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Abstract !

This paper presents a survey of existing tech-
niques for traffic characterization in telecommuni-
cation networks with the objective of providing a
framework for further research. Traffic characteri-
zation 1s an important aspect that has to be con-
sidered for efficient network management and con-
trol. This is specially important for the emerg-
ing B-ISDN, because the variety of sources and the
nature of the multimedia information that these
networks carry complicate the resource allocation
problem. This paper provides a brief discussion
and a list of traffic characterization references.
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I. Introduction

The traffic characterization techniques for broad-
band networks found in the literature can be
classified by the nature of the traffic descrip-
tors into the following categories: autoregressive
moving average (ARMA) models, Bernoulli pro-
cess models, Markov chain models, neural network
models, self-similar models, spectral characteriza-
tion, transform-expand-sample (TES) models, traf-
fic flow models, and wavelet models.

The following section provides an overview of the
techniques and their applications. For more details
see the list of references provided.

IProceedings of the 1996 IEEE Canadian Conference on
Electrical and Computer Engineering, Calgary, Canada, vol.
II, pp. 830-833, May 1996.

II. Review of the Techniques

The traditional traffic descriptors are those used
in the statistical multiplexing process implemented
in the asynchronous transfer mode (ATM) which is
the standard for B-ISDN. Among them, the mean,
peak and sustained rates, burst length, and cell-
loss ratio have been extensively used (Paxson and
Floyd [57]). These values capture only first-order
statistics, and a need has been identified for de-
scriptors that provide more information in order
to describe highly correlated and bursty multime-
dia traffic (Veitch [59]).

The natural approach 1s the use of traditional
traffic flow models which are useful in modeling of
nodes (Caceres et al. [51], Chen and Mandelbaum
[52]). Other concepts like packet-trains (Jain [53])
have also been proposed.

Different kinds of stochastic models reported in
the literature have successfully been used in model-
ing traffic. For example, Markov chains are a useful
tool in modeling communication systems (Heffes
and Lucatoni [10]). Tt is widely accepted that the
short-term arrival processes in telecommunication
networks can be accurately described by Poisson
processes, for example an FTP control connection
which can be modeled as a Markov modulated Pois-
son process (MMPP) (Paxson and Floyd [57]).

However, it has been identified that the long-
range dependencies found in multimedia traffic
can be better described using the concept of self-
similarity (Beran et al. [22], Addie and Zukerman
[20], Leland et al. [34]) and autoregressive inte-
grated moving average (ARIMA) models (Box and



Jenkins [1], Grunenfelder et al. [3], and Yegenoglu
[4]), for example the FTP data communication ar-
rivals (Paxson and Floyd [57]).

The concept of self-similarity (more accurately
self-affinity) also known as fractality, was intro-
duced by Mandelbrot [36] for the analysis of com-
munication systems, as well as the concept of frac-
tional Brownian noise [37]. Since then, these con-
cepts have played a key role in compression tech-
niques in signal processing and more recently in the
analysis of network traffic ([20]-[40]). These mod-
els can capture long-term dependencies in traffic,
which allows the use of higher order statistical mea-
sures as descriptors. A summary of fractal tech-
niques has been presented by Kinsner [32].

Self-similarity refers to the property of an ob-
ject to maintain certain characteristics when ob-
served at different scales. The concepts of long-
term dependency and self-similarity have been ex-
tensively studied by Taqqu [39]. Addie et al. [20]
proposed the use of the term fractality in the sense
that the autocovariance of the traffic exhibits self-
similarity. Other self-similar models include frac-
tional ARTMA processes (Grange and Joyeux [27]).

Self-similar models have been applied in variable-
bit-rate (VBR) video (Beran et at. [22], Garrett
and Willinger [26], Huang et al. [29], and McLaren
and Nguyen [38]), LAN traffic Chen et al. [24],
Dueck [25], and Leland et al. [34] [35]), traffic
generation (Garrett and Willinger [26], Huang et
al. [28], Lau et al. [33]), progressive image coding
for packet-switching communications (Carlini et al.
[23]), and estimation from noisy data (Kaplan and
Kuo [30]).

Another approach suitable for modeling VBR
video is based on TES models (Lee [46], Melamed
et al. [47]-[49], Lambadaris et al. [45]). This
approach takes advantage of the fact that succes-
sive video frames change very little and only scene
changes or other abrupt changes can cause rate
change in the video. Theoretical descriptions of
the technique can be found in Fang et al. [42]
and Lambadaris [45], and references therein. An
application of TES to modeling MPEG video has
been provided by Ismail et al. [44], and a software
modeling tool has been introduced by Geist and
Melamed [43]. TES models can also be used to
generate traffic (Frost and Melamed [56]).

Neural networks have also been applied in traffic
modeling in telecommunications for their ability to
classify (Lippmann [15]) and implement nonlinear

mappings. A review of training algorithms have
been presented by Hiramatsu [14] and applications
in communications have been discussed by Posner
[18]. Neural networks are specially suitable for pre-
diction (Neves [17]) and control (Necker [16] and
Tarraf [19]).

Frequency domain techniques like spectral anal-
ysis has also been applied to model wide-band in-
put processes in ATM networks (Algqaed and Chang
[41]). In addition, wavelet coding has also been ex-
plored. Wavelets provide a convenient way to de-
scribe signals in the time-frequency domain (Schiff
[55]). These have been applied with techniques like
weighted finite automata, vector quantization, self-
organizing maps, and simulated annealing (Frost
and Melamed [56]).

Other surveys in the area have been presented
by Frost and Melamed [56], Paxson and Floyd [57],
Sen et al. [58], and Veitch [59].

IT1. Conclusions

As a result of this survey, we observed that the
modeling techniques for multimedia traffic that are
currently attracting the attention of the commu-
nity are self-similarity and TES modeling. This is
due to the need to describe the complex nature of
the non-uniform traffic. In addition, neural net-
work techniques can be very useful for prediction
and control.

The authors hope that this survey will provide
the reader with useful information on the current
techniques for traffic modeling in broadband net-
works.
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