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Chapter 26
Machine Learning for Biometrics

Albert Ali Salah
Centre for Mathematics and Computer Science (CWI), The Netherlands

INTRODUCTION

Biometrics serves the identification of humans from their personal traits. As a rapidly growing field, it 
is initially pushed forward by a need for robust security and surveillance applications, but its potential 
as a natural and effortless means of identification also paved the way for a host of smart applications 
that automatically identify the user and provide customized services. With increasing awareness of its 
psychological, privacy-related and ethical aspects, there is no doubt that biometrics will continue to 
contribute to many technological solutions of our daily lives.

AbSTRACT

Biometrics aims at reliable and robust identification of humans from their personal traits, mainly for 
security and authentication purposes, but also for identifying and tracking the users of smarter ap-
plications. Frequently considered modalities are fingerprint, face, iris, palmprint and voice, but there 
are many other possible biometrics, including gait, ear image, retina, DNA, and even behaviours. This 
chapter presents a survey of machine learning methods used for biometrics applications, and identifies 
relevant research issues. The author focuses on three areas of interest: offline methods for biometric 
template construction and recognition, information fusion methods for integrating multiple biometrics 
to obtain robust results, and methods for dealing with temporal information. By introducing exemplary 
and influential machine learning approaches in the context of specific biometrics applications, the author 
hopes to provide the reader with the means to create novel machine learning solutions to challenging 
biometrics problems.
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The technology of biometrics relies on the input from a number of fields, starting with various kinds 
of sensors that are used to sample the biometric. Signal processing and pattern recognition methods 
are obviously relevant, as the acquired data need to be prepared for accurate and robust decisions. At 
its final stage, the system outputs a decision, which links the acquired and processed biometric trait to 
an identity. Algorithms and mathematical models developed by the machine learning community are 
frequently used in biometric systems to implement the decision function itself, but this is surely not the 
only contribution worth mentioning. We will show in this chapter that machine learning methods are 
useful in selecting appropriate feature representations that will facilitate the job of the decision function, 
in dealing with temporal information, and in fusing multi-modal information.

The goal of this chapter is to familiarize the machine learning researcher with the problems of bio-
metrics, to show which techniques are employed to solve them, and what challenges are open in the 
field that may benefit from future machine learning applications. It is also intended to familiarize the 
biometrics researcher to the methods and ways of machine learning and its correct research methodol-
ogy, and to provide the rudiments of a toolbox of machine learning. In the next section, we provide a 
general look at biometric systems, define some relevant terminology and broadly identify the research 
issues. The third section deals with learning and matching biometric templates. Since this is a very 
broad topic, a small number of demonstrative application examples are selected. The fourth section is 
on the use of dynamic information for biometric purposes, and it is followed by a section on the fusion 
of multiple biometrics. Before concluding, we give a machine learning perspective on how to evaluate 
a biometrics system.

A GENERAL LOOK AT bIOMETRIC SYSTEMS

The application area of biometrics with the grandest scale is in border control, typically an airport 
scenario. Within the national identity context, it is possible to conceive the storing and managing of 
the biometric information for the entire population of a country. A smaller scale application is access 
control, for instance securing the entrance of a building (physical access control) or securing a digital 
system (logical access control). In both applications, we have a verification (or authentication) problem, 
where the user has an identity claim, and a sampled biometric is checked against a stored biometric for 
similarity. In a sense, this is a one-class pattern classification problem.

The second important problem involves identification,where there isno identityclaim,and thesampled 
biometric is matched against many stored templates. Checking passengers against a list of criminals, 
forensic applications, identification of individuals at a distance, or providing access in consumer prod-
ucts (e.g. fingerprint scanning on a laptop) would be typical applications. Depending on the application 
requirements, the problem may be sufficiently constrained to apply a discriminative approach.

The most important biometric modalities are fingerprint, face, iris, signature, palm print and voice. 
The biometric traits differ in their usability, convenience, security, and complexity. For providing ac-
cess to a high-security facility, security is of primary importance, whereas a household appliance that 
identifies users via biometrics would strive to have maximum user convenience. Similarly, privacy can 
be a major determinant in the deployment of a particular biometric application. For this reason, a host 
of possible biometrics are considered for different applications, including DNA, gait, ear images, and 
even behaviours.
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basic biometrics Terminology

In this section, we define frequently used terminology for research in biometrics. We have already de-
fined identification and verification. The biometric templatet

i
(also called a target) is a recorded instance 

of the biometric trait during enrollment for subject i, and it is stored in a gallery of templates, denoted 
here with T={t

i
| i=1... N}, where N is the number of subjects in the gallery. A query (or a probe) is a 

biometric recorded during the operation of the system, denoted with B, and it is matched against the 
templates in the gallery.

The accuracy of a biometric authentication system is measured by its false acceptance rate (FAR) 
and its false rejection rate (FRR), where the former is the probability of accepting an impostor, and the 
latter is the probability of rejecting a genuine claim. More formally, assume s(B

i
,B

j
) denotes a similarity 

function for the recorded biometric, and τ is a threshold for accepting an identity claim. The identity 
claim for subject d with a recorded biometric B is accepted if and only if:

s(B, t
d
) > τ.  (1)

The threshold τ determines the convenience-security trade-off of the system, and a higher threshold 
means that more subjects will be rejected, thus a lower FAR will be obtained at the expense of a higher 
FRR. Low FAR is required for high-security systems, whereas low FRR means greater user convenience. 
Commonly the authentication performance of a system is reported with its FRR at 0.001 FAR.

As a side remark, we caution the reader to pay attention to the impostor model used for reporting 
the performance of a biometrics system. The impostor claims can be based on zero-cost attacks, where 
there is no particular effort on the part of the impostor, or on informed attacks. The former approach is 
exemplified by using all the test samples in a database for one genuine and N-1 impostor claims, where 
N is the number of samples in the gallery. The latter approach is exemplified by creating expertly forged 
signatures for attacks on a signature-verification system, which is expected to produce a much higher 
FAR than the zero-cost approach.

