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Many recent studies have examined the neural basis of category
learning. Behavioral neuroscience results suggest that both the
prefrontal cortex and the basal ganglia play important category-
learning roles; neurons that develop category-specific firing
properties are found in both regions, and lesions to both areas
cause category-learning deficits. Similar studies indicate that
the inferotemporal cortex does not mediate the learning of new
categories. The cognitive neuroscience literature on category
learning appears contradictory until the results are partitioned
according to the type of category-learning task that was used.
Three major tasks can be identified: rule based, information-
integration, and prototype-distortion. Recent results are consis-
tent with the hypotheses that (a) learning in rule-based tasks
requires working memory and executive attention and is medi-
ated by frontal-striatal circuits, (b) learning in information-
integration tasks requires procedural memory and is mediated
primarily within the basal ganglia, and (c) learning in proto-
type-distortion tasks depends on multiple memory systems,
including the perceptual representation system.

Key Words: working memory, procedural learning,
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Categorization is the act of responding differently to
objects and events that belong to separate classes or cate-
gories. It is a critically important skill that all organisms
must possess because it allows them to respond differ-
ently, for example, to nutrients and poisons and to pred-
ators and prey. Given its importance, it is not surprising
that there is the huge and old literature on the percep-
tual and cognitive processes that mediate categorization.
However, for many years, virtually no attention was paid
to the neural basis of category learning. As in many other
disciplines, however, the categorization community has
embraced the cognitive neuroscience revolution. As a
result, the past decade has seen an explosion of new
results that collectively are beginning to paint a detailed
picture of the neural mechanisms and pathways that

mediate category learning. These results come from a
wide variety of sources, including traditional animal
lesion and single-cell recording studies, as well as the
cognitive neuroscience fields of neuroimaging and
neuropsychology. This article reviews that literature. We
begin with behavioral neuroscience studies on nonhu-
man animals, and then we review cognitive neuroscience
studies on human category learning. Finally, we discuss
theoretical implications of these many results.

Before beginning, it is important to be explicit about
what we will not be reviewing. First, our focus on learning
prevents us from considering the categorization behav-
ior of highly experienced experts. This distinction is
important because there is good evidence that the neu-
ral mechanisms and pathways that mediate the learning
of new categories are different from the neural struc-
tures that mediate the representation of highly learned
categories. For example, many neuropsychological
groups that are impaired in category learning (e.g., fron-
tal patients and Parkinson’s disease patients) do not lose
old, familiar categories (e.g., fruits and tools). Similarly,
there is no evidence that people who lose a familiar cate-
gory (i.e., who develop a category-specific agnosia)
develop any general category-learning deficits. Readers
interested in the representation of highly learned cate-
gories are referred to any of several excellent reviews of
the category representation literature (e.g., Cree &
McRae, 2003; Humphreys & Forde, 2001; Joseph, 2001).

Second, because our focus is on the neural basis of
category learning, we mostly neglect the voluminous
cognitive literature on categorization. The major excep-
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tion will be those (relatively few) cognitive studies that
inform us about the underlying neurobiology. Inter-
ested readers are referred to any of a number of recent
reviews of the cognitive literature (Ashby & Maddox, in
press; Barsalou, 2003; Markman & Ross, 2003; Murphy,
2002).

BEHAVIORAL NEUROSCIENCE STUDIES

Most of the research on category learning in non-
humans has involved either single-cell recordings in
monkeys or lesion studies in rats. The most natural way
to organize this work is by the brain area that was the
main target of the research. The three most widely stud-
ied areas have been the inferotemporal cortex (IT), the
prefrontal cortex (PFC), and the basal ganglia.

IT

The IT is the terminal sensory association region on
the so-called ventral (or “what”) pathway out of the pri-
mary visual cortex (Ungerleider & Mishkin, 1982). A
huge literature implicates IT in the high-level represen-
tation and processing of visual objects (for reviews, see
Bullier, 2002; Tanaka, 1996). Interest in IT as a possible
neural locus of category learning was sparked by reports
of a variety of category-specific agnosias that result from
lesions in IT and other high-level visual areas. Category-
specific agnosia refers to the ability to perceive or catego-
rize most visual stimuli normally but a reduced ability to
recognize exemplars from some specific category, such
as inanimate objects (e.g., tools or fruits). The most
widely known of such deficits, which occur with human
faces (i.e., prosopagnosia), are associated with lesions to
the fusiform gyrus in IT.

Of course, a category-specific agnosia that results
from an IT lesion does not logically imply that category
learning occurs in IT. For example, although such
agnosias are consistent with the hypothesis that category
learning occurs in IT, they are also generally consistent
with the hypothesis that visually similar objects are repre-
sented in nearby areas of visual cortex. In particular, it is
well known that neighboring cells in IT tend to fire to
similar stimuli. Thus, damage to some contiguous
region of IT (or any other visual cortical area) is likely to
lead to perception deficits within a class of similar
stimuli.

