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Abstract—We consider the problem of determining the structure of high-dimensional data without prior knowledge of the number of

clusters. Data are represented by a finite mixture model based on the generalized Dirichlet distribution. The generalized Dirichlet

distribution has a more general covariance structure than the Dirichlet distribution and offers high flexibility and ease of use for the

approximation of both symmetric and asymmetric distributions. This makes the generalized Dirichlet distribution more practical and

useful. An important problem in mixture modeling is the determination of the number of clusters. Indeed, a mixture with too many or too

few components may not be appropriate to approximate the true model. Here, we consider the application of the minimum message

length (MML) principle to determine the number of clusters. The MML is derived so as to choose the number of clusters in the mixture

model that best describes the data. A comparison with other selection criteria is performed. The validation involves synthetic data, real

data clustering, and two interesting real applications: classification of Web pages, and texture database summarization for efficient

retrieval.

Index Terms—Finite mixture models, generalized Dirichlet mixture, EM, information theory, MML, AIC, MDL, MMDL, LEC, data

clustering, image database summarization, Web mining.

Ç

1 INTRODUCTION

FINITE mixture models are being increasingly used in

statistical inference, providing a formal approach to

unsupervised learning [2], [3]. Fields in which mixture

models have been successfully applied include image

processing, pattern recognition, machine learning, and

remote sensing [4]. The adoption of mixture models to

clustering has important advantages; for instance, the selec-

tion of the number of clusters or a given model can be

addressed in a formal way. Indeed, an important part of the

modeling problem concerns determining the number of

consistent components that best describe the data. For this

purpose, many approaches have been suggested. From a

computational point of view, these approaches can be

classified into three classes: deterministic, stochastic, and

resampling methods. Stochastic approaches include Markov

Chain Monte Carlo (MCMC) methods, which can be used in

two different ways for mixture models. The first is the

implementation of model selection criteria [5], [6]. The second

is fully Bayesian and consists of resampling from the full

posterior distribution, with the number of clusters considered

to be unknown [7]. To select the number of clusters,

resampling schemes [8] and cross-validation approaches [9]

have also been used. The deterministic methods can them-

selves be classified in two main classes. In the first, we have

approximate Bayesian criteria like the Schwarz’s Bayesian

information criterion (BIC) [10] and the Laplace empirical

criterion (LEC) [2]. The second class contains approaches

based on information/coding theory concepts such as the

minimum message length (MML) [11], [12], Akaike’s infor-

mation criterion (AIC) [13], [14], the different versions of the

minimum description length (MDL) criterion, which have

been developed by Rissanen in a series of papers [15], [16],

[17], and the mixture minimum description length (MMDL)

[18]. Note that the first version of MDL [15] coincides formally

(but not conceptually) with BIC. A more detailed survey of

selection criteria approaches can be found in [2]. In this paper,

we are interested in deterministic methods, specifically, in

MML, since the other two approaches (stochastic and

resampling schemes) are still far too computationally de-

manding in computer vision and pattern recognition applica-

tions. According to Baxter and Oliver [19], the MML criterion

gave better results than the AIC and MDL criteria for artificial

mixtures of Gaussians, but Roberts et al. found that MML and

MDL are almost identical for Gaussian distributions [20].

Interesting comparisons between MML and MDL can be

found in [21, Section 10.2] and [22, Section 11.4.3].
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In this paper, we consider MML and the generalized

Dirichlet mixture. Wallace and Boulton first applied MML

encoding and produced a practical program for unsupervised

classification called SNOB [11], [23], [24], [25], [26], [27], [28].

MML has been used especially in the case of Gaussian,

Poisson, and von Mises circular mixtures [28], in the case of

spatiallycorrelatedclassesofGaussiandistributions[29],and,

recently, in the case of Gamma [30], [31] and Student-t [32]

mixtures. At the same time, other models such as generalized

Dirichlet mixtures have not received much attention.
The rest of the paper is organized as follows: In Section 2,

we present the generalized Dirichlet distribution in detail.

We determine the MML expression for a generalized

Dirichlet mixture in Section 3. The complete estimation

and selection algorithm is given in Section 4. Section 5 is

devoted to the experimental results when the MML

approach is compared to other selection criteria.

2 THE GENERALIZED DIRICHLET MIXTURE

In dimension d, the generalized Dirichlet probability

density function (pdf) is defined by [33]

pðX1; . . . ; XdÞ ¼
Yd
i¼1

�ð�i þ �iÞ
�ð�iÞ�ð�iÞ

X�i�1
i 1�

Xi
j¼1

Xj

 !�i

ð1Þ

for
Pd

i¼1 Xi < 1 and 0 < Xi < 1 for i ¼ 1 . . . d, where

�i > 0, �i > 0, �i ¼ �i � �iþ1 � �iþ1 for i ¼ 1 . . . d� 1,

and �d ¼ �d � 1. Note that the generalized Dirichlet

distribution is reduced to a Dirichlet distribution when

�i ¼ �iþ1 þ �iþ1

pðX1; . . . ; XdÞ ¼
�ð�1 þ �2 þ . . .þ �d þ �dþ1Þ
�ð�1Þ�ð�2Þ . . . �ð�dÞ�ð�dþ1Þ

1�
Xd
i¼1

Xi

 !�dþ1�1Yd
i¼1

X�d�1
i ;

ð2Þ

where �dþ1 ¼ �d. The mean and variance of the Dirichlet

distribution satisfy the following conditions:

EðXiÞ ¼
�iPdþ1
l¼1 �l

; ð3Þ

V arðXiÞ ¼
�ið
Pdþ1

i¼1 �i � �iÞ
ð
Pdþ1

i¼1 �iÞ
2ð
Pdþ1

i¼1 �i þ 1Þ
; ð4Þ

and the covariance between Xi and Xj is

CovðXi;XjÞ ¼ �
�i�j

ð
Pdþ1

i¼1 �iÞ
2ð
Pdþ1

i¼1 �i þ 1Þ
: ð5Þ

Thus, any two random variables in ~X ¼ ðX1; . . . ; XdÞ are

negatively correlated, which is not always the case. Wong

[33] studied the generalized Dirichlet distribution and

showed that the general moment function is

EðXr1

1 ; X
r2

2 ; . . . ; Xrd
d Þ ¼

Yd
i¼1

�ð�i þ �iÞ�ð�i þ riÞ�ð�i þ �iÞ
�ð�iÞ�ð�iÞ�ð�i þ �i þ ri þ �iÞ

;

