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ABSTRACT

Ultrasonic imaging system evaluation is often based on modes of the
transducer as adigtribution of baffled piston sources, and of thetissueasa
homogeneous, linear acoustic medium, eg., Jensen’'s Fied code. In
redity, these are fairly gross idedlizations, since the transducer exhibits
more complicated response modes and red tissue is inhomogeneous and
nonlinear. Greater mode fidelity would be useful, especidly in the
context of transducer design qualification, second harmonic imaging, and
acoudtic power indices. To this end we combine 2D finite eement
modes of transducer dynamics with highly accurate 2D finite difference
propagation modds in the large-scde inhomogeneous tissue cross-
sections. Transducer models employ the time-domain code, PZFlex, and
tissue models utilize a new pseudospectral solver to be included in
PZFlex. The pseudospectrd dgorithm solves the inhomogeneous
acoudtic wave equation using FFTs for high order approximation of the
spatia differentid operator and a fourth-order, explicit time integrator.
Second-order  (B/A) nonlinearity and frequency-accurate, causd
absorption are included. We describe the agorithmic and modding
issues, and present a suite of smulations in lossy, nonlinear abdomina
cross sections and tissue showing coupling of the 1D medica array to the
tissue modd and scattering from deeper inhomogeneities and back to the
transducer. In contrast to paraxid schemes, like the KZK method, details
of the field transmitted from the transducer and dl backscatter within the
model areincluded. However, modes are currently limited to 2D (plane
or axisymmetric) on readily available hardware.
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INTRODUCTION

There are compelling clinical and economic reasons for studying the
interaction of actual medical transducer pulses with redl tissue structure.
Oneis, of course, the pulse distortion or aberration caused by superficid
tissue structure, e.g., skin, fat, and muscle, which reduces contrast and
lateral resolution of medical ultrasonic imaging systems. Another is the
acoudtic power issue, eg., mechanical and therma indices, for insuring
that ultrasonic bioeffects are negligible, as well as to comply with FDA
regulations. Experimentd study in living tissue is not practica, in
generd, and acoudtic phantoms are useful but limited. Mathematica
computer modeling of ultrasound propagation and scettering is an
attractive complement to both gpproaches, dthough it has its own set of
limitations.

“Firg-order” mathematicd modds represent the transducer as a
digribution of baffled piston sources driving a homogeneous, linear
acoustic medium representing the tissue.  In practice, these diffraction

theory models are too idedized, since the transducer generdly exhibits
dement crosstak and spurious modes, while more to the point, red
tissue is inhomogeneous and nonlinear. Clearly, less idedlization would
be useful, particularly in the context of advanced transducer designs and
materials, aberration correction schemes, second harmonic imaging, and
therma/mechanicd index estimation. However, including the necessary
sructural and condtitutive details complicates the mode problem
enormoudly, to the point that no known numerica schemes are able to
provide comprehensive simulations.

Difficulties with higher-order modeling include three-dimensiona
(3D) geometrical and material complexity and very large scale, combined
with fundamentd limitations of the available numerical agorithms. In
particular, the source/transducer region comprises active and passive
dadic materids, beyond which the acoustic propagation paths are many
hundreds of wavelengthsthrough heterogeneous, nonlinear tissue with
multiple structural scdes. Backscater from coherent tissue structure is,
of course, the field quantity of principa interest. Among the avalable
numericd options, KZK-type schemes are based on the paraxid (one
way) wave equation gpproximation, which specificdly excludes the
backscattered component, while more complete finite difference or finite
eement algorithms are not accurate over the very long propagation paths
of interest.

A vaiety of firgt-order imaging modes have been developed by both
academic and industry researchers. Industry efforts are typicdly
proprietary, but most academic work has been reported in the literature.
In particular, Jensen and coworkers' describe medicd imaging
simulations and Hayward's group? reports on a smulator for underwater
sonar imaging.  Both approaches represent ultrasonic transducers by a
discrete number of baffled “piston” sources of rectangular or triangular
shgpe. On this basis, classicd diffraction theory is used to caculate
radiated acoudtic fields via boundary integrd representations of spatia
impulse response (Green's functions). For example, Jensen utilizes the
approach suggested by Tupholme® and Stepanishen”.  Despite the
maturity of boundary integral representations (often associated with the
names of Kirchhoff and Helmholtz) there is till a need for improved
computationd agorithms to handle the large number of source and
receiver points. Backscatter from an insonified object is caculated by
approximating the object by discrete point diffractors representing
volume scatterers (Jensen) or line diffractors representing edges of
artificia sructures (Hayward).

