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Abstract. One of the most difficult problems in the design of an anomaly based
intrusion detection system (IDS) that uses clustering is that of labelling the ob-
tained clusters, i.e. determining which of them correspondto ”good” behaviour
on the network/host and which to ”bad” behaviour. In this paper, a new clusters’
labelling strategy, which makes use of a clustering qualityindex is proposed for
application in such an IDS. The aim of the new labelling algorithm is to detect
compact clusters containing very similar vectors and theseare highly likely to be
attack vectors. Two clustering quality indexes have been tested and compared: the
Silhouette index and the Davies-Bouldin index. Experimental results comparing
the effectiveness of a multiple classifier IDS with the two indexes implemented
show that the system using the Silhouette index produces slightly more accurate
results than the system that uses the Davies-Bouldin index.However, the com-
putation of the Davies-Bouldin index is much less complex than the computation
of the Silhouette index, which is a very important advantageregarding eventual
real-time operation of an IDS that employs clustering.

Key words: Intrusion detection system, Anomaly detection, IDS benchmarking,
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1 Introduction

Intrusion detection systems (IDS) are security tools designed to detect and clas-
sify attacks against computer networks and hosts. They can operate in two ways:
either by searching for specific patterns in data (misuse based IDS) or by recog-
nising certain deviations from expected behaviour (anomaly based IDS).

In anomaly based IDS, clustering algorithms are often used for recogni-
tion of ”abnormal” behaviour. The number of clusters into which the input data
may be classified is arbitrary, but as the essential goal of these systems is to
distinguish between ”normal” and ”abnormal” behaviour, itis very common to
partition the incoming resource access requests into two classes that correspond
to these two types of behaviour.

We consider a Denial-of-Service (DoS) attack scenario in which attack re-
source access requests arrive to the monitored network/host in bursts. An ano-
maly based IDS analyzesN resource access requests at a time and if it detects



that many of these requests correspond to attacks then it should generate a spe-
cial alert. We call such a scenario amassive attack. Sometimes, other network
monitoring tools (firewalls etc.) can detect such attacks, but the advantage of an
anomaly based IDS regarding all kinds of attacks (includingmassive attacks as
defined in this paper) is in the capability of detecting a completely new attack.

If clustering is used for classification of resource access requests in an IDS,
the main problem is the interpretation of clustering results, so called ”labelling”
of clusters. Namely, without additional information it is difficult to decide
whether the data classified in one cluster correspond to ”normal” behaviour in
the monitored network or to ”abnormal” behaviour. Cardinalities of clusters are
often used as a decision parameter for this purpose (see, forexample, [8]) be-
cause the mathematical expectation of ”normal” behaviour is considered greater
than that of ”abnormal” behaviour. However, this approach fails to detect mas-
sive attacks. Solving this problem requires a more complex clusters’ labelling
algorithm.

In this paper, we analyze a clusters’ labelling strategy based on applica-
tion of clustering evaluation techniques. The first option is to use the Silhouette
index and clusters’ silhouettes [9]. The second option is tocombine the Davies-
Bouldin index [2] and the comparison of centroid diameters of the clusters. The
goal of such combinations is to respond adequately to the properties of attack
vectors. We consider the compactness of the corresponding clusters and the sep-
aration between them the principal parameters that distinguish ”normal” from
”abnormal” behaviour in the analyzed network. The Silhouette index and the
Davies-Bouldin index take into account these parameters and because of that
we apply them in our IDS. In the experiments, we test the response of a mul-
tiple classifier IDS (see, for example, [4]) with the new labelling strategy to
artificial data. We express the IDS quality through ReceiverOperating Char-
acteristics (ROC) curves. The effectiveness of the IDS thatuses the Silhouette
index is compared with that of a system that uses the Davies-Bouldin index.