ð6Þ

where �i ¼ riþ1 þ riþ2 þ . . .þ rd for i ¼ 1; 2; . . . ; d� 1, and
�d ¼ 0. Then, we can show that the mean and the variance of
the generalized Dirichlet distribution satisfy the following
conditions [33]:

EðXiÞ ¼
�i

�i þ �i
Qi�1

k¼1

�k þ 1

�k þ �k
; ð7Þ

V arðXiÞ ¼ EðXiÞ
�i þ 1

�i þ �i þ 1

Yi�1

k¼1

�k þ 1

�k þ �k þ 1
� EðXiÞ

 !
;

ð8Þ

and the covariance between Xi and Xj is

CovðXi;XjÞ ¼ EðXjÞ
�i

�i þ �i þ 1

Yi�1

k¼1

�k þ 1

�k þ �k þ 1
� EðXiÞ

 !
:

ð9Þ

Note that the generalized Dirichlet distribution has a more
general covariance structure than the Dirichlet distribution
[34]. In addition to these properties, it has been shown that
ðX1; . . . ; XlÞ, for any l < d, follows an l-variate generalized
Dirichlet distribution and that the generalized Dirichlet is
conjugate to the multinomial distribution [33]. Compared to
the Gaussian distribution, the generalized Dirichlet has a
smaller number of parameters that makes the estimation
and the selection more accurate as we will show in the
experimental results. We note that the generalized Dirichlet
distribution is defined in the compact support [0, 1] in
contrast of the Gaussian, for example, which is defined in
IR. However, we can generalize it easily to be defined in a
compact support of the form ½A;B�, where ðA;BÞ 2 IR2 (see,
for example, [35] in the case of Beta distribution). Having a
compact support is an interesting property for a given
density because of the nature of data in general. Generally,
we model data that are compactly supported, such as data
originating from videos, images, or text. Besides, as a
generalization of the Dirichlet, this distribution offers high
flexibility and ease of use for the approximation of both
symmetric and asymmetric distributions and can be used in
many applications such as image processing [34], biology
[36], and text modeling [37]. Numerous other properties of
this distribution are given in [38], [33]. A generalized
Dirichlet mixture with M components is defined as

pð~Xj�Þ ¼
XM
j¼1

p ~Xj~�j
� �

pðjÞ; ð10Þ

where 0 < pðjÞ � 1, and
PM

j¼1 pðjÞ ¼ 1. In this case, the
parameters of a mixture for M clusters are denoted by
� ¼ ð�; ~P Þ, where � ¼ ð~�1; � � � ; ~�MÞT , ~�j ¼ ð�j1; �j1; � � � ; �jd;
�jdÞ, j ¼ 1; � � � ;M, and ~P ¼ ðpð1Þ; � � � ; pðMÞÞT is the mixing
parameter vector.

3 THE MML CRITERION FOR A GENERALIZED

DIRICHLET MIXTURE

From an information-theory point of view, the MML
approach is based on evaluating statistical models according
to their ability to compress a message containing the data.
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High compression is obtained by forming good models of the
data to be coded. For each model in the model space, the
message includes two parts. The first part encodes the model,
using only prior information about the model and no
information about the data. The second part encodes only
the data in a way that makes use of the model encoded in
the first part [39]. Let us consider a set of data X ¼
ð~X1; ~X2; . . . ~XNÞ controlled by a mixture of distributions with
parameters �. The optimal number of clusters of the mixture
is that which minimimizes the amount of information
(measured in bits, if base-2 logarithm is used, or in nits, if
natural logarithm is adopted [21]) needed to transmit X
efficiently from a sender to a receiver. The message length is
defined as minus the logarithm of the posterior probability
(interesting discussion about the difference between max-
imizing a density and maximizing a probability can be found
in [28]). The MML principle has strong connections with
Bayesian inference and, hence, uses an explicit prior
distribution over parameter values [40]. Wallace and Dowe
[28] and Baxter and Oliver [19] give us the formula for the
message length for a mixture of distributions

MessLen ’� logðhð�ÞÞ � log pðXj�ÞÞ þ 1

2
logðjF ð�Þj

� �

þNp

2
ð1þ logð�Np

ÞÞ;

ð11Þ

where hð�Þ is the prior probability, pðXj�Þ is the likelihood,

F ð�Þ is the expected Fisher information matrix, and jF ð�Þj
is its determinant. Np is the number of parameters to be

estimated and is equal to ð2dþ 1ÞM in our case. �Np
is the

optimal quantization lattice constant for IRNp [41] and we

have �1 ¼ 1=12 ’ 0:083 for Np ¼ 1. As Np grows, �Np
tends

to the asymptotic value given by 1
2�e ’ 0:05855. We note that

�Np
does not vary much; thus, we can approximate it by 1

12 .

More details and discussions about the MML principle can

be found in [21], [42]. The estimation of the number of

clusters is carried out by finding the minimum with regards

to � of the message length MessLen. Note that the MML

criterion is very similar, but conceptually different, to

another one called the LEC [2]

logðpðXj�ÞÞ � logðhð�ÞÞ � 1

2
Np logð2�Þ þ 1

2
logðjF ð�ÞjÞ:

ð12Þ

Apart from the lattice constant, the MML has the same form
as the LEC [2]. In the following sections, we will calculate
the determinant of the Fisher information matrix jF ð�Þj and
the prior pdf hð�Þ for a mixture of generalized Dirichlet
distributions.

3.1 Fisher Information for a Mixture of Generalized
Dirichlet Distributions

The Fisher information matrix is the expected value of the
Hessian minus the logarithm of the likelihood. It is difficult,
in general, to obtain the expected Fisher information matrix
of a mixture analytically [2], [43]. Then, we use the complete-
data Fisher information matrix as proposed by Figueiredo
and Jain in [12], that is, the Fisher information matrix is

computed after the vectors in the data set are assigned to the

different clusters [25], [26], [28]. The complete-data Fisher

information matrix has a block-diagonal structure and its

determinant is equal to the product of the determinant of the

information matrix for each component times the determi-

nant of the information matrix of ~P

jF ð�Þj ’ jF ð~P Þj
YM
j¼1

jF ð~�jÞj; ð13Þ

where jF ð~P Þj is the Fisher information with regards to the

mixing parameters vector, and jF ð~�jÞj is the Fisher informa-

tion with regards to the vector ~�j of a single generalized

Dirichlet distribution. In what follows, we will compute each

of these separately. For jF ð~P Þj, it should be noted that the

mixing parameters satisfy the requirement
PM

j¼1 pðjÞ ¼ 1.