These firg-order modds are limited less by the transducer
representation than by the homogeneous, linear medium assumption
required for “closed form” wave propagation solutions. Homogeneity in
an underwater environment is usualy a reasonable idedization. Thisis
not the case in medicd imaging, eg., through the abdomina wall or
ribcage. Therefore, the starting point for generdizing a first-order



imaging scheme is introduction of a heterogeneous tissue propagation
model. This means that classcd Green's functions and integra wave
representations must be replaced by discrete numerical methods. If there
are asmal number of clear interfaces then boundary integra methods are
an option. In generd, however, “brute force’ discrete methods are
necessary, utilizing either finite eement® (FE) or finite difference® (FD)
approximations of the acoustic wave equation’ s spatia operator.

The difficulty with discrete modeling methods for imaging isthe long
propagation disance. For example, over a 10 cm round-trip or direct
travel path, 5 MHz waves propagate 333 wavelengths. At these ranges,
typical FE or FD dgorithms distort signa's unacceptably because they use
local, low order space and time derivative approximations to achieve
modding versatility and computational efficiency, rather than ultimate
numerica accuracy. Long range wave distortion is caused by artificid
spatid and tempord sampling that make numerica phase velocity and
attenuation depend on direction and frequency. Figure 1 illustrates 1D
wave solutions that are 2™ order accurate in space (FE or FD) and time
(central difference). A wavelet isinitidized a one end of along modd
and propagated past a point 300 wavelengths away, using a practica
gpatia sampling of 20 elements/wave at the waveet's center frequency
with timestep At=0.99Ax/c and At=0.8Ax/c. Ax is spatid intervd, c is
continuum wavespeed, and the numerica coefficient is the so-called
Courant stability factor for the grid. The smdler stahility factor, 0.8, isa
typical vdue for heterogeneous tissue, but spatia and tempora errors
compromise the wavelet unacceptably et this range. Fourier transforms
of these waveforms show identical amplitude spectra, so pulse distortion
isdueto phase errors, i.e., digoersion, not numerical damping.
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Figure 1. Crossplot of wavelet time histories after traveling 300
wavelengthsin a1D, 2™ order accurate grid (FE or FD).

To provide a more accurate and comprehensive aternative, this paper
presents a two-dimensonad (2D) hybrid scheme that combines
structurally detailed FE models of the transducer with large-scde, highly
accurate FD models of the inhomogeneous tissue cross-section. The
transducer models employ a time-domain finite element code, PZFlex,
and the tissue models utilize a pseudospectra finite difference solver
included in the PZFlex package’®. The pseudospectral algorithm® solves
the inhomogeneous acoustic wave equation using the fast Fourier
transform (FFT) to evauate spatia derivatives to very high order. Time
is advanced step-by-step using a fourth-order, explicit time integrator.
Materid nonlinearity is included in the constitutive relaions, dong with
causa attenuation models based on multiple relaxation mechanisms.

This combination of comprehensive transducer and tissue models
represents a new cgpability and provides novel indghts and
interpretations.  We describe the agorithms and modeling issues, and
present asuite of smulationsin lossy, nonlinear dbdominal cross sections
and deeper tissue, showing coupling of the fully characterized 1D
medical array to the tissue model. Realistic models of abdomina wall
morphology are critical to aberration studies. Careful measurements of

abdominal wall sections by Hinkelman'®™ are the basis for the following
mode studies. These smulations graphicdly illustrate wave front
aberrations, genera scatering, and second harmonic generation as a
function of tissue (absorption, B/A) and transducer properties (intensity,
focus, crosstadk). The results permit quantification of wave front
digtortion and scattering for evaduating aberration correction schemes,
and to contrast first and second harmonic beam properties.

THE ACOUSTIC WAVE SOLVER

To smulate ultrasound in tissue models we solve the governing
partid differentid equations (PDES). Linear forms are given by the
conventional momentum and congtitutive equations,
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where u=(uy, Uy, uZ)T is the displacement vector, p is pressure, p is
density, K:pc2 is bulk modulus, and ¢ is wavespeed. Coefficients p, K,
and ¢ are functions of space. Eliminating p in (1) yields the wave
equation on u, however, spatid derivatives of p and ¢ gppear through
DK:czm +2pclic. Alternately, differentiating the congtitutive equation
with respect to time yields the first order system on velocity vector
v=(vxVy,v) T and pressure,
a—V:—le , %=—KV-V %)
ot P ot
which does not involve explicit derivatives of coefficients.