In fact, there is now strong evidence that IT is not a
site of category learning. For example, Rolls, Judge, and
Sanghera (1977) recorded from cells in IT of monkeys.
In these experiments, one visual stimulus was associated
with reward and one with a mildly aversive taste. After
training, the rewards were switched. Thus, in effect, the
animals were taught two simple categories (i.e., “good”

and “bad”), and then the category assignments were
switched. If the categories were represented in the visual
cortex, then the firing properties of visual cortical cells
should have changed when the category memberships
were switched. However, Rolls et al. found no change in
the response of any of these cortical cells, although other
similar studies have found changes in the responses of
cells in other brain areas (e.g., orbitofrontal cortex).

More recent studies have found similar null results
with more traditional categorization tasks (Freedman,
Riesenhuber, Poggio, & Miller, 2003; Op de Beeck,
Wagemans, & Vogels, 2001; Sigala, 2004; Thomas, Van
Hulle, & Vogels, 2001; Vogels, 1999). In each of these
studies, monkeys were taught to classify visual objects
into one of two categories (e.g., tree versus nontree, two
categories of arbitrary complex shapes). Single-cell
recordings showed that the firing properties of IT cells
did not change with learning. In particular, IT cells
showed sensitivity to specific visual images, but category
training did not make them more likely to respond to
other stimuli in the same category or less likely to
respond to stimuli belonging to the contrasting
category.

On the other hand, under certain conditions, catego-
rization training can change the firing properties of IT
cells. Sigala and Logothetis (2002) trained two monkeys
to classify faces into one of two categories and then in a
separate condition to classify fish. In both conditions,
some stimulus features were diagnostic and some were
irrelevant to the categorization response. After categori-
zation training, many neurons in IT showed enhanced
sensitivity to the diagnostic features compared to the
irrelevant features. Similar results were reported by
Sigala (2004). Such changes are consistent with the
widely held view that category learning is often associ-
ated with changes in the allocation of perceptual
attention (Nosofsky, 1986).

In summary, the best evidence suggests that IT does
not mediate the learning of new categories. It is crucial
to the categorization process, however, because it
appears to encode the highest level representation of
the visual stimulus. Thus, IT could be seen as the termi-
nal stage of the perceptual system. According to this
view, our search for the neural locus of category learning
should begin with those structures receiving direct pro-
jections from IT. There are three obvious candidates: the
PFC, the medial temporal lobes (i.e., the hippocampal
system), and the basal ganglia. As it happens, few behav-
ioral neuroscience studies of category learning have tar-
geted the medial temporal lobes (however, see
Hampson, Pons, Stanford, & Deadwyler, 2004), but
many relevant studies have examined the PFC and the
basal ganglia.
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PFC

The first evidence that the PFC is important for cate-
gory learning came many years ago when Milner (1963)
showed that patients with frontal lesions are impaired in
the Wisconsin Card Sorting Test (WCST), a classic
neuropsychological assessment that requires partici-
pants to learn a series of simple categories (Heaton,
1981). In fact, deficits on the WCST are perhaps the clas-
sic symptom of frontal lobe pathology (e.g., Kimberg,
D’Esposito, & Farah, 1997). The critical role played by
the PFC in the WCST has been more recently verified in
controlled lesion studies in rats (Joel, Weiner, & Feldon,
1997).

Single-unit recording studies in the PFC have demon-
strated two different phenomena that are particularly
relevant to category learning. First, one set of studies
reported neurons in the lateral PFC that show category-
specific responding. For example, Freedman et al.
(Freedman et al., 2001; Freedman, Riesenhuber,
Poggio, & Miller, 2002, 2003) taught monkeys to catego-
rize computer-generated visual images as dogs or cats.
The images included prototypes of each category and
many ambiguous morphs. The animals were trained to a
high level of accuracy, and then single-unit recordings
were collected in the lateral PFC region receiving direct
input from the IT. Many neurons were found that
seemed to respond to the category membership of the
visual stimulus; that is, each of these cells responded
almost equally to almost all members of one category
and showed little or no response to members of the con-
trasting category. Importantly, the firing properties of
these cells were better predicted by category
membership than by visual similarity.

A second series of studies established that the PFC
plays an important role in learning and applying catego-
rization rules. In a typical study, monkeys are taught to
classify objects by applying either one rule (e.g., spatial)
or another (e.g., associative). Each trial begins with a cue
that signals the animal which rule to use with the ensuing
stimulus. Several studies using a paradigm of this type
have reported that many PFC cells show rule-specific
activity; that is, they fire during application of one of the
rules (but not during the other), regardless of which
stimulus is shown (Asaad, Rainer, & Miller, 2000; Hoshi,
Shima, & Tanji, 1998; I. M. White & Wise, 1999). Many
lesion studies have verified the important role played by
the PFC in rule learning and use (for a review, see
Roberts & Wallis, 2000).