Consequently, it is possible to consider the generalized

Bernoulli process with a series of trials, each of which has M

possible outcomes labeled first cluster, second cluster, . . . ,

Mth cluster. The number of trials of the jth cluster is a

multinomial distribution of parameters pð1Þ; pð2Þ; . . . ; pðMÞ.
In this case, the determinant of the Fisher information matrix

is [31]

jF ð~P Þj ¼ NM�1QM
j¼1 pðjÞ

; ð14Þ

where N is the number of data elements. For F ð~�jÞ, let us

consider the jth cluster X j ¼ ð~Xt; . . . ; ~Xtþnj�1Þ of the

mixture, where t � N , with parameter ~�j. The choice of

the jth cluster allows us to simplify the notation without

loss of generality. The problem now is how to find the

determinant of the Fisher information matrix with regards

to the vector ~�j. Indeed, we have a ð2� dÞ � ð2� dÞ matrix

that is not easy to compute, especially for high-dimensional

data. Here, we try to find an alternative method to

overcome this difficulty by using an interesting property

of the generalized Dirichlet distribution. If a vector ~Xi ¼
ðXi1; . . . ; XidÞ has a generalized Dirichlet distribution, then

we can construct a vector ~Wi ¼ ðWi1; . . . ;WidÞ using the

following geometric transformation T defined by

Wil ¼ T ðXilÞ

¼
Xil if l ¼ 1

Xil=ð1�Xi1 � . . .�Xil�1Þ for l ¼ 2; 3; . . . ; d:

� ð15Þ

In this vector ~Wi, eachWil, l ¼ 1; . . . ; d has a Beta distribution

with parameters �jl and �jl, and the parameters f�jl; �jl; l ¼
1; . . . ; dg define the generalized Dirichlet distribution that ~Xi

follows [33]. Thus, the Fisher information with regards to the

vector ~�j of a single generalized Dirichlet distribution is

approximated by

jF ð~�jÞj ’
Yd
l¼1

jF ð�jl; �jlÞj; ð16Þ

where jF ð�jl; �jlÞj is the Fisher information of a single Beta

distribution with parameters ð�jl; �jlÞ. The Hessian matrix

in the case of a Beta distribution with parameters ð�jl; �jlÞ is

given by
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Hð�jl; �jlÞ ¼
� @2

@2�jl
logðpbetaðWjlj�jl;�jlÞÞ � @2

@�jl@�jl
logðpbetaðWjlj�jl;�jlÞÞ

� @2

@�jl@�jl
logðpbetaðWjlj�jl;�jlÞÞ � @2

@2�jl
logðpbetaðWjlj�jl;�jlÞÞ

 !
;
ð17Þ

where Wjl ¼ ðWtl; . . . ;W ðtþnj�1ÞlÞ, and pbeta is the Beta

distribution, given by

pBetaðWilj�jl; �jlÞ ¼
�ð�jl þ �jlÞ
�ð�jlÞ�ð�jlÞ

W
�jl�1
il ð1�WilÞ�jl�1: ð18Þ

Thus (see the Appendix),

jF ð�jl; �jlÞj ¼

n2
j

�
�0ð�jlÞ�0ð�jlÞ ��0ð�jl þ �jlÞ

�
�0ð�jlÞ þ�0ð�jlÞ

��
:
ð19Þ

By substituting (19) in (16), we obtain

jF ð~�jÞj ’

n2d
j

Yd
l¼1

�
�0ð�jlÞ�0ð�jlÞ ��0ð�jl þ �jlÞ

�
�0ð�jlÞ þ�0ð�jlÞ

��
:

ð20Þ

Once we have the Fisher information for a single general-

ized Dirichlet distribution, we can use it to calculate the

Fisher information for a mixture of generalized Dirichlet

distributions. By substituting (20) and (14) in (13), we obtain

jF ð�Þj ’ NM�1QM
j¼1 pðjÞ

YM
j¼1

n2d
j

�Yd
l¼1

�
�0ð�jlÞ�0ð�jlÞ

��0ð�jl þ �jlÞ
�

�0ð�jlÞ þ�0ð�jlÞ
���

;

ð21Þ

logðjF ð�ÞjÞ ’ ðM � 1Þ logðNÞ �
XM
j¼1

logðpðjÞÞ þ 2d
XM
j¼1

logðnjÞ

þ
XM
j¼1

Xd
l¼1

log

�				�0ð�jlÞ�0ð�jlÞ ��0ð�jl þ �jlÞ
�

�0ð�jlÞ þ�0ð�jlÞ
�				
�
:

ð22Þ

3.2 Prior Distribution hð�Þ
The performance of the MML criterion is dependent on the

choice of the prior distribution hð�Þ. In the absence of other

knowledge about the mixture parameters, we model the

parameters of the different components as a priori indepen-

dent from the mixing probabilities, that is,

hð�Þ ¼ hð~P Þhð�Þ: ð23Þ

We know that the vector ~P is defined on the simplex

fðpð1Þ; . . . ; pðMÞÞ :
PM

j¼1 pðjÞ ¼ 1g; thus, a natural choice, as

a prior, for this vector is the Dirichlet distribution

hð~P Þ ¼
�ð
PM

j¼1 �jÞQM
j¼1 �ð�jÞ

YM
j¼1

pðjÞ�j�1; ð24Þ

where~� ¼ ð�1; . . . ; �MÞ is the parameter vector of the Dirichlet

distribution. The choice of �1 ¼ 1; . . . ; �M ¼ 1 gives a uniform

prior over the space pð1Þ þ . . .þ pðMÞ ¼ 1. This prior is given

by [19], [28]

hð~P Þ ¼ ðM � 1Þ!: ð25Þ

For hð�Þ, since ~�j, j ¼ 1 . . .M are assumed to be indepen-

dent, we obtain

hð�Þ ¼
YM
j¼1

hð~�jÞ: ð26Þ

For hð~�jÞ, we know experimentally that
Pd

l¼1ð�jl þ �jlÞ <
2de5, so the vector ~�j can be defined on the simplex

fð�j1; �j1; . . . ; �jd; �jdÞ :
Pd

l¼1ð�jl þ �jlÞ < 2de5g. Then, we

can consider as a prior a Dirichlet distribution with

parameters~� ¼ ð�1; . . . ; �2dþ1Þ

hð~�jÞ ¼
�ð
P2dþ1

l¼1 �lÞ

ð2de5Þ
P2dþ1

l¼1
�l�1Q2dþ1

l¼1 �ð�lÞ

2de5 �
Xd
l¼1

ð�jl þ �jlÞ
 !�2dþ1�1Yd�1

l¼0

��2lþ1�1
jlþ1 ��2lþ2�1

jlþ1 :

