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Abstract. Spectra is usually shown as a two-dimensional graph where colors 
are directly related to signal levels. A great deal of speech recognition work and 
research takes this type of parameter directly. In this paper we propose to com-
bine typical signal level values with the vectorial components of a Slope matrix 
containing orientation information on spectra surfaces. This additional informa-
tion will enable us to obtain an enhanced speech signal spectra as well as for-
mant evolution detection and a matching method to compare speech spectra 
sections. The mathematical formalization is based on vector analysis and matrix 
operations, where the basic components are the normal vectors to a set of trian-
gular surfaces covering the spectral values. This formalism enables the use of 
mathematical tools (Matlab or similar) in a very easy way; and from here it is 
possible to program algorithms and visualize the results efficiently.  

1   Introduction 

There are many techniques to enhance the spectra: S CHEUNG [1] proposes a com-
bination of the wideband and narrowband spectra. Y. SHIN [2] suggests the use of 
spatial filters. V.R. CHARI [3] describes an adaptive method based on the slow 
change of the formants. K. KODERA [4] proposes the energy redistribution tech-
nique. Whilst D. KUNZ [5] describes a new spectral analysis transform, with results 
that are an improvement on Fourier’s.  

Speech sounds can be modeled as the vocal tract responds to a sequence of pulses. 
The resonance frequencies appear in the spectra with the greatest energy; these are 
the speech formants and their information is basic to spoken language recognition [6, 
7, 8]. Formant detection provides useful information located between parameters and 
sounds, therefore it can be used to reduce the complexity of the necessary speech 
recognition Neural Networks (NN) or Hide Markov Models (HMMs). Formant detec-
tion facilitates the automatic parametric learning phase in speech recognition and 
makes speech modeling easier, providing a closer similarity to actual human speech. 

In general, automatic speech recognition is based on parametric learning tech-
niques, mainly HMMs or NN [9, 10, 11, 12]. The parameters used are usually LPC 
coefficients or FFT results [3, 6, 13, 14]. The quality of the results varies depending 
on the techniques applied and the aims desired (speaker dependent, speaker inde-
pendent, large vocabulary, reduced vocabulary, isolated speech, continuous speech, 



 

etc.). In all these situations we must face the conceptual gap that exists between the 
mathematical parameters and the human speech sounds. 

2 Basics of the Method 

Let’s look at a time windowed Fourier analysis computed over a speech signal. The 
result can be shown as in Figure 1; where the X-axis represents time, the Y-axis repre-
sents frequencies and the Z-axis represents the spectral values obtained. 

 

 

 

 

Fig. 1. Windowed Fourier analysis 

 
 In order to hold the spectral values (the Z magnitude at each point of figure 

1) we will use a Ft,f  (Fourier time,frequency) matrix: 

numbersNaturalnnNNfftF ∈=



 −∈ ,2,1

2
..0,    (1) 

In order to make a time and frequency evolution study of the spectral values con-
tained in F we will consider only some of the original components of the matrix; then 
we will create a submatrix with r rows and c columns:  

NaturalcrftFccrrRcrR ∈∆∆=∆∗∆∗ ,,,|,     (2) 
By varying the r∆  and c∆ parameters we can obtain different details in the time (r) 
and frequency (c) evolution estimations we are looking for. Figure 2 represents Fig-
ure 1 showing spectra using half of the values on the X-axis ( 2=∆r ) and the Y-axis 
( 2=∆c ). The use of 1=∆=∆ cr  has the effect of working with the whole ftF ,  ma-

trix. In order to study time evolution speech characteristics (formants, etc.) we must 
increase the r∆  parameter. In order to smooth frequency functions (as shown in Fig-
ures 1 and 2) we must increase the c∆  parameter. The r∆  and c∆  parameters must 
not have high values; in this way we avoid excessive smoothing and the loss of de-
terminant spectral signal peaks. 

