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Abstract. Knowledge discovery in databases or data mining is the semi-
automated analysis of large volumes of data, looking for the relationships
and knowledge that are implicit in large volumes of data and are ’inter-
esting’ in the sense of impacting an organization’s practice. Data mining
and knowledge discovery on large amounts of data can benefit of the
use of parallel computers both to improve performance and quality of
data selection. This paper presents and discusses different forms of par-
allelism that can be exploited in data mining techniques and algorithms.
For the main data mining techniques, such as rule induction, clustering
algorithms, decision trees, genetic algorithms, and neural networks, the
possible ways to exploit parallelism are presented and discussed in detail.
Finally, some promising research directions in the parallel data mining
research area are outlined.

1 Introduction

Today the information overload is a problem like the shortage of information. In
our daily activities we often deal with flows of data much more larger than we
can understand and use. Thus we need a way to sift those data to extract what
is interesting and relevant for our activities. Knowledge discovery in databases,
also called data mining, is the semi-automated analysis of large volumes of data,
looking for the relationships and knowledge that are implicit in large volumes of
data and are ’interesting’ in the sense of impacting an organization’s practice.
Research and development work in the area of knowledge discovery and data
mining concerns the study and definition of techniques, methods, and tools for
the extraction of novel, useful, and implicit patterns from data.

Knowledge discovery in large data repositories can find what is interesting
in them representing it in an understandable way [3]. Mining large data sets
requires large computational resources. In fact, data mining algorithms working
on very large data sets take very long times on conventional computers to get
results. One approach to reduce response time is sampling. But, in some case
reducing data might result in inaccurate models, in some other case is not useful
(e.g., outliers identification). The other approach is parallel computing. High
performance computers and parallel data mining algorithms can offer a very
efficient way to mine very large data sets [8] [17] by analyzing them in parallel.

Is not uncommon to have sequential data mining applications that require
several days or weeks to complete their task. Parallel computing systems can
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bring significant benefits in the implementation of data mining and knowledge
discovery applications by means of the exploitation of inherent parallelism of
data mining algorithms. Data mining and knowledge discovery on large amounts
of data can benefit of the use of parallel computers both to improve performance
and quality of data selection. When data mining tools are implemented on high-
performance parallel computers, they can analyze massive databases in a rea-
sonable time. Faster processing also means that users can experiment with more
models to understand complex data. Furthermore, high performance makes it
practical for users to analyze greater quantities of data.

This paper presents and discusses different forms of parallelism that can be
exploited in data mining techniques and algorithms. The main goal of the paper
is to introduce data mining techniques on parallel architectures and show how
large scale data mining and knowledge discovery applications can be scalable by
using systems, tools and performance offered by parallel processing systems. For
several data mining techniques, such as rule induction, clustering algorithms,
decision trees, genetic algorithms, and neural networks, different strategies to
exploit parallelism are presented and discussed. Furthermore, some experiences
and results in parallelizing data mining algorithms according to different ap-
proaches are discussed. Finally, some promising research directions in parallel
data mining are outlined.

2 Data Mining and Parallel Computing

Main goals of the use of parallel computing technologies in the data mining field
are:

– performance improvements of existing techniques,
– implementation of new (parallel) techniques and algorithms, and
– concurrent analysis using different data mining techniques in parallel and

result integration to get a better model (that is more accurate).

We identify three main strategies in the exploitation of parallelism in data
mining algorithms:

1. independent parallelism,
2. task parallelism,
3. SPMD parallelism.

Independent parallelism is exploited when processes are executed in paral-
lel in an independent way; generally each process has access to the whole data
set and does not communicate or synchronize with other processes. According
to task parallelism (or control parallelism) each process executes different op-
erations on (a different partition of) the data set. Finally, in Single Program
Multiple Data (SPMD) parallelism a set of processes execute in parallel the
same algorithm on different partitions of a data set and processes cooperate
to exchange partial results. These three strategies are not necessarily alterna-
tive for parallelizing data mining algorithms. They can be combined to improve
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both performance and accuracy of results. In combination with strategies for
parallelization, different data partition strategies can be used :

a. sequential partitioning: separate partitions are defined without overlapping
among them;

b. cover-based partitioning: some data can be replicated on different partitions;
c. range-based query partitioning: partitions are defined on the basis of some

queries that select data according to attribute values.

