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Abstract 1 

Medullary thyroid carcinoma (MTC) is a rare tumour arising from neural crest-derived 2 

parafollicular C cells. Metastatic MTC patients are incurable because the cancer does 3 

not respond to radiotherapy or chemotherapy. The RET proto-oncogene plays a key role 4 

in the development of MTC. However, one half of sporadic MTC do not carry RET 5 

mutations. Mice models and early evidence obtained in human samples suggest that 6 

other genes, including those encoding components of the RB (retinoblastoma) and TP53 7 

tumour suppressor pathways, may be involved in MTC formation. Here we review the 8 

data on the involvement of genes acting in the RET and RB/TP53 pathways in MTC. 9 

Understanding genetic lesions that occur in MTC is a prerequisite to identifying 10 

molecular therapeutic targets in MTC and to improving the efficacy of RET-targeted 11 

therapies.  12 
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 1 

Medullary thyroid carcinoma: a genetic overview 2 

Medullary thyroid carcinoma (MTC) arises from calcitonin-producing neural crest-3 

derived parafollicular C cells of the thyroid. MTC accounts for 5% to 8% of all thyroid 4 

cancers (Matias-Guiu et al. 2004; Schlumberger et al. 2008). MTC is sporadic in about 5 

75% of cases; in the remaining cases, it occurs as a component of the autosomal 6 

dominant familial Multiple Endocrine Neoplasia type 2 (MEN 2) syndrome. MEN 2, 7 

first described by J.H. Sipple (Sipple 1961), includes three disorders: MEN 2A, MEN 8 

2B and familial MTC (FMTC) (Marx 2005; Zbuk & Eng 2007; Elisei et al. 2007). MEN 9 

2-associated MTC is bilateral and multicentric, and it is usually preceded by multifocal 10 

C-cell hyperplasia (CCH) (Gagel & Marx 2003). RET is mutated in roughly 50% of 11 

sporadic MTC and in more than 95% of MEN 2 families.  12 

In familial MTC, although the germ line RET mutation is present in all somatic 13 

cells of the affected individual, tumours are monoclonal, which suggests that other 14 

genetic alterations must occur at somatic level and act in concert with RET mutations 15 

for the tumour to develop (Gagel & Marx 2003). Moreover, a few MEN 2 families 16 

negative for RET mutations have been described, suggesting the existence of additional 17 

loci predisposing to MEN 2 (Montero-Conde et al. 2007). Finally, about 50% of 18 

sporadic MTC do not carry RET mutations. Whether another frequently mutated gene or 19 

multiple low frequency mutated genes occur in RET wild-type MTC samples is 20 

unknown. 21 

In MEN 2, MTC is associated in about 50% of cases to pheochromocytoma 22 

(MEN 2A and 2B), and in 10-35% of cases to parathyroid hyperplasia or adenoma 23 

(MEN 2A) (Gagel & Marx 2003). This suggests that MTC shares pathogenetic 24 

mechanisms with pheochromocytomas and parathyroid tumours. However, MTC is not 25 
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a phenotype of non-MEN 2 familial forms of parathyroid tumours or 1 

pheochromocytomas (Marx 2005; Zbuk & Eng 2007; Gagel & Marx 2003). 2 

Accordingly, PRAD1/CCND1, MEN1 and HPRT2 genes (associated to non-MEN 2 3 

forms of parathyroid tumours) (Ferris & Simental, 2002) and VHL, NF1 and SDHB, 4 

SDHC and SDHD (Succinate Dehydrogenase Subunit B, C and D) (associated to non-5 

MEN 2 forms of pheochromocytomas) (Maher & Eng 2002; Kaelin 2008) do not seem 6 

to be mutated in MTC. SDHB, C and D were not found to be mutated in sporadic MTC 7 

(Montani et al. 2005; Cascon et al. 2005; Lima et al. 2003), although germline SDHB 8 

and SDHD variants were over-represented in MTC samples with respect to healthy 9 

individuals (Sobrinho-Simões et al. 2008). One mutation and three mono allelic 10 

deletions were found in the VHL gene in 5 familial RET mutant MTC samples, 11 

suggesting cooperation of RET gain with VHL loss in MTC formation (Koch et al. 12 

2006). Intriguingly, VHL, NF1 and SDH gene products collaborate with RET in a 13 

common signalling pathway involved in controlling EglN3 prolyl hydroxylase-mediated 14 

neuronal cell apoptosis. In this pathway, RET (gain-of-function) and NF1 and VHL 15 

(loss-of-function) mutations lead to increased JunB transcription factor, which, in turn, 16 

blunts expression of EglN3, thereby leading to inappropriate cell survival and 17 

tumourigenesis (Kaelin 2008). Loss of SDH activity results in higher succinate levels; 18 

this in turn triggers the survival pathway because EglN3 is feedback-inhibited by 19 

succinate. Finally, the recently discovered KIF1B tumour suppressor, which maps in a 20 

chromosomal region (1p36) frequently deleted in MTC (see below), is required for 21 

EglN3 pro-apoptotic activity (Kaelin 2008). Thus, even if not frequently mutated, these 22 

proteins should be functionally analyzed in relation to MTC formation.  23 

In the following sections we focus on genes acting in the RET (Fig. 1) and 24 

RB/TP53 (Fig. 2) pathways. 25 
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 1 