The discrete, 2D form of (2) is written by sampling velocity and
pressure on the N = N, x Ny points of a Cartedan grid. Defining N-
vectors on velocities Vy, Vy, and pressure P, the system of discrete
equdionsis
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where W is the work vector of length 3N and the T superscript denotes
the transpose.

The discrete acougtic wave equation (3) is reduced to a system of
ordinary differentid equations (ODEs) by evauating the spetid
derivatives. Time-domain numerical solutions of these ODES involve
step-by-step integration in time and evaluation of spatid derivatives a
each dep. Solutions mugt include radiaion boundary conditions,
nonlinearity, and frequency-dependent absorption.

THE PSEUDOSPECTRAL METHOD

The periodic pseudospectral method uses discrete Fourier transforms
to evaluate spatid derivatives of functions defined on auniform Cartesan
grid. On this basis, time-dependent PDEs are reduced to ODEs, which
are integrated forward in time using either explicit or implicit methods.
Aswith FD and FE methods, the PS gridpoints must be dense enough to
resolve spatia details of the PDE coefficients over the domain. However,
unlike uniform difference stencils or eement meshes, the PS method is
globd and yields a very high order spatial derivative approximation,
equal to the number of grid pointsin each direction®, eg., Ny and Ny.

Recdl that if O(k) is the Fourier transform of u(x) with spatia
frequency (transform parameter) k, then the derivative of u(x) is the
inverse Fourier transform of jka(k), where j=V-1. Therefore, caculation



of thefirgt derivative on agridline of N points by the periodic PS method
isdonein three steps® do acomplex FFT on gridpoint datavalues, giving

uO ul u2 I“'IN/2-1 |“'IN/2 I“'IN/2+1 uN/2—2 I“'IN-l

multiply these output € ements by discrete spatia frequencies
01 2r - (N/2-1)rj O -(N/2-1)1j - -21 -Ti;

and perform a complex inverse FFT on the result.  This yidds the PS
derivative approximation at the gridpoints. Since the procedure gives a
red derivative from rea data and the complex FFT is linear, we can
initidize the red and imaginary parts of the FFT input with two
independent red data sets and recover derivatives of each in the red and
imaginary outputs. Note that the practical disadvantage of this method is
gpatia periodicity, which exhibitsitsaf as“wraparound” of thefield.

The PS method provides an extremely accurate approximation of
spatiad derivatives in homogeneous media on a uniform, periodic FD
mesh, even a 2 nodes per wavelength. Of course, andyticd, i.e,
“noddess” solutions can always be congtructed in homogeneous media,
s0 high numericd accuracy with coarse sampling should not come as a
surprise. - Numericd errors are introduced & materia interfaces and
within digtributed inhomogeneities. These are reduced by staggering the
PS grid in space®, i.e,, defining pressures and velocities at interlaced
points. This isin contrast to the eader, nonstaggered implementation.
The difference is that loca errors decay as Ur in the nonstaggered grid,
but as 1r? in the staggered grid®. Accuracy gains more than offset
implementation difficulties of staggered grids. For the low contrasts
typica of soft tissue, numerical experiments show that staggered PS
spatia derivatives are adequate a 4-5 nodes per wavelength, but results
do depend on theleve of contrast, e.g., soft to hard tissue.

On this basis, the solution dgorithm for hyperbolic system (3) over
onetimestep At is: load new values of Vi, Wy, P into W; caculate spatid
derivatives of Vy, Vy, Pon gridlines; evduate dW/dt = f(W) and integrate
the system one timestep.  This sequence must be repeated as many times
as necessary to capture the wave phenomena of interest. There are many
effective integrators avalable, both implicit and explicit.  The
unconditiona stability (i.e., any At) of implicit schemes is wasted for the
present wave applications since timestep is controlled by accuracy
requirements. Implicit schemes aso require solutions of matrix equations
that are prohibitively expensive for large-scale problems. For accurate
time-domain calculations, explicit timeintegrators are best.

