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ABSTRACT

Ultrasonic imaging system evaluation is often based on models of the
transducer as a distribution of baffled piston sources, and of the tissue as a
homogeneous, linear acoustic medium, e.g., Jensen’s Field code.  In
reality, these are fairly gross idealizations, since the transducer exhibits
more complicated response modes and real tissue is inhomogeneous and
nonlinear.  Greater model fidelity would be useful, especially in the
context of transducer design qualification, second harmonic imaging, and
acoustic power indices.  To this end we combine 2D finite element
models of transducer dynamics with highly accurate 2D finite difference
propagation models in the large-scale inhomogeneous tissue cross-
sections.  Transducer models employ the time-domain code, PZFlex, and
tissue models utilize a new pseudospectral solver to be included in
PZFlex.  The pseudospectral algorithm solves the inhomogeneous
acoustic wave equation using FFTs for high order approximation of the
spatial differential operator and a fourth-order, explicit time integrator.
Second-order (B/A) nonlinearity and frequency-accurate, causal
absorption are included.  We describe the algorithmic and modeling
issues, and present a suite of simulations in lossy, nonlinear abdominal
cross sections and tissue showing coupling of the 1D medical array to the
tissue model and scattering from deeper inhomogeneities and back to the
transducer.  In contrast to paraxial schemes, like the KZK method, details
of the field transmitted from the transducer and all backscatter within the
model are included.  However, models are currently limited to 2D (plane
or axisymmetric) on readily available hardware.
Key Words: Imaging, transducers, tissue, simulations, aberrations, finite
elements, pseudospectral, scattering, second harmonic, acoustic power

INTRODUCTION

There are compelling clinical and economic reasons for studying the
interaction of actual medical transducer pulses with real tissue structure.
One is, of course, the pulse distortion or aberration caused by superficial
tissue structure, e.g., skin, fat, and muscle, which reduces contrast and
lateral resolution of medical ultrasonic imaging systems.  Another is the
acoustic power issue, e.g., mechanical and thermal indices, for insuring
that ultrasonic bioeffects are negligible, as well as to comply with FDA
regulations.  Experimental study in living tissue is not practical, in
general, and acoustic phantoms are useful but limited.  Mathematical
computer modeling of ultrasound propagation and scattering is an
attractive complement to both approaches, although it has its own set of
limitations.
 “First-order” mathematical models represent the transducer as a
distribution of baffled piston sources driving a homogeneous, linear
acoustic medium representing the tissue.  In practice, these diffraction

theory models are too idealized, since the transducer generally exhibits
element cross-talk and spurious modes, while more to the point, real
tissue is inhomogeneous and nonlinear.  Clearly, less idealization would
be useful, particularly in the context of advanced transducer designs and
materials, aberration correction schemes, second harmonic imaging, and
thermal/mechanical index estimation.  However, including the necessary
structural and constitutive details complicates the model problem
enormously, to the point that no known numerical schemes are able to
provide comprehensive simulations.

Difficulties with higher-order modeling include three-dimensional
(3D) geometrical and material complexity and very large scale, combined
with fundamental limitations of the available numerical algorithms.  In
particular, the source/transducer region comprises active and passive
elastic materials, beyond which the acoustic propagation paths are many
hundreds of wavelengths through heterogeneous, nonlinear tissue with
multiple structural scales.  Backscatter from coherent tissue structure is,
of course, the field quantity of principal interest.  Among the available
numerical options, KZK-type schemes are based on the paraxial (one
way) wave equation approximation, which specifically excludes the
backscattered component, while more complete finite difference or finite
element algorithms are not accurate over the very long propagation paths
of interest.

A variety of first-order imaging models have been developed by both
academic and industry researchers.  Industry efforts are typically
proprietary, but most academic work has been reported in the literature.
In particular, Jensen and coworkers1 describe medical imaging
simulations and Hayward’s group2 reports on a simulator for underwater
sonar imaging.  Both approaches represent ultrasonic transducers by a
discrete number of baffled “piston” sources of rectangular or triangular
shape.  On this basis, classical diffraction theory is used to calculate
radiated acoustic fields via boundary integral representations of spatial
impulse response (Green’s functions).  For example, Jensen utilizes the
approach suggested by Tupholme3 and Stepanishen4.  Despite the
maturity of boundary integral representations (often associated with the
names of Kirchhoff and Helmholtz) there is still a need for improved
computational algorithms to handle the large number of source and
receiver points.  Backscatter from an insonified object is calculated by
approximating the object by discrete point diffractors representing
volume scatterers (Jensen) or line diffractors representing edges of
artificial structures (Hayward).