Basal Ganglia

Early interest in the basal ganglia as a possible locus of
category learning came from a long series of lesion stud-
ies in rats and monkeys showing that the tail of the
caudate nucleus is both necessary and sufficient for

visual discrimination learning. Many studies have shown
that lesions of the tail of the caudate nucleus impair the
ability of animals to learn visual discriminations that
require one response to one stimulus and a different
response to some other stimulus (e.g., McDonald &
White, 1993, 1994; Packard, Hirsch, & White, 1989;
Packard & McGaugh, 1992). For example, in one study,
rats with lesions in the tail of the caudate nucleus could
not learn to discriminate between safe and unsafe plat-
forms in the Morris water maze when the safe platform
was marked with horizontal lines and the unsafe plat-
form was marked with vertical lines (Packard &
McGaugh, 1992). The same animals learned normally,
however, when the cues signaling which platform was
safe were spatial. Because the visual cortex is intact in
these animals, it is unlikely that their difficulty is in per-
ceiving the stimuli. Rather, it appears that their difficulty
is in learning to associate an appropriate response with
each stimulus alternative, and in fact, many researchers
have hypothesized that this is the primary role of the
neostriatum (e.g., Rolls, 1994; Wickens, 1993). Techni-
cally, such studies are categorization tasks with one
exemplar per category. It is difficult to imagine how add-
ing more exemplars to each category could alleviate the
deficits caused by caudate lesions, and it is for this reason
that the caudate lesion studies support the hypothesis
that the caudate contributes to normal category
learning.

The sufficiency of the caudate nucleus for visual dis-
crimination learning was shown in a series of studies by
Gaffan and colleagues that lesioned all pathways out of
visual cortex except into the tail of the caudate (e.g., pro-
jections into the PFC were lesioned by Eacott & Gaffan,
1991, and Gaffan & Eacott, 1995; projections to the hip-
pocampus and amygdala were lesioned by Gaffan & Har-
rison, 1987). None of these lesions affected visual dis-
crimination learning.

More recent single-unit recording studies confirm
the neostriatal contribution to categorization. In a series
of studies, Romo and his colleagues taught monkeys to
classify a vibrotactile stimulus (i.e., a rod vibrating
against the monkey’s finger) as either “low speed” or
“high speed” (Merchant, Zainos, Hernandez, Salinas, &
Romo, 1997; Romo, Merchant, Ruiz, Crespo, & Zainos,
1995). A large number of cells in the putamen showed
learning-related changes in their firing properties. For
example, after training, many cells fired to any vibra-
tional frequency in the low-speed category but not to fre-
quencies in the high-speed category (or vice versa).
These same neurons were not active during passive expe-
rience with the stimuli or during a control motor task.
Furthermore, the activity of these neurons predicted the
behavior of the monkeys.

Ashby, Spiering / NEUROBIOLOGY OF CATEGORY LEARNING 103



Thus, many studies implicate the neostriatum in dis-
crimination and category learning. One feature that
makes the neostriatum an attractive candidate for such
learning is the dopamine input it receives from the sub-
stantia nigra (pars compacta), which is widely thought to
provide a reward signal that is critical for reward-medi-
ated learning (e.g., Beninger, 1983; Miller, Sanghera, &
German, 1981; Montague, Dayan, & Sejnowski, 1996;
N. M. White, 1989; Wickens, 1993).

A separate line of research implicates the dorsal
striatum (e.g., head of the caudate nucleus) in another
skill that could be important in many forms of category
learning, namely, task and rule switching. For example,
injections of a glutamate agonist directly into the
striatum increase the frequency with which cats switch
from one motor activity to another in a task where food
rewards are delivered for such switching behaviors
(Jaspers, de Vries, & Cools, 1990a, 1990b). More relevant
to category learning is a report that lesioning the dopa-
mine fibers that project from the ventral tegmental area
into the PFC improves the performance of monkeys in
an analogue of the WCST, even though it impairs their
spatial working memory (Roberts et al., 1994). If switch-
ing occurs in the PFC, then such lesions should impair
performance (as seen, e.g., in Parkinson’s disease
patients). If the switching occurs in the basal ganglia,
then one’s first thought might be that lesioning dopa-
mine fibers into the PFC should have no direct effect on
switching. However, it turns out that such lesions
increase dopamine levels in the basal ganglia (Roberts
et al., 1994). Therefore, if the basal ganglia are responsi-
ble for switching, and if switching is enhanced by dopa-
mine, then lesioning dopamine fibers into the PFC
should improve switching, which is exactly what Roberts
et al. (1994) found.

COGNITIVE NEUROSCIENCE STUDIES

Three Different Category Learning Tasks

On first examination, the cognitive neuroscience lit-
erature on category learning appears confusing and
even contradictory. For example, various published arti-
cles have reported that the category-learning ability of
Parkinson’s disease patients is either normal, mildly
impaired, or profoundly impaired. It turns out, however,
that much of this confusion disappears when these
reports are partitioned according to the type of category-
learning task that was used. Although many possible clas-
sifications are possible, an especially useful scheme iden-
tifies three major types of category-learning task: rule-
based tasks, information-integration tasks, and
prototype-distortion tasks.

Rule-based tasks are those in which the categories can
be learned via some explicit reasoning process. Fre-

quently, the rule that maximizes accuracy (i.e., the opti-
mal strategy) is easy to describe verbally. In one common
application, only one stimulus dimension is relevant.
Even so, there is no requirement that the rule that maxi-
mizes accuracy (i.e., the optimal rule) in rule-based tasks
is one dimensional. For example, a conjunction rule
(e.g., respond A if the stimulus is small on dimension x
and small on dimension y) is a rule-based task because it
is easy to describe verbally. The WCST and all other
category-learning tests commonly used in neuro-
psychological assessment use rule-based tasks.