Our first PSversion’ used the 4™ order Runge K uttaintegrator (RK4),
which is robust, convenient and reasonably accurate. 2™ order methods
like legpfrog were unacceptable for long-range propagation. It was noted
that the 4™ order Adams Bashforth integrator offered advantages. Recent
work by Ghrist et a.* showed that staggering (evaluating velocity at full
time steps and pressure a half time steps) the 4 order Adams Bashforth
integrator, referred to as ABS4, improved both accuracy and stability
rdativeto RK4. Surprisingly, ABS4 was also shown® to yield a factor of
4-6 reduction in pardld computetion time relaive to RK4. All
cdculations described below utilize ABS4, with starting vaues obtained
from aRK4 step of 22At.

BERENGER'S PERFECTLY MATCHED LAYER (PML)

The price for high PS spatid accuracy is a space-periodic domain.
Thus, solutions exhibit wragparound at the boundaries, i.e, waves
effectively exit one side and enter the opposite side. Berenger's PML
boundary condition™* is used to circumvent wraparound by forcing the
solution to be “periodically smal” a the boundaries. Berenger™* showed
how to congtruct the wave equation for a nonphysica medium that is
highly attenuative yet nonreflective at any angle of incidence. The
objective was efficient radiation boundary conditions for FD grids, in the
context of wave equations for TE and TM edectromagnetic field

polarizations. Therefore, his approach is directly gpplicable to the
acoustic wave equation (but not to the vector eladticity equations).

An acoustic PML implementation for 2 order, FD, time-domain
solvers is described by Yuan, et. a.’®, who demonstrated that waves
incident from the grid's interior on an eight-node boundary layer are
rapidly absorbed, with spurious reflections reduced by 80 dB. One way
to write the acoustic analog to Berenger’ s e ectromagnetic PML isto split
pressure p into p=pcp+p, and introduce anisotropic attenuation
coefficients ay, ay, a,. The 2D acoustic PML equations then become
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These can replace acoustic equations (2) everywhere, with a,=a,=0
in the interior and nonzero near the boundaries. For computational
efficiency, however, (4) should only be applied in a layer near the
boundary. Smoothly increasing attenuation through this layer turns out to
be optima in order to asorb smdl reflections introduced by
discretization of the continuum PML equations.

In the present case eight nodes near the boundary are “activated,” i.e,
have nonzero a. The problem remains periodic but “periodicdly small”
at the boundaries, i.e. field vaues are driven towards zero there by the
PML. Wrgparound causes sgnas to do a double pass through the
absorber, eg., as an outgoing wave enters the PML on one dde it is
attenuated and any signa reaching the boundary enters the PML at the
opposite boundary whereit is further attenuated.

ATTENUATION AND NONLINEARITY

Wave dtenudtion is an essentia part of tissue models. There are
various attenuation mechanisms, including shear and bulk viscosities, a
multiplicity of relaxation phenomena, and wave scattering. Since few of
these mechanisms can be isolated, aggregate attenuation is measured and
characterized by a power law in frequency f as a=af®. For example, in
water a = 00022 dB/cVMHZP, b=2.0, and in muscle tissue a = 0.7
dB/cm/M sz, b = 1.1. Theories and implementations range from
computationdly smple giffness and mass proportiond damping to
viscoacoustic and related dispersion formulations'®®® familiar from
classicd eectromagnetic theory for lossy dielectrics. Note that stiffness
proportiona damping isided in water. The general viscoacoustic case’
is implemented here, with multiple relaxation frequencies used to
accurately modd power law frequency dependence. A least squares
procedure chooses model parameters for an optima fit over a specified
frequency range. Two mechanisms are adequate over the 2-6 MHz range
conddered here. Thisisillustrated in Fig. 2, showing fits to power laws
with exponents 0.6, 1.0 and 1.4.
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Figure 2. Least squares fits of atenuation power laws from 2 to 6 MHz
using two relaxation frequencies.



Harmonic distortion due to wesk shock effects, i.e, materid
nonlinearity, is dso an essentid aspect of tissue models. In 1980 Muir
and Carstensen®® first demonstrated that conventional imaging arrays
produced significant nonlinear effects. The appropriate nonlinear wave
equation follows by generaizing the pressure-density (conditutive)
relation in (1). Expanding pressure in a power series and retaining the
first two terms yields the widely accepted “B/A” mode, namely,

( 1B 2)
p=-K|{V-u+——(V-u) )
2 A

where K is the bulk modulus. This is implemented in the current PS
solver. Other nonlinear models, e.g., more general power laws, are easly
incorporated, but the third order differences with the B/A modd are not
of concern here. Note that accurate tissue absorption is a necessary
complement to nonlinear modeling. Otherwise unphysical harmonic
generation rapidly exceeds the resolution of any discrete grid.