ð27Þ
The choice of �1 ¼ 1; . . . ; �2dþ1 ¼ 1 gives a uniform prior

hð~�jÞ ¼
ð2dÞ!
ð2de5Þ2d

ð28Þ

and

hð�Þ ¼
YM
j¼1

hð~�jÞ ¼ ð2de5Þ�2Mdðð2dÞ!ÞM: ð29Þ

Substituting (29) and (25) in (23), we obtain

logðhð�ÞÞ ¼
XM�1

j¼1

logðjÞ � 10Md� 2Md logð2dÞ

þM
X2d
j¼1

logðjÞ:
ð30Þ

The expression of MML for a finite mixture of generalized

Dirichlet distributions is obtained using (30), (22), and (11)

MessLen ¼MMLðMÞ

¼ �
XM�1

j¼1

logðjÞþ10Mdþ 2Md logð2dÞ�M
X2d
j¼1

logðjÞ

þ ðM � 1Þ logðNÞ
2

� 1

2

XM
j¼1

logðpðjÞÞ þd
XM
j¼1

logðnjÞ

� logðpðXj�ÞÞ �Np

2
logð12Þ þNp

2

þ 1

2

XM
j¼1

Xd
l¼1

log

�				�0ð�jlÞ�0ð�jlÞ ��0ð�jl þ �jlÞ
�

�0ð�jlÞ þ�0ð�jlÞ
�				
�
:

ð31Þ
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4 ESTIMATION AND SELECTION ALGORITHM

In this section, we summarize the algorithm for estimating the
number of clusters for a mixture of generalized Dirichlet
distributions. The input to this algorithm consists of a data set
of vectors. Its output is the number of components and the
estimated parameters. Normally, the estimation of the
parameters is based on the minimization of the message
length. However, as the MML estimates are very similar to
the maximum likelihood (ML) estimates, we used the ML
approach for the estimation of the mixture parameters [19].
The maximization defining the ML estimates is under the
constraints 0 < pðjÞ � 1 and

PM
j¼1 pðjÞ ¼ 1. Obtaining ML

estimates of the mixture parameters is possible through
expectation-maximization (EM) and related techniques [43].
The EM algorithm [44] is a general approach to ML in the
presence of incomplete data. In EM, the “complete” data are
considered tobeYi ¼ f~Xi; ~Zig,where ~Zi ¼ ðZi1; . . . ; ZiMÞwith

Zij ¼ 1 if ~Xi belongs to class j
0 otherwise:

�
ð32Þ

constituting the “missing” data. When we maximize the
likelihood function, we do not obtain a closed-form solution
for the � parameters. In [45], we have used the Fisher scoring
method for the estimation of these parameters. This method
involves the inverse of the ð2� dÞ � ð2� dÞ Fisher informa-
tion matrix, which is not easy to compute, especially for high-
dimensional data. Here, we try to find an alternative method
to overcome this difficulty. As Scott and Thompson have
observed, the problem of density estimation in higher dimensions
involves first of all finding where the action is [46]. We therefore
begin by identifying the important classes by an efficient
initialization algorithm and use the interesting properties of
the generalized Dirichlet distribution to refine the estimates.
In order to estimate the � parameters, we have used the
transformation given by (15). In the vector ~Wi obtained by this

geometric transformation, each Wil, l ¼ 1; . . . ; d has a Beta

distribution with parameters �il and �il. The parameters

f�il; �il; l ¼ 1; . . . ; dg define the generalized Dirichlet distri-

bution of ~Xi [33]. The problem of estimating the parameters of

a generalized Dirichlet mixture can thus be reduced to the

estimation of the parameters of d Beta mixtures. This entails

maximizing the following equation for every dimension l:

�W ð	l;WÞ ¼
XN

i¼1
log

XM

j¼1
pbetaðWilj	jlÞpðjÞ

� �
; ð33Þ

where W ¼ ðW1l; . . . ;WNlÞ, 0 < l � d, 	l ¼ ð�1l; �1l; . . . ; �Ml;

�MlÞ, 	jl ¼ ð�jl; �jlÞ, and pðjÞ are the mixing parameters. To

maximize (33), we resolve the following equations:

@

@�jl
�W ð	l;WÞ ¼ 0 8 0 < l � d; ð34Þ

@

@�jl
�W ð	l;WÞ ¼ 0 8 0 < l � d: ð35Þ
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TABLE 1
Parameters of the Different Generated Data Sets

(nj Represents the Number of the Elements in Cluster j)

TABLE 2
Parameters of the Different Generated Data Sets

(nj Represents the Number of the Elements in Cluster j)



In order to estimate the 	jl parameters, we will use Fisher’s
scoring method [47]. The scoring method is based on the first,
second, and mixed derivatives of the function �W ð	jl;WÞ. We
therefore compute these derivatives. Given a set of initial
estimates, Fisher’s scoring method can now be used. The
iterative scheme of the Fisher method is given by the
following equation:

�
�̂0jl
�̂0jl

�ðtÞ
¼
�
�̂0jl
�̂0jl

�ðt�1Þ
þ V ðt�1Þ �

@�W

@�̂0jl

@�W

@�̂0jl

0
@

1
A
ðt�1Þ

; ð36Þ

where j is the class number, 1 � j �M, l is the current
dimension, 1 � l � d, and �0jl and �0jl are unconstrained real
numbers. Indeed, we require that the �jl and �jl be strictly
positive and we want the parameters upon which we will
derive to be unconstrained so we reparametrize, setting
�jl ¼ e�

0
jl and �jl ¼ e�

0
jl .