The similarity function can be substituted by a distance function, in which case the threshold serves 
as an upper-bound for authentication. Especially in non-parametric models, the distance function plays 
an important role, and needs to be chosen carefully to suit the distribution of the data and the outliers. 
We briefly list frequently used distance functions here.

The most common distance function is the Euclidean distance:

D x y
Euclidean i i

i

n

( )=x y, ( )-
=
å 2

1

(2)

where n denotes the biometric vector dimensionality. For a known distribution of biometric samples with 
covariance denoted by S, the squared Mahalanobis distance gives less weight to deviations in directions 
along which the data are scattered:

D S
Mahalanobis
2 1( )=( )tx y x y x y, ( )- --

(3)

When feature mismatch has a fixed cost, one frequently uses the Hamming distance:



542

Machine Learning for Biometrics

D x y
Hamm ng i i

i

n

i
( )= | |x y, Å

=
å
1

(4)

where (x ⊕ y) is zero if x = y, and 1 otherwise. For binary vectors, this is equivalent to the XOR opera-
tion. For two finite point sets, the Hausdorff distance is proposed:

D X Y D D
Hausdorff X Y Y X

( )=max(sup ( ) sup ( )), inf , , inf ,
x y y x

x y x yÎ Î Î Î (5)

where sup (supremum) denotes the least upper bound, and inf (infimum) denotes the greatest lower 
bound, respectively. This measure is used for instance in 3D face recognition, where each face may be 
represented as a point set.

Another important distance measure is based on correlation:
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The similarity function can also be replaced with a generative model, where the output takes on a 
probabilistic interpretation, and the threshold of acceptance is defined on the posterior probability for 
the biometric sample under the model associated with the claimed identity:

( | ) ( )
( , ) ( | )

( | ) ( ) ( | ) ( )
d d

d d

d d

p M p M
s P M

p M p M p I p I

B
B t B

B B (7)

Here, M
d

denotes the generative model for person d and used in place of the template t
d
, I denotes a 

model for the impostor distribution, and p(M
d
) denotes the prior probability of having a genuine claim 

for person d. The probabilistic formulation is particularly suitable for biometric fusion approaches, where 
multiple biometric samples are treated as evidence, and the Bayes rule is again used for combining the 
modalities. We will deal with fusion of multiple biometric modalities in a dedicated section.

An alternative approach of authentication under a client and a generic impostor model is to use the 
likelihood ratio test:

( | )
( , , )

( | )
d

d

p M
s M I

p I

B
B

B
(8)

where the impostor distribution under infinitely many classes can be replaced with P(B). In (Bazen & 
Veldhuis, 2004), the authors demonstrate that this measure is more accurate than the posterior probability 
approach or the distance-based approach with a Euclidean metric for a fingerprint-based authentication 
application.

Often, the accuracy of the verification system is shown with a receiver operator characteristic (ROC) 
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or a detection error trade-off (DET) curve, where FRR is plotted as a function of FAR for a range of τ. 
Other accuracy indicators are the equal error rate (EER), which is the error rate at the point where FAR 
equals FRR in the DET curve, the half-total error rate (HTER), which is the average of FAR and FRR 
at a given threshold, the genuine acceptance rate (GAR), which is equal to 1 – FRR, and thus only takes 
into account the genuine claims, and the weighted error rate (WER) which is a weighted version of the 
EER. The weight R determines how much a false accept is harmful with respect to a false reject:

WER R
P RP

R
FR FA( )=
+

+1
(9)

where P
FR

 and P
FA

 denote the probabilities of false reject and false accept, respectively.
For an identification system, the gallery templates can be ranked according to their similarity to the 

query. The accuracy of an identification system is often indicated by the cumulative match characteris-
tic (CMC) curve, which plots the average rank of the correct gallery template in response to the query. 
The rank-n recognition rate is the correct identification percentage if we assume that a rank below (and 
including) n is acceptable for identification. The rank system makes sense if a human or a second (and 
possibly computationally more intensive) system will evaluate the top n candidates for a match with the 
probe. For the final identification system, the rank-1 recognition rate is the most important accuracy 
measure.

The Structure of a biometrics System

The information flow in a biometrics system depends on the biometric modality, as well as the operation 
requirements of the system. For most biometric systems, the operation of the system has the following 
steps:

1.  Acquisition: The acquisition of the biometric is the most important step in the system design. A
clean signal that matches the gallery conditions well greatly facilitates recognition. For this reason, 
biometricevaluationsusually test caseswhere thegallery isacquiredundercontrolledenvironmental 
conditions with high quality sensors, and matching is performed under sub-optimal conditions, 
possibly with inferior sensors.

2.  Pre-processing:Thebiometricdata ispreparedfor thenext stageofprocessing.Underpre-processing, 
we usually understand cleaning of noise artifacts, normalization, cropping, and signal enhancement 
operations. In voice biometrics, this step involves segmentation of the speech/non-speech signals. 
For iris biometrics, the pre-processing deals with illumination changes, contrast normalization, 
elimination of reflections, defocus and occlusion handling.

3.  Registration and segmentation: The biometric template stored in the gallery and the recorded 
signal must be aligned for obtaining the best results in matching. For face authentication, this is 
usually performed by using facial landmarks (Tistarelli et al., 2008, Gökberk et al., in press). For 
iris biometrics, the iris area is segmented at this stage. For modalities with dynamic length, the 
registration and classification may be performed jointly. We inspect these methods in a separate 
section.
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4.  Feature selection and extraction: The raw biometric signal is rarely used for the purposes of clas-
sification. The feature extraction method depends on the modality, and influences the subsequent 
classification stage. For instance in fingerprint-based authentication, the structural features of the 
fingerprint (i.e. minutiae) are extracted at his stage. For iris biometrics, typical features are log-
Gaborwavelet coefficients (Daugman,1988),whereas forvoice-basedauthenticationMel frequency 
cepstral coefficients are used (Huang et al., 2001).