Harmonic generdtion, i.e,, shocking, is particularly impressive in
water, where absorption isless than 1% that of tissue. For example, Fig.
3 shows water pulse measurements from an Acuson linear array® with 7
cm fixed devationd focus. It isdriven uniformly in azimuth by a4-cycle
RF signal with 2.5 MHz center frequency. Pesk-to-pesk pressure 2 mm
fromthelensis 1.3 MPa, which isatypical clinica vadue. Theleft graph
in Fig. 3 shows pulse waveforms a 0.2, 5, and 6 cm (time shifted for
plotting). Shocking is obvious towards the 7 cm devation focus. The
right graph is a cross-plot of amplitude spectra, showing strong harmonic
generation (integer multiples), as well as interesting intermediate peaks.
In tissue, less dramatic but significant second and third harmonics are
generated at clinicd driveleves
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Figure 3. Experimenta data showing harmonic generation in water by a
1D, fixed-focus medical array.

VALIDATION

To vdidate the PS method with Berenger's PML we consider
scattering of aplane wave in water by asoft acoustic cylinder’. Diameter
of the cylinder is6 mm and its wavespeed is 1200 m/s, compared to 1500
m/sin water. A 256x256 PS-PML grid with nodal spacing of 58 microns
is used in order to include initiad wave conditions and capture spatid
frequency content. The Stairstep approximation of the cylinder interface
isfairly refined, i.e., 100 nodes across the cylinder. The PS solution with
a 4th order Runge-Kutta integrator is compared to a truncated series
solution (analytical) at 45°, 90°, and 135° from the leading edge, on a 4
mm radius circle.  These points are indicated in Fig. 4, which was
cdculated without (top) and with (bottom) the PML, illudtrating
wrgparound and its effective removd. Cross-plotting mode and
numerica results yidds the excdlent agreement in Fig. 5. Discernible
phase errors are due to output location mismatch, i.e, grid points closest
to the specified output coordinate. In generd, the PML condition works
very well and noise for thisimplementation is 100 dB below theinput.
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Figure 4. Composte pictures illustrating plane wave scatering by a
dower cylinder in weter, using the 2D PS/Runge-Kutta method. The top
composite shows before (left) and after (right) wraparound of the
scattered wave. The bottom composite shows similar snapshots but with
the PML trestment, demondrating dimination of wrgparound at the
periodic boundaries.
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Figure5. Validation of the PS method and PML againgt atruncated series
solution at the output pointsindicated in Fig. 4. (continued on next page)
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Figure 5. Vdidation of the PS method and PML againg a truncated
series solution et the output pointsindicated in Fig. 4. (continuation)

INITIALIZATION

There are no boundaries in the PS space domain—only periodicity.
Therefore, in the absence of conventiond boundaries, waves are
necessarily introduced as initid conditions.  Alternatively, we can
consider introducing an interna boundary condition, i.e,, initidizing the
wave field on single space line for dl time. This type of internd
discontinuity is only practica with the staggered grid described earlier,
dueto localization of errors.

Unidirectional wave motion isinitiated by two initial conditions, eg.,
pressure and velocity. A single field initid condition yields waves
traveling in “opposite” directions on the two characterigic surfaces in
x,y,t space. The unwanted backward traveling wave is absorbed by the
PML. The examples shown here were driven by initia conditions over
the grid. However, we have demonstrated effectively the same results
with an internd boundary condition.

Thefidd distributions for initid or internal boundary conditions must
be determined analyticaly, numericaly, or experimentaly. In practice
we often want to gpply a signa from an actud transducer design. This
can be smulated numericaly or measured in aweter tank over the face of
the transducer. An example of numerica initidization is illustrated in
Figure 6. This shows a PZFlex cdculation of a 1D, 5 MHz transducer
array with each dement driven by atime-delayed voltage pulse. Delays
are chosen for a5 cm focus. Two elements of the subdiced array modd
are dso shown. In thisway nonided behavior of the transmitted field can
beincluded in the large-scale wave simulaion.

Backing

PZT5H

Inner
Matching
Layer
£ Outer
Matching
Layer
Water or
Lens

Figure 6. Example of PZFlex transducer caculation for initidization of
pseudospectrd propagation model. The model consists of 64 dementsin
asubdiced 1D array®*, each driven with a voltage pulse delayed for 5 cm
focus. Two eements of the subdiced array model are shown above and
include backing, two matching layers and awater load.