Some stimuli that might be used in a rule-based task
are shown in Figure 1. In this case, two contrasting cate-
gories are each composed of circular sine-wave gratings
(i.e., disks in which luminance varies sinusoidally). The
disks are all of equal diameter, but they differ in spatial
frequency (i.e., the frequency of the sine wave) and sine-
wave orientation. The task is rule based because a simple
verbal rule partitions the disks belonging to Categories A
and B (i.e., disks in Category A have wide bars, whereas
disks in Category B have narrow bars).

Information-integration tasks are those in which
accuracy is maximized only if information from two or
more stimulus components (or dimensions) is inte-
grated at some predecisional stage (Ashby & Gott, 1988).
Perceptual integration could take many forms: from
computing a weighted linear combination of the dimen-
sional values to treating the stimulus as a Gestalt. In many
cases, the optimal strategy in information-integration
tasks is difficult or impossible to describe verbally.
Healthy young adults eventually learn to respond accu-
rately in rule-based tasks, but afterward, they are poor at
describing their decision strategy (Ashby et al., 1998;
Ashby & Maddox, 1992). Real-world examples of infor-
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mation-integration tasks are common. For example,
deciding whether an X ray shows a tumor requires years
of training, yet expert radiologists are only partially
successful at describing their categorization strategies.

An example of stimuli that might be used in an infor-
mation-integration task is shown in Figure 2. In this case,
the same sine-wave gratings are used as in the Figure 1
rule-based task, but the disks are assigned to the two cate-
gories in such a way that there is no simple verbal
description of the optimal decision bound (depicted by
the diagonal line in Figure 2).

Prototype-distortion tasks are a third type of category-
learning task in which each category is created by first
constructing a category prototype (Posner & Keele,
1968, 1970). The other exemplars of the category are
then created by randomly distorting the prototype. In
the most popular prototype distortion task, each stimu-
lus is a random pattern of dots. One pattern is selected as
the prototype, and then the other category exemplars
are created by randomly perturbing the location of each
dot in the prototype pattern. Two versions of this task are
popular. In (A, not A) tasks, the participant must decide
whether each stimulus is or is not a member of Category
A. The not-A stimuli are random patterns with no coher-
ent structure (i.e., they are not created by distorting a
prototype). An example of some stimuli that might be
used in an (A, not A) prototype distortion task is shown
in Figure 3. In (A, B) tasks, two patterns are selected as
the Category A and B prototypes, and then the other
members of these categories are created by randomly
distorting the respective prototypes. The participant’s
task is to determine whether each stimulus is a member
of Category A or B (see Figure 4 for an example).

It is important to emphasize that the terms rule based,
information integration, and prototype distortion make no
assumptions about how people learn these different cat-
egory structures in any particular application. For exam-
ple, there is evidence that pigeons can learn both rule-
based and information-integration category structures
(Herbranson, Fremouw, & Shimp, 1999), but no one
would claim that they learn rule-based categories via an
explicit reasoning process. The question of how people
learn these different types of category structures is
strictly empirical. As such, this particular classification of
categorization tasks is useful only because there are
many interesting empirical dissociations among the
tasks (e.g., Ashby, Maddox, & Bohil, 2002; Ashby, Noble,
Filoteo, Waldron, & Ell, 2003; Ashby, Queller, & Berretty,
1999; Ashby & Waldron, 1999; Maddox, Ashby, & Bohil,
2003).

It should also be noted that there are other popular
category-learning tasks. One prominent example is the
“weather-prediction task” (Eldridge, Masterman, &
Knowlton, 2002; Knowlton, Mangels, & Squire, 1996;
Knowlton, Squire, & Gluck, 1994; Knowlton, Squire
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Figure 4: Stimuli That Might Be Used in an (A, B) Prototype-Distor-
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et al., 1996; Reber, Knowlton, & Squire, 1996; Reber &
Squire, 1999). Stimuli in this task are tarot cards that
each display a unique geometric pattern. The partici-
pant’s task is to decide if the particular constellation of
cards that are shown signals “rain” or “sun.” The optimal
strategy requires integrating information across cards,
so technically, this is an information-integration task.
Even so, in the original version, a single-cue strategy in
which the participant gives one response if one card is
present and the other response if that same card is
absent yields an accuracy only 1% less than the optimal
information-integration strategy. In addition, because
the task uses only a few cards, explicit memorization is
difficult to rule out. Because a variety of different strate-
gies are all about equally effective, it is especially impor-
tant to determine what strategy each participant is using
before interpreting his or her data. Gluck, Shohamy, and
Myers (2002) provided a strategy analysis of data col-
lected in the weather-prediction task to address this
issue. Their analysis suggested that participants adopt a
variety of different strategies and that the most popular
choice appears to be explicit memorization. The large
individual differences seen in the strategies that partici-
pants adopt in the weather-prediction task make it diffi-
cult to draw strong inferences from data collected with
this task. For this reason, the remainder of this article will
focus on the rule-based, information-integration, and
prototype-distortion tasks.