The matrix V is obtained as the inverse of the Fisher
information matrix I. The information matrix I is

I ¼
�E½ @2

@2�0
jl

�W ð	l;WÞ� �E½ @2

@�0
jl
@�0

jl
�W ð	l;WÞ�

�E½ @2

@�0
jl
@�0

jl
�W ð	l;WÞ� �E½ @2

@2�0
jl

�W ð	l;WÞ�

0
@

1
A: ð37Þ

Given sufficiently accurate startingvalues, the convergence of
a sequence of iterates, produced by the Fisher scoring method,
to a solution 	̂jl is locally quadratic. That is, given anormk:kon
the parameter space, there is a constant h such that

k	ðtÞjl � 	̂jlk � hk	
ðt�1Þ
jl � 	̂jlk2 ð38Þ

holds for t ¼ 1; 2; . . . . Quadratic convergence is very fast: This
is regarded as the most important advantage of the Fisher
scoring method allowing it to overcome the slow convergence
of the EM algorithm. This rapid convergence can be improved
by introducing a stochastic step in the EM algorithm [48], [49]
that prevents the sequence of estimates �t from staying near

an unstable stationary point of the likelihood function [49]. In

this step, each vector is assigned to a component j with

probability Ẑij. Then, we are using a partial assignment that is

different of the total assignment used in [11], [50]. Interesting

comparisons between partial and total assignments can be

found in [23], [24], [25], [26], [28], [32]. In order to make our

algorithm less sensitive to local maxima, we have used some

initialization schemes including the Fuzzy C-Means and the

method of moments (MM) [34]. Our initialization method can

be resumed as follows:

INITIALIZATION Algorithm

1. INPUT: d-dimensional data ~Xi, i ¼ 1; . . . ; N and
number of clusters M.

2. Apply the Fuzzy C-Means to obtain the elements,
covariance matrix, and mean of each component.

3. Compute the ~Wi ¼ ðWi1; . . . ;WidÞ from the ~Xi. Wi1 ¼
Xi1 and Wil ¼ Xil=Vil�1 for l ¼ 2; 3 . . . ; d, where
Vil ¼ 1�Xi1 �Xi2 � . . .�Xil.

4. Apply the MM for each component j and for each
dimension l to obtain the vector of parameters ~	jl.

5. Assign the data to clusters, assuming that the current
model is correct.

6. If the current model and the new model are
sufficiently close to each other, terminate, else go to 4.

With this initialization method at hand, the complete

estimation and selection algorithm is given as follows:
Algorithm
For each candidate value of M:

1. Apply the INITIALIZATION Algorithm.
2. E-Step: Compute the posterior probabilities:

Ẑij ¼
pð~Xij~�jÞpðjÞPM
j¼1 pð~Xij~�jÞpðjÞ

:
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Fig. 1. Mixture densities for the generated data sets.



3. S-Step: For each sample value ~Xi, draw ~Zi from the
multinomial distribution of order one with M
categories having probabilities specified by the Ẑij.

4. M-Step:

. Update the ~	jl using (36), j ¼ 1; . . . ;M and
l ¼ 1; . . . ; d.

. Update the pðjÞ ¼ 1
N

PN
i¼1 Ẑij, j ¼ 1; . . . ;M.

5. Calculate the associated criterion MML(M) using
(31).

6. Select the optimal model M� such that

M� ¼ arg minMMMLðMÞ:

5 EXPERIMENTAL RESULTS

5.1 Comparison with Other Criteria

Here, we will compare the results from the MML approach
with those obtained using other deterministic model-order
selection criteria/techniques. The methods we compare with
are the MDL proposed by Rissanen in [15], the MMDL [18],
the AIC [13], the MML-like criterion, which we call MMLlike,
proposed by Figueiredo and Jain in [12], and the LEC [2]. In
general, the deterministic criteria can be expressed as

Cð�̂ðMÞ;MÞ ¼ � log p Xj�̂ðMÞ
� �h i

þ fðMÞ; ð39Þ
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Fig. 2. Number of clusters found by the different criteria for the different generated data sets.



where fðMÞ is an increasing function that penalizes higher

values of M. The optimal number of clusters is selected

according to

M̂ ¼ arg minfCð�̂ðMÞ;MÞ;M ¼Mmin; . . . ;Mmaxg: ð40Þ

In spite of this common point, these criteria can be

conceptually different. These criteria are given by the

following equations:

MDLðMÞ ¼ � logðpðXj�ÞÞ þNp

2
logðNÞ; ð41Þ

where Np is the number of parameters estimated, equal to

ð2dþ 1ÞM in our case.

AICðMÞ ¼ � logðpðXj�ÞÞ þNp

2
; ð42Þ

MMDLðMÞ ¼ � logðpðXj�ÞÞþ 1

2
Np logðNÞ þ c

2

XM
j¼1

logðpðjÞÞ;

ð43Þ

where c is the number of parameters describing each

component, equal to 2dþ 1 in our case

MMLlikeðMÞ ¼ � logðpðXj�ÞÞ

þM
2

log
N

12

� �
þ c

2

XM
j¼1

log N
pðjÞ
12

� �
þNp

2
:

To obtain the LEC selection criterion for a generalized

Dirichlet mixture, we substitute (29) and (25) in (12)
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TABLE 3
Results for the First Generated Data Set

with 400 Simulations Draws

TABLE 4
Results for the Fourth Generated Data Set

with 400 Simulations Draws

Fig. 3. Examples of the data sets used. (a) The Ruspini data set. (b) The Chevron data set. (c) The Diabetes data set. (d) The Iris data set when we

take the first three dimensions.