3 Parallelism in Data Mining Techniques

This section presents different parallelization strategies for each data mining
technique and outlines some parallel data mining tools, algorithms or systems.

Table 1 contains the main data mining tasks and for each task the main
techniques used to solve them are listed. In the following sections we describe
different approaches for parallel implementation of some techniques listed in
table 1.

Table 1. Data mining tasks and used techniques

Data Mining Tasks Data Mining Techniques

Classification induction, neural networks, genetic algorithms
Association Apriori, statistics, genetic algorithms
Clustering neural networks, induction, statistics
Regression induction, neural networks, statistics
Episode discovery induction, neural networks, genetic algorithms
Summarization induction, statistics

3.1 Parallel Decision Trees (Parallel Induction)

Classification is the process of assigning new objects to predefined categories
or classes. Decision trees are an effective technique for classification. They are
tree-shaped structures that represent sets of decisions. These decisions generate
rules for the classification of a data set. The tree leaves represents the classes
and the tree nodes represents attribute values. The path from the root to a leaf
gives the features of a class in terms of attributes-values couples.
Task parallel approach. According to the task parallelism approach one

process is associated to each sub-tree of the decision tree that is built to represent
a classification model. The search occurs in parallel in each sub-tree, thus the
degree of parallelism P is equal to the number of active processes at a given
time. A possible implementation of this approach is based on farm parallelism
in which there is a master process that controls the computation and a set of P
workers that are assigned to the sub-trees.
SPMD approach. In the exploitation of SPDM parallelism each process

classifies the items of a subset of data. The P processes search in parallel in the
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whole tree using a partition D/P of the data set D. The global result is obtained
by exchanging partial results. The data set partitioning can be operated in two
main different ways:

– by partitioning the D tuples of the data set: D/P per processor.
– by partitioning the n attributes of each tuple: D tuples of n/P attributes

per processor.

In [11] a parallel implementation of the C4.5 algorithm that use the inde-
pendent parallelism approach is discussed. Other significant examples of parallel
algorithms that use decision trees are SPRINT discussed in [16], and TDIDT
(Top-Down Induction of Decision Trees) [15].

3.2 Discovery of Association Rules in Parallel

Association rule algorithms, such as Apriori, allow automatic discovery of com-
plex associations in a data set. The task is to find all frequent itemsets, i.e. to
list all combinations of items that are found in a sufficient number of examples.
Given a set of transactions D, the problem of mining association rules is to gen-
erate all association rules that have support (how often a combination occurred
overall) and confidence (how often the association rule holds true in the data
set) greater than the user-specified minimum support and minimum confidence
respectively. An example of such a rule might be that ”98% of customers that
purchase tires and auto accessories also get automotive services done”.
SPMD approach. In the SPMD strategy the data set D is partitioned

among the P processors but candidate itemsets I are replicated on each pro-
cessor. Each process p counts in parallel the partial support Sp of the global
itemsets on its local partition of the data set of size D/P . At the end of this
phase the global support S is obtained by collecting all local supports Sp. The
replication of the candidate itemsets minimizes communication, but do not use
memory efficiently. Due to low communication overhead, scalability is good.
Task parallel approach. In this case both the data set D and the candidate

itemsets I are partitioned on each processor. Each process p counts the global
support Si of its candidate itemset Ip on the entire data set D. After scanning its
local data set partition D/P , a process must scan all remote partitions for each
iteration. The partitioning of data set and candidate itemsets minimizes the use
of memory but requires high communication overhead in distributed memory
architectures. Due to communication overhead this approach is not scalable as
the previous one.
Hybrid approaches. Combination of different parallelism approaches can

be designed. For example, SPMD and task parallelism can be combined by defin-
ing C clusters of processors composed of the same number of processing nodes.
The data set is partitioned among the C clusters, thus each cluster is responsible
to compute the partial support Sc of the candidate itemsets I according to the
SPMD approach. Each processor in a cluster uses the task parallel approach to
compute the support of its disjoint set of candidates Ip by scanning the data set
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stored on the processors of its cluster. At the end of each iteration the clusters
cooperate each other to compute the global support S.