RET signalling pathway in MTC 2 

The RET gene in familial and sporadic MTC  The RET (REarranged during 3 

Transfection) gene has been extensively reviewed elsewhere (Kodama et al. 2005; 4 

Santoro & Carlomagno 2006; Kondo et al. 2006; Asai et al. 2006a). Therefore, here we 5 

will summarize a few key points. The RET protein product is a single pass 6 

transmembrane receptor with an intracellular tyrosine kinase domain (RTK= receptor 7 

tyrosine kinase) that binds glial-derived neurotrophic factor (GDNF) ligands. RET was 8 

initially described as a bona fide proto-oncogene because it is activated by 9 

chromosomal aberrations in papillary thyroid carcinoma (PTC) (Santoro & Carlomagno 10 

2006; Kondo et al. 2006). Subsequently, it was found that germline point mutations in 11 

RET cause MEN 2 syndromes, and similar mutations at somatic level are the most 12 

common genetic alterations identified so far in sporadic MTC (Kouvaraki et al. 2005; 13 

Gagel & Marx 2003; Zbuk & Eng 2007; Marx 2005). Most MEN 2B patients (95% of 14 

cases) carry the M918T mutation in RET; the remaining fraction harbours the A883F 15 

substitution or other rare mutations. In 98% of MEN 2A mutations affect one of the five 16 

cysteines in the extracellular cysteine-rich domain of RET. In FMTC, mutations affect 17 

either the extracellular cysteines or the intracellular domain of RET (Kouvaraki et al. 18 

2005; Gagel & Marx 2003; Zbuk & Eng 2007; Marx 2005; Niccoli-Sire et al. 2001; 19 

Elisei et al. 2007). The genotype-phenotype correlation between the type of RET 20 

mutation and penetrance and expressivity of the disease further supports the prime role 21 

exerted by RET mutations in familial MTC (Machens & Dralle 2007). Thanks to this 22 

close correlation between a specific genetic lesion and cancer occurrence, MEN 2 is the 23 

best example in oncology of the efficacy of molecular diagnosis in mainstream clinical 24 

management. In fact, early thyroidectomy in RET mutations carriers significantly 25 
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improved their prognosis (Brandi et al. 2001; Gagel & Marx 2003; Skinner et al. 2005; 1 

Machens & Dralle 2007). Sporadic MTC, particularly more aggressive cases, also 2 

frequently (30–50% of cases) feature the M918T RET mutation (Elisei et al. 2007; 3 

Elisei et al. 2008). Finally, susceptibility to sporadic MTC could be influenced by the 4 

RET polymorphisms G691S/S904S (Robledo et al. 2003; Elisei et al. 2004; Cebrian et 5 

al. 2005; Lesueur et al. 2006), however, these findings require confirmation on larger 6 

casistics (Weber & Eng 2005). 7 

As discussed above, secondary genetic alterations at somatic level must act in 8 

concert with mutations in RET for MTC to develop (Gagel & Marx 2003). Probably, 9 

only a small number of secondary genetic events are required in MEN 2B mutation 10 

carriers because, in these patients, the disease develops in the first few months of life. A 11 

secondary genetic hit may target the RET gene itself, either through duplication of the 12 

mutant allele or loss of the wild-type allele (Huang et al. 2003). Additional hits may 13 

involve chromosome deletion and amplification events, such as the deletion in 14 

chromosome lp (Mathew et al. 1987; Khosla et al. 1991; Mulligan et al. 1993; Marsh et 15 

al. 2003; Ye et al. 2008). 16 

MTC-associated RET mutations convert RET into a dominantly transforming 17 

oncogene. Extracellular cysteine MEN 2A/FMTC RET mutants exert constitutive 18 

kinase activity consequent to ligand-independent homodimerization. In the case of 19 

mutation M918T, constitutive RET activation probably results from disruption of an 20 

auto-inhibited head-to-tail RET TK homo-dimer (Knowles et al. 2006).  21 

Transgenic mouse models demonstrated that RET oncogenes are able to drive 22 

MTC formation. Mice expressing RET-C634R or RET-M918T, but not wild-type RET, 23 

under the control of the calcitonin gene promoter developed MTC (Michiels et al. 1997; 24 

Acton et al. 2000). Also transgenic mice carrying RET-C634R under the control of a 25 
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ubiquitous viral promoter developed MTC, suggesting that murine C cells are highly 1 

susceptible to RET-mediated transformation (Kawai et al. 2000). However, the knock-in 2 

of the M918T mutation into mouse endogenous RET gene caused C-cell hyperplasia but 3 

not MTC, suggesting that, in the background of a normally expressed RET mutant 4 

allele, the accumulation of secondary genetic alterations is required for development of 5 

MTC (Smith-Hicks et al. 2000). Genetic background strongly affected the MTC 6 

phenotype in transgenic mice, with tumour penetrance varying from 0% in FVB/N to 7 

98% in CBA/ca mice, which suggests that genetic modifiers greatly affect RET-driven 8 

MTC risk (Cranston & Ponder 2003).  9 

RET knock-down by dominant-negative mutants, ribozymes or RNAi impaired 10 

proliferation of RET-mutant MTC cell lines (Parthasarathy et al. 1999; Drosten et al. 11 

2004). Taken together, these studies strongly implicated RET in the formation and 12 

maintenance of a subset of MTC, and provided the conceptual framework for the use of 13 