Rule-Based Tasks

NEUROPSYCHOLOGICAL PATIENT DATA

As mentioned previously, perseverative responding
on the WCST is among the most classic of all signs of
frontal lobe damage. It is not surprising then that many
studies have shown that frontal patients are impaired at
rule-based category learning (see, e.g., Kimberg et al.,
1997; Robinson, Heaton, Lehman, & Stilson, 1980).
Another group with well-known deficits in rule-based
tasks is Parkinson’s disease patients (e.g., Ashby, Noble,
et al., 2003; Brown & Marsden, 1988; Cools, van den
Bercken, Horstink, van Spaendonck, & Berger, 1984;
Downes et al., 1989). Although later in the disease Par-
kinson’s patients have frontal damage (primarily the
result of cell death in the ventral tegmental area), the
disease mainly targets the basal ganglia. Within the
caudate nucleus, the head tends to be more adversely
affected than the body or tail (van Domburg & ten
Donkelaar, 1991), and because the head is reciprocally
connected to the PFC, the rule-based category-learning
deficits of frontal and Parkinson’s disease patients are
consistent with the hypothesis that rule-based category
learning is mediated, in part, by frontal-striatal circuits
(Ashby et al., 1998).

In contrast to frontal and basal ganglia disease
patients, several studies have reported that amnesiacs
with medial temporal lobe damage are normal in rule-
based category learning (Janowsky, Shimamura,
Kritchevsky, & Squire, 1989; Leng & Parkin, 1988). An
obvious possibility is that many rule-based tasks are sim-
ple enough (e.g., the WCST) that working memory is
sufficient for participants to keep track of which alterna-
tive rules they have tested and rejected. If so, then a natu-
ral prediction is that medial temporal lobe amnesiacs
should be impaired in complex rule-based tasks (e.g.,
when the optimal rule is disjunctive).

NEUROIMAGING DATA

A number of neuroimaging studies have used the
WCST or a rule-based task similar to the WCST. All of
these have reported task-related activation in the PFC,
most have reported activation in the head of the caudate
nucleus, and at least one has also reported task-related
activation in the anterior cingulate (Konishi et al., 1999;
Lombardi et al., 1999; Rao et al., 1997; Rogers, Andrews,
Grasby, Brooks, & Robbins, 2000; Volz et al., 1997). Con-
verging evidence for the hypothesis that these are impor-
tant structures in rule-based category learning comes
from several sources. First are the many studies that have
implicated these structures as key components of execu-
tive attention (Posner & Petersen, 1990) and working
memory (Goldman-Rakic, 1987, 1995), both of which
are likely to be critically important to the explicit pro-
cesses of rule formation and testing that are assumed to
mediate rule-based category learning. Second, a recent
neuroimaging study identified the (dorsal) anterior
cingulate as the site of hypothesis generation in a rule-
based category-learning task (Elliott, Rees, & Dolan,
1999). Third, of course, are the neuropsychological data
reviewed above, which show that patient groups with
damage to any of these structures are impaired in rule-
based tasks.

Information-Integration Tasks

NEUROPSYCHOLOGICAL PATIENT DATA

Filoteo, Maddox, and Davis (2001b) tested the ability
of amnesiacs to learn a difficult (i.e., nonlinear) infor-
mation-integration rule when the categories were nor-
mally distributed and a large number of unique stimuli
were sampled from each category. The amnesiacs and
controls performed equally over the full 600 trials of the
experiment. One patient and 1 control returned for a
second session on the following day. During the first
block of trials on the 2nd day, the amnesiac and control
again showed equivalent performance, and in fact, per-
formance during the first block of the second session was
slightly better than during the final block of trials from
the first session. Note that this excellent 2nd-day perfor-
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mance falsifies the hypothesis that amnesiacs perform
well in category-learning tasks because they substitute
working memory for their damaged episodic and seman-
tic (i.e., exemplar-based) memory systems (as proposed,
e.g., by Nosofsky & Zaki, 1998; Palmeri & Flanery, 1999).
A participant relying on working memory to learn on the
1st day would be at chance on the first few trials of Day 2.

Filoteo, Maddox, and Davis (2001a) and Maddox and
Filoteo (2001) tested the ability of Huntington’s disease
and Parkinson’s disease patients to learn the same cate-
gory structures used by Filoteo et al. (2001b). Relative to
controls, both groups showed a consistent performance
decrement, which implies a role for the neostriatum in
nonlinear information-integration category learning.
On the other hand, Ashby, Noble, et al. (2003) found
that Parkinson’s disease patients learned as well as an
age-matched control group in an information-integra-
tion task with linearly separable categories. More
recently, Filoteo, Maddox, Salmon, and Song (in press)
compared the ability of Parkinson’s disease patients to
learn a linear and a nonlinear information-integration
rule. The linear results replicated the Ashby, Noble, et al.
(2003) results; that is, the Parkinson’s disease patients
were not impaired in learning linearly separable catego-
ries. On the other hand, the same patients were
impaired in the nonlinear condition, but only later in
training. Thus, these studies suggest that Parkinson’s dis-
ease patients are impaired in information-integration
tasks but only if the category structures are complex (as,
e.g., when the categories are nonlinearly separable).