5.  Classification: The classifier decides whether the biometric signal B is generated by the model M
or not. Depending on the problem being one of authentication or identification, the classification 
step assesses the biometric signal against a single model or multiple models. This step may also 
be followed by a score-based fusion step, if multiple biometric traits are recorded.

Challenges of biometrics

There are several challenges faced by biometric systems. We mention some of these issues, as they are 
indicative of future research directions.

Processing and communication load: There is an obvious need for computationally efficient 
algorithms in biometrics, for several reasons. Some biometrics approaches require great com-
putational resources. For instance in 3D face recognition, the data acquired from the sensor can 
be massive. The second reason is the real-time requirement imposed by application settings. It is 
now possible to match a query against millions of fingerprints in a second, but this eludes other 
modalities at the moment. There is also the issue for algorithms that assess the class-specific vari-
ability for a particular modality. For instance the newly acquired Multi-PIE face dataset (Gross et 
al., 2008) has more than 750.000 samples at 3072 x 2048 resolution (i.e. 6.3 million-dimensional 
samples), which makes the job of any learning algorithm very difficult.
Template protection: Security and privacy of biometric systems depend on the protection of 
stored biometric information. Once a biometric is compromised, it is irrevocable, as it is unique to 
a person. Studies are conducted on biometric encryption, where the biometric is combined with a 
random number to produce a secure and non-reversible hash for authentication.
Cancellable biometrics: For improved privacy, it is possible to store a transformed version of a 
biometric template. Each application will be associated with a different one-way transformation, 
and function creep, i.e. the use of stored template for other purposes, will be prevented. This kind 
of a requirement imposes extra constraints on the biometric matching algorithm.
Aging: The aging of the individual causes differences in the stored template and the acquired 
biometric signal. An aging face has more lines, and it can be difficult to recognize a person from 
a photograph taken 20 or 30 years ago. It is difficult to collect datasets that span long temporal 
acquisition periods. Therefore, artificial aging methods are applied to existing data collections to 
train systems that recognize an aging set of subjects.
Convenience vs. security: The parameterization of a biometric system may allow for a range of 
custom settings that trade off user convenience and security. For instance, biometrically enhanced 
entry system of an entertainment park offers high convenience by setting a very low threshold 
for user admittance, whereas the same system with a high threshold is usable in a high-security 
nuclear plant.
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Score normalization and fusion: Multiple biometric modalities can be used in a single system, 
which requires efficient and robust score normalization and information fusion algorithms. The 
best fusion algorithms take into account the correlation structure of the related modalities.

LEARNING AND MATCHING THE bIOMETRIC TEMPLATE

The learning and matching of the biometric template is an integrated problem that encompasses fea-
ture selection/extraction and classification, as these steps are invariably intertwined. One may think 
that once an appropriate pre-processing and feature extraction method is selected, the choice of the 
classifier is a minor issue. This is not completely true, as literature is replete with studies that contrast 
various classification approaches for a fixed set of features with significantly different results. Here we 
give illustrative examples from face recognition domain, and refer the reader to (Kung et al., 2005) and 
(Petrovska-Delacrétaz et al., 2008) for many applications of learning algorithms for different biometric 
modalities and their fusion. Our exposition is restricted to two subspace methods for feature extraction 
to reduce dimensionality, the application of unsupervised clustering to facial landmarking, and com-
bination of weak classifiers for face detection. A later section on dynamic information will deal with 
Bayesian approaches.

Classification with Subspace Methods

The subspace-based methods are best exemplified with applications to face recognition, which is a high-
dimensional problem. The most frequently used baseline method for face recognition is the Eigenface
method, introduced by Turk & Pentland (1991). This method is based on learning a subspace for faces, 
where the projected query and target images will be compared. Given a set of training images {T

1
,... T

k
}, 

the covariance matrix C that indicates the distribution of variance is computed:

C
k

T T
i i

T

i

k

= - -
=
å1
1

( )( )m m (10)

where μ denotes the average face. The eigenvectors of C with the greatest associated eigenvalues (i.e. 
the principal components) denote axes of maximal covariance, and a projection to these axes maximally 
spreads the projected points. In terms of reconstruction from the projected subspace, the principal com-
ponent analysis (PCA) method is optimal. If the dimensionality of each image is assumed to be d, the 
covariance matrix has a dimensionality of (d x d), usually with d >> k. For this reason, a singular value 
decomposition based method is used to determine at most k eigenvectors for projection. Once the face 
images are projected to the subspace, several distance measures (e.g. L1, Euclidean) can be used for 
computing the similarity of the query and the target with nearest-neighbour classification. One measure 
that has received a lot of interest is the Mahalanobis cosine distance. If the p-dimensional subspace 
projected query is denoted by u=[u

1
u

2
...u

p
], and the subspace-projected gallery template is denoted by 

v=[v
1
v

2
...v

p
], denote their corresponding vectors in the Mahalanobis space with unit variance along each 

dimension as:
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i

= =
s s (11)

where σ
i
is the standard deviation for the ith dimension of the p-dimensional eigenspace. Then the Ma-

halanobis cosine distance is given by:

( , ) cos( )
| || |MC mn

d
mn

u v
m n

(12)

with θ
mn

 denoting the angle between vectors m and n (Ramanathan et al., 2004).
The PCA projection is not optimized for discrimination of patterns. For this reason, linear discrimi-

nant analysis (LDA) is proposed as an alternative method that seeks the most discriminative subspace 
projection. Specifically, for c classes denote the grand mean of the training images with μ and the class 
means with μ

i
. Let the between-class scatter matrix be defined as:

S k
B i

i

c

i i
T= - -

=
å
1

( )( )¼ ¼ ¼ ¼ (13)

where k
i
denotes the number of training samples for class i. Similarly, the within-class scatter matrix is 

defined as:

1

( )( )
Bj i

c
T

W j i j i
i T

S B B (14)

with T
i
denoting training samples of class i. Assuming that S

W
is non-singular, the optimal orthonormal 

projection W
opt

is selected as the one that maximizes the ratio of the determinant of S
B

to the determinant 
of S

W
:

