0 (Q) = µ (Q) = 1. The result thus follows.

Theorem (D3). Let ⇢ be represented by (µ, u). If F s
⇢ =m F⇢̄, then µ is well-calibrated.

Proof. Let S+ :=

�

s 2 S| ⇢s
�

f s, f
�

= 0

 ⇢ S. Let s 2 S+ so qs > 0 µs-a.s. by Lemma D1.
Define the measure ⌫s on �S such that for all Q 2 B (�S),

⌫s (Q) :=

Z

Q

rs
qs
µs (dq)

We show that µ = ⌫s. Since F s
⇢ =m F⇢̄ and by Lemmas D1 and D2, we have
Z

[0,1]

adF⇢̄ (a) =

Z

[0,ps]

adF s
⇢ (a)

Z

�S

✓

1� sup

f2F
q · (u � f)

◆

µ̄ (dq) =

Z

�S

rs
qs

✓

1� sup

f2F
q · (u � f)

◆

µs (dq)

=

Z

�S

✓

1� sup

f2F
q · (u � f)

◆

⌫s (dq)

for all F 2 Ks.
Let G 2 K and Fa :=

�

Gaf
�[f s for a 2 (0, 1). Since f s 2 F , ⇢s

�

Fa, f
s
�

= 1 so Fa 2 Ks.
Let

Qa :=

(

q 2 �S

�

�

�

�

�

sup

f2Gaf

q · (u � f) � q · �u � f s
�

)

and note that

sup

f2Gaf

q · (u � f) = h
�

a (u �G) + (1� a) u
�

f
�

, q
�

= 1� a (1� h (u �G, q))
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where h (U, q) denotes the support function of the set U at q. Thus,
Z

�S



1� sup

f2Fa

q · (u � f)
�

µ̄ (dq) =

Z

Qa

(a (1� h (u �G, q))) µ̄ (dq) +

Z

Qc
a

qsµ̄ (dq)

so for all a 2 (0, 1),
Z

Qa

(1� h (u �G, q)) µ̄ (dq) +

Z

Qc
a

qs
a
µ̄ (dq) =

Z

Qa

(1� h (u �G, q)) ⌫s (dq) +

Z

Qc
a

qs
a
⌫s (dq)

Note that qs > 0 µ̄-a.s. by Lemma D2, so by dominated convergence

lim

a!0

Z

Qa

(1� h (u �G, q)) µ̄ (dq) = lim

a!0

Z

�S

(1� h (u �G, q))1Qa\{qs>0} (q) µ̄ (dq)

=

Z

�S

(1� h (u �G, q)) lim
a!0

1{qs�a(1�h(u�G,q))}\{qs>0} (q) µ̄ (dq)

=

Z

�S

(1� h (u �G, q))1{qs>0} (q) µ̄ (dq)

=

Z

�S

(1� h (u �G, q)) µ̄ (dq)

For q 2 Qc
a,

1� qs = q · (u � f s
) > 1� a (1� h (u �G, q))

qs
a

< 1� h (u �G, q)  1

so
R

Qc
a

qs
a
µ̄ (dq)  R

�S
1Qc

a
(q) µ̄ (dq). By dominated convergence again,

lim

a!0

Z

Qc
a

qs
a
µ̄ (dq)  lim

a!0

Z

�S

1Qc
a
(q) µ̄ (dq)


Z

�S

lim

a!0
1{qs<a(1�h(u�G,q))} (q) µ̄ (dq)


Z

�S

1{qs=0} (q) µ̄ (dq) = 0

By a symmetric argument for ⌫s, we have
Z

�S

(1� h (u �G, q)) µ̄ (dq) =

Z

�S

(1� h (u �G, q)) ⌫s (dq)

for all G 2 K. Letting G = f yields 1 = µ̄ (�S) = ⌫s (�S) so ⌫s is a probability measure on