 

Fig. 2. Windowed Fourier analysis applying the r∆  and c∆  parameters 

 
 Using the desired r∆ and c∆ parameter values we obtain a set of points that 

can be studied as the basis of three-dimensional functions (Figure 3a). A different 
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approach would be to create a grid using triangles formed with the spectral value 
positions (Figure 3b). Triangles are the simplest geometrical shapes which fit the 
traditional spectral three-dimensional areas. 

 
 
 
 
 
 
 

Fig. 3. a) Spectral areas of study.  b) Areas of study as triangles 

 
Now we have a reduced matrix crR ,  containing the spectral values which will be 

the basis of a triangle-based envelope of the spectral information. These spectral 
values form a chosen subset of the Fourier ftF ,  matrix, designed to study the 

time/frequency evolution of spectral speech signals. 
Starting from a matrix of points ( crR , ), it is possible to configure different dispo-

sitions of the triangle envelope. Figures 4a and 4b shows the most immediate and 
regular ones. Depending on the nature of the signal (speech, video frames, etc.) and 
the problem to solve, it can be more accurate to use different regular layouts as in 
Figure 4c or even irregular dispositions as showed in Figure 4d. We work with the 
regular layout presented in Figure 4b.  

 
 
 
 

Fig. 4.  Different dispositions of the triangle envelope 

  

At this stage we have a triangle-based envelope of the spectra, designed to study 
time and frequency slopes. It is possible to characterize and study the time and fre-
quency slopes of each triangle by comparing its three points, but it is simpler and 
more elegant to use the normal vector. Working with the normal vectors of the sur-
faces will allow us to compare the slopes of adjacent triangles, and, therefore, to cal-
culate the time and frequency evolution of the speech signal. 

To obtain the normal vectors we will use the following method: 
1. We will use 4 auxiliary vectors: 

1..0,1..0,4,3,2,1 −∈∀−∈∀ cyrxVVVV yxyxyxyx
rrrr

, as shown in Figure 5 

( )yxyxyx rrV ,,1,1 ,0,1 −= +
r

      (3) 
( )yxyxyx rrV ,1,,2 ,1,0 −= +

r
      (4) 

( )1,1,1,3 ,0,1 +++ −= yxyxyx rrV
r

     (5) 
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( )yxyxyx rrV ,11,1,4 ,1,0 +++ −=
r

     (6) 
 

Fig. 5.  Layout of the triangles and vector disposition 

 
2. Using the auxiliary vectors we can compute the normal ones: 

1..0,1..0,2,1 −∈∀−∈∀ cyrxNN yxyx
rr

 

yxyxyx VVN ,2,1,1
rrr

⊗=       (7) 

yxyxyx VVN ,4,3,2
rrr

⊗=       (8) 
 

In order to include absolute spectral speech signal information in the normal vectors, 
we will reflect the average spectral values of the three points of each triangle in its 
normal vector modulus: 
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This is the moment to create our final Slope matrix containing the normal vectors: 

1..0,12..0,2 −∈−∈ cyrxS yx  where ( ) yxyx Ns ,1,2
rr

=∗  and ( ) yxyx Ns ,2,12
rr

=+∗     (11) 
 
To get a better understanding of yxS ,2  matrix, we will use Figure 6. In Figure 6a we 
can observe a generic spectra fragmented using a triangle-based regular envelope. 
Each triangle has a normal vector associated; the modulus of these vectors are propor-
tional to the average spectral signal value in the triangle areas. Figure 6b shows spec-
tral time evolution using vectors; it is possible to get an analogous picture of the spec-
tral frequency signal evolution; in this case we will select frequency-signal axes. 
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Fig. 6.  a) yxS ,2  matrix  b) Spectral time evolution 

 
 Figure 7 represents the matrix layout related to the triangle-based envelope. 
The link between matrix components and normal vectors has been established in (11). 

 
 
 
 
 
 
 
 
 
 

Fig. 7.   Matrix layout related to the triangle-based envelope 

3 Spectra Enhancement     

Spectra is usually shown as a two-dimensional graph where colors are directly related 
to signal levels. A great deal of speech recognition work and research takes this type 
of parameter directly. In this paper we propose to combine the typical signal level 
values with the Slope matrix we created in the previous section. This additional in-
formation will allow us to obtain an enhanced speech signal spectra. 

