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Abstract

Real-time language comprehension is an important area of fo-
cus for a candidate unified theory of cognition. In his 1987
William James lectures, Allen Newell sketched the beginnings
of a comprehension theory embedded in the Soar architecture.
This theory, NL-Soar, has developed over the past few years
into a detailed computational model that provides an account
of arange of sentence-level phenomena: immediacy of inter-
pretation, garden path effects, unproblematic ambiguities, pars-
ing breakdown on difficult embeddings, acceptable embedding
structures, and both modular and interactive ambiguity reso-
lution effects. The theory goes beyond explaining just a few
examples, it addressesover 80 different kinds of constructions.
Soar is not merely an implementation language for the model,
but playsacentral theoretical role. The predictive power of NL-
Soar deriveslargely from architectural mechanismsand princi-
plesthat shapethe comprehension capability so that it meetsthe
real time constraint.

I ntroduction

IN HIS 1987 WILLIAM JAMES LECTURES, Allen Newell
sketched the beginnings of a comprehension theory em-
bedded in the Soar architecture (Newell, 1990; Rosen-
bloom et a., 1993, this volume). This theory, NL-Soar,
has developed over the past few years into a detailed
computational model that provides an account of arange
of important sentence-level phenomena: immediacy of
interpretation, interactive and modular ambiguity reso-
[ution effects, garden path effects, unproblematic ambi-
guities, parsing breakdown on difficult embeddings and
acceptable embedding structures. Thus, NL-Soar shares
the goal of unified, broad coverage with a number of
recent theories in psychology, linguistics, and computa-
tional linguistics(Just and Carpenter, 1987; Gibson, 1991;
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Pritchett, 1992; Jurafsky, 1992).

How should Soar comprehend language? A modu-
lar approach to mental architecture (e.g., (Fodor, 1983))
might suggest adding a separate language modul e to Soar.
Thisapproach is perfectly consistent with Soar, since the
working memory can act as a bus that admits additional
processing modules (Newell, 1990). However, by tak-
ing this approach, we miss the opportunity of discov-
ering ways in which comprehension shares architectural
mechanisms with the rest of cognition. The approach we
have taken with NL-Soar (Lehman et a., 1991; Newell,
1990) isto construct amodel that embeds comprehension
within Soar. In the following sections, we examine how
the architecture, along with the functional requirements
of real-time comprehension, shape the NL-Soar model.

Immediacy of interpretation

Our subjective experience is that we comprehend lan-
guage incrementally, understanding each word as it is
heard or read. As a hypothesis about the comprehension
process, this has been advanced as the principle of im-
mediacy of interpretation, and it is supported by much
experimental evidence. Thisimmediacy requirement ex-
tends to syntactic, semantic, and referential processing
(e.g., (Marslen-Wilson, 1975; Just and Carpenter, 1987)).

Real-time immediacy constrains NL-Soar because
Soar as a cognitive theory specifies approximate time
constants for architectural processes. The most rapid
operators take ~50-100 ms (Newell, 1990)%. To attain
reading or listening rates of 200-300 words per minute,
NL-Soar must comprehend each word with just a few
(~3-6) operators.

Figure 1 shows how the basic organization of NL-
Soar respondsto thisconstraint. Inthetop space, compre-
hension operators apply to the incoming words. These
operators incrementally build up two structures in work-
ingmemory: thesituationmodel, representingthe content

1This is a mapping of Soar architectural mechanisms onto human
constants, not a statement about actual computer system run times.