RET kinase inhibitory compounds in MTC clinical trials (Wells & Nevins 2004; 14 

Schlumberger et al. 2008; Sherman 2008; Castellone et al. 2008). 15 

 16 

RET signalling cascade  Genetic screenings in model organisms have shown that the 17 

same phenotype can arise from alterations in any of several genes acting epistatically in 18 

common signalling cascades. Similarly, although the number of potential cancer driver 19 

genes is large, this probably reflects changes in only a few pathways. For instance, a 20 

systematic cancer genome analysis recently revealed that many mutations in colon and 21 

breast cancer cluster in genes acting in few signalling cascades (Wood et al. 2007; 22 

Sjöblom 2008). Thus, if gain-of-function RET mutations are associated with human 23 

MTC, it is equally plausible that mutations in the genes encoding co-receptors/ligands 24 

that trigger RET activation or signalling effectors that mediate RET intracellular effects 25 
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play a role in MTC. An important proof of this concept was provided by genetic 1 

analysis of papillary thyroid carcinoma (PTC), another thyroid tumour type in which 2 

RET is implicated. Indeed, it was found that most PTC cases that are negative for RET 3 

(RET/PTC) rearrangements harbour either mutations of BRAF, an effector of the RET-4 

initiated ERK signalling cascade or, less frequently, in NTRK1, another growth factor 5 

receptor (Fig. 1) (Fagin 2005; Pierotti & Greco 2006; Kondo et al. 2006).  6 

RET is activated through the binding of four GDNF family ligands (GFL) 7 

[GDNF, neurturin (NRTN), artemin (ARTN), persephin (PSPN)] together with the four 8 

corresponding membrane co-receptors (GFRα1, 2, 3 and 4) (Airaksinen & Saarma, 9 

2002). GFRα4, in particular, is expressed in normal C cells and the corresponding 10 

ligand, PSPN, is required for calcitonin production by C cells (Lindahl et al. 2001; 11 

Lindfors et al. 2006). No somatic mutation in any of the GFL/GFRα encoding genes 12 

has been reported in MTC (Marsh et al. 1997; Borrego et al. 1998), although 13 

GFL/GFRα genes map in chromosomal regions where allelic imbalances were detected 14 

in MTC (Marsh et al. 2003). Polymorphic variants of GFL/GFRα genes, particularly 15 

GFRα1 in familial (Gimm et al. 2001a; Lesueur et al. 2006) and GFRα4 in sporadic 16 

(Vanhorne et al. 2005; Cebrian et al. 2005; Ruiz-Llorente et al. 2007) MTC cases, have 17 

been reported.  18 

Once activated, RET transmits mitogenic, survival and motogenic signals 19 

(Kodama et al. 2005; Santoro & Carlomagno 2006; Asai et al. 2006a). Two major 20 

signalling cascades, namely RAS and phosphatidylinositol 3-kinase (PI3K), are 21 

triggered by RET (Fig. 1). In turn, RAS and PI3K contribute to the activation of many 22 

signalling effectors and, as described below, they concur to the activation of NF-κB 23 

(nuclear factor-κB), STAT (Signal Transducer and Activator of Transcription) and β-24 

catenin. Other signalling effectors, namely SRC (Encinas et al. 2004; Iavarone et al. 25 
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2006), phospholipase Cγ (Borrello et al. 2002; Jain et al. 2006), and RAC1/JUN NH(2)-1 

terminal kinase (JNK) (Chiariello et al. 1998; Fukuda et al. 2002; Asai et al. 2006b) are 2 

activated by RET (Fig. 1). In principle, gain-of-function of these pathways may 3 

contribute to MTC. Moreover, negative regulators of RET signalling have also been 4 

identified and, in principle, their loss-of-function may contribute to MTC formation 5 

(Fig. 1).  6 

Hereafter, we focus on the RET pathways that have been more extensively 7 

studied in MTC. Components of these pathways may be exploited as molecular targets 8 

for MTC treatment. 9 

 10 

RAS pathway  Growth factor binding to cell surface RTKs creates docking sites for 11 

adaptor molecules that activate guanine nucleotide-exchange factors, which in turn 12 

favours GTP binding to RAS small G-proteins (KRAS, HRAS and NRAS) (Schubbert 13 

et al. 2007). Intrinsic RAS GTPase activity terminates signalling, a reaction that is 14 

accelerated thousands of fold by GTPase-activating proteins (GAPs) such as 15 

neurofibromin (NF1) (Fig. 1) (Schubbert et al. 2007). Once activated, RAS stimulates 16 

numerous intracellular transducers, including RAF, phosphatidylinositol 3-kinase 17 

(PI3K) and Ral guanine nucleotide-dissociation stimulator (RALGDS), to regulate  18 

proliferation, survival and differentiation (Fig. 1) (Halilovic & Solit 2008). The RAS-19 

>RAF->MEK->ERK cascade is the best characterized RAS effector pathway. There are 20 

three RAF serine/threonine kinases (ARAF, BRAF and CRAF) that activate the MEK 21 

