
A Survey of Tra�c Characterization Techniquesin Telecommunication NetworksA. Rueda� and W. Kinsner�Telecommunications Research Laboratories Dept. of Electrical and Computer Engineering10-75 Scur�eld Boulevard University of ManitobaWinnipeg MB, R3Y 1P6, CANADA Winnipeg MB, R3T 5V6, CANADAarueda@win.trlabs.ca kinsner@ee.umanitoba.caJuly 30, 1996Abstract 1This paper presents a survey of existing tech-niques for tra�c characterization in telecommuni-cation networks with the objective of providing aframework for further research. Tra�c characteri-zation is an important aspect that has to be con-sidered for e�cient network management and con-trol. This is specially important for the emerg-ing B-ISDN, because the variety of sources and thenature of the multimedia information that thesenetworks carry complicate the resource allocationproblem. This paper provides a brief discussionand a list of tra�c characterization references.Keywords: Tra�c characterization; broadbandnetworks; ATM.I. IntroductionThe tra�c characterization techniques for broad-band networks found in the literature can beclassi�ed by the nature of the tra�c descrip-tors into the following categories: autoregressivemoving average (ARMA) models, Bernoulli pro-cess models, Markov chain models, neural networkmodels, self-similar models, spectral characteriza-tion, transform-expand-sample (TES) models, traf-�c 
ow models, and wavelet models.The following section provides an overview of thetechniques and their applications. For more detailssee the list of references provided.1Proceedings of the 1996 IEEE Canadian Conference onElectrical and Computer Engineering, Calgary, Canada, vol.II, pp. 830-833, May 1996.

II. Review of the TechniquesThe traditional tra�c descriptors are those usedin the statistical multiplexing process implementedin the asynchronous transfer mode (ATM) which isthe standard for B-ISDN. Among them, the mean,peak and sustained rates, burst length, and cell-loss ratio have been extensively used (Paxson andFloyd [57]). These values capture only �rst-orderstatistics, and a need has been identi�ed for de-scriptors that provide more information in orderto describe highly correlated and bursty multime-dia tra�c (Veitch [59]).The natural approach is the use of traditionaltra�c 
ow models which are useful in modeling ofnodes (Caceres et al. [51], Chen and Mandelbaum[52]). Other concepts like packet-trains (Jain [53])have also been proposed.Di�erent kinds of stochastic models reported inthe literature have successfully been used in model-ing tra�c. For example, Markov chains are a usefultool in modeling communication systems (He�esand Lucatoni [10]). It is widely accepted that theshort-term arrival processes in telecommunicationnetworks can be accurately described by Poissonprocesses, for example an FTP control connectionwhich can be modeled as a Markovmodulated Pois-son process (MMPP) (Paxson and Floyd [57]).However, it has been identi�ed that the long-range dependencies found in multimedia tra�ccan be better described using the concept of self-similarity (Beran et al. [22], Addie and Zukerman[20], Leland et al. [34]) and autoregressive inte-grated moving average (ARIMA) models (Box and1



Jenkins [1], Grunenfelder et al. [3], and Yegenoglu[4]), for example the FTP data communication ar-rivals (Paxson and Floyd [57]).The concept of self-similarity (more accuratelyself-a�nity) also known as fractality, was intro-duced by Mandelbrot [36] for the analysis of com-munication systems, as well as the concept of frac-tional Brownian noise [37]. Since then, these con-cepts have played a key role in compression tech-niques in signal processing and more recently in theanalysis of network tra�c ([20]-[40]). These mod-els can capture long-term dependencies in tra�c,which allows the use of higher order statistical mea-sures as descriptors. A summary of fractal tech-niques has been presented by Kinsner [32].Self-similarity refers to the property of an ob-ject to maintain certain characteristics when ob-served at di�erent scales. The concepts of long-term dependency and self-similarity have been ex-tensively studied by Taqqu [39]. Addie et al. [20]proposed the use of the term fractality in the sensethat the autocovariance of the tra�c exhibits self-similarity. Other self-similar models include frac-tional ARIMA processes (Grange and Joyeux [27]).Self-similarmodels have been applied in variable-bit-rate (VBR) video (Beran et at. [22], Garrettand Willinger [26], Huang et al. [29], and McLarenand Nguyen [38]), LAN tra�c Chen et al. [24],Dueck [25], and Leland et al. [34] [35]), tra�cgeneration (Garrett and Willinger [26], Huang etal. [28], Lau et al. [33]), progressive image codingfor packet-switching communications (Carlini et al.[23]), and estimation from noisy data (Kaplan andKuo [30]).Another approach suitable for modeling VBRvideo is based on TES models (Lee [46], Melamedet al. [47]-[49], Lambadaris et al. [45]). Thisapproach takes advantage of the fact that succes-sive video frames change very little and only scenechanges or other abrupt changes can cause ratechange in the video. Theoretical descriptions ofthe technique can be found in Fang et al. [42]and Lambadaris [45], and references therein. Anapplication of TES to modeling MPEG video hasbeen provided by Ismail et al. [44], and a softwaremodeling tool has been introduced by Geist andMelamed [43]. TES models can also be used togenerate tra�c (Frost and Melamed [56]).Neural networks have also been applied in tra�cmodeling in telecommunications for their ability toclassify (Lippmann [15]) and implement nonlinear

mappings. A review of training algorithms havebeen presented by Hiramatsu [14] and applicationsin communications have been discussed by Posner[18]. Neural networks are specially suitable for pre-diction (Neves [17]) and control (Necker [16] andTarraf [19]).Frequency domain techniques like spectral anal-ysis has also been applied to model wide-band in-put processes in ATM networks (Alqaed and Chang[41]). In addition, wavelet coding has also been ex-plored. Wavelets provide a convenient way to de-scribe signals in the time-frequency domain (Schi�[55]). These have been applied with techniques likeweighted �nite automata, vector quantization, self-organizing maps, and simulated annealing (Frostand Melamed [56]).Other surveys in the area have been presentedby Frost and Melamed [56], Paxson and Floyd [57],Sen et al. [58], and Veitch [59].III. ConclusionsAs a result of this survey, we observed that themodeling techniques for multimedia tra�c that arecurrently attracting the attention of the commu-nity are self-similarity and TES modeling. This isdue to the need to describe the complex nature ofthe non-uniform tra�c. In addition, neural net-work techniques can be very useful for predictionand control.The authors hope that this survey will providethe reader with useful information on the currenttechniques for tra�c modeling in broadband net-works. IV. AcknowledgmentThe authors gratefully acknowledge the informa-tion provided by Je� Diamond for this survey.References[1] G. Box andG. Jenkins,Time Series Analysis: Forecast-ing and Control. Englewood Cli�s, NJ: Prentice-Hall,1976.ARMA Models[2] M. Nomura, T. Fujii, and N. Ohta, \Basic characteris-tics of variable rate video coding in ATM environment",IEEE J. on Selec. Areas Commun., vol. 7, no. 5, June1989.[3] R. Grunenfelder, J. Cosmas, S. Manthorpe, A. Odinma-Okafor, \Characterizationof video codecs as autoregres-2
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