W
W S W

W S Wopt
W

T
B

T
W

m
= =argmax [ ... ]

| |

| |
w w w
1 2 (15)

where {w
i
|i=1,2,..., m}denotes the set of generalized eigenvectors of S

B
and S

W
corresponding to the m

largest generalized eigenvalues λ
i
:

B i i W i
S Sw w (16)

The Fisherface method (Belhumeur et al., 1997) proposes an alternative criterion to equation (15) 
to overcome difficulties arising from singular S

W
. In the proposed method, the images are projected to a 

PCA space first. This subspace has a sufficiently low dimensionality (equal to c, the number of classes) 
to make S

W
 non-singular. The classification, as before, uses a nearest neighbour approach.
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Classifier Combination for Face Detection

Face detection is the essential pre-processing step in face biometrics. This application can be treated as 
a two-class learning problem, where the positive samples contain face images, and negative samples 
do not. Osuna et al. (1997) have successfully applied support vector machines (SVM) to this problem, 
and obtained good results. However, practical applications require very fast face detection, for which 
the SVM-based method was not adequate.

The combination of weak classifiers has given rise to one of the most frequently used algorithms in 
face detection, namely the Viola-Jones algorithm (Viola & Jones, 2001). The core of the method uses the 
AdaBoost algorithm proposed by Freund and Schapire (1997). In AdaBoost, a sequence of N labelled 
examples <(x

1
, y

1
), ... (x

N
, y

N
)> is used (where x

i
denote the samples, and y

i
are binary labels) for finding 

a good combination of weak learners. The algorithm sets weights w
i
for each sample, initialized by a 

prior distribution that can be uniform in the case no prior information exists. At every iteration of the 
algorithm, the normalized weights p

i
are computed to form a distribution over samples, and the weak 

learner is called with this distribution to obtain a hypothesis h
t
: X → [0,1]. The error of this hypothesis 

is given by:

1

| ( ) |
N

t
t i t i i

i

p h yx (17)

The algorithm sets a weight update parameter β
t
 = ε

t
/(1-ε

t
). The new weights are set as:

1 | ( ) |1 t i ih yt t
i i t
w w x (18)

After T iterations, the output of the algorithm is the hypothesis:

1 1

11 ( log1 / ) ( ) log1 /
( ) 2

0

T T

t t t
t tf

if h
h

otherwise

x
x

(19)

Viola and Jones use the AdaBoost algorithm to select features computed on sub-windows of the image 
that resemble Haar-wavelets computed in multiple scales (Viola & Jones, 2001). Once computed over the 
entire image, there are 180.000 possible features available for selection at each stage. In the Viola-Jones 
algorithm many of these features have final weights set to zero; only 6.000 features are selected. These 
features are learned in a cascade structure with 38 levels to reduce the processing load of the algorithm. 
Thus, an average of 10 feature evaluations per sub-window is reported in their experimental study. For 
the training, 4916 face images (plus their mirror images) and 9544 non-face images (for a total of 350 
million sub-windows) were used. This method is currently used as the state-of-the-art benchmark in 
systems involving face detection1.
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Unsupervised Learning for Feature Localization

Exact localization of facial features in faces ensures better registration, subsequently allowing better 
classification of face images. These prominent features that guide registration are called anchor points
or landmarks. The learning problem for landmarks has two aspects:

1)  Learning the appearance of each landmark.
2)  Learning the structural relationship between the landmarks.

It is possible to learn the appearance of each landmark via unsupervised models. For this purpose, 
features are extracted from around the landmark location from all images in the training set, for each 
landmark j. Then, a model G

j
is fit to the feature distribution. In (Hamouz et al., 2005), complex Gabor 

features are extracted, and a Gaussian mixture model (GMM) is used for learning the feature distribution. 
The structural information is taken into account at a later stage. For all the candidates of one landmark 
(i.e. locations with likelihood exceeding a threshold), two other landmark locations are estimated from 
the location ground-truth given in the training set, and candidates selected for evaluation. This produces 
a certain number of landmark triplets for assessment. An SVM classifier is used to produce the final 
decision.

The GMM (including k-means clustering as a special case) is the most frequently used method of 
clustering in biometrics. The fitting of the GMM involves two decisions: the number of components, 
and the covariance restrictions imposed on the components.Assuming a particular covariance shape will 
simplify the observation model, and reduce the number of parameters. For an observation feature of size 
d, the Gaussian distribution has d parameters for the mean vector. The number of free parameters for 
the covariance can be as low as one, if a spherical covariance is adapted with the shape of σ2I. Setting 
σ to unity will result in the k-means model. A diagonal covariance will have d parameters, and a full 
covariance d(d-1)/2 parameters. For a mixture model, the number of parameters is multiplied by K, the 
number of mixture components, plus (K-1) for the component priors. Each simplification corresponds 
to a different assumption in the model space, and may have adverse effects on the learned model. A
diagonal covariance matrix will correspond to assuming independence of observed features, whereas a 
spherical covariance will also imply that the noise model is the same for each feature dimension.

It should be noted that in modelling a very complex distribution, a large number of simpler Gauss-
ian distributions may be a better solution than fewer full-covariance distributions, particularly due to 
computational reasons. For instance in the MIT Lincoln Laboratory’s successful speaker verification 
system, a universal background model with 2048 diagonal-covariance Gaussian components was em-
ployed (Reynolds et al., 2000). An alternative approach for reducing dimensionality is given in (Salah & 
Alpaydın, 2004), where the mixture components are expressed as factor analysis models, which assume 
that the data are generated in p

i
-dimensional manifolds. In this case, each component indexed with i

has d(p
i
+1) parameters for expressing the covariance, which means that the complexity scale between 

diagonal- and full-covariance models can be fully explored.
The number of components in a Gaussian mixture can be determined by adapting a criterion of model 

complexity. In the method proposed by Figueiredo & Jain (2002) a large number of components are fit 
to the given data set, using the expectation-maximization (EM) algorithm. Then, small components are 
eliminated one by one, each time running EM to convergence. When a single component remains, all 
converged models are evaluated with a minimum description length (MDL) criterion, and one model is 
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selected. The shape of the covariance must be manually selected at the onset of the algorithm. This is 
the approach used in (Hamouz et al., 2005) for modelling landmark features.