LECðMÞ ¼ � logðpðXj�ÞÞ �
XM�1

j¼1

logðjÞ

þ 10Mdþ 2Md logð2dÞ �M
X2d
j¼1

logðjÞ

þ 1

2

XM
j¼1

Xd
l¼1

logðj�0ð�jlÞ�0ð�jlÞ

��0ð�jd þ �jdÞð�0ð�jlÞ þ�0ð�jlÞÞjÞ

þ d
XM
j¼1

logðnjÞ �
1

2
Np logð2�Þ

þ ðM � 1Þ logðNÞ
2

� 1

2

XM
j¼1

logðpðjÞÞ:

ð44Þ

5.2 Synthetic Data

In the first application, we investigate the properties of these

model selection methods on six 2D synthetic data sets. We

choose d ¼ 2 purely for ease of representation. In fact, we

tested the effectiveness of the methods for selecting the

number of clusters by generating data sets using different

parameters. We then attempted to estimate the parameters

and the number of clusters of the mixtures representing these

data sets. The parameters of these generated data sets are

given in Tables 1 and 2. In Fig. 1, which represents the

resultant mixtures, we see that we obtain different shapes

(symmetric and asymmetric modes). Fig. 4 gives the number

of clusters calculated for the generated data sets. In this figure,

the values of the different criteria were averaged over

400 simulations draws. Tables 3 and 4 show the number of

clusters calculated for the first and the sixth generated data

sets for 400 simulation draws. The results presented for the

generated data sets indicate clearly that the MML and LEC

outperform the other criteria. This can be explained by the fact

that these two criteria contain prior terms that the other

criteria do not have. Note that the MML criterion is very

similar to the LEC [2]. Indeed, the LEC criterion is reduced to

the MML by taking uniform priors over the parameters and

by choosing the asymptotic value �Np
¼ 1

2�e in (11). The MDL,

for example, can be viewed as an approximation of the MML

criterion. In fact, we have F ð�Þ ¼ NF ð1Þð�Þ, where F ð�Þ is

the Fisher matrix of the entire population and F ð1Þð�Þ is the

Fisher matrix for a single observation. Therefore,

logðjF ð�ÞjÞ ¼ log
�
NNp jF ð1Þð�Þj

�
¼ Np logðNÞ þ log

�
jF ð1Þð�Þj

�
;

where jF ð1Þð�Þj is the Fisher information for a single

observation. For a large N , we can remove the terms

logðjF ð1Þð�ÞjÞ and
Np

2 ð1� logð12ÞÞ from (11). Then, by

assuming a flat prior hð�Þ and dropping it from (11), we

obtain the well-known MDL selection criterion. The most

important problem in using the MDL criterion is that all data

points have equal importance in estimating each component

of the parameter vector. This is not the case in mixtures,

where each data point has its own weight in estimating

different parameters. This point becomes apparent if we

compute the Fisher matrix for the single jth cluster of the

mixture that leads to F ð�jÞ ¼ NpðjÞF ð1Þð�jÞ, where F ð1Þð�jÞ
denotes the Fisher matrix associated with a single observa-

tion. As we have jF ð�Þj ¼
QM

j¼1 jF ð�jÞj, we obtain

logðjF ð�ÞjÞ ¼ log

�YM
j¼1

ðNpðjÞÞc log
�
jF ð1Þð�jÞ

�
j
�

¼
XM
j¼1

c logðNpðjÞÞ þ
XM
j¼1

log
�
jF ð1Þð�jÞj

�
;

where c is the number of parameters defining each compo-

nent. For a largeN , we can drop the terms logðjF ð1Þð�jÞjÞ and
Np

2 ð1� logð12ÞÞ from (11). We obtain

logðjF ð�ÞjÞ ¼
XM
j¼1

dðlogðNÞ þ log pðjÞÞ

¼ Np logðNÞ þ c
XM
j¼1

log pðjÞ:
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TABLE 5
Characteristics of the Data Used in the Second Application and the Results Given by Generalized Dirichlet and Gaussian Mixtures



The result is the MMDL criterion. This is can explain the

fact that the MMDL outperforms MDL. The MMLlike

criterion is also derived from the MML criterion by taking

F ð�jÞ ¼ NpðjÞF ð1Þð�jÞ, F ð~P Þ ¼ NF ðMulÞ, where F ðMulÞ is

the Fisher matrix of a multinomial distribution, and

assuming the following noninformative Jeffreys priors:

hð�jÞ /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jF ð�jÞj

p
and

hð~P Þ /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jF ðMulÞj

p
¼ 1QM

j¼1 pðjÞ

[12]. Note that we can show easily that MMLlikeðMÞ ¼
MMDLðMÞ þ Np

2 ð1þ logð 1
12ÞÞ. Then, the MMLlike criterion can

be obtained using the same approach used for MMDL but by

keeping the order-1 term
Np

2 ð1þ logð 1
12ÞÞ. This can explain the

fact that the MMLlike performance is comparable to, but

slightly better than, MMDL. The AIC and MDL criteria

perform comparably. However, AIC overfits (chooses the

number of clusters greater than the true number) more often

than MDL and the other criteria. This is explained by noting

that AIC regularizes only with 0:5Np.
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Fig. 4. Number of clusters found by the different criteria for the different real data sets.



5.3 Real Data Clustering

In the second application, we validate our model using six

standard multidimensional data sets (Ruspini, Chevron,

Diabetes, Iris, Breast Cancer, and Heart Disease) that differ

in dimension, size, and complexity. These data sets were

obtained from the machine learning repository at the

University of California, Irvine [51]. The Ruspini [52] data

set contains 2D data in four groups (see Fig. 3a). Chevron is

another 2D data set [53]. The data in Chevron arise from the

processing of a series of images taken by a reconnaissance

aircraft in which a large number of points are identified as

representing possible mines, but many of these are in fact

noise (see Fig. 3b). Diabetes is a 3D data set involving

145 observations used for diabetes diagnosis [54]. The data set
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TABLE 6
Number of Clusters Determined by the Different Criteria Using Both Generalized Dirichlet and Gaussian Mixtures

Fig. 5. Number of clusters determined to represent each of the four classes (Course, Faculty, Project, and Student) when we consider a training set

of 2,000 Web pages. (a) MML. (b) MDL. (c) AIC. (d) MMDL. (e) MMLlike. (f) LEC.



is composed of three clusters that are overlapping and are far
from spherical in shape (see Fig. 3c). Breast Cancer [55] is a
nine-dimensional data set that contains two classes and
683 samples. Iris [56] comprises 50 samples for each of the
three classes presented in the data, Iris Versicolor, Iris
Verginica, and Iris Setosa; each datum is four-dimensional
and consists of measures of the plants’ morphology (see
Fig. 3d). Heart disease is a 13-dimensional data set that
contains two classes and 270 samples. Table 5 gives the
characteristics of these data sets and the accuracy of
classification (we give the exact number of clusters) when
we use both the generalized Dirichlet and the Gaussian
mixtures. We have considered a diagonal covariance matrix
in the case of the Gaussian to avoid numerical problems [19].
Fig. 4 shows the number of clusters found by our algorithm
when we use the six criteria for the different data sets. In these
tables, we can see clearly that only the MML and LEC criteria
found the correct number of clusters each time. The super-
iority of MML is also reported by Agusta and Dowe in [57],
where they show that MML beats both AIC and BIC, in bit
costing, with multivariate Gaussian mixtures, for the Iris and
Diabetes data sets. Table 6 shows the number of clusters
obtained when we use both the generalized Dirichlet and
Gaussian mixtures.