NEUROIMAGING DATA

To date, only one neuroimaging study of information-
integration category learning has been reported. Seger
and Cincotta (2002) gave participants extensive training
with the categories before scanning, and they reported
significant striatal and lateral occipital activation.

Empirical Dissociations Between Rule-Based
and Information-Integration Tasks

A number of recent empirical dissociations between
performance in rule-based and information-integration
tasks collectively provide strong evidence that learning
in these two types of tasks is mediated by separate sys-
tems, and they provide important clues as to the underly-
ing neural systems that mediate rule-based and informa-
tion-integration learning.

One set of results show that the nature and timing of
trial-by-trial feedback about response accuracy is critical
with information-integration categories but not with
rule-based categories. First, in the absence of any trial-by-
trial feedback, people can learn some rule-based catego-
ries, but there is no evidence that they can learn informa-
tion-integration categories (Ashby et al., 1999). Second,

even when feedback is provided on every trial, informa-
tion-integration category learning is impaired if the
feedback signal is delayed by as little as 5 seconds after
the response. In contrast, such delays have no effect on
rule-based category learning (Maddox et al., 2003).
Third, training in which participants observe exemplars
from each category is much less effective than traditional
feedback training (i.e., in which participants see a stimu-
lus, respond, and then receive feedback) with informa-
tion-integration categories, but observational and feed-
back training are equally effective with rule-based
categories (Ashby et al., 2002).

A second set of studies established that information-
integration categorization uses procedural learning,
whereas rule-based category learning does not. First,
Ashby, Ell, and Waldron (2003) had participants learn
either rule-based or information-integration categories
using traditional feedback training. Next, some partici-
pants continued as before, some switched their hands on
the response keys, and for some, the location of the
response keys was switched (so that the Category A key
was assigned to Category B and vice versa). For those par-
ticipants learning rule-based categories, there was no dif-
ference among any of these transfer instructions,
thereby suggesting that abstract category labels are
learned in rule-based categorization. In contrast, for
those participants learning information-integration cat-
egories, switching hands on the response keys caused no
interference, but switching the locations of the response
keys caused a significant decrease in accuracy. Thus, it
appears that response locations are learned in informa-
tion-integration categorization, but specific motor pro-
grams are not. Further evidence supporting this hypoth-
esis was reported recently by Maddox, Bohil, and Ing (in
press). These information-integration results essentially
replicate results found with traditional procedural-
learning tasks (Willingham, Wells, Farrell, & Stemwedel,
2000).

A third set of studies established the importance of
working memory and executive attention in rule-based
category learning and simultaneously showed that exec-
utive function is not critical in the learning of informa-
tion-integration categories. First, Waldron and Ashby
(2001) had participants learn rule-based and informa-
tion-integration categories under typical single-task con-
ditions and when simultaneously performing a second-
ary task that required working memory and executive
attention. The dual task had a massive detrimental effect
on the ability of participants to learn the simple one-
dimensional rule-based categories (trials-to-criterion
increased by 350%) but had no significant effect on the
ability of participants to learn the complex information-
integration categories. Second, Maddox et al. (in press)
tested the prediction that feedback processing requires
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attention and effort in rule-based category learning but
not in information-integration category learning. In this
study, participants alternated a trial of categorization
with a trial of Sternberg’s (1966) memory scanning. Two
conditions were identical except for the durations of the
intertrial intervals (ITIs). In one, a short ITI followed
categorization and a long ITI followed memory scan-
ning, whereas these two durations were flipped in the
other condition. Information-integration category
learning was the same in both conditions, whereas rule-
based category learning was significantly impaired when
participants had only a short time to process the
categorization feedback (i.e., when the short ITI
followed categorization).

It is important to realize that these dissociations are
not driven simply by differences in the difficulty of rule-
based versus information-integration tasks. First, in sev-
eral cases, the experimental manipulation interfered
more with the learning of the simple rule-based catego-
ries than with the more difficult information-integration
strategies (Maddox et al., in press; Waldron & Ashby,
2001). Second, most of the studies explicitly controlled
for difficulty differences either by decreasing the separa-
tion between the one-dimensional rule-based categories
or by using a more complex two-dimensional conjunc-
tion rule in the rule-based conditions. Both manipula-
tions increase the difficulty of rule-based categorization,
yet in no case did such increases in rule-based difficulty
affect the qualitative dissociations described above.