In (Salah & Alpaydın, 2004), the incremental mixtures of factor analysers (IMoFA) algorithm was 
proposed, which automatically determines the number of components, as well as the covariance com-
plexity for each component separately. In this approach, a single-component factor analyser with a single 
factor is used to initialize the algorithm. At each iteration, the mixture is grown by adding a component 
or by adding a factor to an existing component. The algorithm terminates when the likelihood is no 
longer increasing for a separately monitored validation set.

The IMoFA method was used on Gabor features extracted from sub-windows of face images for 
landmark localization in (Salah et al., 2007). However, only the best candidate for each landmark was 
evaluated in the subsequent structural analysis step. The proposed algorithm for this stage (the GOLLUM 
algorithm) selects one landmark triplet for affine normalization, and models the rest of the landmarks after 
transformation with Gaussian distributions. The landmark candidates are checked against their expected 
locations by a thresholded Mahalanobis distance. The landmarks failing the check can be automatically 
corrected by the back-projection of their expected locations.

DYNAMIC INFORMATION

Biometric information can be recovered from traits with a temporal dimension. A typical example would 
be the gait of a person, which is unobtrusive and has high user-acceptability, thus capable of serving in 
a user-convenience scenario. While gait is inherently dynamic, it may be possible to recover temporal 
information from traits that are usually processed in a static way. For instance the signature or the hand-
writing of a person can produce dynamic information with appropriate equipment. Similarly, the face is 
ordinarily a static biometric modality, but sequences of faces in a video stream or the facial expression 
changes of a person can serve as a dynamic biometrics (Chen et al., 2001).

What makes dynamic biometrics particularly challenging is the variability in the size of the feature 
vectors. To access the toolbox of methods that work with fixed-dimensionality vectors (e.g. neural 
networks, PCA, nearest neighbour methods, etc.) dynamic time warping may be applied (Kruskal and 
Liberman, 1983). This method aligns two sequences S

i
and S

j
by associating cost functions with inser-

tions, deletions, and substitutions, and by locally minimizing the Levenshtein distance, i.e. the minimum 
number of operations needed to transform S

i
into S

j
. For feature vectors that have straightforward in-

terpolation functions, resizing the feature vector with linear and quadratic functions to a predetermined 
size is a computationally cheap alternative. For face recognition, this is the most frequently employed 
method. For signatures recognition, a re-sampling procedure that produces a fixed-length feature can 
be employed.

The most frequently used approach in dealing with variable-sized feature vectors is to associate 
probabilities with feature dynamics. Dynamic Bayesian networks (DBNs) are a broad class of graphical 
models that are capable of incorporating temporal dynamics in this manner. Most frequently used DBNs 
are Kalman filters, and hidden Markov models (HMMs). A good survey of learning with DBNs can be 
found in (Ghahramani, 1998).

It is also possible to extract dynamic information from an otherwise static source by introducing an 
interest operator, and simulating a dynamic information extraction process. In (Salah et al., 2002), several 
interest operators are used jointly to derive a saliency map of a facial image, followed by the simulation 
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of saccadic movements of the fovea in the human visual system to visit the most interesting locations 
of the image in the order of decreasing saliency. The content of the foveal window is processed via lo-
cal neural network experts, whereas the location information is mapped to the states of an observable 
Markov model. After each saccade, Markov models of each person in the gallery are consulted to pro-
duce a conditional probability, and if the probability of a particular class exceeds a certain threshold, the 
identification is effected. With this method, it is possible to inspect only a small part of the facial image 
before taking a decision, and the whole image is analysed only for difficult cases. Thus, the length of 
the final feature vector is determined on the fly, and its variability is a blessing, rather than a curse, as it 
serves reducing the temporal complexity of the identification process. In (Bicego et al., 2003) overlap-
ping windows are extracted from face images, scanned in a regular fashion, and the wavelet coefficients 
computed from each window are then classified using HMMs.

Storing multiple templates for a single user can make a biometrics system more robust, at the cost 
of increased computational complexity. For dynamic biometrics, it may be a necessity to store multiple 
templates. For instance in signature recognition, a person may have an elaborate, slow-dynamics signa-
ture, and a fast-dynamics, quick and dirty signature for rapid signing. For this purpose, it will be neces-
sary to quantify the similarity of biometric signals under different dynamic models. Given two different 
biometric signals B

i
and B

j
, and two DBNs M

i
and M

j
trained for responding maximally to these signals 

(or to a set of signals containing them), a similarity (or affinity) score can be computed as:

1 1 1
( , ) log ( | ) log ( | )

2i j j i i j

j i

s P M P MB B B B (20)

where τ
i
is the authentication threshold for model M

i
. Panuccio et al. proposed another measure of simi-

larity (2002), which also takes into account the model quality, i.e. how well M
i
 models the signal B

i
:

( | ) ( | ) ( | ) ( | )1
( , )

2 ( | ) ( | )
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s

P M P M
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B B (21)

In both approaches, P(B
j
| M

i
) denotes the probability of observing B

j
under the model M

i
. Once 

the similarity matrix is computed, it is possible to employ clustering methods to group the signals into 
several clusters of differing dynamics, and train one model per cluster for the final system.