The Apriori algorithm [1] is the most known algorithm for association rules
discovery. Several parallel implementations have been proposed for this algo-
rithm. In [2] are presented two different parallel algorithms called Count Distri-
bution (CD) and Data Distribution (DD). The first one is based on independent
parallelism and the second one is based on task parallelism. In [9] are presented
two different parallel approaches to Apriori called Intelligent Data Distribution
(IDD) and Hybrid Distribution (HD). A complete review of parallel algorithms
for association rules can be found in [18].

3.3 Parallel Neural Networks

Neural networks (NN) are a biology-inspired model of parallel computing that
can be used in knowledge discovery. Supervised NN are used to implement clas-
sification algorithms and unsupervised NN are used to implement clustering al-
gorithms. A lot of work on parallel implementation of neural networks has been
done in the past. Theoretically, each neuron can be executed in parallel, but in
practice the grain of processors is generally larger of grain of neurons. Moreover,
the processor interconnection degree is restricted in comparison with neuron in-
terconnection. Hence a subset of neurons is generally mapped on each processor.
There are several different ways to exploit parallelism in a neural network:

1. parallelism among training sessions: it is based on simultaneous execution
of different training sessions,

2. parallelism among training examples: each processor trains the same network
on a subset of 1/P examples,

3. layer parallelism: each layer of a neural network is mapped on a different
processor,

4. column parallelism: the neurons that belong to a column are executed on a
different processor,

5. weight parallelism: weight summation for connections of each neuron is exe-
cuted in parallel.

These parallel approaches can be combined to form different hybrid paral-
lelization strategies. Different combinations can raise different issues to be faced
for efficient implementation such as interconnection topology, mapping strate-
gies, load balancing among the processors, and communication latency.

Typical parallelism approaches that are used for the implementation of neural
networks on parallel architectures are task parallelism, SPMD parallelism, and
farm parallelism.

Clementine is a parallel data mining system based on neural nets. Several
task-parallel implementations of back-propagation networks parallel implemen-
tations of a Self-organizing maps have been implemented for data mining tasks.
Finally, Neural Network Utility (NNU) [4] is neural network-based data mining
environment that has been also implemented on a IBM SP2 parallel machine.
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3.4 Parallel Genetic Algorithms

Genetic algorithms are used today for several data mining tasks such as classifi-
cation, association rules, and episode discovery. Parallelism can be exploited in
three main phases of a genetic algorithm:

– population initialization,
– fitness computation, and
– execution of the mutation operator,

without modifying the behavior of the algorithm in comparison to the sequential
version. On the other hand, the parallel execution of selection and crossover
operations requires the definition of new strategies that modify the behavior (and
results) of a genetic algorithm in comparison to the sequential version. The most
used approach is called global parallelization. It is based on the parallel execution
of the fitness function and mutation operator while the other operations are
executed sequentially. However, the are two possible SMPD variants:

a. Each processor receives a subset of elements and evaluates their fitness using
the entire data set D.

b. Each processor receives a subset D/P of the data set and evaluates the fitness
of every population element (data item) on its local subset.

Global parallelization can be effective when very large data sets are to be
mined. This approach is simple and has the same behavior of its sequential
version, however its implementations did not achieve very good performance and
scalability on distributed memory machines because of communication overhead.