In the experiments, we tested our labelling algorithms on the well known
KDD CUP 1999 artificial data set [3], which was used as the traffic source. Al-
though this source was criticized in the literature (see, for example, [7]), we
found it convenient as a source of massive attacks, against which we have tested
our labelling strategies. The experimental results show that the labelling strat-
egy that uses the Silhouette index gives slightly more accurate results than the
strategy that employs the Davies-Bouldin index. However, the computation of
the Davies-Bouldin index is much less complex than the computation of the Sil-
houette index, which is a very important advantage regarding eventual real-time
operation of such an IDS.



2 General description of the system

We concentrate on the basic sensor-assessor structure of the multiple classifier
IDS shown in Fig. 1. The sensors actually perform the clustering of the incoming
resource access requests, whereas the assessors perform the clustering quality
evaluation.

We selected the well knownK-means algorithm (see for example [6]) for
implementation in the sensors of the IDS, because we consider this algorithm
the best trade-off between accuracy and efficiency. The input resource access re-
quests are encoded in such a way that vectors of the same length are produced.
The Euclidean metric is used in our system as a distance measure between vec-
tors.

Fig. 1. A multiple classifier IDS

3 The clusters’ labelling algorithm

Having obtained clusters from the sensors, the task of the assessors is to label
them, i.e. to determine which clusters correspond to ”normal” behaviour, and
which to ”abnormal” behaviour. Since there is no learning onlabelled data in
the system, the assessors must use other criteria to decide on this. There are at
least two problems related to the cardinality-based labelling strategy that con-
siders the cluster of the greatest cardinality the normal one [8]: first, normal
data transmitted by means of a less frequently used protocol(such asftp or
telnet) might produce clusters of very different cardinalities, which could mis-
lead such an assessor. Second, there are some Denial-of-Service attacks, such as
syn-Flood, that can mislead this labelling strategy by making the mathematical
expectation of the attack much greater than that of ”normal”behaviour. To over-
come the problems related to the labelling strategy described above, we propose
clustering evaluation techniques to be used in the assessors of the IDS.

We use the Silhouette index and the Davies-Bouldin clustering evaluation
index [1, 5] and compare them in an implementation of an anomaly detection



IDS based on clustering. In one of our IDS assessing algorithms, the global
Silhouette index of the clustering is combined with the comparison of the sil-
houettes of the clusters. In another algorithm, the Davies-Bouldin index of the
clustering is combined with the centroid diameters comparison between clus-
ters. In the computation of the Davies-Bouldin index, the centroid linkage is
used as the inter-cluster distance. The centroid inter-cluster and intra-cluster
measures are selected for compatibility with theK-means clustering algorithm
used in the sensors (which essentially computes centroids of clusters at each
iteration).

We now present formal definitions of these two clusters’ quality indexes.
Let Xτ = {X1, . . . ,XN} be the data set and letC = (C1, . . . , CK) be its

clustering intoK clusters. Letd(Xk,Xl) be the distance betweenXk andXl.
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Then the silhouette width of thei-th vector in the clusterCj is defined in the
following way:
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From the expression (3), it follows that−1 ≤ s
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Finally, the global Silhouette index of the clustering is given by:
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It is easy to see that both a cluster’s silhouette and the global silhouette take
values between -1 and 1 (both inclusive).

Let Xτ = {X1, . . . ,XN} be the data set and letC = (C1, . . . , CK) be its
clustering intoK clusters. Letd(Xk,Xl) be the distance betweenXk andXl.
Then the Davies-Bouldin index is defined in the following way[1, 2, 5]:
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where∆(Ci) is the intra-cluster distance andδ(Ci, Cj) is the inter-cluster dis-
tance. In the observed IDS, the centroid diameter is used for∆(Ci). It is defined
in the following way [1]:
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The centroid linkage inter-cluster distance is used forδ(Ci, Cj). It is defined
in the following way [1]:
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For the remainder of this paper, we shall limit ourselves to studying the case
with 2 clusters, of which one corresponds to ”normal” and theother to ”abnor-
mal” behaviour in the analyzed network. The reason for this is that, whatever
the number of clusters we use in the sensors, we must finally decide which of
them will be considered ”normal”, leading us to a case with 2 ”superclusters”.