(MEK1/MEK2) -> ERK (ERK1/2) kinase cascade. ERK (extracellular-signal regulated 22 

kinase), in turn, stimulates gene transcription by directly phosphorylating transcription 23 

factors or by targeting intracellular kinases like p90RSK (Fig. 1) (Schubbert et al. 24 
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2007). Negative regulators attenuate RAS signalling at various levels of the signalling 1 

cascade (Fig. 1) (see below). 2 

RAS genes are most commonly activated by point mutations in cancer. 3 

Alternatively, the RAS pathway can be triggered indirectly by loss of the negative 4 

regulator NF1, by upstream activation of cell surface RTKs or PTPN11 (which encodes 5 

the SHP-2 tyrosine-phosphatase) or by downstream activation of RAS signalling 6 

effectors (Fig. 1) (Wellbrock et al. 2004; Halilovic & Solit 2008). This paradigm 7 

applies to thyroid carcinoma of follicular cell lineage, where RET gene rearrangements 8 

are prevalent in PTC, RAS mutations in follicular carcinoma (FTC) and in follicular-9 

variant PTC (FV-PTC), and BRAF mutations in PTC and anaplastic carcinoma (ATC) 10 

(Kondo et al. 2006). Sequencing analysis of all three RAS family members did not 11 

reveal any mutation in about 30 MTC samples (Moley et al. 1991; Horie et al. 1995; 12 

Bockhorn et al. 2000). Similarly, no BRAF mutation was found in 65 MTC samples 13 

(Xing 2005). Taken together, these findings excluded that RAS/BRAF gene mutations 14 

exert a prominent role in MTC formation. However, a recent study led to a different 15 

conclusion by showing 41% KRAS mutations and 68% BRAF mutations in MTC 16 

samples (Goutas et al. 2008). 17 

The degree and duration of activation dictate the final biological outcome of 18 

RAS signalling. For example, in PC12 pheochromocytoma cells, transient RAS 19 

activation stimulates proliferation, whereas sustained RAS activation induces 20 

differentiation (Schubbert et al. 2007). Similarly, oncogenic HRAS and CRAF alleles 21 

decreased MTC cell proliferation and increased calcitonin gene expression (Nakagawa 22 

et al. 1987; Carson-Walter et al. 1998). Such a pro-differentiating effect of constitutive 23 

RAS->RAF signalling may explain why mutations in these genes are unlikely to occur 24 

in MTC. In this context, NRAS exerted a protective effect against MTC formation as 25 
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shown by the finding that NRAS deletion increased MTC formation in RB1-knock-out 1 

mice (see also below) (Takahashi et al. 2006). However, the role of RAS signalling in 2 

MTC cells is probably complex and different components of the RAS family may exert 3 

different effects. In fact, when targeted to C cells, an oncogenic HRAS mutant caused 4 

MTC in transgenic mice (Johnston et al. 1998). Similarly, MOS (Moloney murine 5 

sarcoma virus oncogene), another oncogene that potently activates ERK, induced MTC 6 

and pheochromocytoma in transgenic mice (Schulz et al. 1992). With the caveat that 7 

findings obtained in artificial animal models should be interpreted with caution, it is 8 

conceivable that RAS signalling along the ERK cascade is involved mitogenic 9 

signalling in MTC cells. In this context, it is noteworthy that inhibition of the ERK 10 

pathway reduced proliferation of a RET mutant MTC cell line (Zatelli et al. 2005). 11 

Inhibitors of MEK are currently undergoing clinical experimentation in thyroid cancer 12 

patients (Sherman 2008). 13 

 14 

Phosphatidylinositol 3-kinase (PI3K) pathway  Class I PI3K are constituted by a 15 

regulatory (p85α, p55α, p50α, p85β, p55γ) and a catalytic (p110α, p110β, p110δ) 16 

subunit. Upon recruitment to the plasma membrane by activated RTK or RAS, class I 17 

PI3K phosphorylates phosphatidylinositol-4,5-bisphosphate (PIP2) to generate 18 

phosphatidylinositol-3,4,5-triphosphate (PIP3) (Fig. 1). PIP3, in turn, activates 19 

downstream molecules such as the RAC small GTPase, 3-phosphoinositide-dependent 20 

protein kinase 1 (PDK1), and the AKT (also known as PKB) serine/treonine kinase 21 

(Yuan & Cantley 2008). The lipid phosphatase PTEN (phosphatase and tensin 22 

homologue deleted on chromosome 10) antagonizes this cascade by dephosphorylating 23 

PIP3 (Salmena et al. 2008). Besides buffering the PI3K pathway, PTEN also exerts 24 

phosphatase-independent nuclear functions that may contribute to the potent oncogenic 25 
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effect resulting from its inactivation in tumours (Salmena et al. 2008). AKT 1 

phosphorylates and inactivates pro-apoptotic transcription factors of the FOXO 2 

(Forkhead-Box Class O) family, the cell cycle inhibitor p27Kip1, and the GSK3β 3 

kinase, thereby releasing β-catenin from the inhibitory effects of GSK3β (see below) 4 

(Fig. 1) (Yuan & Cantley 2008). In addition, AKT stimulates the serine/threonine kinase 5 

mTOR (mammalian target of rapamycin) (Fig. 1). mTOR is associated with two 6 

complexes: the rapamycin-sensitive TORC1 complex (that phosphorylates S6K to 7 

regulate protein translation) and the rapamycin-insensitive TORC2 (which is the PDK2 8 

activity that controls serine 473 phosphorylation of AKT itself) (Bjornsti & Houghton 9 

2004). TORC1 also contributes to NF-κB activation (see below) (Fig. 1). 10 

The PI3K->AKT->mTOR cascade is important in tumourigenesis because of its 11 

ability to promote growth (cell size) and proliferation (cell number) and to prevent cell 12 

death. Mutations in major nodes of this cascade are prevalent in human cancer and 13 

include gain-of-function mutations and amplification of the genes encoding the catalytic 14 

subunit p110α of PI3K (PIK3CA) and AKT (Zbuk & Eng 2007; Yuan & Cantley 2008). 15 