These first-order models are limited less by the transducer
representation than by the homogeneous, linear medium assumption
required for “closed form” wave propagation solutions.  Homogeneity in
an underwater environment is usually a reasonable idealization.  This is
not the case in medical imaging, e.g., through the abdominal wall or
ribcage.  Therefore, the starting point for generalizing a first-order



imaging scheme is introduction of a heterogeneous tissue propagation
model.  This means that classical Green’s functions and integral wave
representations must be replaced by discrete numerical methods.  If there
are a small number of clear interfaces then boundary integral methods are
an option.  In general, however, “brute force” discrete methods are
necessary, utilizing either finite element5 (FE) or finite difference6 (FD)
approximations of the acoustic wave equation’s spatial operator.

The difficulty with discrete modeling methods for imaging is the long
propagation distance.  For example, over a 10 cm round-trip or direct
travel path, 5 MHz waves propagate 333 wavelengths.  At these ranges,
typical FE or FD algorithms distort signals unacceptably because they use
local, low order space and time derivative approximations to achieve
modeling versatility and computational efficiency, rather than ultimate
numerical accuracy.  Long range wave distortion is caused by artificial
spatial and temporal sampling that make numerical phase velocity and
attenuation depend on direction and frequency.  Figure 1 illustrates 1D
wave solutions that are 2nd order accurate in space (FE or FD) and time
(central difference).  A wavelet is initialized at one end of a long model
and propagated past a point 300 wavelengths away, using a practical
spatial sampling of 20 elements/wave at the wavelet's center frequency
with timestep ∆t=0.99∆x/c and ∆t=0.8∆x/c.  ∆x is spatial interval, c is
continuum wavespeed, and the numerical coefficient is the so-called
Courant stability factor for the grid.  The smaller stability factor, 0.8, is a
typical value for heterogeneous tissue, but spatial and temporal errors
compromise the wavelet unacceptably at this range.  Fourier transforms
of these waveforms show identical amplitude spectra, so pulse distortion
is due to phase errors, i.e., dispersion, not numerical damping.
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Figure 1.  Crossplot of wavelet time histories after traveling 300
wavelengths in a 1D, 2nd order accurate grid (FE or FD).

To provide a more accurate and comprehensive alternative, this paper
presents a two-dimensional (2D) hybrid scheme that combines
structurally detailed FE models of the transducer with large-scale, highly
accurate FD models of the inhomogeneous tissue cross-section.  The
transducer models employ a time-domain finite element code, PZFlex,
and the tissue models utilize a pseudospectral finite difference solver
included in the PZFlex package7,8.  The pseudospectral algorithm9 solves
the inhomogeneous acoustic wave equation using the fast Fourier
transform (FFT) to evaluate spatial derivatives to very high order.  Time
is advanced step-by-step using a fourth-order, explicit time integrator.
Material nonlinearity is included in the constitutive relations, along with
causal attenuation models based on multiple relaxation mechanisms.

This combination of comprehensive transducer and tissue models
represents a new capability and provides novel insights and
interpretations.  We describe the algorithms and modeling issues, and
present a suite of simulations in lossy, nonlinear abdominal cross sections
and deeper tissue, showing coupling of the fully characterized 1D
medical array to the tissue model.  Realistic models of abdominal wall
morphology are critical to aberration studies.  Careful measurements of

abdominal wall sections by Hinkelman10,11 are the basis for the following
model studies.  These simulations graphically illustrate wave front
aberrations, general scattering, and second harmonic generation as a
function of tissue (absorption, B/A) and transducer properties (intensity,
focus, cross-talk).  The results permit quantification of wave front
distortion and scattering for evaluating aberration correction schemes,
and to contrast first and second harmonic beam properties.