The main idea of our clusters’ labelling algorithm, which uses a clustering
quality index is the following:

The attack vectors are often mutually very similar, if not identical. Because
of that, we expect that the attack cluster in the case of a massive attack will
be extremely compact. The value of the Silhouette index of such a clustering
is either 1 or very close to 1. The value of the Davies-Bouldinindex of such
a clustering is either 0 or very close to 0. Having in mind the expected mutual



similarity among attack vectors, the silhouette of the attack cluster is expected
to be greater than the silhouette of the non-attack cluster.Likewise, the centroid
diameter of the attack cluster is expected to be smaller thanthat of the non-attack
cluster.

The case in which one of the clusters is empty must be treated in a special
way. For a clustering containing an empty cluster, the global Silhouette index
is undefined - we assign the value -1 to such a clustering for convenience. The
Davies-Bouldin index in the case of a clustering containingan empty cluster is 0.
If the non-empty cluster is extremely compact, then a natural conclusion is that
it is the attack cluster, i.e. there were only attacks in the analyzed data set. Thus
if the Silhouette index is used, relabelling of the clustering should be performed
if the value of the global Silhouette index is -1 and the cluster labelled with ”2”
(the label reserved for the attack cluster) is empty; if the Davies-Bouldin index
is used, relabelling of the clustering should be performed if the Davies-Bouldin
index of the clustering is equal to 0 and the cluster labelledwith ”2” is empty.

For clusterings without empty clusters, higher values of the global Silhou-
ette index indicate the presence of a massive attack, whereas higher values
of clusters’ silhouettes indicate attack clusters. Lower values of the Davies-
Bouldin index indicate the presence of a massive attack, whereas small values
of the centroid diameter in these cases indicate the attack cluster.

When the global Silhouette index takes lower values, i.e. when there is no
massive attack, the silhouette of the non attack cluster (labelled with ”1”) is
expected to be higher than the silhouette of the attack cluster (labelled with
”2”). Likewise, when the Davies-Bouldin index takes highervalues, i.e. when
massive attack is not present, the centroid diameter of the cluster labelled with
”1” is expected to be smaller than that of the cluster labelled with ”2”. This is
because isolated attacks (non-massive) are expected to be less similar among
themselves.

The study above gives rise to the following labelling algorithms:

Algorithm 1a (using the Silhouette index)
Input:

– ClusteringC of N vectors into clustersC1 andC2, with arbitrary labelling.
– The global Silhouette index threshold,∆S.
– The clusters’ silhouette thresholds,∆S1

and∆S2
.

Output:

– The eventually relabelled input clustering, if relabelling conditions are met.



begin
S ←− GlobalSilhouetteIndex(C) ;
s1 ←− Silhouette(C1) ;
s2 ←− Silhouette(C2) ;
if (S = −1) and (IsEmpty(C2)) then

Relabel(C)
else if(S < ∆S) and (s1 < s2 + ∆S1

) then
Relabel(C)

else if(S > ∆S) and (s1 + ∆S2
> s2) then

Relabel(C) ;
end.

Algorithm 1b (using the Davies-Bouldin index)
Input:

– ClusteringC of N vectors into clustersC1 andC2, with arbitrary labelling.
– The Davies-Bouldin index threshold,∆DB.
– The centroid diameters difference thresholds,∆CD1

and∆CD2
.

Output:

– The eventually relabelled input clustering, if relabelling conditions are met.

begin
db←− DaviesBouldinIndex(C) ;
cd1 ←− CentroidDiameter(C1) ;
cd2 ←− CentroidDiameter(C2) ;
if (db = 0) and (IsEmpty(C2)) then

Relabel(C)
else if(db > ∆DB) and (cd1 > cd2 + ∆CD1

) then
Relabel(C)

else if(db < ∆DB) and (cd1 + ∆CD2
< cd2) then

Relabel(C) ;
end.