In principle, the internal boundary permits a smaller region for wave
input to the PS calculaion. More importantly, it provides a convenient
input for experimenta pressure data (time histories) measured over aline
in front of the transducer. Work is in progress on internad boundary
initidization from experimentd data.

PARALLELIZATION

The relevant scales for large bioacoudtic problems are, say, 0.3 mm
waves (5 MH2z) in a 10x10(x10) c¢cm tissue modd. Assuming 4
nodes/wave for the PS model yields 333x333(x333) wavelengths or =1.8
x 10° nodes in 2D (=2.4 x 10° in 3D). To capture details of tissue
gructure or harmonics we can easily double or triple the number of nodes
per wavelength. 2D models can reach tens of million of nodes and 3D
models must be redtricted to a very limited fidd to be practicd.
Therefore, paralld computing is an essentia paradigm for large-scde
modes of ultrasound propagation. A PS parallel implementation of the
RK4 integrator solved each equation in (4) on its own processor, with
65% pardld efficiency. For larger problems and additional processors, it
is more efficient to pardleize the loops in the FFT and integration
routines and run on a symmetric multiprocessing (SMP) machine.
Current implementations yield SMP efficiencies of 60% to 80% on 6 of 8
available processors.

The PS dgorithm described above yields an accurate, complete wave
solver. Fine-tuning of the implementation is possible, but potentid gains
appear less than a factor of 5. Therefore, for current PCs and
workstations, smulations of 300+ wavelength models are regtricted to
2D. Fortunately, a grest deal of information can be gained from 2D
dmulaions. Similar 3D smulations are only feasble on a massively
pardle machine with O(1000) processors. This requires distributed
padle processing. Padldism is achieved by partitioning the
computationad volume rather than SMP.  Domain decomposition has



been demonstrated™ for the 3D pseudospectra agorithm. Therefore, 3D
versgons of our present examples are feasble on exising massvely
padld sysems. Development dong these lines is currently being
explored.
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Figure 7a. Snapshots of pulse propagation through the piecewise
homogeneous abdomina wal model (MSL1).

LARGE-SCALE PROPAGATION IN TISSUE MODELS

To demonstrate efficacy of the agorithm and the variety of wave
propagation phenomena to be expected, ultrasonic pulses are propageated
through three abdomina wall modd sections labeled MS1-MS3. MSlis
a piecewise homogenous approximation of abdominal wall section MS2,
both shown in the top pand of Figure 7ab. MS3 is Smilar to MS2 but
with less fa marbling in the muscle, as shown in Figure 9b. Note that

Tablel. Material Properties

Ti $ue/ p \% B/A Loss[dB/ b
Materia [kg/m? | [mVseq] cm/MHZT]
Water 1000 1500 50 0.002* 20
Fat 928 1427 10.0 0.75 10
Connective 1100 1537 7.87 1.125 10
Muscle 1041 1571 75 0.55 10
Liver 1050 1577 6.75 04 1.0

* et to zero in Smulation

MS2 and MS3 are drawn from Hinkelman' s*°** measurements of actua
abdominal wadl tissue cross-sections.  Approximate material properties
for the fat, muscle, liver, and connective tissue are given in Table 1,
extracted from data reproduced in Duck?. The short water path was
assumed linear and tissues were smulated with B/A (2™ order)
nonlinearity and atwo-mechanism relaxation model.

PULSE PROPAGATION

Pseudospectral caculations in MS1, MS2 and MS3 smulae a 2.5
MHz transducer with 1.5 cm gperture and 5 cm geometric focus. The
pulse is generated by smply bending a plane wave to the appropriate
radius of curvature and setting initia conditions on pressure and velocity
in the water layer. Modds are 2x8 cm with the PML on dl sdes. They
are discretized at 256 x 1024 cells, producing acell size of 0.0078125 cm,
or 4 cdls per wavelength a the second harmonic. The pulse is
propagated through the mode for 5000 timesteps at 20% of the Courant
gability limit, chosen for accuracy rather than maximum dlowable
timestep. Simulations require about 2 hours each on an SGI Origin 2000,
using 6 of the 8 available processors. Pardld efficiency is about 80%,
i.e., smulations would have required 10 hours each on asingle CPU.
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Figure 7b. Snapshots of pulse propagation through atypica abdomina
wall mode section (MS2) from Hinkelman's measurements™®,