THE ACOUSTIC WAVE SOLVER

To simulate ultrasound in tissue models we solve the governing
partial differential equations (PDEs).  Linear forms are given by the
conventional momentum and constitutive equations,
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where u=(ux, uy, uz)
T is the displacement vector, p is pressure, ρ is

density, K=ρc2 is bulk modulus, and c is wavespeed.  Coefficients ρ, K,
and c are functions of space.  Eliminating p in (1) yields the wave
equation on u, however, spatial derivatives of ρ and c appear through
∇ K=c2∇ρ +2ρc∇ c.  Alternately, differentiating the constitutive equation
with respect to time yields the first order system on velocity vector
v=(vx,vy,vz)T and pressure,

�

�
 � ³

�

�
 � ³ ¹

v

t
p

p

t
K v

1

U
, (2)

which does not involve explicit derivatives of coefficients.
The discrete, 2D form of (2) is written by sampling velocity and

pressure on the N = N
x
 x N

y
 points of a Cartesian grid.  Defining N-

vectors on velocities Vx, Vy and pressure P, the system of discrete
equations is

�

�
 �

 �
�

�
�

�

�
�

�

�
�
�

�

�
��

�
��

�

��
�

��

W

t
f W W V V P

f W
p

x

p

y
K

V

x

V

y

x y

T

x y
T

( ) , , , ,

( ) , ,

� �

1 1

U U

(3)

where W is the work vector of length 3N and the T superscript denotes
the transpose.

The discrete acoustic wave equation (3) is reduced to a system of
ordinary differential equations (ODEs) by evaluating the spatial
derivatives.  Time-domain numerical solutions of these ODEs involve
step-by-step integration in time and evaluation of spatial derivatives at
each step.  Solutions must include radiation boundary conditions,
nonlinearity, and frequency-dependent absorption.

THE PSEUDOSPECTRAL METHOD

The periodic pseudospectral method uses discrete Fourier transforms
to evaluate spatial derivatives of functions defined on a uniform Cartesian
grid.  On this basis, time-dependent PDEs are reduced to ODEs, which
are integrated forward in time using either explicit or implicit methods.
As with FD and FE methods, the PS gridpoints must be dense enough to
resolve spatial details of the PDE coefficients over the domain.  However,
unlike uniform difference stencils or element meshes, the PS method is
global and yields a very high order spatial derivative approximation,
equal to the number of grid points in each direction9, e.g., Nx and Ny.

Recall that if û(k) is the Fourier transform of u(x) with spatial
frequency (transform parameter) k, then the derivative of u(x) is the
inverse Fourier transform of jkû(k), where j=√-1.  Therefore, calculation



of the first derivative on a gridline of N points by the periodic PS method
is done in three steps9: do a complex FFT on gridpoint data values, giving
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multiply these output elements by discrete spatial frequencies

0  πj  2πj ... (N/2-1)πj  0  -(N/2-1)πj  ...  -2πj   -πj;

and perform a complex inverse FFT on the result.  This yields the PS
derivative approximation at the gridpoints.  Since the procedure gives a
real derivative from real data and the complex FFT is linear, we can
initialize the real and imaginary parts of the FFT input with two
independent real data sets and recover derivatives of each in the real and
imaginary outputs.  Note that the practical disadvantage of this method is
spatial periodicity, which exhibits itself as “wraparound” of the field.

The PS method provides an extremely accurate approximation of
spatial derivatives in homogeneous media on a uniform, periodic FD
mesh, even at 2 nodes per wavelength.  Of course, analytical, i.e.,
“nodeless,” solutions can always be constructed in homogeneous media,
so high numerical accuracy with coarse sampling should not come as a
surprise.  Numerical errors are introduced at material interfaces and
within distributed inhomogeneities.  These are reduced by staggering the
PS grid in space12, i.e., defining pressures and velocities at interlaced
points.  This is in contrast to the easier, nonstaggered implementation.
The difference is that local errors decay as 1/r in the nonstaggered grid,
but as 1/r2 in the staggered grid9.  Accuracy gains more than offset
implementation difficulties of staggered grids.  For the low contrasts
typical of soft tissue, numerical experiments show that staggered PS
spatial derivatives are adequate at 4-5 nodes per wavelength, but results
do depend on the level of contrast, e.g., soft to hard tissue.

On this basis, the solution algorithm for hyperbolic system (3) over
one timestep ∆t is: load new values of Vx, Vy, P into W; calculate spatial
derivatives of Vx, Vy, P on gridlines; evaluate dW/dt = f(W) and integrate
the system one timestep.  This sequence must be repeated as many times
as necessary to capture the wave phenomena of interest.  There are many
effective integrators available, both implicit and explicit.  The
unconditional stability (i.e., any ∆t) of implicit schemes is wasted for the
present wave applications since timestep is controlled by accuracy
requirements.  Implicit schemes also require solutions of matrix equations
that are prohibitively expensive for large-scale problems.  For accurate
time-domain calculations, explicit time integrators are best.