The relabelling procedure simply exchanges labels betweenthe two clusters.
2

The behaviour of the algorithms 1a and 1b depends on the choice of the
parameters. These should be determined in advance. One of the ways to do
that is to use a network/dataset with known characteristics. In a real network,
one could start with the parameters of the algorithms obtained in a controlled
network scenario (e.g. with those obtained with the KDD CUP 1999 database)
and then fine tune the parameters over time.



Example 1: In the KDD CUP 1999 data set, many attack vectors correspond to
the so called ”smurf” attack, which is a sort of DoS attack. Table 1 shows the
differences between the coordinates of two attack vectors that correspond to the
”smurf” attack. Table 2 shows the differences between two ”normal” vectors. In
this particular example it is easy to see that the differencebetween two attack
vectors is much smaller than the difference between two ”normal” vectors.

Table 1. The differences between two attack vectors in the KDD CUP
1999 data base (records 7635 and 7636 of the reduced (10%) data set).
The rest of 41 coordinates are equal to 0.

Coord. id. Rec. 7635Rec. 7636
protocol type 2 2
service 50001 50001
flag 10 10
src bytes 1032 1032
count 511 511
srv count 511 511
samesrv rate 100 100
dst host count 228 238
dst host srv count 83 93

Table 2. The differences between two ”normal” vectors in theKDD CUP
data base (records 6 and 7 of the reduced (10%) data set). The rest of
41 coordinates are equal to 0.

Coord. id. Rec. 6Rec. 7
service 80 80
flag 10 10
src bytes 212 159
dst bytes 1940 4087
loggedin 1 1
count 1 5
srv count 2 5
samesrv rate 100 100
srv diff host rate 100 0
dst host count 1 11
dst host srv count 69 79
dst host samesrv rate 100 100
dst host samesrc port rate 100 0

2



4 Experimental work

Extensive simulation of the basic sensor-assessor structure of a multiple classi-
fier IDS was carried out in order to study its response to the attack data. To this
end, the following instance of this structure was built:

1. In the sensor, the 2-means clustering algorithm was implemented.
2. Two types of assessors were tested:

2.1 The assessor implementing the Silhouette index of the clustering and
the silhouettes of the clusters, according to the Algorithm1a. The global
Silhouette index threshold,∆S , and the clusters’ silhouette thresholds,
∆S1

and∆S2
, were used as parameters of the assessing algorithm.

2.2 The assessor implementing the Davies-Bouldin index of the clustering
and the clusters’ diameters, according to the Algorithm 1b.The Davies-
Bouldin index threshold,∆DB, and the centroid diameters difference
thresholds,∆CD1

and∆CD2
, were used as parameters of this assessing

algorithm.

We selected the KDD CUP 1999 database as the traffic source forour exper-
iments for two reasons, in spite of the criticism (see [7]): First, it is an artificially
generated test data set, which guarantees that no unknown attacks can appear in
it, consequently ensuring the possibility of accurate determination of the num-
ber of false alarms. Second, it is the best source of massive attacks known so
far.

Our aim was to compare the results obtained by applying the two variants
of the proposed labelling strategy, with and without the presence of massive at-
tacks. Because of that, the attacks from the KDD CUP databasewere filtered
out in the same way as in [8]. The filtering percentage of 0%, 98% and 99% was
used over all the resource access request records of the database. Without filter-
ing out the attacks (0%), the database simulates many massive attacks, whereas
if the filtering of 98% and 99% of attacks is applied it simulates a situation in
which attacks are rare events. The effectiveness of the system was measured by
means of the ROC (Receiver Operating Characteristic) curves for the filtered
data set mentioned above. A ROC curve depicts the relationship between false
positive rate FPR and true positive rate TPR, where:

FPR =
FP

FP + TN
TPR =

TP

TP + FN
(9)

In the equation (9), FP is the number of false positive outcomes of the in-
trusion detection on a fixed data set, i.e. the number of decisions in which a
non-existing attack is signalled, TP is the number of true positive outcomes, i.e.



successful detections, TN is the number of true negative outcomes, i.e. the num-
ber of decisions, in which a non-existing attack is not signalled, and FN is the
number of false negative outcomes, i.e. the number of decisions, in which an
existing attack is not signalled.