Two different parallelization strategies that can change the behavior of the
genetic algorithm are the island model (coarse grained) where each processor
executes the genetic algorithm on a subset N/P of elements (sub-demes) and
periodically the best elements of a sub-population are migrated towards the other
processors, and the diffusion model (fine grained) where population is divided
in a large number of sub-populations composed of few individuals (D/n where
n >> P ) that evolve in parallel. Several subsets are mapped on one processor.
Typically, elements are arranged in a regular topology (e.g., a grid). Each element
evolves in parallel and executes the selection and crossover operations with the
neighbor elements.

A very simple strategy is the independent parallel execution of P independent
copies of a genetic algorithm on P processors. The final result is selected as the
best one among the P results. Different parameters and initial populations should
be used for each copy. In this approach there is no communication overhead. The
main goal here is not getting a higher performance but a better accuracy. Some
significant examples of data mining systems based on the parallel execution of
genetic algorithms are GA-MINER, REGAL [13], and G-NET.

3.5 Parallel Cluster Analysis

Clustering algorithms arrange data items into several groups, called clusters so
that similar items fall into the same group. This is done without any suggestion
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from an external supervisor, so classes are not given a priori but they must be
discovered by the algorithm. When used to classify large data sets, clustering
algorithms are very computing demanding.

Clustering algorithms can roughly be classified into two groups: hierarchical
and partitioning models. Hierarchical methods generate a hierarchical decompo-
sition of a set of N items represented by a dendogram. Each level of a dendogram
identifies a possible set of clusters. Dendograms can be built starting from one
cluster and iteratively this cluster is split until N clusters are obtained (divi-
sive methods) or starting with the N clusters and at each step two clusters are
merged until only one is left (agglomerative methods).

Partitioning methods divide a set of objects into K clusters using a distance
measure. Most of these approaches assume that the number K of groups has
been given a priori. Usually these methods generate clusters by optimizing a
criterion function. The K-means clustering is a well-known and effective method
for many practical applications that employs the squared error criterion.

Parallelism in clustering algorithms can be exploited both in the clustering
strategy and in the computation of the similarity or distance among the data
items, by computing on each processor the distance/similarity of a different
partition of items. In the parallel implementation of clustering algorithms the
three main parallel strategies described in section 2 can be exploited.
Independent parallel approach. Each processor uses the whole data set D

and it performs a different classification based on a different number of clusters
Kp. To get the load among the processors balanced, until the clustering task
is complete a new classification is assigned to a processor that completed its
assigned classification.
Task parallel approach. Each processor executes a different task that com-

poses the clustering algorithm and cooperates with other processors exchanging
partial results. For example, in partitioning methods processors can work on
disjoint regions of the search space using the whole data set. In hierarchical
methods a processor can be responsible of one or more clusters. It finds the
nearest neighbor cluster by computing the distance among its cluster and the
others. Then all the local shortest distances are exchanged to find the global
shortest distance between two clusters that must be merged. The new cluster
will be assigned to one of the two processors that handled the merged clusters.
SPMD approach. Each processor executes the same algorithm on a differ-

ent partition D/P of the data set to compute partial clustering results. Local
results are then exchanged among all the processors to get global values on every
processor. The global values are used in all processors to start the next cluster-
ing step until a convergence is reached or a given number of steps are executed.
The SPMD strategy can be also used to implement clustering algorithms where
each processor generates a local approximation of a model (classification) that
at each iteration can be passed to the other processors that can use it to improve
their clustering model.

In [14] it can be found a set of hierarchical clustering algorithms and an
analysis of time complexity on different parallel architectures. An example of
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parallel implementation of a clustering algorithm is P-CLUSTER [10]. Other
parallel clustering algorithms are discussed in [5], [12], and [7]. In particular, in
[7] an SPDM implementation of the AutoClass algorithm, named P-AutoClass
is described. The paper shows interesting performance results on distributed
memory MIMD machines. Table 2 shows experimental performance results we
obtained by running P-AutoClass on a parallel machine using up to 10 proces-
sors for clustering a data set composed of 100,000 tuples with two real valued
attributes. In particular, table 2 contains execution times (in secs) and absolute
speedup on 2, 4, 6, 8 and 10 processors. We can observe as the system behavior
is scalable; speedup on 10 processors is about 8 and execution time significantly
decreases from 245 to 31 minutes.