Our first PS version7 used the 4th order Runge Kutta integrator (RK4),
which is robust, convenient and reasonably accurate.  2nd order methods
like leapfrog were unacceptable for long-range propagation.  It was noted
that the 4th order Adams Bashforth integrator offered advantages.  Recent
work by Ghrist et al.13 showed that staggering (evaluating velocity at full
time steps and pressure at half time steps) the 4th order Adams Bashforth
integrator, referred to as ABS4, improved both accuracy and stability
relative to RK4.  Surprisingly, ABS4 was also shown8 to yield a factor of
4-6 reduction in parallel computation time relative to RK4.  All
calculations described below utilize ABS4, with starting values obtained
from a RK4 step of ½∆t.

BERENGER’S PERFECTLY MATCHED LAYER (PML)

The price for high PS spatial accuracy is a space-periodic domain.
Thus, solutions exhibit wraparound at the boundaries, i.e., waves
effectively exit one side and enter the opposite side.  Berenger’s PML
boundary condition14 is used to circumvent wraparound by forcing the
solution to be “periodically small” at the boundaries.  Berenger14 showed
how to construct the wave equation for a nonphysical medium that is
highly attenuative yet nonreflective at any angle of incidence.  The
objective was efficient radiation boundary conditions for FD grids, in the
context of wave equations for TE and TM electromagnetic field

polarizations.  Therefore, his approach is directly applicable to the
acoustic wave equation (but not to the vector elasticity equations).

An acoustic PML implementation for 2nd order, FD, time-domain
solvers is described by Yuan, et. al.15, who demonstrated that waves
incident from the grid’s interior on an eight-node boundary layer are
rapidly absorbed, with spurious reflections reduced by 80 dB.  One way
to write the acoustic analog to Berenger’s electromagnetic PML is to split
pressure p into p=px+py+pz and introduce anisotropic attenuation
coefficients αx, αy, αz.  The 2D acoustic PML equations then become
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These can replace acoustic equations (2) everywhere, with αx=αy=0
in the interior and nonzero near the boundaries.  For computational
efficiency, however, (4) should only be applied in a layer near the
boundary. Smoothly increasing attenuation through this layer turns out to
be optimal in order to absorb small reflections introduced by
discretization of the continuum PML equations.

In the present case eight nodes near the boundary are “activated,” i.e.,
have nonzero α.  The problem remains periodic but “periodically small”
at the boundaries, i.e. field values are driven towards zero there by the
PML.  Wraparound causes signals to do a double pass through the
absorber, e.g., as an outgoing wave enters the PML on one side it is
attenuated and any signal reaching the boundary enters the PML at the
opposite boundary where it is further attenuated.

ATTENUATION AND NONLINEARITY

Wave attenuation is an essential part of tissue models.  There are
various attenuation mechanisms, including shear and bulk viscosities, a
multiplicity of relaxation phenomena, and wave scattering.  Since few of
these mechanisms can be isolated, aggregate attenuation is measured and
characterized by a power law in frequency f as α=afb.  For example, in
water a ≈ 0.0022 dB/cm/MHzb, b=2.0, and in muscle tissue a ≈ 0.7
dB/cm/MHzb, b ≈ 1.1.  Theories and implementations range from
computationally simple stiffness and mass proportional damping to
viscoacoustic and related dispersion formulations16-18 familiar from
classical electromagnetic theory for lossy dielectrics.  Note that stiffness
proportional damping is ideal in water.  The general viscoacoustic case17

is implemented here, with multiple relaxation frequencies used to
accurately model power law frequency dependence.  A least squares
procedure chooses model parameters for an optimal fit over a specified
frequency range.  Two mechanisms are adequate over the 2-6 MHz range
considered here.  This is illustrated in Fig. 2, showing fits to power laws
with exponents 0.6, 1.0 and 1.4.
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Figure 2.  Least squares fits of attenuation power laws from 2 to 6 MHz
using two relaxation frequencies.



Harmonic distortion due to weak shock effects, i.e., material
nonlinearity, is also an essential aspect of tissue models.  In 1980 Muir
and Carstensen18 first demonstrated that conventional imaging arrays
produced significant nonlinear effects.  The appropriate nonlinear wave
equation follows by generalizing the pressure-density (constitutive)
relation in (1).  Expanding pressure in a power series and retaining the
first two terms yields the widely accepted “B/A” model, namely,

p K u
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where K is the bulk modulus.  This is implemented in the current PS
solver.  Other nonlinear models, e.g., more general power laws, are easily
incorporated, but the third order differences with the B/A model are not
of concern here.  Note that accurate tissue absorption is a necessary
complement to nonlinear modeling.  Otherwise unphysical harmonic
generation rapidly exceeds the resolution of any discrete grid.