Figure 7ab illustrates the progression of a 2.5 MHz pulse through
abdominal wall mode sections MSL (7a) and MS2 (7b). The dashed line
indicates the geometric focus. In the first snapshot the wave has just



penetrated the skin. For grgphica definition only pulse compression is
plotted in greyscde. Circular diffracted waves from the edges of the
insonified region are goparent. These edge diffractions are produced by
any finite transducer, dthough details differ depending on aperture,
phasing, housing, etc. In the third sngpshot in MS1 note the reflections
and diffractions from the muscle interface. The PML has accuratdy
removed outgoing waves a the sides of the mode with no spurious
reflections.  In the fourth snapshot, the pulse has reached the geometric
focus. In MS2, the fine tissue structure produces condiderable diffuse
scatering relaive to the idedized modd, MS1. Dropouts or shadow
regions are also evident in later sngpshats.

Figure 8 compares the amplitude spectrum of the pulse a its
geometric focus with that of the input signd (arbitrarily scaed). In MS1
a dgnificant second harmonic & 5 MHz and a wesker, essentidly
undamped, sub-harmonic (rectified or DC pulse) ner 0.5 MHz are
goparent.  The amplitude spectrum in MS2 is similar but reduced
significantly by backscater.
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Figure 8. Amplitude spectrum of pulse a the geometric focus in
piecewise homogeneous abdomina wal modd (MS1) (top), and
abdominal wall modd (MS2) (bottom), compared to spectrum of scaled
input pulse.

ABERRATION AND SECOND HARMONIC GENERATION

Computer smulations in redigtic tissue models can provide useful
information on the second harmonic generation and wavefront aberration
processes. They require accurate solutions of the scalar (acoustic), full
wave equation in large-scale, heterogeneous, lossy, nonlinear media. The
subject pseudospectrd code satisfies dl of the aove smulation
requirements. Alternatively, the KZK and related methods™? could be
used. However, KZK-type methods are not as robust in inhomogeneous
media and only capture forward and limited off-axis propagetion due to
the underlying paraxia (parabolic wave equation) basis. Omnidirectiona
solutions are important because of the fundamentd role that backscatter
and reflection play in the imaging process, as well as for completenessin
acoustic power and intensity studies.

To illugtrate some of the issues, Fig. 9ab displays the harmonic
amplitude digtributions obtained by Fourier transforming the pulse at
each point in models MS1 and MS3. The transforms are smooth, as
shown in Fig. 8, so that similar distributions would be found for

frequencies near the first and second harmonics. In MS1 (Fig. 9a) the
fingers, i.e, sideobes, in the first harmonic are due to interference
between the direct pulse and the edge diffractions. Standing waves are
obvious in the layers. The second harmonic emerges as the pulse
propagetes (disregard the initid condition artifact). Note how the second
harmonic develops through the tissue layers, with a sharper focus and
minimal diffraction. Diffraction moves the first harmonic focus to about
4 cm, while the second harmonic focusis deeper.

TR
gl

Figure9a,b. Spectrd amplitude distribution of first and second
harmonic over piecewise homogeneous tissue mode section (a) (MS1)
and abdomina wall model section (b) (MS3) and quantified on
centerline. (1.5 cm aperture and 5 cm geometric focus).



In MS3 (Fig. 9b.) thereis, of course, considerable more distortion of
both the first and second harmonic beams, with coherent sidelobes
replaced by less coherent “feathers” The foci are not shifted laterdly,
athough asimilar plot for MS2 in Fig. 10 shows considerable focd shift,
caused by fa marbling in the muscle layer. MS3 above shows less effect
because the fat is more uniformly layered between the muscle and liver
tissue.

These results quantify the amplitude distribution of first and second
harmonic waves. Plotting the phase distribution graphicaly depicts the
wavefront distortions, which are illustrated on the bottom of Fig. 10 for
MS3. Thistype of study readily demonstrates the compexity of both first
and second harmonic wave fields in red tissue structure, as well as the
information that can be gleaned from large-scde simulations.
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Figure 10. Pandsa.,b.,c. show spectral amplitude distribution of first
and second harmonic over MS2. Pandsd. e, f. show spectrd phase
digtributionin MS3 (d.), a 2.5 MHz (e)) and 5 MHz (f.), between the
dashed lines.

CYLINDER SCATTERING AND DYNAMIC RANGE

Backscatter from deeper, coherent tissue structure is the field quantity
of interest for imaging smulations. Such cdculatiions must run long
enough to propagate echoes back to the transduction region of the modd.
Echoes are typically wesk and their calculation demands a high dynamic
range, i.e., echo signa/numericd noise. Figure 11 illustrates some simple
cylinder scatering examples through the MS3 abdomina section. The
firgt picture shows a 6 mm cylinder, 5 cm from the initid wave front.
The three underlying pictures are sngpshots of the wave fidd, dl at the
same scae, from a transducer with 1.5 cm aperture focused on the
cylinder.