of thediscourse, and the utterance model, representing the
syntactic structure of the utterance. To achieve recogni-
tional comprehension, themultipleknowledge sourcesre-
quired to implement the operators must be directly avail-
able in Soar’s recognition memory. In previous work,
we have demonstrated that it is possible to deliberately
implement these operators in lower problem spaces that
represent syntactic, semantic, and referential knowledge.
For example, the syntax space contains link operators
that establish structural relations in the utterance model.
Constraints on these operators are represented indepen-
dently in still lower spaces. Chunking over this deliber-
ate process produces operators that recognitionally apply
the separate knowledge sources (Lehman et al., 1991).
The computational benefits are real: over a corpus of 61
sentences (designed to test syntactic coverage, not tuned
to maximize chunk transfer) NL-Soar moved from com-
prehending no words by recognition to comprehending
~80% of thewordsrecognitionally (i.e., withoutimpasse)
(Steier et al., 1993). While thisdoes not provide a theory
of initial language acquisition, it does demonstrate that
chunking is capable of producing comprehension opera-
torsthat satisfy thereal time constraint.

Ambiguity resolution:
interactiveand modular effects

A theory of comprehension must specify what knowledge
isbrought to bear in resolving local ambiguities, and how
and when that knowledge is brought to bear. The nature
of ambiguity resolution is at the heart of the modularity
debate in sentence processing: is there an autonomous
syntactic parser that operates without appeal to other
knowledge sources, or is comprehension an interactive
process in which multiple knowledge sources (including
syntax) interact rapidly to produce the meaning?
Theempirical resultsare mixed: anumber of studies
have demonstrated the effect of semantics (e.g., (Just and
Carpenter, 1992)) and context (e.g., (Tyler and Marslen-
Wilson, 1977), and a number of studies have demon-
strated the lack of such effects (e.g., (Ferreiraand Clifton,
1986)). Theories that account for both modular and in-
teractive effects are just beginning to emerge (Just and
Carpenter, 1992; Brittet al., 1992; Holbrook et a., 1992).
Before examining ambiguity in NL-Soar, consider
the structure of comprehension operators in somewhat
more detail. Figure 1 shows that comprehension opera-
torsfall into separate classes. u-constructors build up the
utterance model (the syntactic structure of the utterance),
and s-constructors build up the situation model (the se-
mantic content of the utterance). (Not shown are the ref-
erential operators which perform reference resolution.)?

2Decomposingthe knowledgethisway acrossdifferent operators (as
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Figure 1: Structure of NL-Soar.

How does ambiguity arise? Choice points arise in
problem spaces when multiple operators are applicable at
agivenstate. Thus, syntacticambiguity inNL-Soar arises
when multiple u-constructors (corresponding to different
syntactic paths) propose themselves. This generation of
multiplealternatives occursin parallel, since associations
in the recognition memory fire in parallel. The selection
of the appropriate operator may now be effected by search
control associations that encode semantic and contextual
knowledge. Asanexample, consider how NL-Soar might
model the Crain and Steedman (1985) experiment, which
demonstrated that referential context may affect the res-
olution of certain ambiguities. The following paragraph
(adapted from the original material) illustrates:

A psychologist was counseling two students.
The psychologist argued with one student. The
other student remained quiet. The psychologist
told the student that he argued with that the
horse raced past the barn.

The that in the final sentence introduces a clause which
could be taken as the complement of told or a restrictive
relative clause modifying student. When the NP iden-
tified more than one referent (as student does), subjects

opposedto asinglefully integrated comprehensionoperator asin earlier
versions of NL-Soar) increases the generality of the resulting proposal
rules, which should increase the asymptotic efficiency of the system.
Further data from the implemented system is required to fully explore
thisissue.



contextual
selection knowledge
Y t

/ studentl
student2

Figure 2: Ambiguity resolution in NL-Soar.

interpreted the clause following the NP as a relative.

Figure 2 shows what happens when NL-Soar reads
this paragraph. Comprehension of the initial sentences
produces a situation model with a psychologist and two
students. At that, two operators are proposed correspond-
ing to the complement and relative clause readings. A
search control association sensitiveto thejust-constructed
model—that there are two students—then guides the in-
terpretation down the correct path.

Such beneficial effects of context and semantics de-
pend on having the appropriate search control associa-
tions immediately available, but there is nothing in the
architecture of NL-Soar that guarantees this will be the
case. Indeed, if the relevant associations have not yet
been learned, then NL-Soar may yield classic modularity
effects since it cannot bring to bear all the appropriate
knowledge sources in real-time.