Prototype Distortion Tasks

NEUROPSYCHOLOGICAL PATIENT DATA

Prototype distortion tasks are particularly important
because the neuropsychological patient data are pro-
foundly different than in rule-based or information-inte-
gration tasks. In particular, a variety of patient groups
that are known to have deficits in rule-based and infor-
mation-integration tasks show apparently normal proto-
type-distortion learning, at least in (A, not A) designs.
This includes patients with Parkinson’s disease (Reber &
Squire, 1999), schizophrenia (Kéri, Kelemen, Benedek,
& Janka, 2001), or Alzheimer’s disease (Sinha, 1999;
although see Kéri et al., 1999). Normal (A, not A) perfor-
mance has also been shown in patients with amnesia
(Knowlton & Squire, 1993; Squire & Knowlton, 1995).
On the other hand, more research is needed here
because several studies have shown that if Category A is
created from low-level distortions of the Category A pro-
totype, then healthy adults can learn in (A, not A) tasks
without any feedback (Homa & Cultice, 1984; Palmeri &
Flanery, 1999). Thus, it is not yet clear that all these
patient groups would learn normally in a difficult (A, not
A) task (i.e., one that requires feedback for optimal
performance).

At least two studies have compared (A, not A) and (A,
B) prototype distortion learning on the same patients,
and both studies report the same striking dissociation.
Specifically, Sinha (1999) reported normal (A, not A)
performance in Alzheimer’s disease patients but
impaired (A, B) performance, and Zaki, Nosofsky,
Jessup, and Unverzagt (2003) reported this same pattern
of results with amnesiacs. Sinha (1999) also reported
deficits in (A, B) prototype-distortion learning in
patients with amnesia. On the other hand, Kolodny
(1994) reported intact performance of amnesic patients
in a difficult (A, B, C) prototype distortion task (i.e., con-
trols were only 10% above chance on transfer items).

NEUROIMAGING DATA

All neuroimaging studies that used (A, not A) proto-
type-distortion tasks have reported learning-related
changes in the occipital cortex (Aizenstein et al., 2000;
Reber, Stark, & Squire, 1998a, 1998b); in general,
reduced occipital activation was found in response to
Category A exemplars, although Aizenstein et al. (2000)
found this reduction only under implicit learning condi-
tions. When participants were given explicit instructions
to learn the A category, increased occipital activation was
observed.

Studies that used (A, B) tasks have reported quite dif-
ferent results. Seger et al. (2000) did report categoriza-
tion-related activation in the occipital cortex, but they
also found significant learning-related changes in
prefrontal and parietal cortices. Vogels, Sary, Dupont,
and Orban (2002) reported results from a hybrid task in
which participants were to respond “A,” “B,” or “nei-
ther.” Thus, stimuli were created either from distortions
of an A prototype or a B prototype or were just random
patterns. Like Seger et al. (2000), Vogels et al. (2002)
found prefrontal and parietal activation (although in
different foci). However, they also reported task-related
activation in the orbitofrontal cortex and the
neostriatum, and they failed to find any task-related
activation in occipital cortex.

SINGLE VERSUS MULTIPLE SYSTEMS
OF HUMAN CATEGORY LEARNING

The data reviewed in this article are generally consis-
tent with the hypothesis that human category learning is
mediated by multiple systems that are essentially equiva-
lent to the known memory systems that have been pro-
posed. This makes sense from a logical perspective
because learning is a process of laying down some kind
of memory trace, and there seems no good reason why
any memory system should be prevented from learning
about categories. Even so, it is important to acknowledge
that the question of whether human category learning is
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mediated by one or by multiple systems remains conten-
tious. For example, Nosofsky and his colleagues have
argued that single-system exemplar models can account
for many of the phenomena that have been used to sup-
port the notion of multiple systems (Nosofsky &
Johansen, 2000; Nosofsky & Kruschke, 2002; Nosofsky &
Zaki, 1998).

Every year, more studies appear that present evidence
purporting to support the multiple-systems hypothesis.
As the number of these studies increases, it becomes
increasingly important to evaluate all available evidence
simultaneously. No single study can resolve the single
versus multiple systems debate. The important question
should be, Does the model that best accounts for all
existing data postulate one or multiple systems of
learning and memory?

Although single-system accounts of some of the
results described in this article are possible, no existing
single-system model can account for them all simulta-
neously. And at least some of the individual results
reviewed above are highly problematic for unified
accounts of rule-based and information-integration cat-
egorization. For example, consider the Waldron and
Ashby (2001) report that a dual-task interfered with rule-
based category learning but not with information-inte-
gration category learning. Arguably the most successful
existing single-process model of category learning is
Kruschke’s (1992) exemplar-based ALCOVE model.
Ashby and Ell (2002) showed that the only versions of
ALCOVE that can fit the Waldron and Ashby (2001) data
make the strong prediction that after reaching criterion
accuracy on the one-dimensional rule-based structures,
participants would have no idea that only one dimension
was relevant in the dual-task conditions. Ashby and Ell
(2002) reported empirical evidence that strongly
disconfirmed this prediction. Thus, the best available
single-system model fails to account even for the one dis-
sociation reported by Waldron and Ashby (2001). Of
course, this does not mean that single-system accounts of
the Waldron and Ashby results, or of any of the results
described in this article, are impossible. Clearly, more
work is needed before consensus will be reached in the
single- versus multiple-systems debate.