Harmonic generation, i.e., shocking, is particularly impressive in
water, where absorption is less than 1% that of tissue.  For example, Fig.
3 shows water pulse measurements from an Acuson linear array8 with 7
cm fixed elevational focus.  It is driven uniformly in azimuth by a 4-cycle
RF signal with 2.5 MHz center frequency.  Peak-to-peak pressure 2 mm
from the lens is 1.3 MPa, which is a typical clinical value.  The left graph
in Fig. 3 shows pulse waveforms at 0.2, 5, and 6 cm (time shifted for
plotting).  Shocking is obvious towards the 7 cm elevation focus.  The
right graph is a cross-plot of amplitude spectra, showing strong harmonic
generation (integer multiples), as well as interesting intermediate peaks.
In tissue, less dramatic but significant second and third harmonics are
generated at clinical drive levels.
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Figure 3.  Experimental data showing harmonic generation in water by a
1D, fixed-focus medical array.

VALIDATION

To validate the PS method with Berenger’s PML we consider
scattering of a plane wave in water by a soft acoustic cylinder7.  Diameter
of the cylinder is 6 mm and its wavespeed is 1200 m/s, compared to 1500
m/s in water.  A 256x256 PS-PML grid with nodal spacing of 58 microns
is used in order to include initial wave conditions and capture spatial
frequency content.  The stairstep approximation of the cylinder interface
is fairly refined, i.e., 100 nodes across the cylinder.  The PS solution with
a 4th order Runge-Kutta integrator is compared to a truncated series
solution (analytical) at 45°, 90°, and 135° from the leading edge, on a 4
mm radius circle.  These points are indicated in Fig. 4, which was
calculated without (top) and with (bottom) the PML, illustrating
wraparound and its effective removal.  Cross-plotting model and
numerical results yields the excellent agreement in Fig. 5.  Discernible
phase errors are due to output location mismatch, i.e., grid points closest
to the specified output coordinate.  In general, the PML condition works
very well and noise for this implementation is 100 dB below the input.
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Figure 4.  Composite pictures illustrating plane wave scattering by a
slower cylinder in water, using the 2D PS/Runge-Kutta method.  The top
composite shows before (left) and after (right) wraparound of the
scattered wave.  The bottom composite shows similar snapshots but with
the PML treatment, demonstrating elimination of wraparound at the
periodic boundaries.
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Figure 5. Validation of the PS method and PML against a truncated series
solution at the output points indicated in Fig. 4. (continued on next page)
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Figure 5. Validation of the PS method and PML against a truncated
series solution at the output points indicated in Fig. 4. (continuation)

INITIALIZATION

There are no boundaries in the PS space domain—only periodicity.
Therefore, in the absence of conventional boundaries, waves are
necessarily introduced as initial conditions.  Alternatively, we can
consider introducing an internal boundary condition, i.e., initializing the
wave field on single space line for all time.  This type of internal
discontinuity is only practical with the staggered grid described earlier,
due to localization of errors.

Unidirectional wave motion is initiated by two initial conditions, e.g.,
pressure and velocity.  A single field initial condition yields waves
traveling in “opposite” directions on the two characteristic surfaces in
x,y,t space.  The unwanted backward traveling wave is absorbed by the
PML.  The examples shown here were driven by initial conditions over
the grid.  However, we have demonstrated effectively the same results
with an internal boundary condition.

The field distributions for initial or internal boundary conditions must
be determined analytically, numerically, or experimentally.  In practice
we often want to apply a signal from an actual transducer design.  This
can be simulated numerically or measured in a water tank over the face of
the transducer.  An example of numerical initialization is illustrated in
Figure 6.  This shows a PZFlex calculation of a 1D, 5 MHz transducer
array with each element driven by a time-delayed voltage pulse.  Delays
are chosen for a 5 cm focus.  Two elements of the subdiced array model
are also shown.  In this way nonideal behavior of the transmitted field can
be included in the large-scale wave simulation.
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Figure 6.  Example of PZFlex transducer calculation for initialization of
pseudospectral propagation model.  The model consists of 64 elements in
a subdiced 1D array24, each driven with a voltage pulse delayed for 5 cm
focus.  Two elements of the subdiced array model are shown above and
include backing, two matching layers and a water load.

In principle, the internal boundary permits a smaller region for wave
input to the PS calculation.  More importantly, it provides a convenient
input for experimental pressure data (time histories) measured over a line
in front of the transducer.  Work is in progress on internal boundary
initialization from experimental data.