The set of u-constructors exhibits many character-
istics of an autonomous syntax module (Lewis, 1993).
Thus, NL-Soar has much in common with theories
proposing a syntax module that generates alternative
structures in parallel, arbitrated by semantic/contextual
knowledge sources (e.g., (Warner and Glass, 1987)). In
NL-Soar, however, the parallelism and fine-grained con-
trol arise directly from Soar’s recognition memory and
control structure. NL-Soar also makes novel qualitative
predictions about the potential effect of learning. The
more novel the semantic content and context for an ut-
terance, the more likely modular effects will arise. The
corollary prediction is that modularity effects can be re-
duced with the right kind of experience.

Garden path effects
and unproblematic ambiguities

A garden path effect arises when a reader or listener at-
temptsto comprehend agrammatical sentencewithalocal
ambiguity, misinterprets the ambiguity, and is unable to

NP-modifier/relative: The Russian women loved died.

Short reduced relative: The boat floated sank.

Object/subject specifier: | convinced her professorshate me.
Object/object: Sue gavethe man racing the car.

Prep object/verb object (German): da der Entdecker von

Amerika erst im 18 Jahrhundert erfahren hat (“that the dis-
coverer originally learned of Americain the 18th century”)

Figure 3: Some garden path constructions.

NP/NP specifier: Without her we failed. Without her contribu-
tions wefailed.

Noun/adjective: The squareisred. The square tableisred.
Doubleobject: | gaveher earrings. | gave her earringsto Sally.

Long distance gaps. Who do you believe? Who do you believe
John suspects Seve knowsBill hates?

Multiple compounding: Weadmiretheir intelligence. Weadmire
their intelligence agency policy decisions.

Figure 4: Some unproblematic ambiguities.

recognitionally recover the correct interpretation. There-
sult is an impression that the sentence is ungrammatical.
The classic example (1) is due to Bever (1970):

(1) #The horse raced past the barn fell.

The subjective experience provides compelling linguistic
evidence for the difficulty of these sentences, but addi-
tional evidence comes from reading times and grammat-
icality judgments (e.g., (Warner and Glass, 1987)). The
reduced relative constructionin (1) isbut one kind of gar-
den path; Figure 3 provides a sample of a collection of
over 25 different types (see also (Gibson, 1991; Pritchett,
1992; Lewis, 1992)).

Unproblematic ambiguities provide data that com-
plementsthe garden path constructions. Consider thepair
of sentencesin (2):

(2) (@ I know John very well.
(b) 1 know Johnisnice.

There is aloca ambiguity at John, since it could be the
direct object of know or the subject of anincoming clause.
Regardless of the final outcome, the sentence causes no
perceptible processing difficulty. Figure 4 provides a
sample of acollection of over 30 unproblematic ambigu-
ities.

Since NL-Soar is a single path comprehender, there
must be some capability for reanalysis in case a wrong
pathistaken. The reanalysis mechanism must work sat-
isfy several constraints. 1) It must be powerful enough
to handle the range of unproblematic ambiguities, but not



so powerful that it failsto predict the garden path effects.
2) It must work with the given inconsi stent syntactic state
(there are no previous states to backtrack to). 3) It must
be real-time (a part of recognitional comprehension) 4) It
must work without reprocessing the input (Lewis, 1992).

NL-Soar’s reanalysis mechanism is simple destruc-
tive repair. It consists of a single operator, snip, that
breaks a syntactic link in the utterance model. Snip ex-
istsin the implementation space for u-constructors along
withthelink operators (Figure 1). Through chunking, the
reanalysis process becomes part of the top-level compre-
hension operators, yielding recognitional repair.