There are a wide range of studies and applications based on the correct determina-
tion of the speech formant position and evolution, perhaps the most important ones 
are linguistic studies, speaker detection, speech synthesis and speech processing in 
general. Using the typical methods, formant position and evolution determination are 
based on spectral peak detection; we will use the Slope matrix information for this 
purpose, looking for adjacent vectors forming an angle that is large enough to be 
considered to have been produced by a peak.  

The most simple and mathematically elegant approach is to compute the inner 
product of all the adjacent components of the Slope matrix. Inside areas of maximums 
and minimums the inner product will be close to zero (perpendicular vectors on each 
side of the summit). With this idea in mind we can establish: 
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Formant detection 1:   

)(, bordertheexceptyx ∀∀ where we look for θ≤〉+〈 1,,, yxsyxs
rr          (12) 

In this way we not only detect maximums; but we also detect minimums. As we 
can easily obtain vector modulus, it is possible to enhance peaks and remove mini-
mums using this information. Another way to achieve this goal is to compare fre-
quency (Y-axis) angles: 
 

Formant detection 2: 

 Let’s use ( ) ( )2221,111, ,,,,, zyxszyxs yxyx == +
rr  
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Formant evolution: 
Formant evolution consists of the search of adjacent temporal peaks. As vocal tract 

has physic limitations, temporal peak evolution also has limitations. The translation of 
this fact to our model leads to the restricted search shown in Figure 8. For each trian-
gle detected as a peak, we will search for temporal formant evolution on adjacent 
triangles located in an angle °−〉〉° 9090 δ . 

 
 
 
 
 
 
 
 

 

Fig. 8.   Formant evolution trajectories  
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By looking for the maximum value of these five inner products, we are searching 
for the adjacent triangle (Figure 8) that most closely resembles the studied triangle. 
This similarity is related to the slopes of the triangle (normal vector orientations), by 
looking for temporal continuity on the formant path.  
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4 Speech Matching 

Speech recognition is usually based on a very large amount of speech samples that 
feed large neural networks or hidden Markov models. There are a variety of applica-
tions (such as computer-assisted second language learning, medical speech correc-
tions, etc.) which do not need this heavy approach. In these cases, it is sometimes 
useful to have a light matching method to compare correct samples with the real time 
incoming ones. Based on the method presented in this paper, we will show a mathe-
matical way to compute distances between pre-aligned and pre-normalized speech 
spectra sections. Using (11), we can establish a temporal (frequency limited) match-
ing distance: 
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Analogously, we can establish a frequency (time limited) matching distance: 
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Finally we can establish a spectra rectangular section match: 
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1..02,1,12..02,112,12 −∈−∈>> cffrttfftt   

The proposed matching equations are based on a simple slope-comparing method 
using inner products. In this case, d=1 means no matching at all. Perfect matching is 
d=0, and in real cases we look for 0→d . 

5 Conclusions 

This paper shows a mathematical formalism based on vectorial notation; the formal-
ism has been developed to facilitate the creation of new methods to achieve speech 
enhancement and formant evolution detection. 

We use a Slope matrix containing orientation information on spectra surfaces con-
densed in vectorial notation. The Slope matrix contains enough data to be able to 



 

work on the speech spectra, combining its individual elements and computing useful 
algorithms by using only simple vectorial notation. 

The mathematical formalism presented in this paper enables the use of mathemati-
cal tools (Matlab or similar) in a really easy way; it is then possible to program algo-
rithms and visualize results efficiently. This formalism facilitates new signal process-
ing ideas that emerge in the speech research process.   

Finally, our research group is now successfully using this formalism in its speech 
processing research; we are testing new original methods and implementing the algo-
rithms with the vectorial facilities of Matlab. The result is a reduction in the time 
spent evaluating the new ideas and methods, as well as a general improvement in the 
research process. 
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