For a typical biometrics application, an obvious problem with these approaches is that limited enroll-
ment time requirement leaves the system with very few examples, whereas the dimensionality can be 
large. One way of dealing with the dimensionality is to constrain the models appropriately, effectively 
reducing the number of parameters in the process. If the dynamics have a well-defined order, as in a 
signature, where the order of letters do not change, some transitions may be pruned from the model, 
leaving less parameters to estimate. An example is using left-to-right HMMs instead of fully connected 
HMMs, where each state represents a dynamic that is executed once, before continuing to the next 
dynamic. Depending on the particular case, the time spent in one state may be short or long. Another 
method is to constrain the observation distribution at every state of the model. Typically Gaussian mod-
els or Gaussian mixtures are used for observation probability distribution, where the complexity can be 
tuned by imposing restrictions on the covariance.
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The temporal dynamics can also be taken into account by constant online modification of static 
models, instead of a single dynamic model that traces the complete evolution of the dynamic. This is 
particularly useful for dynamics with indeterminate duration, for instance in camera-based surveillance 
applications. An illustrative example is video-based biometrics, where the motion of bodies or faces is 
analysed. This necessitates reliable foreground-background segmentation, which is frequently tackled 
by learning statistical models for foreground objects and/or the background image. For static views, 
Stauffer and Grimson have proposed an influential method, where one adaptive Gaussian mixture model 
per background pixel is trained (1999). In their approach, the recent history of each background pixel X

t

is modelled by a mixture of K Gaussian distributions, and the probability of a particular pixel belonging 
to the background at any time is given by:

P X N X I
t i t i i

i

K

( ) ( , , )=
=
å p m s2
1

(22)

where π
i
is the component prior, μ

i
is the mean, and σ

i
is the standard deviation that specifies the spheri-

cal covariance shape of the component. Pixels not falling within 2.5 standard deviations from the mean 
of any component are assumed to be evidence for new components, and replace the component with 
the smallest prior. At any time, the first few distributions that account for a fixed portion of the data are 
considered to belong to the background.

MULTIPLE bIOMETRICS AND INFORMATION FUSION

Information fusion in biometrics serves a twofold purpose. First and foremost, the system requirements 
may dictate an operational description beyond the technological provisions of a single biometric modal-
ity, either in terms of security, or user convenience. Multiple biometrics can be used to design systems 
to fit more demanding requirements. The second purpose of using multiple modalities relates to user-
convenience. It is known that some biometric modalities (like fingerprints) are not usable for a small but 
non-negligible percentage of the population (Newham, 1995), and consequently, a non-discriminating 
biometric authentication scheme needs to accommodate these users.

Assume two biometric signals B
1

and B
2

are recorded from a single person b in two different mo-
dalities with models M

1
= {s

1
,t

d
1, τ

1
} and M

2
= {s

2
,t

d
2, τ

2
}, respectively, where s

i
denotes the similarity 

function, t
d
i is the biometric template and τ

i
is the threshold of authentication. The combined biometric 

system can be made more secure than either of the individual biometric systems by requiring:

1 2
1 1 1 2 2 2
( , ) ( , )

b b
s sB t B t (23)

or it can provide for more robust (e.g. for cases where the data acquisition conditions are impaired for 
one modality), or more convenient (e.g. letting the user decide which modality to use) systems by al-
lowing alternative authentication venues, at the cost of reduced system security:

1 2
1 1 1 2 2 2
( , ) ( , )

b b
s sB t B t (24)
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This is the simplest biometric fusion scenario at the decision level of individual systems. It is possible 
to effect fusion of biometric information at the raw data level, at the feature level, at the matching score 
level, or at the decision level. Another dimension of fusion is the architecture, which can be serial or 
parallel. In (Gökberk et al., 2005), the authors contrast a serial (hierarchical) fusion scheme for 3D face 
recognition in which the first classifier ranks the most plausible classes, after which the second classi-
fier operates on a reduced set of classes, with parallel fusion schemes in which all classifier outputs are 
jointly assessed. The parallel approach has increased real-time operation cost, but its accuracy is superior 
to that of the serial, and both fusion approaches excel in comparison to individual classifiers.

When using multiple systems, we usually deal with scores that have different ranges and meanings. 
The system proposed in (Gökberk et al., 2005) sidesteps this issue by operating on rank scores, but 
the appropriate normalization of scores is nonetheless an important issue. The normalization can be 
performed for each score domain separately, bringing the scores to a common scale for combination 
(transformation-based score fusion). Weighted combination of scores is a simplified version of this ap-
proach, and most of the fusion approaches reported in the literature aim at learning an appropriate set 
of weights for individual biometric modalities. For the authentication task, this can also be achieved by 
treating the genuine and impostor scores as two separate classes, and applying supervised classification 
methods. For instance in (Ross & Jain, 2003), the scores from different modalities (face, fingerprint, 
hand geometry) are combined with:

1.  The SUM rule, which corresponds to a weighted average of the scores, where learning involves 
finding the best set of weights on the training set,

2.  A decision tree, which was used to learn a number of rules to solve the two-class classification 
problem of distinguishing impostor and genuine claims,

3.  A linear discriminant classifier, which is obtained by projecting the scores to a subspace that mini-
mizes the within-class variance and maximizes the between-class variance, for the same two-class 
problem.

The SUM rule has been found to perform better than the alternatives, and has the additional benefit 
of having a threshold to calibrate the system for increased security or convenience. In this kind of a 
classifier-based fusion scheme, the distribution of genuine and impostor scores is usually not balanced. 
A zero-cost impostor model implies that the samples available for impostor access are N-1 times greater 
than the number of genuine access samples, N being the number of subjects, and assuming equal number 
of samples per subject.

An additional difficulty is that most classification approaches would not allow the tuning of the sys-
tem for a particular FAR or FRR requirement. Suppose the system is required to operate at 0.001 FAR, 
and a neural network classifier is selected for solving the genuine-impostor classification problem. The 
training regime needs to be adjusted appropriately, and most likely the final classifier output needs to be 
post-processed (e.g. by applying a threshold on the posterior) to bring the final system into the desired 
operation range.