Proposing a snip for every syntactic relation in the
utterance model would lead to alarge set of operatorsin
working memory. Such undiscriminated sets permit the
generation of exponential cross products in the recogni-
tion match (Tambe et al., 1990). This expensive chunk
problem is a non-trivial effect observed in implemented
Soar systems, including early versions of NL-Soar. The
resulting slowdown compromises a basic assumption of
Soar that the recognition match is an efficient process.
This jeopardizes the ability of the model to satisfy the
real-timeimmediacy constraint.

To control this overgeneration, snips are only pro-
posed for relations local ® to a node where a problem has
been detected. For example, consider the repair process
for (2b) in Figure 5. Part (@) of the figure shows the syn-
tactic structure after comprehending | know John: John
is in the complement position of know*. Link operators
are permitted to assign constituentsto structural positions
regardless of whether the positionsare occupied or not (as
long as thelink isgrammatical). Thus, whenisarrives, it
is projected to a sentential phrase and linked to comple-
ment position of know (b). An inconsistency is detected
at the VP node (boxed in the figure): two constituentsoc-
cupying the same structural position. A snip operator is
proposed to break the duplicate link, whichislocal to the
VP, Thisreleases the NP John (c), which is then attached
as the subject of is, completing the repair (d).

Figure 6 shows the structure that results from pro-
cessing a subj ect/object ambiguity which, unlike (2), does
cause processing difficulty:

(3) #Since Jay always jogs a mile seems light work.

Inthiscase, thefronted clause Since Jay alwaysjogs
a mile is adjoined to the S projected from seems, but
processing then reaches a dead end. The appropriate snip
(removing mile) is not generated since it is not local to
the detected problem (the S with the missing subject).

In addition to duplicate relations, two other incon-
sistencies may generate snips. missing obligatory con-

SMoreprecisely, local tothemaximal projection containingthenode.
4Thisfigure is asimplification of the actual phrase structure used in
NL-Soar, which correspondsto X-Bar syntax (Chomsky, 1986).
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Figure 5: Simple destructive repair.
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Figure 6: Failuretorepair.

stituents, and attachment to competing syntactic senses of
thesamelexical item. Thelatter permitstherepair mecha-
nismto extend inasimpleway to cover reanalysisinvolv-
ing lexical categorial ambiguity (e.g., the noun/adjective
ambiguity in Figure 4).

NL-Soar's simple repair mechanism accounts for
over 50 garden path constructionsand unproblematic am-
biguities (including all of the examples listed in Tables 3
and 4)°. These predictions were primarily derived by
hand-simulation; implementation of the new system is
underway.

Parsing breakdown
and acceptable embeddings

Some constructions without structural ambiguity are dif-
ficult to comprehend. Consider the center-embedded sen-
tence (4):

(4) #The man that the woman that the dog bit likes
eats fish.

5The best-known GP construction unaccounted for is the argu-
ment/adjunct ambiguity: #The patient persuaded the doctor that he
was having trouble with to leave. The phenomena surrounding argu-
ment/adjunct ambiguities are fairly complex; these constructions will
be an areafor future research.



NP complement embedded in relative clause: The man who the
possihility that students are dangerous frightensis nice.

Wh-question with subject-relative: Who did Johndonatethefur-
niture that the repairman that the dog bit found to?

Cleft with modified NP complement: It is the enemy’s defense
strategy that the information that the weaponsthat the govern-
ment built didn’'t work properly affected.

Though-preposing with modified NP complements:
Surprising though the information that the weapons that the
government built didn’t work properly was, no one took advan-
tage of the mistakes.

Figure 7: Some embeddings causing breakdown.

Left-branching: My cousin’s aunt’sdog'stail fell off.

Pseudo-cleft with relative: What the woman that John married
likes is smoked salmon.

Post-verbal untensed sentential subject (SS): | believe that for
John to smoke would annoy me.

4-NPinitia (Japanese): John-wa Fred-gabiiru-o Dave-ni ageta
koto o kiita. (“ John heard that Fred gave beer to Dave.” )

Figure 8: Some acceptable embeddings.