PARALLELIZATION

The relevant scales for large bioacoustic problems are, say, 0.3 mm
waves (5 MHz) in a 10x10(x10) cm tissue model.  Assuming 4
nodes/wave for the PS model yields 333x333(x333) wavelengths or ≈1.8
x 106 nodes in 2D (≈2.4 x 109 in 3D).  To capture details of tissue
structure or harmonics we can easily double or triple the number of nodes
per wavelength.  2D models can reach tens of million of nodes and 3D
models must be restricted to a very limited field to be practical.
Therefore, parallel computing is an essential paradigm for large-scale
models of ultrasound propagation.  A PS parallel implementation of the
RK4 integrator solved each equation in (4) on its own processor, with
65% parallel efficiency.  For larger problems and additional processors, it
is more efficient to parallelize the loops in the FFT and integration
routines and run on a symmetric multiprocessing (SMP) machine.
Current implementations yield SMP efficiencies of 60% to 80% on 6 of 8
available processors.

The PS algorithm described above yields an accurate, complete wave
solver.  Fine-tuning of the implementation is possible, but potential gains
appear less than a factor of 5.  Therefore, for current PCs and
workstations, simulations of 300+ wavelength models are restricted to
2D.  Fortunately, a great deal of information can be gained from 2D
simulations.  Similar 3D simulations are only feasible on a massively
parallel machine with O(1000) processors.  This requires distributed
parallel processing.  Parallelism is achieved by partitioning the
computational volume rather than SMP.  Domain decomposition has



been demonstrated20 for the 3D pseudospectral algorithm.  Therefore, 3D
versions of our present examples are feasible on existing massively
parallel systems.  Development along these lines is currently being
explored.

Connective TissueWater Fat Muscle Liver

Figure 7a.  Snapshots of pulse propagation through the piecewise
homogeneous abdominal wall model (MS1).

LARGE-SCALE PROPAGATION IN TISSUE MODELS

To demonstrate efficacy of the algorithm and the variety of wave
propagation phenomena to be expected, ultrasonic pulses are propagated
through three abdominal wall model sections labeled MS1-MS3.  MS1 is
a piecewise homogenous approximation of abdominal wall section MS2,
both shown in the top panel of Figure 7a,b.  MS3 is similar to MS2 but
with less fat marbling in the muscle, as shown in Figure 9b.  Note that

Table 1.  Material Properties

Tissue/
Material

ρ
[kg/m3]

V
[m/sec]

B/A Loss [dB/
cm/MHzb]

b

Water 1000 1500 5.0   0.002* 2.0

Fat 928 1427 10.0 0.75 1.0

Connective 1100 1537 7.87 1.125 1.0

Muscle 1041 1571 7.5 0.55 1.0

Liver 1050 1577 6.75 0.4 1.0
* set to zero in simulation

MS2 and MS3 are drawn from Hinkelman’s10,11 measurements of actual
abdominal wall tissue cross-sections.  Approximate material properties
for the fat, muscle, liver, and connective tissue are given in Table 1,
extracted from data reproduced in Duck21.  The short water path was
assumed linear and tissues were simulated with B/A (2nd order)
nonlinearity and a two-mechanism relaxation model.

PULSE PROPAGATION

Pseudospectral calculations in MS1, MS2 and MS3 simulate a 2.5
MHz transducer with 1.5 cm aperture and 5 cm geometric focus.  The
pulse is generated by simply bending a plane wave to the appropriate
radius of curvature and setting initial conditions on pressure and velocity
in the water layer.  Models are 2x8 cm with the PML on all sides.  They
are discretized at 256 x 1024 cells, producing a cell size of 0.0078125 cm,
or 4 cells per wavelength at the second harmonic.  The pulse is
propagated through the model for 5000 timesteps at 20% of the Courant
stability limit, chosen for accuracy rather than maximum allowable
timestep.  Simulations require about 2 hours each on an SGI Origin 2000,
using 6 of the 8 available processors.  Parallel efficiency is about 80%,
i.e., simulations would have required 10 hours each on a single CPU.

Water Connective TissueFat Muscle Liver

Figure 7b.  Snapshots of pulse propagation through a typical abdominal
wall model section (MS2) from Hinkelman’s measurements10,11.