In (Nandakumar et al., 2008) the genuine and impostor match scores from different modalities are 
modelled with Gaussian mixtures, and the decision follows a likelihood ratio test. This is a density-based 
score fusion scheme, as opposed to transformation-based or classifier-based fusion schemes. The dif-
ficulty in density-based fusion is the fitting of the model; it is not uncommon that the limited number of 
samples available for statistical learning rules out all but the simplest models. However, if the underly-
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ing joint score density is known, it is possible to formulate an optimal fusion scheme. The application 
of the likelihood ratio test is similar to the case in equation (8). We summarize this method here, along 
with further justification of its use.

Assume B= [B
1
, B

2
, ..., B

k
] denotes the biometric match scores from k different modalities. Assume 

further that we know the joint densities of the genuine claims and impostor claims, denoted with p(B|M
d
) 

and p(B|I). Let Ψ denote a statistical test for the null-hypothesis H
0
:B is associated with a claim from an 

impostor versus H
1
: B is associated with a genuine claim. Ψ(B) is the binary valued function for accept-

ing or rejecting the null hypothesis. The justification proposed by (Nandakumar et al., 2008) for using 
the likelihood-ratio test rests on the Neyman-Pearson theorem, which states that for testing H

0
against 

H
1
 there exists a test Ψ and a constant η such that:

0
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The more important part of the theorem states that if a test Ψ satisfies these equations for some constant 
η, then it is the most powerful test for testing H

0
against H

1
at level α. Consequently, the authors propose 

to employ the ratio of p(B|M
d
) to p(B|I) for giving the authentication decision, and η is selected in a 

way that the likelihood ratio test maximizes the GAR at the specified FAR. In practice, the true genuine 
and impostor score densities are unknown, and they are approximated with the help of the training set, 
typically with mixture models. One obvious difficulty is that due to user convenience issues, there are 
very few (typically less than five) genuine scores per subject.

The likelihood-ratio test can furtherbe refinedby learningsubject-specificparameters for the threshold 
η or for the class-conditional densities (Poh & Kittler, 2007). The impostor model can be a single model 
(an example of which is the universal background model frequently used in speaker verification) or it 
can be a set of alternative models, in which case it is called a cohort. The latter approach is less popular, 
as it implies increased computational complexity.

A discriminative biometric modality will result in a good separation of the genuine and impostor 
score distributions, and produce higher ratios (i.e. a more confident decision). The fusion should take into 
account the discriminative power of the contributing biometrics, but it can also consider an assessment 
of the acquisition conditions and the quality of the recorded biometric signal, which can be different 
for each instance, depending on the acquisition conditions and the particular sensor used. Once a set of 
quality measures are selected, a quality-based fusion approach can be adopted. In (Nandakumar et al., 
2008), the quality measures are taken into account by replacing the genuine and impostor score distri-
butions with joint distributions of scores and corresponding quality measures. In (Chatzis et al., 1999) 
a vector quantization approach was taken to define score categories based on quality, and the biometric 
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scores are fuzzified to give a robust decision. In (Maurer & Baker, 2007) Bayesian belief networks were 
employed to incorporate the quality as an effect on the prior.

Arecent evaluation campaign under the European FP6 Network of Excellence BIOSECURE assessed 
biometric fusion methods under cost and quality considerations (Poh et al., in press). Here, cost refers to 
the computational cost of verification, which is important for real-time operation. Scores obtained from 
fingerprint and face scanners were associated with a cost of use, and with several automatically derived 
quality measures. 22 score-level fusion systems were evaluated in the campaign, including dynamic fu-
sion approaches where biometric modalities were consulted in a sequential fashion until a desired level 
of authentication confidence was reached or all the scores were exhausted.

Biometric information can be fused with ancillary information that has little discriminative value, 
but nonetheless can increase the robustness of the system in question. By making the assumption that 
these so-called soft biometric traits (e.g. height, gender) are independent, they can be fused with a strong 
biometric:

0
0 0

1

( , ) log ( | ) log ( | )
m

i
b b i i b

i

s a P a PtB t B B t (27)

where B
0

is the primary biometric with a large weight a
0
, and B

i
are the soft biometrics with relative 

weights a
i
 (Jain et al., 2004).

The usefulness of fusion increases if the individual modalities that are fused are not highly correlated. 
For this reason, it is important to understand the role of the multimodal databases when analysing fusion 
results. Collecting biometric information can be a meticulous process, and the anonymity of the subjects 
is imperative. Since collecting and associating multiple biometrics from individuals is perceived to be 
a threat to anonymity, some of the studies in the literature employ chimeric databases, which are cre-
ated by randomly combining biometric information from different modalities under virtual identities. 
Since the correlation structure is not retained, the added value of fusion will be overestimated under a 
chimeric database.

To illustrate this point, consider a system with face and palm-print modalities. In a natural database, 
male faces will be associated with larger palm-prints and the face and palm skin colours will be highly 
correlated, whereas a chimeric dataset will lose these correlations. One potential solution is to employ 
a small set of natural multimodal samples and use unsupervised clustering to model the covariance 
structure. Then recorded biometrics can independently be assigned to the nearest cluster, and used to 
construct realistic chimeric datasets by probabilistic selection of samples from within clusters. Some 
biometric combinations like faces and fingerprint have low correlation, and thus more suitable for chi-
meric databases.

EVALUATING A bIOMETRICS SYSTEM

The practice of biometrics often requires the evaluation of a system under scrutiny to determine the 
operating region, as well as the comparison of several algorithms in terms of their computational cost, 
accuracy, and robustness. Several important considerations that are common practice in the machine 
learning community should guide the biometrics researcher in the evaluation of the developed systems. 
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This section provides a short list of good practices. For a detailed exposition, see (Mansfield & Way-
man, 2002).