In general, people have trouble beyond one level of em-
bedding. This difficulty has been empirically verified
with grammaticality judgment and comprehension tasks
(e.g., (Larkin and Burns, 1977)). There are a variety of
similar constructions causing breakdown; Gibson (1991)
presents the most complete set. Figure 7 presents some
samples.

Not all multipleembeddingscause difficulty. For ex-
ample, right-branching may occur without bound (Kim-
ball, 1973):

(5) The dog saw the cat which chased the mouse into
the house that Jack built.

Figure 8 presents a sample of a corpus of over 25 accept-
able embeddings. Such constructions constrain theories
of parsing breakdown in the same way that the unprob-
lematic ambiguities constrain garden path theories.

In order to see how NL-Soar accounts for these
constructions, we must first examine in more detail the
representation of the utterance model in working mem-
ory. Soar’s working memory consists of attribute-value
structures. The partial utterance model is represented by
attribute-value pairs that index words and constituents by
their potential syntactic relationships. For example, the
words the dog might first appear in working memory as:’

6Thanksto Brad Pritchett for this example.
"TherelationsNL-Soar actually uses correspondto X-Bar positions.

Assi gns:
Recei ves:

“spec dog

“spec the "“subj dog “obj dog

This means that dog can assign a specifier role and
receive an object or subject role, and the can receive a
specifier role. As processing continues, additional con-
gtituents can be added to each attribute. Parsing is a
bottom-up process that consists of matching potential as-
signers and receivers and establishing the links permitted
by grammatical constraints.

Soar’sattribute-val ue representation permitsthe cre-
ation of large undiscriminated setsin workingmemory: a
single attribute may index many values. As noted above,
this can lead to exponential slowdown in the recognition
match. To avoid these combinatorics, NL-Soar restricts
each attributeto having just two associated values. Work-
ing memory capacity for syntax thus emerges from an
interaction of the partial construction, which determine
the available syntactic discriminators, and alimit on how
much material each discriminator may index.

Figure 9 shows how this restriction predicts break-
down on (4). The breakdown arises because one syntac-
tic attribute (the subject attribute) must index three con-
gtituents: the NPs man, boy, and dog. When dog is com-
prehended, one of theearlier NPsmust beremoved. Thus,
all of the subject NPswill not be available for attachment
when theverbsfinaly arrive. By contrast, the acceptable
right branching structure (5) can be handled because only
one NP must be available for modifier attachment at any
given point in the sentence. NL-Soar accounts for over
30 difficult and acceptable embeddings, including all of
the constructions in Tables 7 and 88. These construc-
tionsinclude several interesting phenomenain head-final
languages.

8A number of unacceptable constructions involving sentential sub-
jects may be ruled out for independent grammatical reasons (Koster,
1978).

Read “ the man”

Assigns: “nodifier nman

Recei ves: “subject nman “object nman
Read “ the woman”

A “nodifier man woman

R “subject man woman "object man wonan
Read “ the dog”

A: “nodifier dog woman

R “subject dog woman "object dog wonan

Figure 9: Breakdown on center-embedding.



Conclusion

NL-Soar is a computational model of sentence compre-
hension that accounts for a broad range of important
sentence-level phenomena, providingdetailed predictions
on garden path constructions, unproblematic ambiguities,
difficult embeddings, and acceptable embeddings.

The characteristics of the model either derive di-
rectly from architectural mechanismsin Soar (conversion
from deliberate to recognitional comprehension, parallel
generation of structural alternatives at ambiguous points,
fine-grain control over ambiguity resolution) or from the
application of architectural principlesto ensure that com-
prehension meets the real-time constraint (small set of
top-level comprehension operators, controlled generation
of therepair operator, limitson multiple-valued attributes
in working memory).

Perhaps it comes as a surprise that building a com-
prehension model within ageneral cognitive architecture
would prove fruitful. But as Allen said, “ There are more
thingsin an architecture, Horatio, than are dreamt of in
your theorizing.” (Newell, 1990).
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