Figure 7a,b illustrates the progression of a 2.5 MHz pulse through
abdominal wall model sections MS1 (7a) and MS2 (7b).  The dashed line
indicates the geometric focus.  In the first snapshot the wave has just



penetrated the skin.  For graphical definition only pulse compression is
plotted in greyscale.  Circular diffracted waves from the edges of the
insonified region are apparent.  These edge diffractions are produced by
any finite transducer, although details differ depending on aperture,
phasing, housing, etc.  In the third snapshot in MS1 note the reflections
and diffractions from the muscle interface.  The PML has accurately
removed outgoing waves at the sides of the model with no spurious
reflections.  In the fourth snapshot, the pulse has reached the geometric
focus.  In MS2, the fine tissue structure produces considerable diffuse
scattering relative to the idealized model, MS1.  Dropouts or shadow
regions are also evident in later snapshots.

Figure 8 compares the amplitude spectrum of the pulse at its
geometric focus with that of the input signal (arbitrarily scaled).  In MS1
a significant second harmonic at 5 MHz and a weaker, essentially
undamped, sub-harmonic (rectified or DC pulse) near 0.5 MHz are
apparent.  The amplitude spectrum in MS2 is similar but reduced
significantly by backscatter.
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Figure 8. Amplitude spectrum of pulse at the geometric focus in
piecewise homogeneous abdominal wall model (MS1) (top), and
abdominal wall model (MS2) (bottom), compared to spectrum of scaled
input pulse.

ABERRATION AND SECOND HARMONIC GENERATION

Computer simulations in realistic tissue models can provide useful
information on the second harmonic generation and wavefront aberration
processes.  They require accurate solutions of the scalar (acoustic), full
wave equation in large-scale, heterogeneous, lossy, nonlinear media.  The
subject pseudospectral code satisfies all of the above simulation
requirements.  Alternatively, the KZK and related methods22,23 could be
used.  However, KZK-type methods are not as robust in inhomogeneous
media and only capture forward and limited off-axis propagation due to
the underlying paraxial (parabolic wave equation) basis.  Omnidirectional
solutions are important because of the fundamental role that backscatter
and reflection play in the imaging process, as well as for completeness in
acoustic power and intensity studies.

To illustrate some of the issues, Fig. 9a,b displays the harmonic
amplitude distributions obtained by Fourier transforming the pulse at
each point in models MS1 and MS3.  The transforms are smooth, as
shown in Fig. 8, so that similar distributions would be found for

frequencies near the first and second harmonics.  In MS1 (Fig. 9a.) the
fingers, i.e., sidelobes, in the first harmonic are due to interference
between the direct pulse and the edge diffractions.  Standing waves are
obvious in the layers.  The second harmonic emerges as the pulse
propagates (disregard the initial condition artifact).  Note how the second
harmonic develops through the tissue layers, with a sharper focus and
minimal diffraction.  Diffraction moves the first harmonic focus to about
4 cm, while the second harmonic focus is deeper.
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 Figure 9a,b.  Spectral amplitude distribution of first and second
harmonic over piecewise homogeneous tissue model section (a) (MS1)
and abdominal wall model section (b) (MS3) and quantified on
centerline.  (1.5 cm aperture and 5 cm geometric focus).

a.

b.



In MS3 (Fig. 9b.) there is, of course, considerable more distortion of
both the first and second harmonic beams, with coherent sidelobes
replaced by less coherent “feathers.”  The foci are not shifted laterally,
although a similar plot for MS2 in Fig. 10 shows considerable focal shift,
caused by fat marbling in the muscle layer.  MS3 above shows less effect
because the fat is more uniformly layered between the muscle and liver
tissue.

These results quantify the amplitude distribution of first and second
harmonic waves.  Plotting the phase distribution graphically depicts the
wavefront distortions, which are illustrated on the bottom of Fig. 10 for
MS3.  This type of study readily demonstrates the compexity of both first
and second harmonic wave fields in real tissue structure, as well as the
information that can be gleaned from large-scale simulations.

 

Figure 10.  Panels a.,b.,c. show spectral amplitude distribution of first
and second harmonic over MS2. Panels d.,e.,f. show spectral phase
distribution in MS3 (d.), at 2.5 MHz (e.) and 5 MHz (f.), between the
dashed lines.

CYLINDER SCATTERING AND DYNAMIC RANGE

Backscatter from deeper, coherent tissue structure is the field quantity
of interest for imaging simulations.  Such calculations must run long
enough to propagate echoes back to the transduction region of the model.
Echoes are typically weak and their calculation demands a high dynamic
range, i.e., echo signal/numerical noise.  Figure 11 illustrates some simple
cylinder scattering examples through the MS3 abdominal section.  The
first picture shows a 6 mm cylinder, 5 cm from the initial wave front.
The three underlying pictures are snapshots of the wave field, all at the
same scale, from a transducer with 1.5 cm aperture focused on the
cylinder.