Table 2. Execution time and speedup of P-AutoClass

Processors Execution Time (secs) Speedup

1 14683 1.0
2 7372 2.0
4 3598 4.1
6 2528 5.8
8 2248 6.5
10 1865 7.9

4 Architectural Issues

In presenting the different strategies for the parallel implementation of data
mining techniques we not addressed architectural issues such as

– distributed memory versus shared memory implementation,
– interconnection topology of processors,
– optimal communication strategies,
– load balancing of parallel data mining algorithms,
– memory usage and optimization, and
– I/O impact on algorithm performance.

These issues (and others) must be taken into account in the parallel im-
plementation of data mining techniques. The architectural issues are strongly
related to the parallelization strategies and there is a mutual influence between
the knowledge extraction strategy and the architectural features. For instance,
increasing the parallelism degree in some case corresponds to an increase of the
communication overhead among the processors. However, communication costs
can be also balanced by the improved knowledge that a data mining algorithm
can get from parallelization. At each iteration the processors share the approx-
imated models produced by each one of them. Thus each processor executes a
next iteration using its own previous work and also the knowledge produced by
the other processors. This approach can improve the rate at which a data min-
ing algorithm finds a model for data (knowledge) and make up for lost time in
communication.
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5 Research Issues and Directions

Parallel execution of different data mining algorithms and techniques can be
integrated to obtain a better model not just to get high performance but also
high accuracy. Here we list some promising research issues in the parallel data
mining area:

– It is necessary to develop environments and tools for interactive high perfor-
mance data mining and knowledge discovery;

– The use of parallel knowledge discovery techniques in text mining must be
extensively investigated;

– Parallel and distributed Web mining is a very promising area for explointing
high-performance computing techniques;

– The integration of parallel data mining techniques with parallel data ware-
houses is a crucial aspect for private enterprizes and public organizations.

Besides these very promising area we would like to mention the importance
of the integrated use of clusters and grids for distributed and parallel knowl-
edge discovery. Grid integrated clusters of computers that execute the same
or different data mining or KDD algorithms can be seen as a massively par-
allel computers that mine very large data sets. The development of software
architectures, environments and tools for grid-based data mining will result in
Grid-aware parallel and distributed knowledge discovery (PDKD) systems that
will support high performance data mining applications on geographically dis-
tributed data sources. In [6] is described an architecture, named KNOWLEDGE
GRID, for PDKD systems that is built on top of computational grid services
that provide dependable, consistent, and pervasive access to high-end computa-
tional resources. The KNOWLEDGE GRID architecture uses the grid services
and defines a set of additional layers to implement the services of distributed
knowledge discovery process on grid-connected sequential or parallel computers.

6 Conclusion

Applications in the area of data management and analysis show the highest
growth rate among the applications developed on parallel computing machines.
However, industrial, commercial, and government data mining success stories
tend not to be publicized. Parallel and distributed data mining will play a more
and more important role for data analysis and knowledge extraction in several
application contexts analysis of scientific data mining of commercial, business
and financial databases data extraction and decision support for government and
public departments.

Data mining algorithms and underlying techniques can be parallelized to
make them effective in the analysis of very large data sets. Several parallel strate-
gies, algorithms, techniques, prototypes have been developed in the recent years.
They allow researchers and end-users to mine large databases offering scalable
performance. Nevertheless many promising research issues need to be faced and
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interesting directions must be explored. Knowledge discovery is an area in which
parallel computing can be used in a very profitable way. In fact, in this setting
parallelism is exploited not only for quantitative computing, as occurs in many
scientific computing applications, but also for qualitative computing.
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