Thefirgt wave snapshot in Fig. 11 shows the pressure field just before
reaching the cylinder. The second shows the echo ariving in the
transduction region after scattering from a soft cylinder 15% dower than
the surrounding tissue. The faint cylinder outline condsts of “whispering
galery” boundary waves within the dower cylinder, which perdst due to
totd internd reflection a the interface. For afaster cylinder these modes
are leaky and rapidly disgppear. The third wave snapshot illustrates the
case of a very hard acoudtic cylinder, approximating the impedance of
bone. The echoes are clearly stronger, but dso less digtinct in the
background field because of reverberation in and leakage from the hard
cylinder. This latter example suggests that the pseudospectra dgorithm
isrobust even for very strong acoustic interfaces.
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Figure 11. Simple cylinder scattering examples through the MS3
abdominal section.

Figure 12 shows examples of return signas from the dow cylinder in
Fig. 11c. observed at the skin surface. The pressure history on thetop is
theinitia pulse plus abdomind wall and cylinder reflections. Subtracting
pressure history calculations with and without the cylinder yields the
result on the bottom. Thus, the return is three orders of magnitude
wesker than the incident field, i.e, -60 dB, which is an acceptable
dynamic range. However, note the weak pressure precursor apparent at
40 microseconds. This is numerica noise, probably caused by globa
erors from the finite difference approximation across the cylinder
interface.
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Figure 12. Examples of return Sgnals at skin surface from the dow
cylinder (Fig. 11c.). Top history shows total pressure (initid pulse plus
al reflections), while bottom pressure history shows cylinder scattering
only, which isthree orders of magnitude lower.

CONCLUSIONS

Combining the pseudospectra (PS) method for wave solutions with
the perfectly matched layer (PML) makes a formidable agorithm for
large-scae ultrasound models in weekly scettering tissue. The PML is
very accurate, does not cause any numericd difficulties, and the
computational overhead is minor. Further reduction in problem sze is
offered by wave initidization on a line rather than over the domain.
Generdizing to the nonlinear wave equation is straightforward and the PS
method’ s accuracy extends the number of harmonics significantly before
ringing occurs. Attenuation and disperson modes are naurdly and
effectively included.

Therefore, the pseudospectra wave solver is a powerful tool for
studying ultrasonic pulse propagation through tissue and as an ad for
imaging system evauation. Materid nonlinearity, attenuation and fine
sructure are accurately modeled in “long” 2D tissue cross-sections.
Large scde, i.e, hundreds of wavelengths, 3D simulations require 1000x
more computationd resources than current PCs or workstations can
provide. Massively pardle machines should yield a brute force solution
to this dilemma. Fortunately, 2D simulations suffice for understanding
many of theissues. Suitably combining 2D caculations in azimuth and
eevation may prove useful in gpproximating aspects of the 3D problem.

Pulses were modeled through two abdomina wall cross-sections
measured by Hinkelman and one equiva ent homogeneous layered model
for comparison. Fourier transforms of signals quantify second harmonic
generation as the pulse propagates. The focd shifting and distortion
induced by red sructure relative to the basdine layered modd are
goparent and dignificant. By smulating a representative selection of
tissue models, it should be possible to evauate strategies for optimizing
the second harmonic beam and aberration correction schemes, aswell as
edtimating acoustic power levels and validating approximate schemes.

Scattering calculations demongtrate the dynamic range necessary for
accurate returns from weakly (or strongly) reflecting objects 5-10 cm
from the transducer. However, dynamic range needs to be increased
beyond 100 dB. This can be done by continued agorithm refinements.
Specid atention to and treatment of materid discontinuities should
produce the best gains.

We conclude that rigorous transducer models can be coupled to
complete tissue smulations of propagation and scattering out to many
hundreds of wavelengths and back to the transducer with acceptable
signd-to-noise raio. In contrast to gpproximate schemes, like the KZK
method, details of the field transmitted from the transducer and dl
backscatter on the trave path are included in the smulation. In the
future, beddes continued dgorithm performance and accuracy
enhancements, the principa challenge is to generaize these capabilities
to 3D by taking advantage of massively paralel computers.
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