Mutations in this pathway are very frequent, for instance, in breast and colon cancer 16 

(Wood et al. 2007). Germ-line inactivating mutations of PTEN cause autosomal 17 

dominant hamartoma syndromes, and somatic PTEN inactivation by deletion is very 18 

frequent (up to 30%-50%) in sporadic tumours (Zbuk & Eng 2007; Paes & Ringel 19 

2008). Many studies have demonstrated that the PI3K->AKT system plays a key role in 20 

RET signalling (Segouffin-Cariou et al. 2000; Kodama et al. 2005; Asai et al. 2006a). 21 

However, no systematic genetic analysis of PI3K pathway components has been 22 

reported so far in MTC. PIK3CA gene amplification, which frequently occurs in 23 

aggressive tumours of thyroid cells of follicular lineage, was not detected in 13 MTC 24 

samples (Wu et al. 2005). PTEN analysis in MTC has so far been limited to promoter 25 
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methylation assessment, and no methylation was detected in a small MTC set 1 

(Schagdarsurengin et al. 2006). However, C-cell hyperplasia and MTC occur in PTEN 2 

heterozygous mice, particularly when crossed with mice knocked-out for CDKN2C 3 

(encoding the p18INK4C cell cycle inhibitor) (see below) (Bai et al. 2006). Thus, as 4 

discussed for RAS, the PI3K->AKT cascade, even though infrequently mutated, may 5 

play a role in MTC. Accordingly, in vitro chemical PI3K inhibition reduced MTC cell 6 

proliferation and survival, which indicates that this pathway could be a molecular target 7 

in MTC treatment (Kunnimalaiyaan et al. 2006a). Given its central role in PI3K->AKT 8 

signalling, and the availability of potent and selective inhibitors (everolimus, 9 

temsirolimus) derived from rapamycin (sirolimus), mTOR is one of the most appealing 10 

therapeutic targets in this pathway (Bjornsti & Houghton 2004).  11 

 12 

NF-κB (nuclear factor-κB)  The NF-κB family includes five transcription factors 13 

named NF-κB1 (p50), NF-κB2 (p52), Rel, RelA (p65) and RelB. NF-κB activates 14 

transcription of genes associated with cell proliferation, angiogenesis, metastasis, and 15 

inflammation and suppression of apoptosis (Baud & Karin 2009). NF-κB proteins are 16 

rendered inactive in non-stimulated cells through binding to inhibitors, known as the 17 

IκB (IκB α, β, ε) proteins. Activation of most forms of NF-κB, especially the most 18 

common form (the p50/RelA dimer), depends on phosphorylation-induced 19 

ubiquitination of IκB that is mediated by the IκB kinase (IKK) complex (IKK-α, IKK-β, 20 

IKK-γ or NEMO) (Baud & Karin 2009). Thus, NF-κB is activated by different 21 

membrane receptors as well as by BRAF that directly associates with IKK (Encinas et 22 

al. 2008) and by PI3K/AKT that mediates an mTOR/IKK interaction (Dan et al. 2008) 23 

(Fig. 1). RET stimulates IKK phosphorylation and NF-κB activation, thus contributing 24 

to MTC cell survival (Ludwig et al. 2001; Encinas et al. 2008).  25 
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Recent studies have found mutations that directly target NF-κB pathway 1 

components in human cancer (Wood et al. 2007). A genetic analysis of the NF-κB 2 

pathway in MTC has not yet been reported. Histochemical analysis of MTC tissue 3 

samples revealed that many proteins of the NF-κB family, particularly p65, p52 and c-4 

Rel, are localized in the nucleus (Gallel et al. 2008). NF-κB inhibitors, particularly 5 

IKK-β inhibitors, are being exploited in cancer therapy (Baud & Karin, 2009). 6 

Moreover, inhibitors of the 26S proteasome, such as bortezomib (Velcade), that prevent 7 

IκB degradation and NF-κB nuclear translocation, exerted cytotoxic effects in MTC 8 

cells (Mitsiades et al. 2006a).  9 

 10 

β-Catenin (CTNNB1)  β-Catenin, which is encoded by the CTNNB1 gene, plays an 11 

important role in cellular adhesion by associating with E-cadherin and α-catenin. Upon 12 

disassembling of the membrane complex, β-catenin migrates into the nucleus where it 13 

acts as a co-activator of TCF/LEF (T-cell factor/lymphoid-enhancing factor) 14 

transcriptional factors (Brembeck et al. 2006). RET stimulates β-catenin activation via 15 

direct phosphorylation on Y654 and via PI3K/AKT and RAS/ERK-mediated inhibition 16 

of GSK3β (Fig. 1) (Gujral et al. 2008; Cassinelli et al. 2008; Castellone et al. 2009). 17 

Although an analysis of the CTNNB1 gene in MTC has not yet been reported, MTC 18 

samples from human patients and RET(M918T) transgenic mice showed nuclear β-19 

catenin accumulation (Gujral et al. 2008).  20 

 21 

STAT (Signal Transducer and Activator of Transcription)  STAT transcription 22 

factors are activated in response to cytokines and growth factors. Cytokines activate 23 

STAT through JAK tyrosine kinases, whereas RTKs can phosphorylate STAT directly. 24 