Appropriate experimental setup: The model development and reporting of the test results should 
be performed on different datasets. When reporting results, accuracies on the training set and the 
test set should be reported in conjunction, as the amount of difference in accuracy is indicative of 
the generalization capability of a model. While developing the models, the test set should not be 
consulted at all, as doing so would imply that the test set is contributing to the learning process, 
and the accuracies must be appropriately adjusted. A separate validation set can be set aside from 
the training set during model selection and learning.
Statistical tests for comparison: The claim of superiority of one algorithm over another cannot 
be based on a higher accuracy alone; it should be supported with statistical tests. Especially with 
benchmark databases, the accuracies reported in the literature tend to become very high over time, 
and it is important to demonstrate the success of new algorithms over alternative approaches with 
tests administered under exactly the same protocol. Producing mean and standard deviation of 
accuracy results with randomized runs allows comparisons in terms of distance in standard devia-
tions, which serves as a heuristic to decide the significance of obtained accuracy differences. The 
reader is referred to (Yildiz & Alpaydin, 2006) for statistical testing methodology to determine the 
algorithm with the smallest expected error given a data set and a number of learning algorithms.
Cross-database evaluation: The problem of overlearning plagues many learning algorithms. 
Considering that most biometrics databases are constituted by samples acquired under similar 
conditions (i.e. same environment, same sensor, similar pre-processing and compression, etc.) it 
is important to assess the generalization ability of proposed algorithms by cross-session record-
ings, where training and testing are performed on data recorded in different sessions with temporal 
separation. Better still are the cross-database evaluations, where the training and testing are per-
formed with different databases. Sometimes a world model is used to learn the conditions specific 
to the particular data acquisition environment. This is a small and representative data sample 
acquired under the test conditions that is used in addition to the training set.
Challenges and evaluation campaigns: The independent testing of the biometrics systems has 
been a vital practice. The efforts of the U.S. National Institute of Standards and Technology (NIST) 
have been instrumental and exemplary in this respect, and a number of campaigns have been con-
ducted by NIST and other institutions to evaluate biometric systems independently (see for exam-
ple, Philips et al. 2007). Among these, we should mention NIST’s Face Recognition Vendor Test, 
speaker recognition challenges, Iris Challenge Evaluation, Face Recognition Grand Challenge and 
the recent Multiple Biometrics Grand Challenge. Apart from NIST, important biometric assess-
ment campaigns are NVU iris challenges, Univ. of Bologna Fingerprint Verification Competition, 
M2VTS and BANCA challenges, and the BioSecure Multimodal Evaluation Campaign. These are 
valuable venues to try baseline algorithms with clearly defined protocols, to see the shortcomings 
of present approaches, and to objectively evaluate the performance of a new system. The reader is 
referred to (Petrovska-Delacrétaz et al., 2008) and to references therein for more information on 
biometric evaluation campaigns.
Links to databases and codes: Table 1 includes some links for the most important databases for 
different biometric modalities. For OpenSource code of baseline systems the reader is referred 
to the web resources of Association BioSecure2, which includes OpenSource reference systems, 
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publicly available databases, assessment protocols and benchmarking results for several modali-
ties (2D and 3D face, speech, signature, fingerprint, hand, iris, and talking-face).
Applications: Figure 1 shows the distribution of various ML approaches in biometrics, as gleaned 
from the 125 papers presented at the International Conference on Biometrics (Lee & Li, 2007). 
The most frequently used methods are based on learning a suitable subspace projection to reduce 
the dimensionality. Non-parametric methods that store templates for each enrolled subject and 
look at the distance to the query from the template are employed in more than 10 per cent of the 
papers, with different distance measures. Subspace projections favour Mahalanobis-based dis-
tance functions, whereas Hamming distance and histogram comparison techniques are frequently 
applied in iris recognition. Gaussian mixture models are particularly prominent in speech applica-
tions; HMM and other dynamic Bayesian approaches are used in signature and speech applica-
tions. About 15 per cent of all the papers favoured a fusion approach.

CONCLUSION

The rapid advance in technology, particularly the production of cheaper and better sensors enables 
computer systems to automatically identify people. This capability satisfies an increasing need for 
security and smarter applications, and gains wide acceptance thanks to strict control for privacy and 
ethical concerns.

In this chapter, we have given a glimpse of machine learning methods that are relevant in making 
biometric technology a reality. These methods are actively used in deployed systems, but there is ever 
the need for faster and more accurate algorithms. We hope that the application examples and references 
we have provided will serve the reader in creating novel machine learning solutions to challenging 
biometrics problems.

Table 1. Links to some important biometrics databases. 

Name Modality Link

BANCA face video www.ee.surrey.ac.uk/CVSSP/banca

CASIA iris & gait palmprint www.cbsr.ia.ac.cn

FERET 2D face www.itl.nist.gov/iad/humanid/feret/feret_master.html

FRGC 2D-3D face face.nist.gov/frgc

FVC fingerprint atvs.ii.uam.es/databases.jsp

MCYT signature & fingerprint atvs.ii.uam.es/databases.jsp

NIST speech www.ldc.upenn.edu (multiple corpora available from Linguistic Data Consortium)

PolyU palm-print www.comp.polyu.edu.hk/biometrics

USF gait figment.csee.usf.edu/GaitBaseline (includes code)

XM2VTS face & speech www.ee.surrey.ac.uk/CVSSP/xm2vtsdb
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KEY TERMS AND DEFINITIONS

biometric: A biometric is a personal or a behavioural trait that can be used to identify a person.
Biometric Template: The biometric template of a person is a pre-recorded biometric sample stored 

in a database for later authentication.
Authentication: Authentication is the decision process where a biometric is sampled from a person 

with an identity claim, and the sampled biometric is compared to a biometric template stored previously 
for this person to validate the identity claim.

Biometric System: A biometric system involves a set of sensors to record a biometric from the users 
of the system, a database of stored biometric templates, and an authentication algorithm by which the 
recorded biometric is compared to the template.

Biometric Fusion: The use of multiple biometric samples in a biometrics system. These samples 
can be collected through different modalities, resulting in multimodal fusion, or multiple samples from 
a single modality or even a single sensor can be employed for fusion.

ENDNOTES

1 The code is available in the OpenCV library, at http://sourceforge.net/projects/opencvlibrary
2 http://biosecure.it-sudparis.eu/AB/