The first wave snapshot in Fig. 11 shows the pressure field just before
reaching the cylinder.  The second shows the echo arriving in the
transduction region after scattering from a soft cylinder 15% slower than
the surrounding tissue.  The faint cylinder outline consists of “whispering
gallery” boundary waves within the slower cylinder, which persist due to
total internal reflection at the interface.  For a faster cylinder these modes
are leaky and rapidly disappear.  The third wave snapshot illustrates the
case of a very hard acoustic cylinder, approximating the impedance of
bone.  The echoes are clearly stronger, but also less distinct in the
background field because of reverberation in and leakage from the hard
cylinder.  This latter example suggests that the pseudospectral algorithm
is robust even for very strong acoustic interfaces.

Figure 11. Simple cylinder scattering examples through the MS3
abdominal section.

Figure 12 shows examples of return signals from the slow cylinder in
Fig. 11c. observed at the skin surface.  The pressure history on the top is
the initial pulse plus abdominal wall and cylinder reflections.  Subtracting
pressure history calculations with and without the cylinder yields the
result on the bottom.  Thus, the return is three orders of magnitude
weaker than the incident field, i.e., -60 dB, which is an acceptable
dynamic range.  However, note the weak pressure precursor apparent at
40 microseconds.  This is numerical noise, probably caused by global
errors from the finite difference approximation across the cylinder
interface.

b. Incident wave field

c. Echoes from slower cylinder

d. Echoes from very fast cylinder

a. Simple scattering model

a.

b.

c.
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Figure 12. Examples of return signals at skin surface from the slow
cylinder (Fig. 11c.).  Top history shows total pressure (initial pulse plus
all reflections), while bottom pressure history shows cylinder scattering
only, which is three orders of magnitude lower.

CONCLUSIONS

Combining the pseudospectral (PS) method for wave solutions with
the perfectly matched layer (PML) makes a formidable algorithm for
large-scale ultrasound models in weakly scattering tissue.  The PML is
very accurate, does not cause any numerical difficulties, and the
computational overhead is minor.  Further reduction in problem size is
offered by wave initialization on a line rather than over the domain.
Generalizing to the nonlinear wave equation is straightforward and the PS
method’s accuracy extends the number of harmonics significantly before
ringing occurs.  Attenuation and dispersion models are naturally and
effectively included.

Therefore, the pseudospectral wave solver is a powerful tool for
studying ultrasonic pulse propagation through tissue and as an aid for
imaging system evaluation.  Material nonlinearity, attenuation and fine
structure are accurately modeled in “long” 2D tissue cross-sections.
Large scale, i.e., hundreds of wavelengths, 3D simulations require 1000x
more computational resources than current PCs or workstations can
provide.  Massively parallel machines should yield a brute force solution
to this dilemma.  Fortunately, 2D simulations suffice for understanding
many of the issues.  Suitably combining 2D calculations in azimuth and
elevation may prove useful in approximating aspects of the 3D problem.

Pulses were modeled through two abdominal wall cross-sections
measured by Hinkelman and one equivalent homogeneous layered model
for comparison.  Fourier transforms of signals quantify second harmonic
generation as the pulse propagates.  The focal shifting and distortion
induced by real structure relative to the baseline layered model are
apparent and significant.  By simulating a representative selection of
tissue models, it should be possible to evaluate strategies for optimizing
the second harmonic beam and aberration correction schemes, as well as
estimating acoustic power levels and validating approximate schemes.

Scattering calculations demonstrate the dynamic range necessary for
accurate returns from weakly (or strongly) reflecting objects 5-10 cm
from the transducer.  However, dynamic range needs to be increased
beyond 100 dB.  This can be done by continued algorithm refinements.
Special attention to and treatment of material discontinuities should
produce the best gains.

We conclude that rigorous transducer models can be coupled to
complete tissue simulations of propagation and scattering out to many
hundreds of wavelengths and back to the transducer with acceptable
signal-to-noise ratio.  In contrast to approximate schemes, like the KZK
method, details of the field transmitted from the transducer and all
backscatter on the travel path are included in the simulation.  In the
future, besides continued algorithm performance and accuracy
enhancements, the principal challenge is to generalize these capabilities
to 3D by taking advantage of massively parallel computers.
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