The JAK->STAT pathway has been implicated in several neoplastic diseases, 25 
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particularly myeloproliferative disorders (Levine & Gilliland 2008). Oncogenic RET 1 

mutants induce serine phosphorylation through the RAS pathway, and tyrosine 2 

phosphorylation of STAT3 (Fig. 1) (Plaza Menacho et al. 2005; 2007).  Moreover, 3 

activated STAT3 was identified in the nucleus of cells from MTC samples (Plaza 4 

Menacho et al. 2005). 5 

 6 

Negative regulators of RET signalling   Several proteins function as feedback 7 

regulators to attenuate RTK signalling and, intriguingly, the corresponding genes are 8 

often downregulated in diverse tumour types (van Staveren et al. 2006; Amit et al. 9 

2007). Negative regulators of RET signalling have been identified. However, also in 10 

this case, no systematic analysis of genetic alterations in MTC has yet been reported. 11 

Below, we briefly discuss the effects exerted by tyrosine phosphatases (LAR, PTPRJ, 12 

SHP-1), ERK dual-specificity phosphatases (DUSP) and RAS->BRAF signalling 13 

inhibitors (SPRY) on RET signalling. 14 

Tyrosine phosphatases de-phosphorylate RET and attenuate RET signalling; 15 

theoretically, their loss could promote MTC formation (Fig. 1). LAR (Leukocyte 16 

common Antigen-Related) phosphatase (also called "PTPRF", protein tyrosine 17 

phosphatase, receptor type, F) is a receptor tyrosine phosphatase that maps on a region 18 

of chromosome 1 (1p) that is frequently lost in MTC (Mathew et al. 1987; Mulligan et 19 

al. 1993). LAR forms stable complexes with RET and de-phosphorylates RET cysteine 20 

mutants (but not RET-M918T) thereby blunting cell proliferation (Qiao et al. 2001). 21 

Similarly, the receptor protein tyrosine phosphatase J (PTPRJ) binds and de-22 

phosphorylates RET cysteine mutants and thus impairs their transforming effect 23 

(Iervolino et al. 2006). The Src homology-2-containing protein tyrosine phosphatases-1 24 

and -2 (SHP-1, SHP-2) are non-transmembrane phosphotyrosine phosphatases. While 25 
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SHP-2 functions as a positive RTK signal transducer and stimulates downstream RET 1 

signalling along the RAS cascade (D'Alessio et al. 2003), SHP-1 serves as a negative 2 

regulator of signalling systems. SHP-1 associates to RET, restrains RET 3 

autophosphorylation, and inhibits MTC cell proliferation (Hennige et al. 2001; 4 

Incoronato et al. 2004; Zatelli et al. 2005). Intriguingly, SHP-1 is involved in the 5 

cytostatic effects of somatostatin in MTC cells (Zatelli et al. 2005).  6 

Activated ERKs are inactivated through dephosphorylation of threonine and/or 7 

tyrosine residues within the activation loop. The dual-specificity phosphatases (DUSP), 8 

also called "MAP kinase phosphatases" (MKP), carry out this function (Fig. 1) (Kondoh 9 

& Nishida 2007). Intriguingly, MKPs/DUSPs are rapidly induced upon growth factor 10 

signalling, and function as feedback regulators of the pathway (Amit et al. 2007). RET-11 

mediated signalling increased MKP-3 levels (Colucci-D’Amato et al. 2000). In 12 

principle, a loss-of-function of MKPs may favour RET signalling along the ERK 13 

cascade. However, it should be noted that the pro-mitogenic and anti-mitogenic effects 14 

of MKPs/DUSPs may vary depending on the specific complement of MAPK family 15 

members they de-phosphorylate. For instance, DUSP4/MKP-2, which dephosphorylates 16 

not only p42/44 MAPK (ERK) but also p38MAPK and JNK, exerts a positive (rather 17 

than a negative) role in RET-mediated tumourigenesis and it is up-regulated in MTC 18 

samples (Hasegawa et al. 2008). 19 

Sprouty (SPRY) and SPRED proteins are evolutionarily conserved inhibitors of 20 

signalling that act by blocking RAS->RAF interaction and ERK activation. The 21 

expression of SPRY family members is induced by RET, and SPRY2 blunted RET-> 22 

ERK signalling (Ishida et al. 2007). Intriguingly, genetic ablation of SPRY2 led to 23 

enteric neuronal hyperplasia by promoting RET signalling (Taketomi et al. 2005). 24 

Similarly, SPRY1-deficient mice had kidney defects because of RET hypersignalling 25 
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(Basson et al. 2005). SPRY/SPRED downregulation has been reported in several human 1 

cancers (Lo et al. 2006). Germline loss-of-function mutations in SPRED1 caused a 2 

neurofibromatosis 1-like syndrome (Brems et al. 2007). Thus, a loss of SPRY/SPRED 3 

family members in C-cells can, in principle, favour MTC formation. 4 

 5 

Other growth factor receptors  It is conceivable that other RTKs, besides RET, are 6 

involved in MTC. This point is of great topical interest because tyrosine kinase 7 

inhibitors (TKIs) are now being tested in MTC patients (Castellone et al. 2008; 8 

Sherman 2008). Proliferation of cultured MTC cells is stimulated by IGF-I (insulin-like 9 

growth factor-I) and inhibited by compounds targeting IGF-I-R (Yang et al. 1992; 10 