5.4 Web Mining: Classification of Web Pages

The goal of this application is to understand the textual
content of a Web page based on statistical features by
considering single-word statistics, that is, the frequency
of word occurrence [58]. The goal of this application is to
prove the modeling capabilities of our algorithm. We
begin by presenting the generalized Dirichlet mixture
classifier. If the feature vectors ~X are annotated by
providing class labels, we are able to perform supervised
learning using the generalized Dirichlet mixture. Con-
sider a data set X l ¼ fð~Xi; CiÞji ¼ 1; . . . ; NÞg, where
Ci 2 f1; 2; . . . ;Mg, and M is the number of classes. The
joint density of feature vectors ~X and class labels C is
pð~X;CÞ ¼ pð~XjCÞpðCÞ, where pð~XjCÞ is the class density,
and pðCÞ is the mixing probability. The classifier is
designed by adapting the generalized Dirichlet mixtures
to each class separately using the training data. Thus, the
density of each class is itself a generalized Dirichlet
mixture and can be written as

pð~XjCÞ ¼
XMc

k¼1

pð~Xjk; CÞpðkjCÞ; ð45Þ

whereMc is the number of clusters calculated for classC using
MML, pðkjCÞ represent the mixing parameters, and pð~Xjk; CÞ
is the generalized Dirichlet density. Labels are assigned to the
test data using the Bayesian rule by selecting the maximum
posterior probability given by the following equation:

pðCj~XÞ / pð~XjCÞpðCÞ: ð46Þ

For the experiments we used the WebKB1 data set, which
contains Web pages gathered from university computer
science departments. There are about 8,280 documents, and

they are divided into seven categories: Student, Faculty, Staff,
Course, Project, Department, and Other. Among these seven
categories, student, faculty, staff, course, and project are the
four most populous entity categories. The associated subset is
typically called WebKB4 and contains 4,199 Web pages. In
this paper, we perform experiments on the four-category data
set: Course, Faculty, Project, and Student. In our experiments,
we first select the top 200 words. The feature selection is done
with the Rainbow package [59]. Suitable selection of the data
is required for good performance. This concerns removing
stop words and words that have a little influence (less than
50 occurrences in our experiments). Moreover, we keep only
word stems and define the term vector as a complete set of
words occurring in all the Web pages. A Web page histogram
is the vector containing the frequency of occurrence of each
word from the term vector and defines the content of the Web
page. Normalizing all histogram vectors, each Web page i
will be represented by a vector ~Xi ¼ ðXi1; . . . ; Xi200Þ, where
Xij, j ¼ 1; . . . ; 200 represents the probability of term j in
document i. The data are then randomly split 10 times into a
test set of ðNtest ¼ 2; 199Þ and training sets of increasing sizes,
ðNtrain ¼ 1; 100 . . . 2; 000Þ. Fig. 5 shows the number of clusters
determined by the different criteria used to represent each of
the four classes (Course, Faculty, Project, and Student) when
we consider a training set of 2,000 Web pages. Fig. 6 shows the
learning curves for the different criteria. In this figure, we
observe the classification error as a function of the number of
documents in the training set. The proposed generalized
Dirichlet mixture classifier achieves the best classification
rate when the MML criterion is used to learn the training sets.

5.5 Texture Image Database Summarization for
Efficient Retrieval

The fourth application concerns the summarization of texture
image databases. Interactions between users and multimedia
databases can involve queries like “Retrieve images that are
similar to this image.” A number of techniques have been

BOUGUILA AND ZIOU: HIGH-DIMENSIONAL UNSUPERVISED SELECTION AND ESTIMATION OF A FINITE GENERALIZED DIRICHLET... 1727

Fig. 6. Learning curves for the different selection criteria.

1. This data set is available on the Internet. See http://
www.cs.cmu.edu/~textlearning.



developed to handle pictorial queries, for example, QBIC [60],
Photobook [61], Blobworld [62], VisualSeek [63], and Atlas
[64]. Summarizing the database is very important because it
simplifies the task of retrieval by restricting the search for
similar images to a smaller domain of the database [65].
Summarization is also very efficient for browsing [66].
Knowing the categories of images in a given database allows
the user to find the images he or she is looking for more
quickly. Using mixture decomposition, we can find natural
groupings of images and represent each group by the most
representative image in the group. In other words, after
appropriate features are extracted from the images, the
feature space can be partitioned into regions that are
relatively homogeneous with respect to the chosen set of
features. By identifying the homogeneous regions in the
feature space, the task of summarization is accomplished. For
the experiment described in this paper, we used the Vistex

color texture database obtained from the Massachusetts
Institute of Technology (MIT) Media Lab. In our experimental
framework, each of the 512� 512 images from the Vistex

database was divided into 64� 64 images. Since each 512�
512 “mother image” contributes 64 images to our database,
ideally, all of the 64 images should be classified in the same
class. In the experiment, six homogeneous texture groups
“Bark,” “Fabric,” “Food,” “Metal,” “Water,” and “Sand”
were used to create a new database. A database with

1,920 images was obtained. Four images from each of the
Bark, Fabric, and Metal texture groups were used to obtain
256 images for each of these categories, and six images from
Water, Food, and Sand were used to obtain 384 images for
these categories. Examples of images from each of the
categories are shown in Fig. 7. In order to determine the
vector of characteristics for each image, we have computed a
set of features derived from the correlogram [67]. It has been
noted that to obtain good results, many correlograms should
be computed, each one considering a given neighborhood
and direction. Some studies show that considering the
following neighborhoods is sufficient for co-occurrence
matrices, in the case of gray-level images, to obtain good
results in general: ð1; 0Þ, ð1; �4Þ, ð1; �2Þ, and ð1; 3�

4 Þ [68]. For each of
these neighborhoods, we calculated the corresponding
correlogram and then derived from it the following features
that have been proposed for co-occurrence matrices: Mean,
Variance, Energy, Correlation, Entropy, Contrast, Homoge-
neity, and Cluster Prominence [69]. Thus, each image was
characterized by a 36-dimensional vector. Applying our
algorithm to the texture database, only the MML and LEC
criteria found six categories (see Fig. 8). However, all the
criteria failed to find the exact number of clusters when we
use a Gaussian mixture with diagonal covariance matrices
(four clusters in the case of MML and LEC, three clusters
using MDL, MMDL, and MMLlike, and seven clusters by the
AIC). The classification was performed using the Bayesian
decision rule after the class-conditional densities were
estimated. The confusion matrix for the texture image
classification application is given in Table 7. In this confusion
matrix, the cell (classi, classj) represents the number of images
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Fig. 7. Sample images from each group. (a) Bark. (b) Fabric. (c) Food. (d) Metal. (e) Sand. (f) Water.

Fig. 8. Number of clusters found by each of the different criteria for the

texture image database summarization.

TABLE 7
Confusion Matrix for Image Classification

by a Generalized Dirichlet Mixture



from classi that are classified as classj. The number of images
misclassified was small: 35 in all, which represents an
accuracy of 98.18 percent. Table 8 shows the confusion matrix
for the Gaussian mixture when we suppose that we obtain the
correct number of clusters (an accuracy of 94.59).

After the database was summarized, we conducted
another experiment designed to retrieve images similar to a
query. First, we defined a measure to determine the closest
component to the query vector. Next, another distance
measure was used to determine the similarity between the
query vector and the feature vectors in the closest component.
The posterior probabilities were used to choose the component
nearest to the query. After selecting the closest component,
the 2-norm was applied to find the images most similar to the
query. To measure the retrieval rates, each image was used as
a query, and the number of relevant images among those that
were retrieved was noted. Precision and recall, which are the
measures most commonly used by the information retrieval
community, were then computed using (47) and (48). These
measures were then averaged over all the queries and are
defined as follows:

precision ¼ number of relevant retrieved images

total number of retrieved images
; ð47Þ

recall ¼ number of relevant retrieved images

total number of relevant images
: ð48Þ

As each 512� 512 image from Vistex contributes 64 images
to our database, given a query image, ideally, all 64 images
should be retrieved and are considered to be relevant.
Table 9 presents the retrieval rates obtained in terms of
precision and recall. The results are shown when 16, 48, 64,
80, and 96 images were retrieved from the database in
response to a query.

6 CONCLUSION

In this paper, we have focused on high-dimensional data
clustering. We have presented an MML-based criterion to
select the number of components in generalized Dirichlet
mixtures. The algorithm proposed is motivated by the great
number of pattern recognition and image processing

applications that involve such types of data. In contrast
with other methods that use dimensionality reduction, our
algorithm uses the full dimensionality of the data. In fact, it is
based on the statistical properties of the data through the use
of generalized Dirichlet finite mixture models. The data is
transformed in such a way that density estimation in the
transformed space is simpler. The generalized Dirichlet
distribution has the advantage that, by varying its para-
meters, it permits multiple modes and asymmetry and can
thus approximate a wide variety of shapes. Besides, it has a
more general covariance structure than the Dirichlet.
Generalized Dirichlet mixtures allow more modeling flex-
ibility than mixtures of Gaussians, without the explosion in
the number of parameters. We estimated the parameters of
this mixture using the ML and Fisher scoring methods and
by introducing a stochastic step. The results presented
indicate clearly that the MML and LEC model selection
methods outperform the other methods. This can be
explained by the fact that these two criteria contain prior
terms that the others do not have. From the experimental
results that involve generated data, real data set clustering,
Web page classification, and texture image database sum-
marization for efficient retrieval, we can say that the
generalized Dirichlet distribution and the MML approach
offer strong modeling capabilities for both low and high-
dimensional data.

APPENDIX

PROOF OF EQUATION (19)

We can write the negative of the log-likelihood function of a
Beta distribution as follows:

� log pbetaðWjlj�jl; �jlÞ¼� log

 Ytþnj�1

i¼t
pBetaðWilj�jl; �jlÞ

!

¼�
Xtþnj�1

i¼t
log pBetaðWilj�jl; �jlÞ:

ð49Þ

By substituting (18) into (49), we obtain

� log pbetaðWjlj�jl; �jlÞ ¼

nj

�
� logð�ð�jl þ �jlÞÞ þ logð�ð�jlÞÞ þ logð�ð�jlÞÞ

�

�
Xtþnj�1

i¼t

�
ð�jl � 1Þ logðWilÞ þ ð�jl � 1Þ logð1�WilÞ

� ð50Þ

BOUGUILA AND ZIOU: HIGH-DIMENSIONAL UNSUPERVISED SELECTION AND ESTIMATION OF A FINITE GENERALIZED DIRICHLET... 1729

TABLE 9
Recall and Precision Obtained for the Texture Database

TABLE 8
Confusion Matrix for Image Classification by a Gaussian Mixture



and we have

� @ log pbetaðWjlj�jl; �jlÞ
@�jl

¼ njð��ð�jl þ �jlÞ þ�ð�jlÞÞ

�
Xtþnj�1

i¼t
logðWilÞ;

ð51Þ

� @ log pbetaðWjlj�jl; �jlÞ
@�jl

¼ njð��ð�jl þ �jlÞ þ�ð�jlÞÞ

�
Xtþnj�1

i¼t
logð1�WilÞ;

ð52Þ

where � is the digamma function. Then,

� @
2 log pbetaðWjlj�jl; �jlÞ

@�jl@�jl
¼ � @

2 log pbetaðWjlj�jl; �jlÞ
@�jl@�jl

¼ �nj�0ð�jl þ �jlÞ;
ð53Þ

� @
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@2�jl
¼ �njð�0ð�jl þ �jlÞ��0ð�jlÞÞ; ð54Þ

� @
2 log pbetaðWjlj�jl; �jlÞ

@2�jl
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where �0 is the trigamma function. Thus,

jF ð�jl; �jlÞj ¼ n2
j

�
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��0ð�jl þ �jlÞ
�

�0ð�jlÞ þ�0ð�jlÞ
��
:
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