�S and
Z

�S

sup

f2G
q · (u � f) µ̄ (dq) =

Z

�S

sup

f2G
q · (u � f) ⌫s (dq)
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Thus, µ̄ = ⌫s for all s 2 S by the uniqueness properties of the subjective learning represen-

tation (Theorem 1 of DLST). As a result,
Z

Q

qs
rs
µ̄ (dq) =

Z

Q

qs
rs
⌫s (dq) = µs (Q)

for all Q 2 B (�S) and s 2 S+.
Finally, for s 62 S+, ⇢s

�

f s, f
�

= 1 so qs = 0 µs-a.s.. By Lemma D2, qs = 0 µ-a.s.. Let

Q0 :=

8

<

:

q 2 �S

�

�

�

�

�

�

X

s 62S+

qs = 0

9

=

;

and note that µ (Q0) = 1. Now,

X

s2S+

rs =
X

s2S+

Z

�S

qsµ̄ (dq) =

Z

Q0

X

s2S+

qsµ̄ (dq)

=

Z

Q0

 

X

s2S
qs

!

µ̄ (dq) = µ̄ (Q0) = 1

which implies
P

s 62S+
rs = 0 a contradiction. Thus, S+ = S and µ is well-calibrated.

Theorem (D4). Let ⇢ be represented by (µ, u). If µ is well-calibrated, then F s
⇢ =m F⇢̄.

Proof. Note that the measurable sets and ties of ⇢s and ⇢̄ coincide by definition. As above,

let S+ :=

�

s 2 S| ⇢s
�

f s, f
�

= 0

 ⇢ S. Thus, s 62 S+ implies f s and f are tied and qs = 0

a.s. under all measures. By the same argument as the sufficiency proof above, letting
Q0 :=

n

q 2 �S|Ps 62S+
qs = 0

o

yields

X

s2S+

rs =
X

s2S+

Z

�S

qsµ̄ (dq) =

Z

Q0

 

X

s2S
qs

!

µ̄ (dq) = 1

a contradiction. Thus, S+ = S.

Let F 2 Ks and s 2 S. Since ⇢s
�

f s, f
�

= 0, by Lemmas A12 and D1 and the fact that
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µ is well-calibrated,
Z

[0,ps]

adF s
⇢ (a) =

Z

�S

rs
qs

✓

1� sup

f2F
q · (u � f)

◆

µs (dq)

=

Z

�S

rs
qs

✓

1� sup

f2F
q · (u � f)

◆

qs
rs
µ̄ (dq)

=

Z

�S

✓

1� sup

f2F
q · (u � f)

◆

µ̄ (dq) =

Z

[0,1]

adF⇢̄ (a)

so F s
⇢ =m F⇢̄.

Appendix E

In this section, we relate our model with that of Ahn and Sarver [1]. We focus on the
individual interpretation for ease of comparison. Ahn and Sarver introduce a condition called
consequentialism to link choice behavior from the two time periods.35 Consequentialism

translates into the following in our setting.

Axiom (Consequentialism). If ⇢F = ⇢G, then F ⇠ G.

However, consequentialism fails as a sufficient condition for linking the two choice behav-
iors in our setup. This is demonstrated in the following.

Example. Let S = {s1, s2}, X = {x, y} and u (a�x + (1� a) �y) = a. Associate each q 2 �S

with t 2 [0, 1] such that t = qs1 . Let µ have the uniform distribution and ⌫ have density
6t (1� t). Thus, µ is more informative than ⌫. Let ⌫ be represented by (µ, u) and ⇢ be

represented by (⌫, u). We show that (⌫, ⇢) satisfies consequentialism. Let F+ ⇢ F \ G

denote the support of ⇢F = ⇢G. Since f 2 F\F+ implies it is dominated by F+ µ-a.s., it is

also dominated by F+ ⌫-a.s. so F ⇠ F+. A symmetric analysis for G yields F ⇠ F+ ⇠ G.
Thus, consequentialism is satisfied, but µ 6= ⌫.

The reason for why consequentialism fails in the Anscombe-Aumann setup is that the

representation of DLR is more permissive than that of DLST. In the lottery setup, if conse-
quentialism is satisfied, then this extra freedom allows us to construct an ex-ante represen-

tation that is completely consistent with that of ex-post random choice. On the other hand,
35 Their second axiom deals with indifferences which we resolve using non-measurability.
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information is uniquely identified in the representation of DLST, so this lack of flexibility

prevents us from performing this construction even when consequentialism is satisfied. A
stronger condition is needed to perfectly equate choice behavior from the two time periods.