Mitsiades et al. 2004). NTRKs, which are tyrosine kinase receptors for growth factors 11 

of the NGF (nerve growth factor) family, have been studied in MTC because, like RET, 12 

they exert neurotrophic effects and are involved in PTC (NTRK1 rearrangements) 13 

(Pierotti & Greco 2006). Moreover, there is functional evidence that NTRK1-> RET 14 

signalling is involved in neuronal cell survival (Tsui-Pierchala et al. 2002; Luo et al. 15 

2007; Pierchala et al. 2007). Although no mutations have been found in NTRK1, 2 and 3 16 

(Gimm et al. 1999; 2001b), NTRK2 expression was reduced, whereas NTRK3 17 

expression was increased in MTC (McGregor et al. 1999). Moreover, NTRK2 18 

expression impaired the tumourigenicity of MTC cells (McGregor et al. 1999). 19 

Interaction between EGFR (epidermal growth factor receptor) and RET was recently 20 

found to mediate EGFR-dependent RET activation (Croyle et al. 2008). Phosphorylated 21 

EGFR has been identified in MTC cells (Gorla et al. 2008). It is noteworthy that 22 

Vandetanib, a RET kinase inhibitor currently being investigated in MTC patients, is 23 

also an EGFR inhibitor (Carlomagno et al. 2002). No mutation in EGFR was found in 24 

small MTC sample sets (Mitsiades et al. 2006b; Cerrato & Santoro unpublished). 25 
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Fibroblast growth factor receptor-4 (FGFR-4) is expressed in aggressive thyroid tumour 1 

types and MTC cells. Molecular targeting of FGFR-4 with an ATP-competitive 2 

inhibitor prevented the growth and reduced the tumourigenesis of MTC cells (Ezzat et 3 

al. 2005). 4 

Finally, membrane receptors of families other than the RTK family have been 5 

implicated in MTC. NOTCH1 is a multifunctional transmembrane receptor that 6 

regulates cell differentiation, development, proliferation and survival. Binding of 7 

several ligands promotes proteolytic cleavage events, which result in the release of the 8 

NOTCH1 intracellular domain that, in turn, translocates to the nucleus and activates 9 

transcription of various target genes. NOTCH1 is a negative regulator of ASH1 10 

(achaete-scute homolog-1, called "MASH1" in rodents), which is a highly conserved 11 

basic helix-loop-helix transcription factor that is critical for C-cell development 12 

(Lanigan et al. 1998).  Interestingly, MTC expresses ASH1 but not NOTCH1, and 13 

NOTCH1 expression arrested proliferation of MTC cells (Kunnimalaiyaan et al. 14 

2006b). The prolactin receptor (PRLR) belongs to the cytokine receptor family and 15 

activates the JAK->STAT pathway. Unexpectedly, PRLR-null mice developed MTC at 16 

a high frequency, thereby suggesting that PRLR suppresses MTC formation at least in 17 

mice (Kedzia et al. 2005). 18 

 19 

Tumour suppressors of the RB1 and TP53 pathways in MTC 20 

The tumour suppressor genes RB1 (retinoblastoma: pRB protein) and TP53 (p53 21 

protein) are frequently mutated in human cancer, and several lines of evidence indicate 22 

that both pathways must be inactivated in cancer to overcome senescence or apoptosis 23 

(Hahn & Weinberg 2002). RB1 is the prototypic member of the class of tumour 24 

suppressors known as "gatekeepers", which control tumour growth in a cell-autonomous 25 
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manner. This mainly depends on pRB’s ability to repress the effect exerted by the 1 

E2F/DP family of transcription factors, namely, stimulation of cell cycle progression or 2 

apoptosis (Fig. 2) (Hahn & Weinberg 2002). Binding of the pRB protein to E2F/DP 3 

transcription factors is high when pRB is hypophosphorylated in G1, and low when 4 

pRB is hyperphosphorylated in S and G2 phases. pRB is phosphorylated sequentially by 5 

D-, E- and A-type cyclin-mediated CDK activity. In turn, CDKs are negatively 6 

regulated by CDK inhibitors (CKI) of the INK4 (p16INK4A, p15INK4B, p18INK4C, 7 

p19INK4D) and CIP/KIP (p21CIP1, p27KIP1, p57KIP2) families (Fig. 2). Tethering of 8 

pRB to E2F target genes results in cell cycle arrest (Trimarchi & Lees 2002). There are 9 

multiple interactions between the pRB and the p53 pathways (Fig. 2). On one hand, by 10 

stimulating transcription of the p21CIP1 (CDKN1A) cell cycle inhibitor, p53 obstructs 11 

the activity of cyclin E/CDK complexes, thereby reducing pRB phosphorylation and, 12 

consequently, E2F activity. On the other hand, loss-of-function of pRB releases not only 13 

the pro-mitogenic but also pro-apoptotic activity of E2F transcription factors. The final 14 

outcome may depend on TP53 genetic status because E2F-mediated apoptosis is 15 

dependent on the upregulation of p14ARF that in turn stabilizes p53. Therefore, in 16 

cancer, RB1 and TP53 are often concurrently mutated (Hahn & Weinberg 2002).  17 

There is extensive genetic evidence in rodents that the pRB and p53 pathways 18 

are involved in MTC. RB1-deficient mice developed MTC (Harrison et al. 1995). 19 

Conditional RB1 inactivation also induced highly aggressive MTC in mice 20 

(Kucherlapati et al. 2006). Loss of TP53 further increased MTC formation in RB1-21 

deficient mice (Williams et al. 1994; Harvey et al. 1995). E2F family transcription 22 

factors exerted a dual role in MTC formation. Genetic deletion of E2F1 or E2F4 23 

reduced MTC formation in RB1-deficient mice (Yamasaki et al. 1998; Lee et al. 2002). 24 
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Instead, deletion of E2F3 further increased the incidence and aggressiveness of MTC 1 