The results concerning the effectiveness of the IDS using the Algorithm 1a
are compared with those obtained using the Algorithm 1b (Fig. 2). The best re-
sults with the Algorithm 1a over the KDD CUP ’99 database wereobtained with
∆S1

= ∆S2
= 0.0001. The best results with the Algorithm 1b over the same

database were obtained with∆CD1
= 500 and∆CD2

= 0. These parameters
for the algorithms 1a and 1b were chosen in order to maximize the system per-
formance on the given data set. Although it may result in overestimation of the
algorithms’ performance, the fact that the test data set contains many DoS at-
tacks makes us expect a similar performance of the algorithms in a real network
containing many similar DoS attacks.

From the Fig. 2, it can be seen that without attack filtering (Fig. 2a), the Al-
gorithm 1a gives better results than the Algorithm 1b. With 98% of the attacks
from the KDD CUP 1999 database filtered out (Fig. 2b), the results obtained
with the Algorithm 1a are still somewhat better. If even moreattacks (99%, Fig.
2c) are filtered out from the KDD CUP 1999 database, the behaviour of the Al-
gorithm 1a and 1b is approximately the same. It is also worth mentioning that
the cardinality-based labelling strategy fails completely with 0% attack filtering
(TPR achieved is below 10%). It behaves better with 98% and 99% attack fil-
tering but that was expected since in those cases the most of the massive attacks
are filtered out.

The time complexity of the Silhouette index computation is quadratic in the
number of vectors involved in the clustering, whereas the time complexity of the
Davies-Bouldin index computation is linear in the number ofclustered vectors.
In the case of the labelling algorithm that uses the Silhouette index, a relatively
small improvement in correctness of the results over the labelling algorithm
that uses the Davies-Bouldin index is penalized with a significant increase in
computational complexity. This may make the labelling algorithm that uses the
Silhouette index unsuitable for real-time IDS operation.

5 Conclusion

In this paper, a new clusters’ labelling strategy was proposed for application in a
multiple classifier intrusion detection system (IDS). Thatstrategy combines the
computation of a quality index of the clustering and the comparison of certain
parameters of the clusters. Two variants of the labelling algorithm were tested.
The first one uses the Silhouette index of the clustering and the silhouettes of the



a)

b)

c)
Fig. 2. ROC curves of the IDS. S - labelling using the Silhouette index; DB - labelling using the

Davies-Bouldin index. Attack filtration: a) 0%, b) 98%, c) 99%



clusters. The second one uses the Davies-Bouldin index of the clustering and the
centroid diameters of the clusters. The aim of the labellingalgorithm is to detect
compact clusters containing very similar vectors that are highly likely to be at-
tack vectors. The response of an IDS using such a labelling strategy to a massive
attack (for example, a Denial-of-Service attack) was tested. In the experiments,
the KDD CUP 1999 database was used as the traffic source because it is the best
source of massive attacks available. Besides, being an artificial test data source,
it guarantees the correct determination of the number of false alarms during the
testing. It was shown experimentally, via ROC curves obtained by applying the
IDS over the KDD CUP 1999 database, that the labelling algorithm that uses
the Silhouette index produces more accurate results than the one that uses the
Davies-Bouldin index. However, the time complexity of the Silhouette index
computation is much greater than the time complexity of the Davies-Bouldin
index computation. Thus in an anomaly detection IDS that uses clustering as
a classification method, the Davies-Bouldin index used in a clusters’ labelling
algorithm has a great advantage over the Silhouette index, regarding the overall
performance.
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