Axiom (Strong Consequentialism). If F⇢ and G⇢ share the same mean, then F ⇠ G.

The following demonstrates why this is a strengthening of consequentialism.

Lemma (E1). For ⇢ monotonic, ⇢F = ⇢G implies F⇢ = G⇢.

Proof. Let ⇢ be monotonic and define F+
:= {f 2 H| ⇢F (f) > 0}. We first show that

F+
⇢ = F⇢. Let F 0

:= F\F+ and for a 2 [0, 1], monotonicity yields

0 = ⇢F
�

F 0
� � ⇢F[fa

�

F 0
�

Note that by Lemma A2, {F 0, F+} 2 HF . First, suppose fa is tied with nothing in F .
Hence,

⇢F+[fa

�

F+
�

+ ⇢F+[fa
(fa

) = 1 = ⇢F[fa

�

F+
�

+ ⇢F[fa
(fa

)

By monotonicity, ⇢F+[fa
(F+

) � ⇢F[fa
(F+

) and ⇢F+[fa
(fa

) � ⇢F[fa
(fa

) so

F+
⇢ (a) = ⇢F+[fa

�

F+
�

= ⇢F[fa

�

F+
�

= ⇢F[fa
(F ) = F⇢ (a)

Now, if fa is tied with some act in F , then by Lemma A3 and monotonicity,

1 = ⇢F
�

F+
�

= ⇢F[fa

�

F+
�  ⇢F+[fa

�

F+
�

Thus, F+
⇢ (a) = 1 = F⇢ (a) so F+

⇢ = F⇢.
Now, suppose ⇢F = ⇢G for some {F,G} ⇢ K. Since ⇢F (f) > 0 iff ⇢G (f) > 0, F+

= G+.
We thus have

F⇢ = F+
⇢ = G+

⇢ = G⇢

Thus, if strong consequentialism is satisfied, then consequentialism must also be satisfied as
⇢F = ⇢G implies F⇢ = G⇢ which implies that F⇢ and G⇢ must have the same mean. Strong

consequentialism delivers the corresponding connection between ex-ante and ex-post choice
behaviors that consequentialism delivered in the lottery setup.

Proposition (E2). Let ⌫ and ⇢ be represented by (µ, u) and (⌫, v) respectively. Then the

following are equivalent:
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(1) (⌫, ⇢) satisfies strong consequentialism

(2) F ⌫ G iff F ⌫⇢ G

(3) (µ, u) = (⌫,↵v + �) for ↵ > 0

Proof. Note that the equivalence of (2) and (3) follows from Theorem B6 and the uniqueness

properties of the subjective learning representation (see Theorem 1 of DLST). That (2)
implies (1) is immediate, so we only need to prove that (1) implies (2).

Assume (1) is true. Since ⌫⇢ is represented by (⌫, v), we have F ⇠⇢ G implies F ⇠ G.

Without loss of generality, we assume both u and v are normalized. First, consider only

constant acts and let f and f be the worst and best acts under v. Now, for any f 2 Hc, we

can find a 2 [0, 1] such that faf ⇠⇢ f which implies faf ⇠ f . Thus

v (f) = v
�

faf
�

= 1� a

and

u (f) = au
�

f
�

+ (1� a) u
�

f
�

= (1� v (f)) u
�

f
�

+ v (f) u
�

f
�

=

�

u
�

f
�� u

�

f
��

v (f) + u
�

f
�

for all f 2 Hc. Thus, u = ↵v+ � where ↵ := u
�

f
�� u

�

f
�

and � := u
�

f
�

. Since f [ f ⇠⇢ f

implies f [ f ⇠ f , we have u
�

f
� � u

�

f
�

so ↵ � 0. If ↵ = 0, then u = � contradicting the

fact that u is non-constant. Thus, ↵ > 0.
We can now assume without loss of generality that ⌫⇢ is represented by (⌫, u). Now,

given any F 2 K, we can find f 2 Hc such that F ⇠⇢ f which implies F ⇠ g. Thus,
Z

�S

sup

f2F
q · (u � f) ⌫ (dq) = u (g) =

Z

�S

sup

f2F
q · (u � f)µ (dq)

so ⌫⇢ and ⌫ represent the same preference which implies (2). Thus, (1), (2) and (3) are all

equivalent.
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