(Ziebold et al. 2003).  2 

Interestingly, MTC from RB1/TP53-deficient mice acquired somatic cysteine 3 

mutations in RET that closely resemble activating mutations observed in human MTC. 4 

This suggested that murine MTC requires mutational dysregulation within both the RET 5 

and nuclear tumour suppressor gene pathways (Coxon et al. 1998). High grade MTC 6 

were observed in mice simultaneously lacking RB1 and CDKN1B (that codes for the 7 

p27Kip1 cell cycle inhibitor) (Park et al. 1999). Interestingly, germline mutation in 8 

CDKN1B predisposed rats to a multiple endocrine neoplasia syndrome featuring MTC 9 

formation (Pellegata et al. 2006). In transgenic mice, the loss of two CDKIs, CDKN1B 10 

and CDKN2C (coding for the p18INK4C cell cycle inhibitor), led to accelerated MTC 11 

formation (Franklin et al. 2000; Joshi et al. 2007). CDKN2C deficiency also accelerated 12 

MTC formation in PTEN-deficient mice (Bai et al. 2006). Finally, transgenic mice 13 

expressing oncogenic RET crossed with mice lacking CDKN2C developed MTC at a 14 

higher incidence and sooner than their single mutant littermates (van Veelen et al. 15 

2008).  16 

Taken together, these studies provide robust evidence that, in rodents, disruption 17 

of the RB1 and TP53 pathways predisposes to MTC formation. However, mice models 18 

may not faithfully mimic the human situation, and the tumour spectrum may 19 

significantly differ in the two species. A prominent example of this concept is provided 20 

by the phenotype of RB1-deficient mice. In humans, loss of the RB1 gene is associated 21 

with the development of retinoblastoma and osteosarcoma and, later in life, small-cell 22 

lung carcinoma, whereas RB1-deleted mice do not develop these types of tumours, and 23 

develop retinoblastoma only when the RB1-related RBL1 gene is concurrently deleted 24 

(Rangarajan et al. 2003). Early studies did not find TP53 mutations in sets of 9 25 
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(Yoshimoto et al. 1992) and 22 (Herfarth et al. 1997) MTC samples. More recent 1 

studies identified a high prevalence of TP53 mutations (Pavelić et al. 2006) and 2 

deletions in MTC (Sheikh et al. 2004). Very recently, about 10% MTC were found to 3 

carry loss-of-function mutations in CDKN2C (van Veelen et al. 2009); however, we did 4 

not find any CDKN2C mutation in 15 MTC samples (Cerrato & Santoro unpublished). 5 

A systematic analysis of the genes in the RB1 and TP53 pathways in human samples 6 

will help to clarify their role in MTC formation. Given the role played by these tumour 7 

suppressor pathways in the response of tumours to therapy, this information might be 8 

important for the analysis of data from the ongoing MTC trials involving the use of 9 

targeted agents. 10 

 11 

Conclusions 12 

The identification of RET mutations has revolutionized the medical treatment of patients 13 

with familial MTC. Twenty-five years after this seminal discovery, no other genetic 14 

lesion has been consistently associated with MTC formation. Studies of the RET 15 

pathway and mouse models of MTC formation are generating an ever-growing list of 16 

genes, including the recently described CDKN2C gene (p18INK4C cell cycle inhibitor), 17 

that could play a role in MTC. Biochemical data also indicate that these pathways play a 18 

role in MTC formation. A thorough analysis of these genes has not yet been performed, 19 

and the results of the few studies available, conducted, moreover, on a limited number 20 

of samples, are often conflicting. An unbiased genome-wide analysis of sequence 21 

variations, copy gains and losses will probably provide groundbreaking information as 22 

has occurred for various tumour types (Sjöblom 2008). It is expected that identification 23 

of lesions in genes other than RET will clarify the biology of MTC and foster the 24 

development of targeted therapeutic approaches. In any event, the data acquired in 25 
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recent years about the signalling mechanisms operating in MTC show that molecular 1 

targeting of pathways like the RAS/ERK, PI3K/AKT and NF-kB pathways is a 2 

plausible therapeutic approach for this cancer. 3 
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Figure Legends 

 

Figure 1 

Schematic representation of the RTK (receptor tyrosine kinase) signalling pathways. 

Potential oncoproteins are in white, whereas tumour suppressors are in gray.   = 

kinases. It should be noted that only some signalling effectors are represented. RAS and 

AKT proteins have several effectors (like RALGDS for RAS) in addition to those 

represented in the figure. In addition, only some of the interactions that occur among the 

various proteins are represented. For instance, RTKs like RET are known to directly 

phosphorylate β-catenin and STAT, besides activating them through RAS and AKT. 

Moreover, AKT may directly phosphorylate IKK proteins. 

 

Fig. 2 

Schematic representation of RB and p53 signalling pathways leading to cell 

proliferation arrest and apoptosis. Potential oncoproteins are in white, whereas tumour 

suppressors are in grey.  = kinases. 
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