If one accepts the hypothesis that the various memory
systems that have been proposed all contribute to cate-
gory learning, then it is plausible to assume that learning
in rule-based tasks is mediated by working memory and
possibly also by other declarative memory systems (i.e.,
episodic and/or semantic memory). The idea is that par-
ticipants generate an explicit hypothesis about category
membership, which they hold in working memory until
the hypothesis is accepted or rejected. If the task is com-
plex and many hypotheses must be tested before the cor-

rect strategy is discovered, then declarative memory
strategies are recruited.

This hypothesis is consistent with virtually all of the
behavioral and cognitive neuroscience data reviewed
above. First, a huge literature implicates the PFC in work-
ing memory (e.g., Fiez, Raichle, Balota, Tallal, &
Petersen, 1996; Funahashi, Bruce, & Goldman-Rakic,
1989; Fuster, 1989; Fuster & Alexander, 1971; Goldman-
Rakic, 1987, 1995; Goldman-Rakic, Funahashi, & Bruce,
1990; Jonides et al., 1993; McCarthy et al., 1994; Petrides,
1991). The PFC involvement in working memory
accounts for the rule-based category-learning deficits of
frontal patients (e.g., Kimberg et al., 1997; Robinson
et al., 1980) and for the frontal activation reported in
neuroimaging studies of rule-based tasks (Konishi et al.,
1999; Lombardi et al., 1999; Rao et al., 1997; Rogers
et al., 2000; Volz et al., 1997).

Second, there is evidence that the basal ganglia also
help mediate working memory (e.g,. Ellis & Nathan,
2001; Fournet, Moreaud, Roulin, Naegele, & Pellat,
2000; Gabrieli, Singh, Stebbins, & Goetz, 1996;
Jahanshahi et al., 2002; Lewis et al., 2002; Postle, Jonides,
Smith, Corkin, & Growdon, 1997; Postle, Locascio,
Corkin, & Growdon, 1997; Robbins et al., 1995) and the
switching of executive attention (e.g., Brown & Marsden,
1988; Jaspers, de Vries, & Cools, 1990a, 1990b; Roberts
et al., 1994; van Golf Racht-Delatour & El Massioui,
1999). For these reasons, the working memory hypothe-
sis is consistent with the reported rule-based deficits of
basal ganglia disease patients (e.g., Ashby, Noble, et al.,
2003; Brown & Marsden, 1988; Cools et al., 1984;
Downes et al., 1989).

Third, the working memory account of rule-based cat-
egory learning is also consistent with the dissociation
data reviewed in the preceding section. This includes the
report that a dual task that used working memory and
executive attention interfered with rule-based category
learning much more than with information-integration
learning (Waldron & Ashby, 2001) and the report that
feedback processing requires attention and effort in
rule-based learning but not in information-integration
learning (Maddox et al., in press).

The collection of results on information-integration
category learning is generally consistent with the
hypothesis that performance in these tasks is mediated
primarily by a procedural-memory-based system (Ashby
& Waldron, 1999). The best direct evidence supporting
this idea are the reports that response positions are
learned in information-integration tasks but abstract cat-
egory labels are learned in rule-based tasks (Ashby, Ell,
et al., 2003; Maddox et al., in press). Also, as we would
expect in procedural learning, information-integration
(but not rule-based) category learning is sensitive to the
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nature and timing of feedback (Ashby et al., 1999, 2002;
Maddox et al., 2003).

Many studies have argued that procedural memory is
mediated largely within the basal ganglia (e.g.,
Jahanshahi, Brown, & Marsden, 1992; Mishkin,
Malamut, & Bachevalier, 1984; Saint-Cyr, Taylor, & Lang,
1988; Willingham, 1998; Willingham, Nissen, &
Bullemer, 1989). Thus, the procedural-learning account
of information-integration categorization is consistent
with reports that basal ganglia disease patients are
impaired in difficult information-integration tasks
(Filoteo, Maddox, & Davis, 2001a; Filoteo et al., in press;
Maddox & Filoteo, 2001) and with reports of striatal acti-
vation in neuroimaging studies that used information-
integration tasks (Seger & Cincotta, 2002).

Finally, the data suggest that a variety of different
memory systems may contribute to learning in proto-
type-distortion tasks. For example, the frontal activation
seen in (A, B) versions of prototype distortion suggests
that people may formulate and test explicit hypotheses
about category membership. However, we also reviewed
evidence that in (A, not A) versions of the task, percep-
tual learning may be important. This hypothesis
accounts for the learning-related changes in the occipi-
tal cortex seen in functional magnetic resonance imag-
ing studies of (A, not A) prototype distortion, as well as
for the spared performance of patient groups who are
impaired in other types of category learning.

CONCLUSIONS

Category learning is a critically important skill that
everyone performs countless times each day. Research
into its neural basis is appearing at an ever increasing
rate. Besides its intrinsic scientific value, this work has
the potential to make important practical contributions.
First, it can facilitate the design of more efficacious train-
ing procedures. For example, the research reviewed
above stresses the importance of immediate feedback
following a judgment by a radiologist in training as to
whether an X ray shows a tumor. Second, research into
the neural basis of category learning has important con-
sequences for a variety of special neuropsychological
populations—most important, to suggest possible inter-
ventions to alleviate some of the cognitive deficits
associated with the condition.
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